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Abstract

We consider a stochastic financial incomplete market where the price
processes are described by a vector valued semimartingale that is possibly
non locally bounded. We face the classical problem of the utility max-
imization from terminal wealth, under the assumption that the utility
function is finite valued and smooth on the entire real line and satisfies
Reasonable Asymptotic Elasticity. In this general setting, it was shown in
Biagini and Frittelli [BF05] that the optimal claim admits an integral rep-
resentation as soon as the minimax o— martingale measure is equivalent
to the reference probability measure. We show that the optimal wealth
process is in fact a supermartingale with respect to every o-martingale
measure with finite generalized entropy, thus extending the analogous re-
sult proved by Schachermayer [Sch03] in the locally bounded case.
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1 Introduction

In this paper we complement the results in Biagini-Frittelli [BF05] by proving

an additional important property of the optimal wealth process there studied.

The comments on the literature are postponed to the end of this introduction.
We face the utility maximization problem

sup Elu(z + (H - X)r)] (1)
HeH
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in which v : R — R is the utility function, = € R is the constant initial endow-
ment, T' € (0, 0] is a fixed time horizon, X is an R?—valued cadlag semimartin-
gale defined on a filtered probability space (2, F, (F¢):cpo, 1], P) and H is the
class of admissible integrands to be defined precisely later. In case T' = oo, we
assume that, for every process Y under consideration, the limit Yoo = lim140 Y7
exists. The filtration satisfies the usual assumptions of right continuity and com-
pleteness and Fy is trivial, i.e. it is generated by the P-negligible sets in Fr.
The semimartingale X models the discounted evolution of the prices of d assets
and it is not assumed to be locally bounded.

Assumption 1 The utility v : R — R is a strictly concave increasing differen-
tiable function satisfying the Inada conditions

lim u'(z) =occand lim u'(z) =0,
and having Reasonable Asymptotic Elasticity, as defined by Schachermayer
[SchO1].

As in [BFO05], we let ®(y) = sup, g {u(z) — zy} be the convex conjugate of
the utility function v and we set

P@—Q<P‘E{¢(%)} <oo}7

M={Q < P| X is a 0 — martingale w.r.to Q} .

Assumption 2 MNPy # 0.

We are now ready to introduce the class H of admissible integrands, i.e.
the set of admissible trading strategies. In what follows, “H € L(X;Q)” is
a shorthand for “H is predictable and X-integrable under the probability Q”.
When @ is equivalent to P we simply write H € L(X).

The classical way to define admissibility of an integrand H € L(X) is to
require that the stochastic integral H - X is uniformly bounded from below by a
constant. This concept was first introduced by Harrison and Pliska [HP81] and
then applied by several authors when X is locally bounded (see e.g. Schacher-
mayer [Sch01] and the references therein).

In order to treat the general case, when X can be non locally bounded, we
considered in [BF05] the more general class

HY 2 {He L(X)|3e>0st. (H-X); >—cW, te[0,T]} (2)

of integrands for which the stochastic integrals are bounded from below by a
“sufficiently integrable” random variable W > 1. This natural extension of the
notion of admissibility was already introduced in [Sch94] and [DS99], but it was
only used in the context of the fundamental theorem of asset pricing.



In [BF05] we required that W satisfies two conditions that characterize the
convex set W of loss variables. Similarly to [BF05], we will work under the
following additional hypothesis.

Assumption 3 W is not empty.

Remark 1 Assumption 3 is equivalent to the existence of processes H* € L(X"),i =
1,...d, which never hit zero (i.e. P{w| 3t >0 s.t. H}(w) = 0}) = 0) and
such that

Elu(—c(1+ (H*- Xl)}))] > —oo for all ¢ > 0,
where * stands for the maximal process.

Using this result, it is not difficult to see that 1 € W when X is locally
bounded, so Assumption 8 automatically holds. Hence the results hereafter pre-
sented are true extensions of those proven by Schachermayer [Sch03] in the
locally bounded case.

On the other hand, it is clear that this assumption puts some restrictions on
the jumps of X. For instance, let u(x) = —e~ " and let X be a scalar Compound
Poisson process. Then, if the jump size is gaussian, W # (; if the jump size has
a doubly-exponential distribution (with probability density f(x) o< e M=l X >0),
W =40.

