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The Team Orienteering Problem (TOP) aims at finding a set of routes subject to maximum route duration

constraints that maximize the total collected profit from a set of customers. Motivated by a real-life Auto-

mated Teller Machine (ATM) cash replenishment problem that seeks for routes maximizing the number of

bank account holders having access to cash withdrawal, we investigate a generalization of the TOP that we

call the Team Orienteering Problem with Overlaps (TOPO). For this problem, the sum of individual profits

may overestimate the real profit. We present exact solution methods based on column generation and a

metaheuristic based on large neighborhood search to solve the TOPO. An extensive computational analy-

sis shows that the proposed solution methods can efficiently solve synthetic and real-life TOPO instances.

Moreover, the proposed methods are competitive with the best algorithms from the literature for the TOP.

In particular, the exact methods can find the optimal solution of 371 of the 387 benchmark TOP instances,

33 of which are closed for the first time.
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1. Introduction

The Team Orienteering Problem (TOP) is a well-known decision-making problem of the class of

Vehicle Routing Problem with Profits (see Archetti, Speranza, and Vigo (2014)). Given a set of

vehicles and a set of customers, each one with an associated profit, the goal of the TOP is to design

a set of routes (one for each vehicle) that maximizes the total profit collected by visiting (some of)

the customers without exceeding a maximum duration constraint for each route.

The first paper on the TOP is owed to Butt and Cavalier (1994). Since then, many exact and

heuristic approaches to solve the TOP and many of its variants have appeared in the literature

1
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Figure 1 Example of a TOPO instance (a) and a corresponding feasible solution (b)

(see Vansteenwegen, Souffriau, and Van Oudheusden (2011), Gunawan, Lau, and Vansteenwegen

(2016) for recent surveys on the topic). The increasing interest in efficient solution methods to solve

the TOP and related problems is due to the variety of real-life applications that can be modeled

as TOPs, e.g., athlete recruiting (Chao, Golden, and Wasil (1996)), technician routing (Tang and

Miller-Hooks (2005)), design of tourist trips (Vansteenwegen and Van Oudheusden (2007)), and

customers selection in less-than-truckload transportation (Archetti et al. (2009)).

In this paper, we introduce and solve a new generalization of the TOP that we call the Team

Orienteering Problem with Overlaps (TOPO). The TOPO is inspired by a real-life decision-making

problem faced by Geldmaat, a joint venture of the three largest Dutch commercial banks (ABN

AMRO, ING, and Rabobank) in charge of providing logistical services such as cash collection,

counting, and distribution in the Netherlands. Automated Teller Machines (ATMs) are replenished

by using a set of armored vehicles, whose routes are subject to maximum duration constraints

deriving from legal restrictions that limit the time each driver can work every day. One of the main

challenges faced by Geldmaat is to decide which ATMs to replenish to maximize the number of

bank account holders that have access to ATMs. This is particularly challenging on days with peak

demand, when most ATMs are empty and vehicles are in short supply. In our real-life setting, bank

account holders (identified by the postal code of residence) are considered to have access to cash

if there exists a replenished ATM within five kilometers from the residence postal code.

Figure 1(a) shows an example of a TOPO instance with five ATMs and 12 bank account holders.

The depot is represented by the rectangle (D), the ATMs by diamonds (1-5), and the bank account

holders by circles (numbered from 1 to 12). A dashed line between an ATM and a bank account

holder indicates that the ATM can serve the bank account holder. Some bank account holders (e.g.,

4, 6, 8, 9, and 10) can be served by two ATMs. A feasible solution for the instance is depicted in

Figure 1(b). Two vehicles are used. The first serves ATMs 1 and 2, whereas the other serves just

ATM 3. This solution allows to serve nine bank account holders (i.e., the grey circles). Notice that
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bank account holders 4 and 6 can withdraw from both ATMs, but they do not count twice in the

total number of bank account holders served.

The TOPO also arises in other real-life distribution problems. A first application is the decision

on which stores to replenish given that consumers can be served from one or several nearby stores.

Another application is in humanitarian logistics, where first-aid resources or services have to be

provided in large geographical areas and beneficiaries can be served at different service points. As

the TOPO does not model just the problem faced by Geldmaat but also other real-life applications,

we will refer to the ATMs as service points and the bank account holders as consumers in the rest

of the paper.

The main contributions of this paper are the following: (i) we introduce the TOPO, a new

generalization of the TOP that arises in real-life applications, together with (ii) exact branch-

and-cut-and-price (BCP) algorithms that can solve to optimality instances with up to 100 service

points; (iii) we show how the ng-path relaxation technique, introduced by Baldacci, Mingozzi,

and Roberti (2011) to price out columns associated with possibly non-elementary paths, can be

exploited not only to prevent some cycles but also to improve the linear relaxation bound by lifting

some of the coefficients of the columns priced out; (iv) we propose a Large Neighborhood Search

(LNS) metaheuristic for the TOPO that is able to find high-quality solutions of instances with up to

100 service points within short computation times; (v) we report on experimental results obtained

by applying the best performing of our BCP algorithms to solve the TOP benchmark instances by

Chao, Golden, and Wasil (1996), showing that it improves upon state-of-the-art exact methods by

solving to optimality about 96% of the instances (371 out of 387) and closing 33 open instances;

(vi) we show that both the best performing BCP algorithm and the LNS metaheuristic can provide

high-quality solutions for real-life instances provided by Geldmaat with up to 100 service points

and 203,717 consumers; (vii) from a managerial point of view, we report a quantitative analysis

that sheds light on the potential losses that arise when the underlying real-life problem should be

modeled as a TOPO but is addressed as a TOP.

The rest of the paper is organized as follows. Section 2 reviews the main contributions from

the literature on exact and heuristic algorithms for the TOP. The TOPO is formally introduced

in Section 3, where a compact formulation for the problem is provided. Section 4 describes the

BCP algorithms. Section 5 illustrates the LNS metaheuristic. Section 6 discusses the computational

results obtained by applying the devised algorithms on both synthetic and real-life instances.

Finally, conclusions and future research directions are outlined in Section 7.

2. Literature Review

As the TOPO generalizes the well-known TOP (see Section 3), this section reviews the main exact

and heuristic methods presented in the literature to solve the TOP. For an exhaustive overview of
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the literature on the TOP and related problems, the reader is referred to the surveys of Vansteen-

wegen, Souffriau, and Van Oudheusden (2011) and Gunawan, Lau, and Vansteenwegen (2016).

2.1. Exact Methods

The first exact method for the TOP is owed to Boussier, Feillet, and Gendreau (2007), who describe

a branch-and-price algorithm based on a set packing formulation where each variable represents

an elementary route. The pricing problem corresponds to an Elementary Shortest Path Problem

with Resource Constraints (ESPPRC). Different acceleration techniques are proposed to solve the

ESPPRC. The proposed branch-and-price is tested on the standard benchmark instances intro-

duced by Chao, Golden, and Wasil (1996), hereafter referred to simply as Chao instances. The

computational results show that 270 of the 387 Chao instances can be solved to optimality within

two hours of computational time.

Poggi, Viana, and Uchoa (2010) describe three mathematical formulations and a robust branch-

and-cut-and-price algorithm, where the pricing problem is solved by dynamic programming and

two families of robust cuts (i.e., min cuts and triangle clique cuts) are separated. A partial imple-

mentation of the branching schemes is adopted, so only partial preliminary computational results

on the Chao instances are reported.

Dang, El-Hajj, and Moukrim (2013) propose a branch-and-cut method based on a three-index

formulation with a polynomial number of binary variables. The linear relaxation is tightened by

adding different sets of valid inequalities and dominance properties, such as boundaries on profits,

symmetry breaking, generalized subtour elimination, and clique constraints. The proposed branch-

and-cut can solve 278 Chao instances within two hours of computational time.

Keshtkaran et al. (2016) build upon the exact method of Boussier, Feillet, and Gendreau (2007)

to propose an enhanced branch-and-cut-and-price algorithm, where the pricing problem is solved

by bounded bidirectional dynamic programming with decremental state-space relaxation and two-

phase dominance rule relaxation. The Subset-Row inequalities introduced by Jepsen et al. (2008)

are also separated to strengthen the linear relaxation of the Set Packing formulation. The proposed

branch-and-cut-and-price can solve 301 Chao instances within two hours of computational time.

El-Hajj, Dang, and Moukrim (2016) describe a branch-and-cut algorithm building upon the

three-index formulation and the cuts used by Dang, El-Hajj, and Moukrim (2013), but based on

additional sets of valid inequalities. The resulting branch-and-cut approach can solve 300 Chao

instances within two hours of computational time.

The most recent exact method is owed to Bianchessi, Mansini, and Speranza (2018), who intro-

duce a branch-and-cut method based on a new two-index formulation with a polynomial number

of variables and constraints. The linear relaxation is enforced by separating an exponential number
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of connectivity constraints with an exact algorithm for max-flow/min-cut problems. The proposed

branch-and-cut algorithm can solve 327 of the 387 Chao instances within two hours of computa-

tional time. Nevertheless, 49 of the 387 Chao instances have not been solved to optimality by any

of the exact methods presented so far in the literature.

2.2. Heuristic Methods

A variety of heuristics and metaheuristics have been proposed for the TOP since the early 2000s.

In general, neighborhood-based approaches are more common than population-based approaches.

2.2.1. Neighborhood-Based Approaches. Tang and Miller-Hooks (2005) introduce a tabu

search heuristic embedded in an adaptive memory procedure that explores both feasible and infea-

sible solutions, alternates between small and large neighborhoods in the solution improvement

phase, and uses greedy and random components for generating neighborhood solutions.

Archetti, Hertz, and Speranza (2007) describe three metaheuristics, i.e., two generalized tabu

search algorithms and a variable neighborhood search algorithm. The algorithms explore feasible

and infeasible solutions. The impact of different strategies to jump between solutions, penalize

infeasibility, and restore feasibility is assessed.

Vansteenwegen et al. (2009) describe an algorithm that combines different local search heuristics

and uses Guided Local Search to improve the quality of the solutions achieved.

Two versions of a metaheuristic based on a pure path relinking approach combined with a greedy

randomized adaptive search procedure are presented in Souffriau et al. (2010).

Lin (2013) proposes a multi-start simulated annealing algorithm that combines simulated anneal-

ing with multi-start hill climbing to minimize the chances of being trapped in local minima.

Kim, Li, and Johnson (2013) propose a large neighborhood search embedding three improvement

algorithms (i.e., a local search, a shift-and-insertion, and a replacement improvement) and manage

to compute all 387 best-known solutions of the Chao Instances.

Vidal et al. (2015) introduce a heuristic framework for solving the TOP and two other vehicle

routing problems with profits and manage to compute the best-known solutions for all but one of

the Chao instances. The heuristic is based on an exhaustive solution representation where first all

customers are assigned to the vehicles and in a sequence that possibly violates the maximum-route

duration constraints. Then, the final set of customers to be served is selected by exploring, in

pseudo-polynomial time, an exponential neighborhood of solutions. Notice that Vidal et al. (2015)

could also be classified as a population-based approach.

2.2.2. Population-Based Approaches. An ant colony optimization approach is proposed by

Ke, Archetti, and Feng (2008). Four alternative methods (i.e., sequential, deterministic-concurrent,
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random-concurrent, and simultaneous) are applied to construct candidate solutions within the ant

colony framework.

Bouly, Dang, and Moukrim (2010) present a memetic algorithm that combines genetic algo-

rithms with local search techniques to improve the mutation phase. The encoding of a solution

is based on a giant-tour representation, and an optimal split procedure is applied to evaluate

the chromosomes. The algorithm of Bouly, Dang, and Moukrim (2010) is later hybridized with

particle-swarm optimization in Dang, Guibadj, and Moukrim (2011) and further extended in Dang,

Guibadj, and Moukrim (2013). The latter manages to compute all 387 best-known solutions of the

Chao instances.

Ke et al. (2016) present a metaheuristic using a Pareto-dominance criterion to control the simi-

larity between the generated and the incumbent solutions. Pareto-dominance is also used to update

the population of incumbent solutions. This metaheuristic, similarly to Kim, Li, and Johnson (2013)

and Dang, Guibadj, and Moukrim (2013) manages to compute all 387 best-known solutions for the

Chao instances.