We also showed that if W € W then W € LY(Q) for all Q € M N Py.
Henceforth, the bound in the definition (2) still permits to apply Ansel and
Stricker result [AS94] and to deduce that if H € H" then

H - X is a supermartingale under all Q € M N Psp (3)

In economic terms the selection of the class H" means that the losses admitted
in the trading are pointwise bounded from below by some given W, which may
be considered as an attractive feature for some economic agents. These agents
face more risk in order to improve their maximum expected utility, i.e. they
select H" as domain in the utility maximization problem, thus solving the
problem

sup Elu(z + (H - X)7)] (4)

HeRrW

As pointed out in [BF05], in the general framework of possibly non locally
bounded semimartingales the supremum in (4) is not necessarily attained by
a process H € H". However, the problem (4) can be reformulated in such a
way that the optimal solution is a terminal value of a more general stochastic
integral, not necessarily well-controlled by W.

Mathematically speaking, which is then the “good” class of integrands we
should work with in order to catch the optimal solution? In Theorem 3 we
prove that the appropriate domain is H, i.e. the class of processes that verify
condition (3).

Definition 2 The class H of admissible integrands is given by
H={H e L(X)| H-X is a supermartingale under all Q € MNPy}



Without further mention, throughout the paper Assumptions 1, 2 and 3 are
supposed to hold true. Hereafter there is the main result of the present paper.

Theorem 3 The following hold true.
I- Forallz € R

d
suwp Elula+(H-X)r)] = | min o+ B [cb <yd—g)} < u(o0), (5)

and the minimum of the dual problem in (5) is attained by the couple

y(IE) € (07 00)7 Qy(m) €E MN7Psp.

II- If Q) is equivalent to P then there exists the optimal solution H, € 'H
to the primal problem in (5), H, - X is a uniformly integrable martingale
under Q) and

dQy(x
(e (H, - X)r) = (o) 2 ©
dP
In the particular case u(x) = —e 7 v > 0, the optimal wealth process

H, - X isin fact a true martingale under each Q@ € M N Ps.

The literature on this topic The convex analysis approach to utility maxi-
mization from terminal wealth in semimartingale models was pioneered by Pliska
[P1i86] and it has been successfully applied by many authors. Here we mention
those articles that deal in particular with the martingale and supermartingale
property of the optimal portfolio process in semimartingale models of financial
markets.

This subject started with the Six Authors’ paper [DGR+02]. Under the
assumptions that X is locally bounded, the utility is exponential and under
an additional technical condition (the reverse Holder inequality), it is proved
in [DGR+02] that the optimal wealth process is a true martingale under every
local martingale measure () with finite relative entropy. The technical condition
was then shown to be superfluous by Kabanov and Stricker [KS02].

A third step was made by Schachermayer [Sch03]. For a general utility func-
tion u : R — R and for locally bounded X he proved that if Q) ~ P, then
the optimal solution is a supermartingale under every local martingale measure
with finite generalized entropy. The “true martingale” property of the solution
is in fact lost when u is not exponential (see Proposition 4, [Sch03]).

Applying results from Theorem 1 [BF05], we will show that these proper-
ties still hold in the case of non locally bounded semimartingales. Part II in
Theorem 3 is indeed the essential contribution of this paper. In our proof we
closely follow the original and tricky Schachermayer’s approach. However, the
extension is non trivial, since we do not work with the set of local martingale
measures (which is closed in L'(P) when X is locally bounded), but with the



set M of o—martingale measures, which is not necessarily L'-closed. Hence,
the dynamic dual problem introduced in [Sch03] in our case does not necessarily
have a minimum.

In the next section we prove those statements of Theorem 3 that can be
immediately deduced from the results in [BF05]. In Items (a) and (b) below we
isolate the key steps in the proof of Theorem 3 and in Section 4 we conclude it.

2 First part of the proof of Theorem 3

Note that each H € H"W satisfies the property (3). This shows that H" C H.
From the definition of ® we get u(x+ (H-X)7) < (z+ (H - X)7) y% —i—(I)(y%)
for all y > 0 and Q) € M NPy, so that LHS(5) < RHS(5).

The latter inequality and H" C H guarantee that

sup FEu(zo + (H - X)r)] < u(o0)
HeHW

for some zp € R and therefore the assumption stated in equation (12) in [BF05]
is satisfied. Assumption 1 implies the assumptions (1)+(2) in [BF05], so we
may apply Theorem 1 [BF05] and conclude that

(i) forallz € R

sup Elu(z + (H-X)r)] = sup Elu(z+ (H - X)7)]
HeHW HeH

) aQ
ool L yrt B {‘1’ (%ﬂ (7)

and the minimum of the dual problem in (7) is attained by a unique couple
y(x) € (07 00)7 Qy(r) e MNPs.

(ii) if Qy(y) is equivalent to P then there exists H, € L(X) such that

y>0.QEMN Py Yap

Elu(a+ (Hy- X)) = min yx—i—E[(I)(dQ)},

H,-X is a uniformly integrable martingale under @, and (6) holds true.

Comparing (i) and (ii) with (I) and (II) of Theorem 3, we see that what is
left to show is only that, when Q) ~ P,

(a) H,-X is a supermartingale under each @ € M N Pg;

(b) H, - X is a true martingale under each Q € M N Py, in case of the
exponential utility.

The proofs of these two items will be carried on in Section 4. We will see
that Item (b) follows easily from the results in [KS02]. To prove Item (a) we
consider a dynamic problem, similar to that in [Sch03] but suited to our context.



3 An auxiliary dynamic problem

From now on, Qy,) ~ P. In this section 7 is any stopping time with values in

[0,T]. Let ("X): = X¢ — X, ¢, t > 0, be the increment of the process X after
T and set

M(7) 2 {Q < P| "X is a o-martingale under Q} .

It is easily seen that, given a couple of stopping times 71 < 79, M(71) is
contained in M(73). This in particular implies that M = M(0) is always a
(convex) subset of M(7). Define also

win 2 {Qemn | £ |G| =1}
where E7[-] = E[-| F;]. Since Fy is trivial, when 7 = 0 we get M = M(0) =
M (0).

Notations We denote with Z; = E'[Z7] the martingale process associated to
the generic Z7 € LY (Q, Fr, P).

When N is a set of probabilities absolutely continuous w.r.t. P, N¢ indicates
the subset of the equivalent ones.

If Zr = % and Q € N (Q € N°), we write: Zr € N (Zy € N® respectively),
thus identifying as usual the measure @) < P with its density wrt P.

If Q@ € My(1), we typically use the notation Y instead of Z for the density
process of Q.

Lemma 4 For all 7, M;(7) is not empty.

Proof. The optimal density % = ZT € M¢, so that ET > 0 and
}/}Té%z EMl(T). |

Lemma 5 Given a process S and two o-martingale probabilities for S, say
Q1,Q2, then there exists a process ¢ € L(S;Q1) N L(S;Q2), which is strictly
positive under P, such that the process ¢ - S is a martingale under both Q1,Qs.

Proof. This claim is not completely obvious, since (1 and Q)2 are not
necessarily equivalent to P. By the definition of a o-martingale (as given in
[DS98)), for i = 1,2 there exists a process ¢; € L(S;Q;), which is Q;-strictly
positive, such that ¢, - S is a @;-martingale. As it is well known, we can even
suppose that ¢, - S is an H!(Q;)-martingale. Define A; = {(w,t) | p;(t,w) < 0}.
Then A; is predictable and Q;(A;) = 0. Consider now ¢; = ¢;lac+14,. Clearly,
@; >0 under P and @, - S = ¢, - S under Q;. Take ¢ = p; A p, and note that
it belongs to L(S; Q1) N L(S;Q2), it is strictly positive under P and ¢ - S is an
H'-martingale with respect to both measures Q1, Q2. ®

The following Lemmata list some useful properties of M (7). By the previ-
ous Lemma we can work as if "X were a true martingale under the measures
Q1, Q2 considered (by passing to ¢ - "X ). Taking this into account, the proofs
become classical and we omit them (for more details, see e.g. [Del06]).