3. Problem Description

The TOPO can be formally described as follows. A set of consumers C is given. Consumers are

served via a set of service points S = {1,2, . . . , n}; in particular, each consumer c∈ C can be served

by a subset of service points Sc ⊆ S. Similarly, the subset of consumers that can be served by

service point i∈ S is indicated by Ci ⊆C. Consumers can be served via the service points by routing

a set of homogeneous vehicles K located at a depot, indicated by 0. Each vehicle can perform a

route that starts from the depot, visits some service points, and returns to the depot. Each route

cannot exceed a maximum route duration denoted by T . The travel time between each pair of

depot/service point locations i and j (i, j ∈ V = S ∪ {0}) is indicated by tij; travel times can be

asymmetric and, without loss of generality, are assumed to be strictly positive and to satisfy the

triangle inequality (i.e., tij ≤ tik + tkj for each i, j, k ∈ V). The TOPO aims at finding a set of routes,

each one not exceeding the maximum route duration, that visit each service point at most once

and maximize the number of consumers served.

In the TOP, a set of customers U is given. A profit ru is associated with each customer u ∈ U ,

and a set of m vehicles are located at the depot and can be used to serve the customers. The goal of

the TOP is to find a set of at most m routes, each one not exceeding a maximum route duration T ,

such that each customer is served at most once and the total collected profit is maximized. We can

observe that the TOP is a special case of the TOPO. Indeed, any TOP instance can be mapped

into a TOPO instance as follows. The set K comprises m homogeneous vehicles, i.e., |K| = m.

Each customer of the TOP instance corresponds to a service point in the TOPO instance, and the
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TOPO instance contains |C|=
∑

u∈U ru consumers. The sets Cu are defined in such a way that Cu,

u∈ U , contains ru consumers (i.e., |Cu|= ru) and the sets Cu are pairwise disjoint (i.e., Cu∩Cu′ =∅,

u,u′ ∈ U : u 6= u′). Moreover, the set Sc, c ∈ C, contains a single element that corresponds to the

only service point u such that c∈ Cu. It is easy to observe that any solution of the resulting TOPO

instance corresponds to a solution of the original TOP instance.

The TOPO can be defined on a directed graph G = (V,A), where the arc set is defined as

A= {(i, j) | i, j ∈ V : i 6= j}. Let us define the following three sets of variables: xij ∈ {0,1}, binary

variable equal to 1 if arc (i, j) ∈ A is traversed by one of the vehicles (0 otherwise); yc ∈ {0,1},

binary variable equal to 1 if consumer c∈ C is served (0 otherwise); and zi ∈R+, continuous variable

indicating the arrival time at service point i∈ S. Then, the TOPO can be formulated as follows:

z∗ = max
∑
c∈C

yc (1a)

s.t.
∑

(0,j)∈A

x0j ≤ |K| (1b)∑
(i,j)∈A

xij ≤ 1 i∈ S (1c)∑
(i,j)∈A

xij =
∑

(j,i)∈A

xji i∈ S (1d)

zi + (T + tij)xij ≤ zj +T (i, j)∈A : i, j ∈ S (1e)

t0i
∑

(i,j)∈A

xij ≤ zi ≤
(
T − ti0

) ∑
(i,j)∈A

xij i∈ S (1f)∑
(i,j)∈A : i∈Sc

xij ≥ yc c∈ C (1g)

xij ∈ {0,1} (i, j)∈A (1h)

yc ∈ {0,1} c∈ C (1i)

The objective function (1a) asks for maximizing the number of consumers served. Constraint (1b)

ensures that no more than |K| routes are designed. Constraints (1c) guarantee that each service

point is visited at most once. Constraints (1d) are flow conservation constraints for the service

points. Constraints (1e) link x and z variables to set the arrival time at each service point based

on the traversed arcs and also prevent subtours in the designed routes. Constraints (1f) guarantee

that if service point i ∈ S is visited, the arrival time of the vehicle visiting it is not less than the

travel time from the depot to i and not greater than T − ti0. Constraints (1g) ensure that each

consumer c∈ C is served only if at least one of the service points of the set Sc is visited. Constraints

(1h)-(1i) define the range of the decision variables.
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4. Exact Methods

In this section, we discuss the exact branch-and-cut-and-price (BCP) algorithms devised to address

the TOPO. In Section 4.1, we introduce a first BCP algorithm. Then, starting from the BCP

algorithm just presented, two alternative, potentially improving, versions are derived and discussed

in Section 4.2.

4.1. Branch-and-Cut-and-Price Algorithm

In the following, we present the main features and components of the BCP algorithm.

4.1.1. Route-Based Model Let H= {H1,H2, . . . ,H|H|} be a partition of the consumers such

that Sc = Sc′ for each pair of consumers c, c′ ∈ C, c 6= c′, belonging to the same subset Hh, i.e.,

the two consumers can be served by the same subset of service points. In the following, each

subset of the partition H is called class of consumers (or simply class) and we refer to each class

corresponding to subset Hh by its index h. Moreover, let S(Hh)⊆S be the subset of service points

that serve the consumers of the subset Hh - i.e., S(Hh) = Sc for each c∈Hh - and let H(i) be the

subset of classes served by service point i∈ S - i.e., H(i) = {h |h= 1, . . . , |H|, i∈ S(Hh)}. Let R be

the set of all feasible routes in graph G, and let air be a integer coefficient indicating the number

of times route r ∈R visits service point i∈ S.

Let δh ∈ R+ be a non-negative continuous variable (with a binary meaning) equal to 1 if the

class of consumers h= 1, . . . , |H| is not served (0 otherwise), and let ξr ∈ {0,1} be a binary variable

equal to 1 if route r ∈R is selected (0 otherwise).

[F] δ∗ = min

|H|∑
h=1

|Hh|δh (2a)

s.t.
∑
r∈R

airξr ≤ 1 i∈ S (2b)∑
r∈R

ξr ≤ |K| (2c)∑
r∈R

( ∑
i∈S(Hh)

air

)
ξr + δh ≥ 1 h= 1, . . . , |H| (2d)

ξr ∈ {0,1} r ∈R (2e)

δh ∈R+ h= 1, . . . , |H| (2f)

The objective function (2a) aims at minimizing the number of consumers not served by any route;

therefore the number of consumers served y∗ is given by |C|− δ∗. Constraints (2b) ensure that each

service point is visited at most once by the selected routes. Constraint (2c) guarantees that at most

|K| routes are selected. Constraints (2d) model that each class of consumers h is either visited (in
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this case
∑

r∈R(
∑

i∈S(Hh) air)ξr ≥ 1 and δh = 0) or not (in this case
∑

r∈R(
∑

i∈S(Hh) air)ξr = 0 and

δh = 1). Constraints (2e)-(2f) define the range of the decision variables.

Let us call LF the linear relaxation of F, and let z(LF) be its optimal solution cost.

4.1.2. Pricing problem. Let ui ∈R− be the dual variable associated with constraint (2b) of

service point i ∈ S of LF, u0 ∈ R− the dual variable associated with constraint (2c), and vh ∈ R+

the dual variable of class h= 1, . . . , |H| of constraint (2d). The dual of LF is

z(D) = max
∑
i∈S

ui + |K|u0 +

|H|∑
h=1

vh

s.t.
∑
i∈S

airui +u0 +

|H|∑
h=1

( ∑
i∈S(Hh)

air

)
vh ≤ 0 r ∈R

0≤ vh ≤ |Hh| h= 1, . . . , |H|

ui ∈R− i∈ V

Given the dual variables (u,v), the pricing problem corresponds to finding the minimum reduced

cost route, where the reduced cost cr(u,v) of route r ∈R is defined as cr(u,v) =−
∑

i∈S airui −

u0−
∑|H|

h=1

(∑
i∈S(Hh) air

)
vh.

Solving the pricing problem corresponds to finding a route of minimum reduced cost, i.e., solving

the problem minr∈R cr(u,v). This problem corresponds to the well-known Elementary Shortest

Path Problem with Resource Constraints (ESPPRC), which is known to be NP-hard in the strong

sense (Dror 1994). To simplify the pricing problem, it is common in the literature to price out

ng-routes, thus allowing routes to visit some of the service points more than once and allow some

sub-tours. The ng-path relaxation has been introduced in Baldacci, Mingozzi, and Roberti (2011)

and applied to the TOPO as follows.

Let Ni ⊆S be a priori-defined set of selected service points associated with service point i ∈N

such that i ∈Ni. With each path P = (0, i1, i2, . . . , i`(P )) that starts from the depot, visits a set of

`(P ) service points, and ends at service point i`(P ), we associate a set NG(P )⊆Ni`(P )
defined as

follows

NG(P ) = {ik, k= 1, . . . , `(P )− 1 | ik ∈∩`(P )
j=k+1Nij}∪ {i`(P )} (4)

that is, the set NG(P ) contains the final vertex i`(P ) visited by path P and any other vertex

ik, k = 1, . . . , `(P )− 1, that belongs to all sets Nik+1
,Nik+2

, . . . ,Ni`(P )
associated with the vertices

visited by path P after visiting ik. Note that, without forcing i to be included in Ni it would not

have been possible to define NG(P ) as a subset of Ni`(P )
.
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An ng-path (NG, t, i) is a non-necessarily elementary path P = (0, i1, i2, . . . , i`(P )) that starts

from the depot, visits a set of service points such that NG(P ) = NG, has a total duration of t,

and ends at vertex i∈N such that i /∈NG(P ′), where P ′ = (0, i1, i2, . . . , i`(P )−1) is an ng-path. Any

(NG, t,0)-path ending at the depot at time t > 0 is called ng-route.

Let f(NG, t, i) be the cost of a least cost ng-path (NG, t, i). Functions f(NG, t, i) can be com-

puted by using dynamic programming as follows. Define the state set S = {(NG, t, i) : i ∈ V, t ∈

[0, T ], NG⊆Ni s.t. i∈NG}. For each state (NG, t, i)∈ S, function f(NG, t, i) is computed as

f(NG, t, i) = min
(NG′,t′,j)∈Γ(NG,t,i)

{f(NG′, t′, j) + cji(u,v)}, (5)

where the set Γ(NG, t, i) contains the subset of predecessor states of (NG, t, i) defined as

Γ(NG, t, i) = {(NG′, t′, j) ∈ S | t′ = t − tji, j ∈ V \ {i},NG′ ⊆ Nj : j ∈ NG′ and NG′ ∩ Ni = NG \

{i}}, and cji(u,v) is the reduced cost of arc (j, i) ∈ A with respect to the dual solution (u,v)

defined as

cji(u,v) =−ui−
∑

h∈H(i)

vh (6)

To compute functions f(NG, t, i), the following initialization is required: f(∅,0,0) = 0 and

f(∅, t,0) =∞, t∈ (0, T ].

The number of functions f(NG, t, i) to compute can be reduced by applying the following dom-

inance rule.

Dominance 1 Let (NG, t, i), (NG′, t′, i)∈ S be two states such that (1) f(NG, t, i)≤ f(NG′, t′, i),

(2) t≤ t′, and (3) NG⊆NG′ (and such that one of the three conditions is strictly satisfied), then

state (NG, t, i) dominates (NG′, t′, i).

4.1.3. Speeding up the pricing problem solution. We use three acceleration techniques

to speed up the pricing problem solution algorithm:

1. Bi-directional ng-path (Righini and Salani 2006): ng-routes are priced out by generating ng-

paths up to an half-way point and paths are combined to generate routes. We can use the time

to set the half-way point and stop propagating a path as soon as the arrival time t(P ) at the

last customer i of an ng-path (NG, t, i) exceeds dT
2
e. A forward ng-path (NG1, t1, i1) can be

combined with a backward ng-path (NG2, t2, i2) if either (NG1, t1, i1) ends at the depot or t1 >

dT
2
e, i1 = i2, NG1∩NG2 = {i1}, and t1 + t2 ≤ T ; moreover, the reduced cost cr(u,v) of the route

obtained by combining paths P1 and P2 (r= P1⊕P2) is cr(u,v) = f(NG1, t1, i1)+f(NG2, t2, i2).
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2. Heuristic pricing : Before solving the pricing problem to optimality, two heuristics are applied

in sequence in order to eventually generate negative reduced cost columns. Both the heuristics

apply the Dominance Rule 1 by ignoring the condition NG1 ⊆NG2, relaxing then the criteria

for the dominance. In addition, the first heuristic propagates each state (NG, t, i) towards the

service points corresponding to the ηA arcs outgoing from i and having the lowest reduced costs

cij(u,v). The second heuristic is run only if the first does not succeed in finding negative reduced

cost columns. When both heuristics fail, the pricing problem is solved to optimality.

3. Dynamic ng-path (Roberti and Mingozzi 2014): The idea is to compute increasingly better lower

bounds by starting from small sets Ni and iteratively adding service points to the sets Ni based

on the optimal fractional solution computed for LF with the current sets Ni. In particular, the

initial sets Ni contain the η
Ni

service points closest to i and, at each iteration, the sets Ni are

updated to eliminate the first shortest cycle contained in each route of the optimal fractional

solution. The process iterates until either all the routes of the optimal fractional solution are

cycle-free or all the possible updates would increase the cardinality of a set Ni beyond a given

maximum value ηNi
.