Lemma 6 (Random convezity) Fiz Y}, Y2 € My(1) and two nonnegative F -
measurable random variables n,,my such that n, +ny = 1. Then Yy = n,Y} +
nyY7 € My(7). Of course, if Yi. € M$(7) then Yr also is in MS(T).

Lemma 7 (Stability by concatenation) Let Yr € M(7).
If n > 0 is Fr-measurable, with E[n] =1, then Zr = nYp € M(1).
If n = Z., where Zy € M, then 2; = Z.Yr is also in M.
The next Lemma will be used in the proof of Proposition 12 and it is a well

known consequence of the Reasonable Asymptotic Elasticity of u (see Corollary
4.2 Schachermayer [Sch01]).

Lemma 8 These two conditions hold true:
- For each compact interval [Ao, A1] contained in (0,00) there exist constants
a >0 and B > 0 such that

D(Ay) < a®(y) + By +1), fory >0 and A € [Ao, M. (®)
- There exist constants v > 0 and § > 0 such that

yl@'(y)| < v@(y) +6(y +1), fory>0. )
As a consequence of (8)

FE [@ (/\ZT)] <ooforall A >0 and Zr € Ps. (10)

For any fixed, positive F.-measurable random variable ¢, we finally define
the dynamic minimization problem

vr(C) £ ess inf v, e, () ET[®(CY7))- (11)

This v, is always well defined, since ® is bounded from below, but it evidently
has a quite complex functional dependence on (.

Remark 9 Note that when 7 = 0, problem (11) reduces to the static minimiza-
tion
= inf FE[®(yZ 0. 12
vly) = inf Bl®(yZr)], y> (12)
From Proposition 8 [BF05] we know that, for ally > 0, the inf in (12) is reached.
On the contrary, in (11) the ess inf may not be attained. However, we will see
that the ess inf is attained in the case of interest (Corollary 14).

In the sequel we will always assume that v, is defined over the domain

V, ={¢Ce L%Q,F;,P)| ¢ >0and E[®((Yr)] < oo for some Y7 € My(7)},
(13)
so that v, (¢) will be finite-valued and P-integrable.



Remark 10 By convezity of ® and by condition (8) above, it is easy to see that
the domain V; is a convexr cone (but not containing the origin).

The following Lemma provides a variety of elements of V.
Lemma 11 If Zp € M° NPy, then yZ, € V. for any positive constant y.

Proof. Set ¢ = Z, and define Y1 £ %f Then Yr € My (7) and E[®((Yr)] =
E[®(Z7)] < co. This means Z, € V; and by the cone property of ¥V, we con-
clude the proof. m

Proposition 12 Let v, be defined over V;.

1. v;(¢) is a bounded from below, P-integrable F,-measurable random vari-
able.
The set of Fr-measurable random variables

{ET[®(CYD)] | Yr € Mu(7)} (14)

is directed downward, so that there exists a minimizing sequence (Y7) in
M (7) satisfying

ET[®(CYM)] | vr(¢) P-a.s. and also in L' (P).

2. (Random convezity of v;) For any A € Fr, any Fr-measurable random
variables o and B satisfying alg >0, Blg >0, (o + B)1a = 14, and any
(i, 1 =1,2,3, we have

vr((a€y + B8C2) 1a + (3lac) 1a < (aw-(¢q) + Bo-(C2) ) 1a.

3. (On v..) The right derivative v..(¢) = limy|; 5)‘—)&:%9 is well defined
and it verifies

Q) < Cro-(¢) + Ca(C+ 1), for some C; > 0. (15)
Moreover, if the essential infimum in v, (C) is reached by Yiﬁ7 i.e.
vr(Q) = ET[@(¢Y7)], (16)
then v). can be explicitly expressed as
ET[0((V3)Yy] = v (©)- (17)

4. (Monotonicity of v..) If (5 > Ao(y for some constant Ag > 1 on a set
A € F,, then
v7(C2)1a > v (¢))1a. (18)



Proof. 1. We have already seen that v,(¢) is bounded from below and
integrable. Now we prove that the set in (14) is directed downward. Let Y. €
M, (1) and set v' & ET[®(CY;:)]. Then v! A v? coincides with