4.1.4. Valid inequalities. The linear relaxation of (2a)− (2f) can be strengthened by adding

the well-known Subset-Row (SR) inequalities introduced by Jepsen et al. (2008) for the VRPTW.

As commonly done, we consider SRs defined over triples of service points only, which is∑
r∈R

⌊
air + ajr + akr

2

⌋
ξr ≤ 1 {i, j, k} ⊆ S (7)

that can easily be separated by pure enumeration. In order to handle these non-robust cuts, the

pricing problem solution algorithm is modified as illustrated in Jepsen et al. (2008).

4.1.5. Restricted master heuristic. To speed up the branch-and-price algorithm, we embed

a restricted master heuristic (Joncour et al. 2010) in the solution framework. The basic idea behind

restricted master heuristics is to solve, by means of a general mixed integer linear programming

(MILP) solver, the master problem (F) restricted to a subset of the generated columns. By removing

constraints (2b) from model F, any subset of generated columns (even including columns corre-

sponding to routes with cycles) can be used to compute an infeasible solution (optimal w.r.t. the

considered columns) that can be easily made feasible (without worsening its value) by removing all

but one visit for each service point visited multiple times. Thus, each time we compute an optimal

fractional solution for LF, the columns defining the solution are used as they are to initialize the

restricted master problem (from which constraints (2b) are removed) which is then solved by means

of a general MILP solver. The heuristic is run up to a given level of the branch-and-bound tree as

specified in Section 6.
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4.1.6. Branching. We perform a traditional binary branching according to two hierarchical

rules. The first rule is on whether a service point is visited or not. The second rule is on the arcs

to traverse.

4.2. Improved Branch-and-Cut-and-Price Algorithms

The integrality gap of route-based model F presented in Section 4.1.1 is strongly affected by the

coefficients of variables ξr in constraints (2d). Indeed, in constraint (2d) of a given class h (h =

1, . . . , |H|), the variable ξr associated with route r ∈R has a coefficient ahr equal to the number of

times the service points that can serve the class h (i.e., ahr =
∑

i∈S(Hh) air) are visited in the route.

Let us associate with each route r and each class h a binary coefficient ahr defined as

ahr =

{
1 if ahr ≥ 1
0 otherwise

that is, ahr is equal to 1 if at least one of the service points that can serve the class h is visited by

route r (0 otherwise). An alternative formulation for the TOPO is obtained from F by replacing

in constraints (2d) the coefficients ahr =
∑

i∈S(Hh) air with ahr. The resulting formulation F is

[F] δ∗ = min

|H|∑
h=1

|Hh|δh (8a)

s.t.
∑
r∈R

airξr ≤ 1 i∈ S (8b)∑
r∈R

ξr ≤ |K| (8c)∑
r∈R

ahrξr + δh ≥ 1 h= 1, . . . , |H| (8d)

ξr ∈ {0,1} r ∈R (8e)

δh ∈R+ h= 1, . . . , |H| (8f)

It is easy to observe that the linear relaxation of F (hereafter LF) provides a lower bound z(LF) on

the TOPO that is greater than or equal to z(LF). Nevertheless, it is computationally challenging

to solve the pricing problem of F because the definition of coefficients ahr requires to keep track

of all service points visited by a route in order to properly take into account the dual variables v.

Therefore, even computing lower bounds to z(LF) by pricing out non-elementary routes (such as

ng-routes) may be computationally prohibitive.

In Sections 4.2.1 and 4.2.2, we propose two alternative ways of defining coefficients to replace

ahr in constraints (2d) that are computationally tractable when pricing out ng-routes and provide

lower bounds that can be worse than z(LF) but can be (significantly) better than z(LF). Each of

the definitions leads to an improved route-based model that can be used in place of model F, and

to an alternative, potentially improving, version of the BCP algorithm discussed in Section 4.1.1.
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4.2.1. First Improved BCP Algorithm. In the first computationally-tractable improved

route-based model (hereafter called F′), for each route r ∈ R, we count the number of times a

class h can be served by a service point j (i.e., j ∈ S(Hh)) visited in the route and the service

point i visited right before j in the route cannot serve class h (i.e., i /∈ S(Hh)). Therefore, given

route R= (0, i1, i2, . . . , i`(R),0), the number of times a′hr class h= 1, . . . , |H| is served by route R is

computed as a′hr =
∣∣{ik, k= 1, . . . , `(R) | ik ∈ S(Hh), ik−1 /∈ S(Hh)}

∣∣.
We can observe that ahr ≤ a′hr ≤ ahr for each class h= 1, . . . , |H| and each route r ∈R. Let us call

F′ the formulation obtained from F by replacing coefficients ahr with coefficients a′hr in constraints

(8d). Moreover, let LF′ be the linear relaxation of F′, and let z(LF′) be its optimal solution cost.

We can observe that z(LF)≤ z(LF′)≤ z(LF).

The pricing problem to compute z(LF′) can be solved by using the same methods used to

compute z(LF) by redefining the arc reduced costs (6) as

c′ji(u,v) =−ui−
∑

h∈H(i)\H(j)

vh (9)

4.2.2. Second Improved BCP Algorithm. In the second computationally-tractable

improved route-based model (hereafter called F′′), the number of times a route r ∈R serves class

h= 1, . . . , |H| depends on the setsNi ⊆S of selected service points associated with each service point

i ∈ S. As in definition (4), for each service point iq visited along a route r = (0, i1, i2, . . . , i`(r),0),

let us define a set of service points NGq(r) associated with iq as NGq(r) = {ik, k= 1, . . . , q−1 | ik ∈

∩q
j=k+1Nij ,} ∪ {iq}. The number of times a class h is served by route r is then counted as the

number of visits to a service point iq that can serve class h (i.e., iq ∈ S(Hh)) and such that none

of the service points in the set NGq−1(r) can serve class h (i.e., NGq−1(r) ∩ S(Hh) = ∅), which

is a′′hr =
∣∣{iq, q= 1, . . . , `(r) | iq ∈ S(Hh), NGq−1(r)∩S(Hh) = ∅}

∣∣. We can observe that ahr ≤ a′′hr ≤

a′hr ≤ ahr. In particular, ahr = a′′hr for each h= 1, . . . , |H| and for each r ∈R if Ni = S for each i∈ S,

and a′′hr = a′hr for each h= 1, . . . , |H| and for each r ∈R if Ni = {i} for each i∈ S.

Let us call F′′ the formulation obtained from F by replacing coefficients ahr with coefficients a′′hr

in constraints (8d). Moreover, let LF′′ be the linear relaxation of F′′, and let z(LF′′) be its optimal

solution cost. We can observe that z(LF′)≤ z(LF′′)≤ z(LF). Moreover, z(LF′) = z(LF′′) if Ni = {i}

for each i∈ S, and z(LF′′) = z(LF) if Ni = S for each i∈ S.

The pricing problem to compute z(LF′′) can be solved by using the same methods used to com-

pute z(LF) by redefining recursion (5) as follows: f(NG, t, i) = min(NG′,t′,j)∈Γ(NG,t,i){f(NG′, t′, j)+

c′′ji(NG
′,u,v)}, where c′′ji(NG

′,u,v) is the cost of a propagation along arc (j, i)∈A when NGj(r) =

NG′ defined as
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c′′ji(NG
′,u,v) =−ui−

∑
h∈H(i) :h/∈

⋃
k∈NG′ H(k)

vh (10)

The use of sets NGq(r) to compute coefficients a′′hr implies a mono-directional propagation of the

states. Actually, by propagating states backward along a route, it is possible to define column

coefficients that are different from those computed by using forward propagation. Consider the

example of a route r= (0, i1, i2, i3,0), with i1 ∈Ni2 , i3 /∈Ni2 , and H(i1)∩H(i2) =H(i2)∩H(i3) =∅,

H(i1)∩H(i3) = {h̄}. The forward propagation of the states along the route implies a′′
h̄r

= 1, whereas

a′′
h̄r

= 2 when states are propagated backward. Given this asymmetry in the solution spaces implied

by the forward and backward propagation of the states, the bi-directional acceleration technique

is not applied while solving the pricing problem arising for F′′.

To our knowledge, this is the first time that ng-paths are used not just to eliminate cycles but

also to improve the linear relaxation bound by lifting some of the column coefficients. This benefit

comes at the expense of an increase in the computational time needed to manage the propagation

of the states and the definition of the column coefficients. Such an idea may be successfully applied

to other routing problems where vehicles can fulfill (multiple) tasks by visiting locations and each

task can be fulfilled by visiting a subset of all locations; this happens, for example, in applications

of the Generalized Rural Postman Problem and its generalizations (see Drexl (2007)).

5. A Large Neighborhood Search Metaheuristic

In this section, we present a Large Neighborhood Search (LNS) metaheuristic for the TOPO. Since

its introduction in Shaw (1998), LNS has proved to be an efficient tool for solving many vehicle

routing problems inspired by real-life applications (e.g., Ropke and Pisinger (2006), Adulyasak,

Cordeau, and Jans (2012), Masson, Lehuédé, and Péton (2013), Emde and Schneider (2018), and

Hübner and Ostermeier (2018)). According to Pisinger and Ropke (2019), the main idea of LNS is

to start from an initial solution and gradually improve it by alternately applying a destroy method

and a repair method to the incumbent solution. The destroy method significantly changes the

incumbent solution to guarantee diversification. The repair method intensifies the search in the

neighborhood of the incumbent solution. An exhaustive review of LNS and related metaheuristics

is provided by Pisinger and Ropke (2019).

5.1. Overview of the Proposed LNS

The LNS (Algorithm 1) starts with generating an initial solution X (Line 1) by using an adaptation

of the well-known nearest-neighbor approach of Solomon (1987). In particular, a route is created

for each vehicle by iteratively inserting the unvisited service point that minimizes the extra-mileage
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until no more service points can be added. The initial solution obtained is then added to the pool

of best solutions found Ω and also represents the best-known solution X ∗ (Line 2).

The core of the LNS is represented by the main loop (Lines 3-11), which is iterated η1 times, where

η1 is a parameter. At each iteration, the first step is to randomly choose a solution X from the pool

(Line 4) according to a uniform probability distribution. The second step is to destroy solution

X (Line 5) by randomly removing a percentage of the visited service points. This percentage is

chosen according to a uniform distribution within two intervals [α1, β1] and [α2, β2], where α1 <

β1 � α2 < β2. A percentage in the interval [α1, β1] intensifies the search around the incumbent

solution whereas a percentage in the interval [α2, β2] diversifies the search. The service points to

be removed are randomly selected with an equal probability. Then, the solution returned by the

destroy method is improved by applying a repair method consisting of a local search procedure

(Line 6), a random replacement of some of the visited service points (Line 7), and again the local

search procedure (Line 8). More details on these procedures are provided in the next sections

and in the pseudo-code descriptions of Algorithms 2 and 3. At the end of each iteration, the best

solution found X ∗ is updated (Line 9) along with the pool of solutions Ω (Line 10), to ensure that

it contains the ω best solutions found by LNS, ω being a parameter.

Algorithm 1 Overview of LNS

Input: TOPO input data

Parameters: max iterations, η1

Output: TOPO solution X ∗

1: X ← generateInitialSolution

2: X ∗←X , Ω←{X}

3: for η1 = 1, . . . , η1 do

4: X ← randomlySelectFromPool(Ω)

5: X ← destroySolution(X )

6: X ← applyLocalSearch(X ) . See Algorithm 2

7: X ← replaceRandom(X ) . See Algorithm 3

8: X ← applyLocalSearch(X )

9: X ∗← updateBest(X ∗,X )

10: Ω← updatePool(Ω,X )

11: end for

12: return X ∗
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5.2. Local Search

The local search procedure applied at each iteration of the LNS is detailed in Algorithm 2. The

input is a solution X , and the output is the solution obtained by iteratively applying a sequence

of local search operators. The local search procedure is repeated as long as the incumbent solution

is improved by any of the operators.

Algorithm 2 applyLocalSearch(X )

Input: solution X = (R1,R2, . . . ,R|K|)

Output: new solution X improved with local search

1: do

2: X ′←X

3: do . Routing improvement

4: X ′′←X

5: X ← 2-opt-intra(X )

6: X ←OR-opt2-intra(X )

7: X ← swap-inter(X )

8: X ← relocate-inter(X )

9: X ← 2-1-exchange-inter(X )

10: while X 6=X ′′

11: do . Profit improvement

12: X ′′←X

13: X ← replace(X )

14: X ← add(X )

15: while X 6=X ′′

16: while X 6=X ′

17: return X

The local search procedure consists of two main phases (i.e., a routing improvement phase and

a profit improvement phase), each one iterated until a local minimum is reached. The routing

improvement phase does not change the set of visited service points (and therefore does not change

the profit of the solution) and aims at minimizing the length of the shortest route in the incumbent

solution. To this end, five local search operators are applied: (1) 2-opt-intra (i.e., the well-known 2-

opt operator applied within a route), (2) OR-opt2-intra (i.e., shifting sequences of two consecutive

service points forward and backward in the corresponding route), (3) swap-inter (i.e., exchanging

two service points of two different routes), (4) relocate-inter (i.e., moving a service point from its
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route to any position in any other route), and (5) 2-1-exchange-inter (i.e., exchanging a service

point of a route with two service points of another route). The profit improvement phase aims at

increasing the total profit of the visited service points by applying two operators that change the

set of service points: (1) replace, which replaces a visited service point with an unvisited service

point, and (2) add, which inserts unvisited service points in any of the routes.

Notice that, computing the profit for a solution of the two profit improving operators can be

time-consuming. Let fprofit(S) be the total profit of the service points of the set S ⊆S, and let us call

S the set of service points visited by the incumbent solution X . A move of the replace operator tries

to replace a service point i ∈ S with a service point j ∈ S \S. Unfortunately, we can observe that

the profit of the set of service points (S \{i})∪{j} may not be fprofit(S)− fprofit({i}) + fprofit({j}),
indeed fprofit((S \ {i})∪{j})≤ fprofit(S)− fprofit({i}) + fprofit({j}). Similarly, a generic move of the

add operator tries to add a service point j ∈ S \ S to the routes of X , but we can observe that

fprofit(S∪{j}) may be less than fprofit(S)+fprofit({j}) (i.e., fprofit(S∪{j})≤ fprofit(S)+fprofit({j})).
Therefore, to limit the computation time for evaluating the replace and add operators, we apply

a memory-intensive pre-processing step that pre-computes the effect of adding/removing a service

point to/from a set of visited service points on the total profit. In particular, for each service point

i∈ S, let O(i)⊆S\{i} be the set of service points that serve at least one of the consumers served by

service point i, i.e., O(i) = {j ∈ S \{i} | Ci∩Cj 6=∅}. Let P(O(i)) be the powerset of O(i). For each

subset of service points O ∈P(O(i)), we pre-compute the difference ∆(O, i) between the profit of

the set of service points O ∪ {i} and O, i.e., ∆(O, i) = fprofit(O ∪ {i})− fprofit(O). If it is possible

to compute the values ∆(O, i) for each i∈ S and each O ∈P(O(i)), then the profit of any replace

and add move during the LNS can easily be computed in constant time: any replace move that

replaces the visited service point i∈ S with the unvisited service points j ∈ S \S achieves a solution

with profit equal to fprofit(S)−∆(S ∩O(i), i) + ∆((S \{i})∩O(j), j), and any add move that adds

unvisited service point j ∈ S \S to the visited service points S achieves a solution with profit equal

to fprofit(S) + ∆(S ∩O(j), j). Clearly, if the cardinality of the sets O(i) is high, pre-computing all

values ∆(O, i) may become prohibitive. In such a case, other strategies to estimate the increase

(decrease) in the profit of the incumbent solution derived from adding (removing) a service point

need to be devised. For example, one could create a subset of the service points Ô(i)⊂O(i) such

that it is possible to generate the powerset P(Ô(i)). In our computational experiments, we do

not investigate the case where all the values ∆(O, i) cannot be computed a-priori due to memory

limitations because such an issue does not appear in the real-life cases we consider.

5.3. Random Replacement

The replaceRandom procedure is performed once at each iteration of the LNS in order to increase

the profit of the incumbent solution. The input of the procedure is a solution X = (R1,R2, . . . ,R|K|),
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and the output is another solution with possibly a higher profit. The procedure has two parameters

η2 and η3, which control the number of times a route can be changed to improve its profit and the

maximum number of changes that can be performed every time, respectively. A detailed pseudo-

code of the replaceRandom procedure is provided in Algorithm 3.

Algorithm 3 replaceRandom(X )

Input: solution X = (R1,R2, . . . ,R|K|)

Parameters: max iterations of changes per route, η2; max changes per iteration, η3

Output: new solution X

1: for r= 1, . . . , |K| do

2: for η2 = 1, . . . , η2 do

3: Randomly select a set S̃ of η3 service points from route Rr, η3 ∼U [1, min{η3, `(Rr)}]

4: if fprofit(S̃)< fprofit(S \S) then

5: Remove the service points S̃ from Rr

6: Randomly insert as many unvisited service points as possible into Rr

7: if the removals and insertions of service points decreased the profit of Rr then

8: Undo the changes of Rr

9: end if

10: end if

11: end for

12: end for

13: return X

The replaceRandom procedure focuses on one route at a time (Line 1). For each route r, η2

attempts to improve the total profit are made (Line 2). In each attempt, a set S̃ of η3 service points

visited by route Rr are randomly selected with a uniform distribution (Line 3); η3 is a random

number between 1 and min{η3, `(Rr)}, where η3 is a parameter and `(Rr) represents the number of

service points visited by route Rr. The service points S̃ are candidates to leave route Rr. If the total

profit of the service points S̃ is smaller than the profit of the unvisited (S \S) service points (Line

4), then first the service points S̃ are removed from route Rr and marked as unvisited (Line 5),

and secondly the unvisited service points are iteratively inserted into route Rr (in a random order)

in the position that minimizes the distance to visit them (Line 6). If the removal and insertion

operations on route Rr increase its profit (Line 6), then the changes are maintained; otherwise, the

changed are undone (Line 7).
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6. Computational results

This section presents a computational analysis of the branch-and-cut-and-price algorithms

described in Section 4 and of the LNS metaheuristic presented in Section 5. For the sake of brevity,

only aggregated results are presented and discussed in this section. Detailed results can be found

in the e-companion of the paper.

All proposed algorithms have been implemented in C++, compiled with Visual Studio 2017

64-bit and tested on a single-core of an Intel Core i7-6700U running at 4.00 GHz, equipped with 24

GB of memory. Moreover, for the BCP algorithms, at each column generation iteration, the linear

relaxation of model F, F′, or F′′ is solved with CPLEX 12.7, which is also used as general MILP

solver in the restricted master heuristic (see Section 4.1.5).

All the BCP algorithms share the following setting. The first heuristic to solve the pricing

problem limits the number of propagations of a state to ηA = 5 service points. The dynamic

ng-path technique is applied up to the third level of the branch-and-bound tree, with η
Ni

= 3

and ηNi
= 11. Once the dynamic update of the sets Ni fails while processing a node, sets Ni

cannot be further updated for that node. At most one SR inequality (7) at a time can be added

to the considered model (i.e., the inequality associated with the greatest violation value, with a

minimum violation threshold of 0.01), and at most two inequalities per branch-and-bound node.

The separation algorithm checking for violated SR inequalities is run up to the tenth level of

the branch-and-bound tree, for a maximum of 20 SR inequalities per sub-tree. In particular, the

separation algorithm can be run only if the dynamic update of the sets Ni fails (or when the update

of the sets is no more allowed). The restricted master heuristic is applied up to the tenth level of

the branch-and-bound tree. Finally, branching is done on the variable associated with the most

fractional value.

For the LNS, unless stated otherwise, the following parameter settings are used: [α1, β1] =

[20%,30%], [α2, β2] = [80%,90%], ω= 50, η1 = 10000−bmax{0,100−|S|}
10

c · 500, η2 = 30, η3 = 3.

Hereafter, we will refer to the BCP algorithms based on models F, F′, or F′′ as to Baseline,

BCP1, BCP2, respectively. Computational times are reported in seconds throughout the section. Fur-

thermore, to simplify the comparison with the literature, all primal and dual bounds are reported

as if the objective function of the TOPO is to maximize the number of consumers served (as defined

in (1a)) instead of minimize the number of consumers that are not served (as defined in (2a) and

(8a)). Indeed, as observed in Section 4, objective function (2a) and (8a) can also be equivalently

formulated as min{|C|− δ∗}.

The computational analysis is conducted on three sets of test instances. The first set (discussed in

Section 6.1) consists of 215 synthetic TOPO instances derived from the instances by Chao, Golden,

and Wasil (1996) commonly used to assess the performance of solution methods for the TOP. The
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second set (discussed in Section 6.2) consists of the 387 Chao TOP instances, which, as explained

in Section 3, is a special case of the TOPO. The third set (discussed in Section 6.3) consists of

10 real-life instances of the TOPO that are faced by Geldmaat in their cash supply chain, which

motivated the research on the TOPO. For all instances, travel times are rounded to the nearest

value with a precision of 1.0e-12, and post-processing is applied to enforce the triangular inequality.

The first two sets of instances are available upon request; for confidentiality reasons, we cannot

disclose the third set of instances.

6.1. Computational Results on Synthetic TOPO Instances

6.1.1. Description of the Instances The first set of instances consists of 215 synthetic

TOPO instances we derived from the well-known TOP instances introduced by Chao, Golden, and

Wasil (1996). The Chao instances include seven families of instances (numbered from 1 to 7), each

with a fixed number of service points, overall ranging from 19 to 100. Each family of instances

consists of three groups of instances, where each group contains the same number of instances and

is characterized by a different number of vehicles (two, three, or four). Each instance of the resulting

21 groups is further characterized by a different maximum route duration T . It should be noted

that in instances with small values of T , some of the service points may not be reachable. Table

1 summarizes the main features of each family, namely, number of service points (|S|), number of

instances (nInst), minimum and maximum route duration of the instances in each group (T|K|=2,

T|K|=3, T|K|=4).

Table 1 Features of the Chao instances

Family |S| nInst T|K|=2 T|K|=3 T|K|=4

1 30 54 2.5-42.5 1.7-28.3 1.2-21.2

2 19 33 7.5-22.5 5.0-15.0 3.8-11.2

3 31 60 7.5-55.0 5.0-36.7 3.8-27.5

4 98 60 25.0-120.0 16.7-80.0 12.5-60.0

5 64 78 2.5-65.0 1.7-43.3 1.2-32.5

6 62 42 7.5-40.0 5.0-26.7 3.8-20.0

7 100 60 10.0-200.0 6.7-133.3 5.0-100.0

To generate the 215 synthetic TOPO instances, we selected for each group of the Chao instances

up to three TOP instances for which all service points are reachable. In particular, we selected those

instances with the smallest, largest and median maximum route duration in the group, resulting in

43 instances as outlined in Table 2, where nInst|K|=2, nInst|K|=3, and nInst|K|=4 indicate the number

of instances per group with two, three, and four vehicles.

Then, for each of these 43 instances, five TOPO instances are derived by applying a three-step

procedure. In the first step, a service radius ρ defining the maximum distance between a service
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Table 2 Features of the selected Chao instances

Family |S| nInst nInst|K|=2 nInst|K|=3 nInst|K|=4

1 30 6 3 3 0

3 31 5 3 2 0

4 98 9 3 3 3

5 64 9 3 3 3

6 62 7 3 3 1

7 100 7 3 3 1

point and the consumers it can serve is computed as ρ = 0.5 ∗ min{tij : i, j ∈ S : i 6= j}. The

service radius ρ subsequently is used to define non-overlapping circular service regions centered

around each service point. In the second step, for every service point (within its service region),

as many consumers as the profit of the associated service point in the original TOP instance are

first randomly generated and then allocated. In the third step, we compute the smallest value of ρ

such that
∑

i∈S |Ci| ≥ |C| ∗ (1 + γ), where γ = 0.1, 0.2, 0.3, 0.4, and 0.5. This results into a total of

215 TOPO instances with varying degrees of overlap. This procedure guarantees that the optimal

solution value of the original TOP instance is a valid lower bound to the optimal solution value

of any of the resulting five TOPO instances, thus allowing a direct assessment of the impact of

increasing overlaps among service regions. Further details on the instance generator are available

upon request.

6.1.2. Preliminary Computational Results of the Exact Methods In order to compare

the performance of the three branch-and-cut-and-price algorithms, we first conducted preliminary

experiments on all 215 TOPO instances with a short time limit of 900 seconds. In particular, to

assess the impact of the implemented dynamic ng-path acceleration technique, the three algorithms

were tested under two settings: static and dynamic depending on whether the sets Ni are defined in

a static or dynamic way. The dynamic setting is the default one. The algorithms under the static

setting are obtained by imposing η
Ni

= 11.