ET[Q)(CYT)], Yr = 1{U1§v2}le + 1{U2<U1}Y7%

and Yr € My (7) by Lemma 6. Hence, by the definition of the essential infimum
there exists a sequence (Y), in M;(7) such that v, = ET[®(CY?)] | v-(¢)
P—a.s. To get a sequence which converges also in L'(P), fix an Y satisfying
the condition in (13), set 7 2 E7[®((Yr)] and consider

}777} = 1{5§1}”}7T + 1{1)”<5}Y17“L
Then
0,(C) < w" & ET[®CYH)] = 0" AT <T and E[t] = E[®((Y )] < 0o

so that w™ | v,(¢) P—a.s. and also in L'(P) by dominated convergence.

2. Define ¢ = Ta(aC; + BCy) + L4eC4. By convexity of ® and Fr-measurability
of a, B, 14 we get, for all Y1, V2 Y2 € My(7)

La (aBT[@(C,Y7)] + BET[®(CYF)])

ET [Ia®(ag, Y7 + B Y7)]

. [IAcD (ZYT)] > Tav,(()

Y

where Yy = IA(acloﬁbcz Y+ aﬁffr%(z Y2)+ 14 Y3 € My(7) by Lemma 6. Now,

just take the essential infimum over Y}, Y# and conclude.

3. Consider the function v, ¢ : (0,00) — LY(2, F,, P) defined by v, ¢(A) £
v7(A€). This is evidently a convex function of A so the right derivative Dt v, ¢(\)
is well defined and

Db (1) 2 tim A —2melD) gyt () (19)

Let Y*(A) € M1(7) (resp. Wi € M1(7) ) be a minimizing sequence for v, (A\()
(resp. v,(()) as in item 1) above. We therefore have

it EIROOF0) = @(CW)
Dfvrct) =lm lim EE

We can always suppose that
ET[Q(ACYT(N)] < ET[®(AWT)]

if not, just use random convexity as in the proof of item 1) to replace Y7*(\)
with a suitable one. Hence

Dt o, ¢(1) < limliminf ET[O(AWT) — 2(CW7)]
) All nloo )\ —~1




and, by convexity of @,

Do, (1) < 1)}?11 lin% inf E7[® (A\CWF)CWE].

Applying first (9) and then (8) we get
ET[0' (AW )(Wr]
T ETROCR] +50¢ +1))

IN

IA

1B [0@(CWR)] + A(C + 1)} +0(C+ )
< GBI + Cal¢ +1)

where the last inequality holds for all A > 1. Therefore

Dty (1) < liminf CLET[R(CWr)] + Co(¢ +1) = Cror(¢) + Ca(C + 1)

and (15) follows from (19).
Suppose now that the ess inf is reached by YTC and consider the auxiliary function
h:(0,00) — L'(Q, F,, P) defined as

h(A) = ET[®(ACYR))]

Then h is bounded from below and convex, h(A) > v, ¢(\) £ v, (A() and, from
(16), h(1) = v, ¢(1). Hence

D h(1) < D~ vr (1) < Dt v, (1) < D*A(1) (20)

In addition, h is clearly differentiable by condition (9). The expression for the
derivative is d

d\
So equalities must hold in (20) and we derive (17).

h(A) [az1= E7[@ (CYF)CY ]

4. As shown below, the convexity of v, (-) implies that

vr(C3) —vr(¢y) 14 < vr(C4) —vr(Gy) 14 (21)
(=G Cs—Co
for any ¢, satisfying on the set A the inequalities 0 < ; < (5 < {5 < (4. Since

on the set A in question we have 0 < (; < Ay < {y < §¢, for all A € (1, \)
and for all § > 1, we get

/ T UT(/\< )_UT(< )
tave(G) = dmla=Se— e

'UT(5C2) — UT(CZ)
o1t T 0 — Gy

IN
5.
—

= 1407(Cy).

10



To check (21) first suppose that 0 < {; < {5 < (5 holds on A and define the
F.-measurable random variables o = gz—:gf and 8 = %2:—21 Then als > 0,
ﬁlA >0, (Oé +B)1A =14 and (Oéﬁ +6<2)1A = <31A~ From item 2) we get

vr(C3)1a = v7(C31a + (31ac)la < [avr(Cy) + Brr(Co)] 14,

[v7(C3) —vr(C1)] 1a < [(a = Dvr(C1) + Br(Ca)] 1a

= Bor(C) — erCILa < Zhor(Ca) oG

Taking 0 < {5 < {5 < 4, and computing similarly v,({5)14, one easily deduces
(21). m

Remark 13 In item 4) it is required not only that (4 is greater than ¢y but also

that % is uniformly strictly bigger than 1. So only a weak form of monotonicity

or v is shown. Nevertheless, to prove (18) it is sufficient that the inequality
T

% > Ao > 1 holds true only over the set A. This result will be used in Section

4 in the proof of Item (a).

Corollary 14 Let y be such that the minimal ET(y) solution of problem (12)
is equivalent to P, i.e. Zr(y) € M®NPg. Then

v (yZ(y)) = E7 [@ (yET(y))]

i.e. the optimal solution to v, (yZT (y)) exists and coincides with }A/T = gT—((;")) €
My (7). So, from the expression of vl in Proposition 12,
- 7 -
ET |2 (yZT(y)) Zly) =) (yZT(y)) (22)
Z:(y)

Proof. Set ¢ = yZ,(y). Since yZr(y) = (Vr, v-(¢) < E7[®(yZr(y))] is
obvious by definition of v,. To show that the equality must hold, suppose that

P (vr(0) < 7 [0 (yZ2 () | ) >0,
From item 1) in Proposition 12, we can select a sequence Y € M;(7) such
that E7[®(CY2)] | v, (yZ,(y)) in L*(P). Set Z# £ Z (y)Y4. By Lemma 7, Z7
belongs to M. Note also
El0(yz3)] = E@(YR)] | B o (vZ-w)| < B[@ (vZ2(w)]

and this is a contradiction with the minimality of Z7(y) in the problem (12). m

11



4 Conclusion of the proof of Theorem 3

We are ready to prove Items (a) and (b) stated in Section 2. Though closely
following [Sch03], we emphasize that we collected the results needed in our
generalized proof in Proposition 12 and Corollary 14.

First of all, we rewrite Lemma 1 in [Sch03] (see also the other references
there cited) in c—martingale terms.

Lemma 15 Let X = (X;)o<i<r be a o—martingale under Q, H € L(X;Q)
and S = H - X. If, for any sequence of stopping times (7,,)°2, with values in
[0,T] U {oo} and increasing to oo, we have

nh_)rrgo sup Eg [Srnl{rn<oo,Sm§0}] =0

then S is a supermartingale under Q.

4.1 Proof of Item (a)

To simplify the notations we set @ = Qy(z) ~ P and y = y(x). By contradiction
we suppose there exists a Q € M N Py such that S =z + H, - X is not a Q-
supermartingale. We may assume that @ ~ P, otherwise we may replace @)

with Q—JEQ, since this latter probability belongs to M NPg and doesn’t turn S

into a supermartingale. We set Zr = % and ZT = %. Then, from Lemma 15

there exists a sequence of stopping times (7,)5 1, increasing to oo, such that

liminf B [=Zr, S, Ijr, <oo.s., <0}] >0 (23)

~

Since S is a uniformly integrable martingale under @ (see item (ii), Section 2),
we also know that

lim B | Zr, 8,1z, <o0,5., <0} =0
Fix Ao > 1. From (23) it follows
liminf B [~ 2y, ¢, I, <50, <0/ {7, o207} ] + (24)

limninfE {—Z-,—n S iz, <00, SO}I{ZWSAOEW}] >0
The second term in (24) is equal to zero because

0

v

liminf B [Zr, 87, Iz, <00, <} L7, <ro7)]

V

> Nolimint B |Z,,S;, Iz, <os,, <0 {7, <z, }| =0
Therefore

lim inf £ [—ZTH Srulira<oo o<t 7. ox, 2}} >0 (25)

12



Set R
Ap={rn <00,8;, <0,Z., >NZ;,}

n —

Clearly, A, | § and for all n the stopping time 7,, coincides with 7, AT on A,,.
Since 7271 € My(ry)