Table 3 Preliminary results, grouped by degree of overlap, of Baseline, BCP1, and BCP2 (static and dynamic)

Static Dynamic

Baseline BCP1 BCP2 Baseline BCP1 BCP2

Overlap nInst opt gapOp opt gapOp opt gapOp opt gapOp opt gapOp opt gapOp

10% 43 26 0.59 32 0.35 33 0.47 31 0.52 35 0.25 30 0.92

20% 43 26 1.23 28 0.47 28 1.02 25 1.03 30 0.34 29 0.86

30% 43 21 1.78 30 0.55 27 1.09 22 1.42 30 0.39 29 1.08

40% 43 16 2.84 27 0.72 26 0.87 19 2.70 29 0.59 25 1.41

50% 43 15 3.35 26 0.72 27 0.66 16 3.13 29 0.46 27 1.19

215 104 1.96 143 0.56 141 0.82 113 1.76 153 0.41 140 1.09
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Table 4 Preliminary Results, grouped by number of vehicles, of Baseline, BCP1, and BCP2 (static and dynamic)

Static Dynamic

Baseline BCP1 BCP2 Baseline BCP1 BCP2

|K| nInst opt gapOp opt gapOp opt gapOp opt gapOp opt gapOp opt gapOp

2 90 49 1.96 62 0.62 58 1.24 51 1.81 68 0.38 55 1.94

3 85 38 1.99 55 0.58 56 0.55 44 1.72 58 0.44 58 0.54

4 40 17 1.87 26 0.39 27 0.47 18 1.73 27 0.38 27 0.34

215 104 1.96 143 0.56 141 0.82 113 1.76 153 0.41 140 1.09

Tables 3 and 4 summarize these preliminary experiments by grouping them by degree of overlap

and number of vehicles, respectively. For each group of instances, each table reports the number of

instances (nInst), the number of instances solved to optimality (opt) and the average final percentage

gap over the open instances (gapOp) for each of the three algorithms under the two settings. The

average percentage gap for each instance is computed as ( ubF
blb
− 1) ∗ 100, where ubF is the final best

upper bound and blb is the best lower bound computed.

Table 3 shows that, under the static setting, BCP1 solves more instances (i.e., 143) than Baseline

and BCP2, which solve 104 and 141 instances, respectively, and the final gap is on average smaller

(i.e., 0.56% vs 1.96% and 0.82%, respectively). Similar results are achieved under the dynamic

setting. The table also indicates that Baseline and BCP1 solve more instances and provide lower

gaps under the dynamic setting than the static setting, whereas BCP2 has better performance

under the static setting. Nevertheless, BCP1 under both settings performs better than the other

two algorithms. In particular, for BCP2 the increased computational overhead seems to have a

substantial impact on its performance, nullifying the eventual improvement in the linear relaxation

bound (see Section 4.2.2). We can also see that the performance of all six algorithms tends to

be better when the overlaps are smaller (i.e., Overlap 10% and 20%) and deteriorates when the

overlaps are larger (i.e., Overlap 40% and 50%). This indicates that instances with larger overlaps

among service regions are more challenging. Table 4 indicates that BCP1 is significantly better than

Baseline and BCP2 on instances with two vehicles.

A more detailed comparison of the performance of BCP1 in the static (BCP1-Static) and the

dynamic (BCP1-Dynamic) setting is provided in Tables 5 and 6 on the basis of the 138 instances

solved to optimality under both settings. Each row of these two table reports the number of

instances commonly solved to optimality (opt) in the corresponding group, and, w.r.t. the instances

solved, the average upper bound at the root node (ubR), the average root solution time (cpuR), and

the average total solution time per instance (cpuF). Average values for BCP1-Dynamic are reported

as geometric mean of the ratios with respect to the corresponding values of the static version.

For BCP1-Dynamic, we also report the average cardinality of the sets Ni. Tables 5 and 6 show
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Table 5 Full comparison between BCP1-Static and BCP1-Dynamic: results grouped by degree of overlap

BCP1-Static BCP1-Dynamic

Overlap opt ubR cpuR cpuF |Ni| ubR cpuR cpuF

10% 32 312.2 6.0 123.7 4.2 1.00 1.50 0.85

20% 27 311.5 3.0 62.7 4.0 1.00 1.55 1.00

30% 28 289.7 2.8 101.2 4.1 1.01 1.94 0.82

40% 26 297.2 2.3 119.9 4.0 1.00 1.84 0.94

50% 25 252.4 2.4 114.3 4.1 1.00 1.50 0.75

138 293.8 3.4 104.8 4.1 1.00 1.65 0.87

Table 6 Full comparison between BCP1-Static and BCP1-Dynamic: results grouped by number of vehicles

BCP1-Static BCP1-Dynamic

|K| opt ubR cpuR cpuF |Ni| ubR cpuR cpuF

2 59 320.7 3.3 123.7 4.2 1.00 1.41 0.93

3 53 247.3 2.9 86.3 4.2 1.00 2.28 0.97

4 26 327.7 4.6 99.4.9 3.6 1.00 1.22 0.60

138 293.8 3.4 104.8 4.1 1.00 1.65 0.87

that the versions of BCP1 provide similar average upper bounds at the root node, even though the

cardinality of the sets Ni is on average just 4.1 for BCP1-Dynamic. Albeit BCP1-Dynamic takes on

average 65% more time than BCP1-Static to terminate the root node, it takes on average 13%

less time to close the instances. Moreover, it seems that the number of vehicles does not affect the

performance of the two algorithms.

6.1.3. Results of the Exact Method As the preliminary results for a time limit of 900

seconds suggested that BCP1 (in its dynamic setting, i.e., the default setting) is on average superior

to the other algorithms, we extensively tested it on all 215 instances for a time limit of one hour

to solve each instance. Table 7 summarizes the results achieved grouped by degree of overlap and

by number of vehicles. The following information is reported: number of instances (nInst), average

gap at the root node before changing the Ni sets and before adding SR inequalities (gap0), average

final gap at the root node (gapR), number of instances solved to optimality (opt), average solution

time (cpuF), number of instances open (nOpen), and average gap between the highest upper bound

of the unexplored nodes left in the search tree and the best lower bound computed (gapOp).

Table 7 shows that BCP1 can solve 179 of the 215 instances and the average gap left for the

36 open instances is quite small (i.e., 0.44%). The average solution time is five minutes. When

comparing the results on instances with different overlaps, it is clear that the higher the overlap,

the more difficult the instances are: this is due to the fact that the root node provides worse upper

bounds when the overlaps increase.
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Table 7 Summary of the results of BCP1 with one hour of time limit

Overlap |K| nInst gap0 gapR opt cpuF nOpen gapOp

10% 43 1.26 0.48 38 214.2 5 0.23

2 18 1.17 0.42 17 233.3 1 0.00

3 17 1.50 0.48 15 262.4 2 0.27

4 8 0.96 0.62 6 39.6 2 0.32

20% 43 1.34 0.52 38 353.2 5 0.39

2 18 1.29 0.34 18 461.5 0 -

3 17 1.52 0.64 14 312.6 3 0.33

4 8 1.07 0.70 6 122.8 2 0.48

30% 43 1.48 0.68 36 303.1 7 0.41

2 18 1.53 0.65 15 327.2 3 0.32

3 17 1.67 0.74 15 368.7 2 0.45

4 8 0.93 0.62 6 78.6 2 0.52

40% 43 1.58 0.80 34 309.4 9 0.41

2 18 1.57 0.69 15 283.4 3 0.39

3 17 1.94 1.03 13 363.8 4 0.48

4 8 0.82 0.57 6 256.6 2 0.31

50% 43 1.66 0.84 33 319.9 10 0.59

2 18 1.67 0.74 16 270.6 2 0.84

3 17 2.12 1.16 11 252.8 6 0.58

4 8 0.68 0.42 6 574.3 2 0.39

215 1.46 0.67 179 299.1 36 0.44

6.1.4. Results of the LNS Table 8 summarizes the computational results of LNS on the 215

synthetic TOPO instances. Results are grouped by degree of overlap and by number of vehicles.

On each instance, LNS was run ten times. Columns report the following information: number of

instances (nInst), the number of instances on which LNS found the best-known solution in any

of the runs even if it was not proved to be optimal by BCP1 (bk), the number of instances on

which LNS found an optimal solution in any of the runs (opt), the percentage gap between the best

solution found by the LNS and the best primal bound found by BCP1 (gapBPB - notice that negative

gaps mean that the best solution found by LNS is better than the best solution found by BCP1),

the percentage gap between the best solution found by LNS and the best dual bound provided by

the BCP1 (gapBDB), the percentage gap between the average best solution found by LNS over all

runs and the best dual bound provided by BCP1 (gapADB), and the average solution time (cpuF).

Table 8 shows that LNS could find the best-known solutions of 183 out of 215 instances. Moreover,

the average gaps between the best and the average lower bounds provided by LNS and the upper

bounds provided by BCP1 are small (i.e., 0.13% and 0.23%, respectively), yet these values may be
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overestimated because not all upper bounds provided by BCP1 were proved to be optimal. We can

also observe that, similar to BCP1, LNS performs better on instances with smaller overlaps.

Table 8 Summary of the results of LNS on all 215 TOPO instances

Overlap |K| nInst bk opt gapBPB gapBDB gapADB cpuF

10% 43 36 33 -0.05 0.07 0.17 200.9

2 18 14 14 -0.02 0.07 0.17 134.0

3 17 15 14 -0.10 0.05 0.14 208.5

4 8 7 5 -0.02 0.11 0.20 335.0

20% 43 39 35 -0.04 0.07 0.15 205.9

2 18 16 16 0.01 0.01 0.12 140.8

3 17 16 14 -0.08 0.07 0.14 207.8

4 8 7 5 -0.04 0.19 0.25 348.5

30% 43 36 30 -0.04 0.15 0.23 206.2

2 18 14 12 -0.06 0.12 0.18 145.2

3 17 15 13 -0.07 0.12 0.21 199.0

4 8 7 5 0.07 0.27 0.37 358.5

40% 43 36 31 -0.03 0.15 0.28 205.2

2 18 13 13 0.07 0.15 0.25 147.0

3 17 16 13 -0.15 0.15 0.29 195.9

4 8 7 5 0.01 0.17 0.33 355.9

50% 43 36 29 -0.07 0.20 0.34 211.5

2 18 14 13 0.00 0.18 0.33 151.1

3 17 15 12 -0.12 0.26 0.40 199.1

4 8 7 5 -0.16 0.12 0.27 374.0

215 183 158 -0.04 0.13 0.23 205.9

We have conducted further experiments, summarized in Table 9, to shed light on the effective-

ness of some key components of the LNS presented in Section 5. In particular, we tested the impact

of (i) the pre-processing step, (ii) the acceptance criterion of the intra-route operators, (iii) the

replaceRandom procedure, and (iv) the selection criterion of the solution from the pool Ω. There-

fore, we tested four additional versions of the LNS on all 215 synthetic TOPO instances. In LNS2, the

pre-processing step is not performed, so the replace and add operators need to compute the profit

of the solutions in the neighborhoods in a more computationally intensive way; in this version, a

time limit of 720.0 seconds was imposed on each experiment - this time limit exceeds the maximum

computation time (i.e., 658.1 seconds) observed when LNS is used. In LNS3, the acceptance criterion

of the intra-route operators is not the minimization of the length of the shortest route but rather

the minimization of the length of all routes in the incumbent solution. In LNS4, the replaceRandom

procedure is removed. Finally, whereas in LNS in each iteration a solution is randomly selected from
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the pool Ω according to a uniform probability distribution, in LNS5 the probability is proportional

to the solution quality.

Table 9 shows that versions LNS2 and LNS4 have a significantly worse performance than LNS,

thus proving that the pre-processing step and the replaceRandom procedure are crucial. The com-

putational results for LNS3 illustrate that the alternative acceptance criterion of minimizing the

length of all routes prevents finding two optimal and three best-known solutions found by LNS and

results in an increased computing time. Finally, the results of LNS5 and LNS are nearly identical.

Table 9 Evaluation of the different functionality modules of LNS

Version nInst bk opt gapBPB gapBDB gapADB cpuF

LNS 215 183 158 -0.04 0.13 0.23 205.9

LNS2 215 123 110 0.32 0.43 0.86 572.7

LNS3 215 180 156 -0.05 0.12 0.22 241.2

LNS4 215 139 115 0.15 0.32 0.71 113.6

LNS5 215 183 158 -0.04 0.13 0.23 205.2

6.2. Computational Results on Benchmark TOP Instances

As the TOPO generalizes the TOP, which has been extensively studied in the literature, we tested

BCP1 and LNS also on the Chao TOP instances to compare our solution method against the state-

of-the-art solution methods from the literature. The results are summarized in this section.