7, (yZz,) = ess infy, ey (r,) BT [@(y 27, Y7)] < BT [R(yZr)]
and we may compute

E[®(yZr)la,| = E[E™([®(yZ7)|1a,] = E 07, (yZ-,)1a,]  (26)
> aFEyZ:.,v. (yZ:,)a,| — c2E(yZ;, +1)1a,]

Tn “Tn

where we used Proposition 12 item 3) applied to the stopping time 7, A T and
c1,c2 > 0 are suitable constants. Now, E[(yZ;, +1)I4,] = yQ(A4,)+P(4,) — 0
as n — oo so that

n Tn

liminf E [vr, (yZ;,)1a,] > liminf &1 E [yZ, v} (yZ-,)1a,] (27)
By the monotonicity of v , proved in Proposition 12 item 4),

E (42,0t WZe)In,) 2 B[ yZe, 0, (472,)1a, (28)

By the fundamental relation between primal and dual optima in the utility
maximization (6), the primal optimal solution can be written as x+(Hy - X)r =
—&'(yZr) (recall that (u/)~! = —®') and the optimal wealth process S =
r+H, Xisa @—martingale. As a consequence, for any stopping time 7 < T

S, = Ej -+ (Hy X)rl = —E7

T

~ 7 ~
cp’(sz)TT] = vl (yZ,)
Z
where the last equality follows from equation (22). Thus

E yZTnU;'n (yZ\Tn)IAn:I =F [_yZTn STnIAn] (29)

From (26), (27), (28), (29), and (25) we finally obtain
liminf B [®(yZ71)a,] > liminf ey F [-yZ;, S, Ia,] >0

and this contradicts the fact that @ has finite entropy, since A,, | 0.

4.2 Proof of of Item (b)

When w is exponential, thanks to the stability by concatenation of M (Lemma
7) and to the fact that (H, - X)r € L'(Q) for all Q € M N Pg, one can repeat
word by word the proof in [KS02] to show that the true martingale property of
the optimal wealth process is preserved.

13



References

[ASO4]

[BFO5]

[Del06]

[DGR+02]

[DS98]

[DS99]

[HPS1]

[KS02]

[P1i86]

[Sch94]

[Sch01]

[Sch03]

J.P. Ansel and C. Stricker. Couverture des Actifs contingents et priz
maximum. Ann. Inst. H. Poincaré 30, 303-315, 1994.

S. Biagini and M. Frittelli. Utility Maximization in Incomplete Mar-
kets for Unbounded Processes. Fin. & Stoch. 9, 493-517, 2005.

F. Delbaen. The structure of m-stable sets and of the set of risk
neutral measures. Sem. Prob. XXXIX, 2006.

F. Delbaen, P. Grandits, T. Rheinlaender, D. Samperi,
M. Schweizer, and C. Stricker. Ezponential Hedging and Entropic
Penalties. Math. Fin. 12/2, 99-123, 2002.

F. Delbaen and W. Schachermayer. The Fundamental Theorem of
Asset Pricing for Unbounded Stochastic Processes. Math. Ann. 312,
215-250, 1998.

F. Delbaen and W. Schachermayer. A Compactness Principle for
Bounded Sequences of Martingales with Applications. Proc. of the
Seminar on Stoch. Analysis, Random Fields and Appl., Progr. in
Prob. 45, 137-173, 1999.

J.M. Harrison and S.R. Pliska. Martingales and stochastic integrals
in the theory of continuous trading. Stoch. Proc. & Appl. 11, 215-
260, 1981.

Y. Kabanov and C. Stricker. On the Optimal Portfolio for the Ex-
ponential Utility Maximization: Remarks to the Siz-Authors Paper.
Math. Fin. 12/2, 125-134, 2002.

S.R. Pliska. A stochastic calculus model of continuous trading. Math.
Oper. Res. 11/2 371-382, 1986.

W. Schachermayer. Martingale Measures for discrete time processes
with infinite horizon. Math. Fin. 4, 25-55, 1994.

W. Schachermayer. Optimal investment in incomplete markets when
wealth may become negative. Ann. Appl. Prob. 11/3, 694-734, 2001.

W. Schachermayer. A super-martingale property of the optimal port-
folio process. Fin. & Stoch. 4, 433-457, 2003.

14