6.2.1. Results of the Exact Method Table 10 summarizes the computational results

achieved by BCP1 on the 387 TOP instances. Results are grouped by family of instances and

reported in the same columns of Table 7. Table 10 shows that BCP1 can solve all but 16 instances

to optimality with an average solution time of 122.7 seconds. The success of BCP1 is clearly due

to the quality of the upper bounds provided by the root node (i.e., 1.26% and 0.44% before and

after adding SR inequalities and changing the sets Ni). The gap left on the 16 open instances is

also quite small (i.e., 0.30%). It is worth noting that, considering the best lower bounds available

from the literature, BCP1 could prove the optimality of three additional instances, namely p4.2.s,

p4.3.t, and p4.4.r, in addition to the 371 instances solved.

In Table 11, we compare the results achieved by BCP1 with those achieved by the state-of-the-

art solution methods from the literature, in particular with the branch-and-price algorithm of

Boussier, Feillet, and Gendreau (2007) (BFG07), the branch-and-cut algorithm of Dang, El-Hajj,

and Moukrim (2013) (DEM13), the branch-and-cut-and-price algorithm of Keshtkaran et al. (2016)

(KZBV16), the branch-and-cut plane algorithm of El-Hajj, Dang, and Moukrim (2016) (EDM16),

and the branch-and-cut algorithm of Bianchessi, Mansini, and Speranza (2018) (BMS18). For the

sake of completeness, we also report the processor details of the computing environments used by
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Table 10 Summary of the results of BCP1 on the TOP instances

Family nInst gap0 gapR opt cpuF nOpen gapOp

1 54 0.65 0.39 54 0.1 0 -

2 33 0.30 0.13 33 0.0 0 -

3 60 1.91 0.96 60 0.7 0 -

4 60 1.23 0.56 49 509.0 11 0.26

5 78 1.00 0.34 75 137.0 3 0.47

6 42 0.34 0.31 42 12.0 0 -

7 60 2.71 0.26 58 168.3 2 0.19

387 1.26 0.44 371 122.7 16 0.30

the six methods. Results are summarized by family of instances. For each method, we report the

number of instances solved to optimality (opt) and the average solution time (cpuF) - we report na

when the average solution time is not available.

Table 11 Comparison between BCP1 and the state-of-the-art exact methods on TOP instances

BFG07 DEM13 KZBV16 EDM16 BMS18 BCP1
Intel Pentium IV AMD Opteron Intel Core i7 AMD Opteron Intel Xeon Intel Core
(3.20 GHz) (2.60 GHz) (3.60 GHz) (2.60 GHz) (W3680) (i7-6700U)

Family nInst opt cpuF opt cpuF opt cpuF opt cpuF opt cpuF opt cpuF

1 54 51 38.2 54 na 54 12.9 54 na 54 1.1 54 0.1

2 33 33 0.1 33 na 33 0.1 33 na 33 0.2 33 0.0

3 60 50 103.8 60 na 60 258.3 60 na 60 184.9 60 0.7

4 60 25 459.9 22 na 20 120.4 30 na 39 870.4 49 509.0

5 78 48 200.6 44 na 60 252.2 54 na 60 517.9 75 137.0

6 42 36 286.1 42 na 36 203.2 42 na 36 22.1 42 12.0

7 60 27 203.2 23 na 38 768.6 27 na 45 992.8 58 168.3

387 270 278 301 300 327 371

Table 11 shows that BCP1 can solve more instances than all the methods available from the

literature. In particular, BCP1 can solve 44 instances more than the recent branch-and-cut algorithm

of Bianchessi, Mansini, and Speranza (2018) and 71 instances more than the most recent column-

generation-based algorithm of Keshtkaran et al. (2016). We can also mention that BCP1 solves 33

out of the 49 instances that were still open (see Section 2.1 and the e-companion). Finally, we note

that for instance p4.4.n, we computed an optimal value of 976, which is inconsistent with the

primal bound of 977 reported in Tang and Miller-Hooks (2005) but consistent with all the other

primal bounds reported in the literature so far.

6.2.2. Results of LNS Table 12 summarizes the computational results of LNS on the TOP

instances and compares them with the results of Dang, Guibadj, and Moukrim (2013) (DGM13),

Vidal et al. (2015) (VOP15), and Ke et al. (2016) (KLC16) - the reader is referred to Section 2 for

a discussion of these methods. For the sake of completeness, we also report the processor details
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of the computing environments used to test the four solution methods. For each method, the table

reports the number of instances on which the best-known solution was found (bk), the average gap

between the best solution found by the heuristic and the best-known solution available (gapBPB),

and the average solution time (cpuF). The method VOP15 was tested on a subset of instances only,

so the last two rows of the table summarize the results over all seven families for DCM13, KLC16,

and LNS and over families 4-7 for VOP15 and LNS.

Table 12 Comparison between LNS and the state-of-the-art heuristic methods on TOP instances

DGM13 VOP15 KLC16 LNS
AMD Opteron (2.60 GHz) Intel Xeon (3.07 GHz) Intel Core i5 (3.2 GHz) Intel Core i7-6700U

Family nInst bk gapBPB cpuF bk gapBPB cpuF bk gapBPB cpuF bk gapBPB cpuF

1 54 54 0.0 2.1 54 0.0 6.7 54 0.0 3.2

2 33 33 0.0 0.4 33 0.0 1.4 33 0.0 0.3

3 60 60 0.0 3.2 60 0.0 9.6 60 0.0 4.2

4 60 60 0.0 214.1 58 0.0038 224.2 60 0.0 108.5 60 0.0 209.2

5 78 78 0.0 49.3 78 0.0 110.6 78 0.0 22.9 77 0.0043 45.3

6 42 42 0.0 43.5 42 0.0 54.2 42 0.0 26.9 42 0.0 44.7

7 60 60 0.0 96.8 60 0.0 166.1 60 0.0 54.3 60 0.0 114.1

1-7 387 387 0.0 58.5 387 0.0 32.9 386 0.0 60.1

4-7 240 238 0.0 138.8 239 0.0 103.3

Table 12 shows that LNS is able to find the best-known solution of all but one TOP instance in a

few minutes of computing time. Moreover, LNS is competitive with VOP15 on instances of families

4-7 but cannot find one of the best-known solutions achieved by DGM13 and KLC16.

6.3. Computational Results on Real-Life Instances

To illustrate the managerial relevance of the TOPO and the performance of the proposed solution

approaches, real-life instances were provided by Geldmaat representing the cash replenishment

problems they face in four major cities in the Netherlands (i.e., Almere, Amsterdam, Arnhem, and

Tilburg). The service points represent ATMs that require replenishment and consumers represent

the bank account holders that have to be served.

The instances of the four cities have the following number of ATMs/service points (|S|) and

consumers/bank account holders (|C|): Almere |S|= 32 and |C|= 112,803; Amsterdam |S|= 100

and |C|= 203,717; Arnhem |S|= 33 and |C|= 74,805; Tilburg |S|= 35 and |C|= 92,688. For the

cities of Almere, Arnhem and Tilburg, we generated two instances: the first with one vehicle and

the second with two vehicles. For the city of Amsterdam, we generated four instances with one, two,

three, and four vehicles. In total, we considered ten instances. Each instance features a maximum

route duration equal to 480 minutes, which corresponds to the typical working day of eight hours.

Bank account holders (identified by the postal code of residence) are considered served if there

exists a replenished ATM within five kilometers from the residence postal code.
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6.3.1. Results of the Exact Method Table 13 reports the results of BCP1 on the ten real-life

instances. A time limit of one hour was used for each instance. For each instance (identified by the

city and the number of vehicles), the table reports the best lower bound (blb) found by either BCP1

or LNS the upper bound at the root node (ubR) and the corresponding gap (gapR), the final upper

bound (ubF) and the corresponding gap (gapF), the final lower bound (lbF) and the corresponding

gap (gapOp) if the instance was not solved to optimality, the number of nodes of the search tree

(nds), and the total solution time (cpuF).

Table 13 Results of BCP1 on real-life instances

City |K| blb ubR gapR ubF gapF lbF gapOp nds cpuF

Almere 1 103,173 103,271 0.09 103,173 0.00 103,173 - 22 190.3

Almere 2 112,803 112,803 0.00 112,803 0.00 112,803 - 4 0.6

Amsterdam 1 116,611 116,611 0.00 116,611 0.00 116,611 - 1 146.0

Amsterdam 2 182,779 183,648 0.48 183,593 0.45 172,457 5.65 30 tl

Amsterdam 3 202,175 202,606 0.21 202,605 0.21 199,345 1.40 2 tl

Amsterdam 4 203,717 203,717 0.00 203,717 0.00 203,717 - 39 231.5

Arnhem 1 74,643 74,643 0.00 74,643 0.00 74,643 - 2 35.2

Arnhem 2 74,805 74,805 0.00 74,805 0.00 74,805 - 10 2.2

Tilburg 1 73,522 73,522 0.00 73,522 0.00 73,522 - 1 2.0

Tilburg 2 92,688 92,688 0.00 92,688 0.00 92,688 - 1 0.2

Table 13 shows that the six instances for the cities of Almere, Arnhem, and Tilburg and the two

instances of Amsterdam with one and four vehicles can easily be solved to optimality. BCP1 cannot

solve the Amsterdam instances with two and three vehicles, but managed to find upper bounds

that are 0.45% and 0.21% from the best-known lower bound. We can also notice that the gap at

the root node is never larger than 0.48%. Notice that all bank account holders can be served in

Almere, Arnhem, and Tilburg with two vehicles and in Amsterdam with four vehicles.

6.3.2. Results of the LNS Table 14 summarizes the computational results of LNS on the

ten real-life instances. The metaheuristic used the same parameter setting as in the experiments

for the synthetic instances. Similarly, ten runs per instance were performed. For each instance,

the table reports the worst (lbW), average (lbA), and best (lbB) lower bounds found along with

their corresponding gaps computed with respect to the best-known upper bound available (gapWDB,

gapADB, gapBDB), the gap between lbB and the best lower bound lbF found by BCP1 (gapBPB), the

best lower bound computed (blb), and the average solution time (cpuF) over the ten runs.

We can observe that LNS manages to find solutions that are within 0.74% from the best-known

upper bound provided by BCP1 on all instances. Moreover, LNS can improve the final lower bound

provided by BCP1 on the Amsterdam instances with two and three vehicles.
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Table 14 Results of LNS on real-life instances

City |K| lbW gapWDB lbA gapADB lbB gapBDB gapBPB blb cpuF

Almere 1 101.919 1.33 102,785.9 0.47 103,097 0.17 0.07 103,173 26.8

Almere 2 112,803 0.00 112,803.0 0.00 112,803 0.00 0.00 112,803 0.0

Amsterdam 1 113,795 2.47 113,994.3 2.30 115,788 0.71 0.71 116,611 155.5

Amsterdam 2 181,431 1.22 181,800.7 1.02 182,779 0.48 -5.99 182,779 613.7

Amsterdam 3 201,947 0.33 202,068.5 0.27 202,175 0.21 -1.42 202,175 1435.1

Amsterdam 4 202,469 0.62 202,812.8 0.45 203,182 0.26 0.26 203,717 1207.1

Arnhem 1 74,480 0.22 74,563.3 0.11 74,635 0.01 0.01 74,643 15.2

Arnhem 2 74,805 0.00 74,805.0 0.00 74,805 0.00 0.00 74,805 0.0

Tilburg 1 71,146 3.34 72,172.2 1.87 72,980 0.74 0.74 73,522 10.0

Tilburg 2 91,220 1.61 92,033.1 0.71 92,625 0.07 0.07 92,688 24.2

6.3.3. Managerial Implications To illustrate the managerial relevance of our research, we

conducted a further computational study to assess the impact of solving the ten real-life TOPO

instances as TOP instances. We consider two intuitive approaches of solving TOPO instances as

TOP instances. The first approach (hereafter TOP1) solves a TOP instance derived from the

original TOPO instance where the profit of each service point/ATM is equal to the number of

consumers/bank account holders that are within its service region; customers in overlapping zones

can therefore be assigned to multiple service points. The second approach (hereafter TOP2) solves

a TOP instance where each consumer/bank account holder is a-priori assigned to its closest ATM,

and the profit of each ATM is then the number of bank account holders for which that ATM is the

closest one. Therefore, TOP1 overestimates the profit of each ATM, and TOP2 underestimates it.

Both for the solution of TOP1 and TOP2 the profit that will be collected in reality is obtained by

a post-processing procedure.

Table 15 reports, for each of the ten real-life instances and each of the approaches (TOP1/

TOP2), the real value of the best solution found (blb) and its percentage deviation (∆) w.r.t. the

value of the best-known solution found solving directly the instance as TOPO instance (TOPO

blb). For all cases, solutions are computed using LNS.

The most striking observation from Table 15 is that, on average, the solutions obtained by TOP1

and TOP2 serve respectively 11.8% and 16.8% less bank account holders than the solutions found

by considering the problem as a TOPO. In other words, wrongfully assuming a TOPO problem as

a TOP can lead to significantly lower profits or service levels in real-life applications.
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Table 15 Comparison of the performance of TOPO, TOP1, and TOP2 on the real-life instances

TOPO TOP1 TOP2

City |K| blb blb ∆ blb ∆

Almere 1 103,097 78,900 -23.5 84,735 -17.8

Almere 2 112,803 112,803 0.0 112,803 0.0

Amsterdam 1 115,788 90,110 -22.2 64,421 -44.4

Amsterdam 2 182,779 135,014 -26.1 109,805 -39.9

Amsterdam 3 202,175 173,114 -14.4 147,575 -27.0

Amsterdam 4 203,182 192,970 -5.0 183,633 -9.6

Arnhem 1 74,635 65,374 -12.4 64,846 -13.1

Arnhem 2 74,805 74,805 0.0 74,805 0.0

Tilburg 1 72,980 63,061 -13.6 62,469 -14.4

Tilburg 2 92,625 91,787 -0.9 91,175 -1.6

Avg -11.8 -16.8

7. Conclusions and Future Research

Motivated by a real-life ATM cash replenishment problem encountered in the Netherlands, we

have investigated a new generalization of the Team Orienteering Problem (TOP), called TOP with

Overlaps (TOPO). We have proposed exact methods based on column generation for the exact

solution of the problem, where our main contribution has been in exploiting the ng-path relaxation

to obtain high-quality dual bounds for the problem. We have also proposed a metaheuristic based on

Large Neighborhood Search. The performance of the proposed solution methods has been assessed

by an extensive computational study on synthetic and real-life instances. The computational results

have shown that the proposed methods can find high-quality bounds of all considered instances.

We have also shown that the proposed solution methods are competitive with the state-of-the-art

solution methods for the TOP. In particular, we could find the optimal solution of 96% of the

well-known Chao instances and close 33 open instances. From a managerial standpoint, we have

also shown that modeling a real-life cash replenishment problem as a TOPO provides significantly

better solutions than solving it as a TOP and can help to strongly improve service levels.
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Detailed Computational Results

Tables EC.1-EC.5 report the detailed computational results of BCP1 on all 215 TOPO instances.

Each table refers to the 43 instances with the same overlap, ranging from 10% to 50% as explained

in Section 6. In each of these five tables, the columns report the instance name (Inst), the number

of available vehicles (|K|), the number of service points (|S|), the total number of consumers (|C|),

the best lower bound (blb) found by either BCP1 or LNS, the upper bound at the root node (ubR),

the final upper bound (ubF), the final lower bound (lbF) with the corresponding gaps (gapR, gapF,

and gap, respectively), the number of nodes of the search tree (nds), and the total solution time

(cpuF). A time limit of one hour was imposed on each run. The name of each instance, a.b.c.d,

indicates the family (a), the number of vehicles (b), the original TOP instance from the Chao set

(c), and the overlap (d).

Tables EC.6-EC.10 report the detailed computational results of LNS on all 215 TOPO instances.

In each of these five tables, the columns report the instance name (Inst), the number of available

vehicles (|K|), the number of service points (|S|), the total number of consumers (|C|), the worst

(lbW), average (lbA), and best (lbB) lower bounds found along with their corresponding gaps com-

puted with respect to the best-known upper bound available (gapWDB, gapADB, gapBDB), the gap

between lbB and the best lower bound lbF found by BCP1 (gapBPB), the best-known lower bound

(blb), and the average solution time (cpuF) over the ten runs. When the percentage gap between

the best solution found by the LNS and the best primal bound found by BCP1 (gapBPB) is negative

this mean that the best solution found by LNS is better than the best solution found by BCP1).

Tables EC.11-EC.14 report the detailed computational results of BCP1 on the 240 Chao instances

of families four to seven. In each of these four tables, the columns report the best known lower

bound (blb) found by BCP1 or already available in the literature, the upper bound at the root node

(ubR) and the corresponding gap (gapR), the final upper bound (ubF) and the corresponding gap

(gapF), the final lower bound (lbF) and the corresponding gap (gap), the number of nodes of the

search tree (nds), and the total solution time (cpuF). A time limit of one hour was imposed on each

run.

Tables EC.15-EC.18 report the detailed computational results of LNS on 240 Chao instances of

families four to seven. The same columns used in Tables EC.6-EC.10 are displayed.



e-companion to Orlis et al.: The TOP with Overlaps ec3

Table EC.1 Detailed computational results of BCP1 on TOPO instances with overlap 10%

Inst |K| |S| |C| blb ubR gapR ubF gapF lbF gap nds cpuF

1.2.j.10 2 30 285 141 141 0.00 141 0.00 141 0.00 1 0.1

1.2.n.10 2 30 285 240 240 0.00 240 0.00 240 0.00 1 0.3

1.2.r.10 2 30 285 280 280 0.00 280 0.00 280 0.00 1 0.6

1.3.p.10 3 30 285 221 221 0.00 221 0.00 221 0.00 1 0.1

1.3.q.10 3 30 285 234 234 0.00 234 0.00 234 0.00 1 0.3

1.3.r.10 3 30 285 251 251 0.00 251 0.00 251 0.00 1 0.3

3.2.l.10 2 31 800 599 605 1.00 599 0.00 599 0.00 5 1.3

3.2.p.10 2 31 800 721 733 1.66 721 0.00 721 0.00 109 27.1

3.2.t.10 2 31 800 800 800 0.00 800 0.00 800 0.00 3 1.0

3.3.s.10 3 31 800 720 738 2.50 720 0.00 720 0.00 9 5.8

3.3.t.10 3 31 800 760 762 0.26 760 0.00 760 0.00 3 5.4

4.2.f.10 2 98 1306 699 720 3.00 699 0.00 699 0.00 2257 1684.3

4.2.m.10 2 98 1306 1144 1145 0.09 1144 0.00 1144 0.00 7 455.1

4.2.t.10 2 98 1306 1306 1306 0.00 1306 0.00 1286 1.53 55 TL

4.3.k.10 3 98 1306 934 948 1.50 934 0.00 934 0.00 61 249.5

4.3.p.10 3 98 1306 1230 1230 0.00 1230 0.00 1230 0.00 5 187.8

4.3.t.10 3 98 1306 1306 1306 0.00 1306 0.00 1301 0.38 12 TL

4.4.o.10 4 98 1306 1067 1077 0.94 1067 0.00 1067 0.00 51 131.0

4.4.r.10 4 98 1306 1222 1240 1.47 1227 0.41 1222 0.00 210 TL

4.4.t.10 4 98 1306 1291 1298 0.54 1294 0.23 1288 0.23 65 TL

5.2.h.10 2 64 1680 446 446 0.00 446 0.00 446 0.00 1 0.1

5.2.q.10 2 64 1680 1240 1258 1.45 1240 0.00 1240 0.00 445 217.5

5.2.z.10 2 64 1680 1680 1680 0.00 1680 0.00 1680 0.00 90 208.2

5.3.l.10 3 64 1680 637 642 0.78 637 0.00 637 0.00 5 1.1

5.3.s.10 3 64 1680 1250 1259 0.72 1250 0.00 1250 0.00 35 31.1

5.3.z.10 3 64 1680 1651 1651 0.00 1651 0.00 1651 0.00 93 370.3

5.4.p.10 4 64 1680 820 835 1.83 820 0.00 820 0.00 15 3.5

5.4.u.10 4 64 1680 1337 1337 0.00 1337 0.00 1337 0.00 1 0.4

5.4.z.10 4 64 1680 1639 1639 0.00 1639 0.00 1639 0.00 2 6.6

6.2.f.10 2 62 1344 603 603 0.00 603 0.00 603 0.00 1 0.1

6.2.j.10 2 62 1344 973 973 0.00 973 0.00 973 0.00 1 0.4

6.2.n.10 2 62 1344 1266 1266 0.00 1266 0.00 1266 0.00 76 75.6

6.3.j.10 3 62 1344 849 849 0.00 849 0.00 849 0.00 1 0.1

6.3.l.10 3 62 1344 1027 1027 0.00 1027 0.00 1027 0.00 1 1.2

6.3.n.10 3 62 1344 1191 1192 0.08 1191 0.00 1191 0.00 9 11.8

6.4.n.10 4 62 1344 1090 1090 0.00 1090 0.00 1090 0.00 1 0.1

7.2.j.10 2 100 1458 667 667 0.00 667 0.00 667 0.00 1 14.3

7.2.o.10 2 100 1458 956 958 0.21 956 0.00 956 0.00 11 336.3

7.2.t.10 2 100 1458 1185 1186 0.08 1185 0.00 1185 0.00 6 944.2

7.3.o.10 3 100 1458 886 892 0.68 886 0.00 886 0.00 15 346.7

7.3.r.10 3 100 1458 1039 1047 0.77 1039 0.00 1039 0.00 19 2724.2

7.3.t.10 3 100 1458 1128 1138 0.89 1134 0.53 1111 1.51 4 TL

7.4.t.10 4 100 1458 1083 1085 0.18 1083 0.00 1083 0.00 5 96.2
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Table EC.2 Detailed computational results of BCP1 on TOPO instances with overlap 20%

Inst |K| |S| |C| blb ubR gapR ubF gapF lbF gap nds cpuF

1.2.j.20 2 30 285 147 147 0.00 147 0.00 147 0.00 1 0.2

1.2.n.20 2 30 285 244 244 0.00 244 0.00 244 0.00 1 0.3

1.2.r.20 2 30 285 280 280 0.00 280 0.00 280 0.00 1 1.4

1.3.p.20 3 30 285 226 226 0.00 226 0.00 226 0.00 1 0.1

1.3.q.20 3 30 285 239 239 0.00 239 0.00 239 0.00 1 0.1

1.3.r.20 3 30 285 254 254 0.00 254 0.00 254 0.00 1 0.4

3.2.l.20 2 31 800 603 610 1.16 603 0.00 603 0.00 9 2.1

3.2.p.20 2 31 800 740 742 0.27 740 0.00 740 0.00 5 3.0

3.2.t.20 2 31 800 800 800 0.00 800 0.00 800 0.00 1 0.5

3.3.s.20 3 31 800 720 740 2.78 720 0.00 720 0.00 51 16.0

3.3.t.20 3 31 800 760 766 0.79 760 0.00 760 0.00 21 9.4

4.2.f.20 2 98 1306 709 727 2.54 709 0.00 709 0.00 2159 1328.8

4.2.m.20 2 98 1306 1147 1150 0.26 1147 0.00 1147 0.00 15 683.5

4.2.t.20 2 98 1306 1306 1306 0.00 1306 0.00 1306 0.00 71 585.8

4.3.k.20 3 98 1306 939 955 1.70 939 0.00 939 0.00 1157 3166.3

4.3.p.20 3 98 1306 1233 1237 0.32 1233 0.00 1233 0.00 9 276.5

4.3.t.20 3 98 1306 1306 1306 0.00 1306 0.00 1302 0.31 24 TL

4.4.o.20 4 98 1306 1071 1083 1.12 1071 0.00 1071 0.00 321 601.7

4.4.r.20 4 98 1306 1228 1246 1.47 1235 0.57 1228 0.00 205 TL

4.4.t.20 4 98 1306 1292 1300 0.62 1297 0.39 1285 0.54 75 TL

5.2.h.20 2 64 1680 467 467 0.00 467 0.00 467 0.00 1 0.1

5.2.q.20 2 64 1680 1266 1283 1.34 1266 0.00 1266 0.00 375 207.2

5.2.z.20 2 64 1680 1680 1680 0.00 1680 0.00 1680 0.00 733 2732.4

5.3.l.20 3 64 1680 665 671 0.90 665 0.00 665 0.00 5 1.3

5.3.s.20 3 64 1680 1277 1294 1.33 1277 0.00 1277 0.00 185 202.7

5.3.z.20 3 64 1680 1658 1658 0.00 1658 0.00 1658 0.00 124 641.1

5.4.p.20 4 64 1680 846 865 2.25 846 0.00 846 0.00 95 16.0

5.4.u.20 4 64 1680 1368 1368 0.00 1368 0.00 1368 0.00 1 0.5

5.4.z.20 4 64 1680 1644 1644 0.00 1644 0.00 1644 0.00 3 7.6

6.2.f.20 2 62 1344 619 619 0.00 619 0.00 619 0.00 1 0.1

6.2.j.20 2 62 1344 997 997 0.00 997 0.00 997 0.00 1 2.1

6.2.n.20 2 62 1344 1274 1275 0.08 1274 0.00 1274 0.00 88 125.6

6.3.j.20 3 62 1344 870 870 0.00 870 0.00 870 0.00 1 0.3

6.3.l.20 3 62 1344 1044 1049 0.48 1044 0.00 1044 0.00 17 6.4

6.3.n.20 3 62 1344 1210 1213 0.25 1210 0.00 1210 0.00 19 36.7

6.4.n.20 4 62 1344 1110 1110 0.00 1110 0.00 1110 0.00 1 0.1

7.2.j.20 2 100 1458 668 668 0.00 668 0.00 668 0.00 1 32.5

7.2.o.20 2 100 1458 960 961 0.10 960 0.00 960 0.00 5 261.8

7.2.t.20 2 100 1458 1187 1191 0.34 1187 0.00 1187 0.00 69 2340.2

7.3.o.20 3 100 1458 901 901 0.00 901 0.00 901 0.00 1 18.5

7.3.r.20 3 100 1458 1045 1054 0.86 1047 0.19 1044 0.10 9 TL

7.3.t.20 3 100 1458 1129 1145 1.42 1138 0.80 1117 1.06 14 TL

7.4.t.20 4 100 1458 1085 1087 0.18 1085 0.00 1085 0.00 5 110.8
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Table EC.3 Detailed computational results of BCP1 on TOPO instances with overlap 30%

Inst |K| |S| |C| blb ubR gapR ubF gapF lbF gap nds cpuF

1.2.j.30 2 30 285 156 156 0.00 156 0.00 156 0.00 1 0.2

1.2.n.30 2 30 285 252 252 0.00 252 0.00 252 0.00 1 0.2

1.2.r.30 2 30 285 282 282 0.00 282 0.00 282 0.00 1 2.6

1.3.p.30 3 30 285 233 233 0.00 233 0.00 233 0.00 1 0.1

1.3.q.30 3 30 285 247 247 0.00 247 0.00 247 0.00 1 0.1

1.3.r.30 3 30 285 258 258 0.00 258 0.00 258 0.00 1 0.3

3.2.l.30 2 31 800 609 619 1.64 609 0.00 609 0.00 53 4.7

3.2.p.30 2 31 800 748 753 0.67 748 0.00 748 0.00 3 1.6

3.2.t.30 2 31 800 800 800 0.00 800 0.00 800 0.00 1 0.4

3.3.s.30 3 31 800 720 741 2.92 720 0.00 720 0.00 149 43.4

3.3.t.30 3 31 800 760 771 1.45 760 0.00 760 0.00 59 19.8

4.2.f.30 2 98 1306 712 741 4.07 717 0.70 710 0.28 3187 TL

4.2.m.30 2 98 1306 1157 1162 0.43 1157 0.00 1157 0.00 60 1013.8

4.2.t.30 2 98 1306 1306 1306 0.00 1306 0.00 1306 0.00 118 1231.3

4.3.k.30 3 98 1306 949 965 1.69 949 0.00 949 0.00 537 1605.2

4.3.p.30 3 98 1306 1238 1245 0.57 1238 0.00 1238 0.00 81 2517.5

4.3.t.30 3 98 1306 1306 1306 0.00 1306 0.00 1306 0.00 19 327.7

4.4.o.30 4 98 1306 1087 1097 0.92 1087 0.00 1087 0.00 143 337.8

4.4.r.30 4 98 1306 1235 1254 1.54 1245 0.81 1234 0.08 267 TL

4.4.t.30 4 98 1306 1296 1302 0.46 1299 0.23 1291 0.39 82 TL

5.2.h.30 2 64 1680 479 479 0.00 479 0.00 479 0.00 1 0.1

5.2.q.30 2 64 1680 1283 1300 1.33 1283 0.00 1283 0.00 435 245.4

5.2.z.30 2 64 1680 1680 1680 0.00 1680 0.00 1660 1.19 560 TL

5.3.l.30 3 64 1680 684 688 0.58 684 0.00 684 0.00 3 0.8

5.3.s.30 3 64 1680 1292 1316 1.86 1292 0.00 1292 0.00 439 540.6

5.3.z.30 3 64 1680 1660 1660 0.00 1660 0.00 1660 0.00 19 42.9

5.4.p.30 4 64 1680 868 885 1.96 868 0.00 868 0.00 35 7.2

5.4.u.30 4 64 1680 1387 1387 0.00 1387 0.00 1387 0.00 1 0.5

5.4.z.30 4 64 1680 1646 1646 0.00 1646 0.00 1646 0.00 1 5.1

6.2.f.30 2 62 1344 641 641 0.00 641 0.00 641 0.00 1 0.1

6.2.j.30 2 62 1344 1019 1022 0.29 1019 0.00 1019 0.00 11 11.1

6.2.n.30 2 62 1344 1282 1282 0.00 1282 0.00 1282 0.00 26 48.0

6.3.j.30 3 62 1344 891 893 0.22 891 0.00 891 0.00 5 0.8

6.3.l.30 3 62 1344 1064 1071 0.66 1064 0.00 1064 0.00 21 8.6

6.3.n.30 3 62 1344 1222 1229 0.57 1222 0.00 1222 0.00 217 379.9

6.4.n.30 4 62 1344 1123 1123 0.00 1123 0.00 1123 0.00 1 0.4

7.2.j.30 2 100 1458 673 687 2.08 673 0.00 673 0.00 45 199.0

7.2.o.30 2 100 1458 965 972 0.73 965 0.00 965 0.00 247 2149.9

7.2.t.30 2 100 1458 1189 1194 0.42 1192 0.25 1188 0.08 23 TL

7.3.o.30 3 100 1458 911 911 0.00 911 0.00 911 0.00 1 43.2

7.3.r.30 3 100 1458 1050 1062 1.14 1053 0.29 1045 0.48 7 TL

7.3.t.30 3 100 1458 1131 1141 0.88 1138 0.62 1113 1.59 3 TL

7.4.t.30 4 100 1458 1093 1094 0.09 1093 0.00 1093 0.00 7 120.9



ec6 e-companion to Orlis et al.: The TOP with Overlaps

Table EC.4 Detailed computational results of BCP1 on TOPO instances with overlap 40%

Inst |K| |S| |C| blb ubR gapR ubF gapF lbF gap nds cpuF

1.2.j.40 2 30 285 162 162 0.00 162 0.00 162 0.00 1 0.2

1.2.n.40 2 30 285 254 254 0.00 254 0.00 254 0.00 1 0.2

1.2.r.40 2 30 285 284 284 0.00 284 0.00 284 0.00 1 1.1

1.3.p.40 3 30 285 235 237 0.85 235 0.00 235 0.00 3 0.3

1.3.q.40 3 30 285 248 250 0.81 248 0.00 248 0.00 3 0.3

1.3.r.40 3 30 285 263 263 0.00 263 0.00 263 0.00 1 0.2

3.2.l.40 2 31 800 616 620 0.65 616 0.00 616 0.00 27 2.6

3.2.p.40 2 31 800 750 756 0.80 750 0.00 750 0.00 9 2.4

3.2.t.40 2 31 800 800 800 0.00 800 0.00 800 0.00 1 0.3

3.3.s.40 3 31 800 720 742 3.06 720 0.00 720 0.00 735 198.3

3.3.t.40 3 31 800 760 772 1.58 760 0.00 760 0.00 43 13.4

4.2.f.40 2 98 1306 732 749 2.32 732 0.00 732 0.00 407 282.3

4.2.m.40 2 98 1306 1164 1181 1.46 1173 0.77 1164 0.00 157 TL

4.2.t.40 2 98 1306 1306 1306 0.00 1306 0.00 1306 0.00 113 812.0

4.3.k.40 3 98 1306 970 989 1.96 970 0.00 970 0.00 628 2100.2

4.3.p.40 3 98 1306 1241 1255 1.13 1248 0.56 1236 0.40 50 TL

4.3.t.40 3 98 1306 1306 1306 0.00 1306 0.00 1305 0.08 49 TL

4.4.o.40 4 98 1306 1110 1126 1.44 1110 0.00 1110 0.00 801 1444.1

4.4.r.40 4 98 1306 1260 1271 0.87 1263 0.24 1258 0.16 181 TL

4.4.t.40 4 98 1306 1298 1305 0.54 1303 0.39 1293 0.39 76 TL

5.2.h.40 2 64 1680 500 500 0.00 500 0.00 500 0.00 1 0.1

5.2.q.40 2 64 1680 1313 1332 1.45 1313 0.00 1313 0.00 615 444.3

5.2.z.40 2 64 1680 1680 1680 0.00 1680 0.00 1680 0.00 45 81.6

5.3.l.40 3 64 1680 713 716 0.42 713 0.00 713 0.00 3 1.0

5.3.s.40 3 64 1680 1325 1356 2.34 1325 0.00 1325 0.00 1263 1613.4

5.3.z.40 3 64 1680 1662 1662 0.00 1662 0.00 1662 0.00 38 157.5

5.4.p.40 4 64 1680 909 919 1.10 909 0.00 909 0.00 11 3.0

5.4.u.40 4 64 1680 1416 1416 0.00 1416 0.00 1416 0.00 1 0.8

5.4.z.40 4 64 1680 1652 1652 0.00 1652 0.00 1652 0.00 1 5.1

6.2.f.40 2 62 1344 667 667 0.00 667 0.00 667 0.00 1 0.1

6.2.j.40 2 62 1344 1051 1064 1.24 1051 0.00 1051 0.00 229 96.2

6.2.n.40 2 62 1344 1288 1293 0.39 1290 0.16 1288 0.00 1947 TL

6.3.j.40 3 62 1344 923 928 0.54 923 0.00 923 0.00 13 2.0

6.3.l.40 3 62 1344 1096 1111 1.37 1096 0.00 1096 0.00 197 88.6

6.3.n.40 3 62 1344 1243 1252 0.72 1243 0.00 1243 0.00 331 465.6

6.4.n.40 4 62 1344 1153 1158 0.43 1153 0.00 1153 0.00 9 2.7

7.2.j.40 2 100 1458 691 711 2.89 691 0.00 691 0.00 101 311.2

7.2.o.40 2 100 1458 980 988 0.82 980 0.00 980 0.00 209 2216.8

7.2.t.40 2 100 1458 1198 1203 0.42 1201 0.25 1198 0.00 51 TL

7.3.o.40 3 100 1458 927 929 0.22 927 0.00 927 0.00 5 88.7

7.3.r.40 3 100 1458 1059 1072 1.23 1066 0.66 1053 0.57 7 TL

7.3.t.40 3 100 1458 1139 1153 1.23 1147 0.70 1122 1.49 8 TL

7.4.t.40 4 100 1458 1111 1113 0.18 1111 0.00 1111 0.00 3 83.6



e-companion to Orlis et al.: The TOP with Overlaps ec7

Table EC.5 Detailed computational results of BCP1 on TOPO instances with overlap 50%

Inst |K| |S| |C| blb ubR gapR ubF gapF lbF gap nds cpuF

1.2.j.50 2 30 285 168 168 0.00 168 0.00 168 0.00 1 0.1

1.2.n.50 2 30 285 255 255 0.00 255 0.00 255 0.00 1 0.5

1.2.r.50 2 30 285 285 285 0.00 285 0.00 285 0.00 2 0.7

1.3.p.50 3 30 285 237 240 1.27 237 0.00 237 0.00 9 0.6

1.3.q.50 3 30 285 254 255 0.39 254 0.00 254 0.00 3 0.3

1.3.r.50 3 30 285 265 265 0.00 265 0.00 265 0.00 1 0.2

3.2.l.50 2 31 800 621 625 0.64 621 0.00 621 0.00 9 1.4

3.2.p.50 2 31 800 752 759 0.93 752 0.00 752 0.00 5 1.8

3.2.t.50 2 31 800 800 800 0.00 800 0.00 800 0.00 8 1.0

3.3.s.50 3 31 800 730 744 1.92 730 0.00 730 0.00 777 206.4

3.3.t.50 3 31 800 760 775 1.97 760 0.00 760 0.00 125 32.6

4.2.f.50 2 98 1306 743 766 3.10 744 0.13 743 0.00 4325 TL

4.2.m.50 2 98 1306 1172 1202 2.56 1190 1.54 1168 0.34 141 TL

4.2.t.50 2 98 1306 1306 1306 0.00 1306 0.00 1306 0.00 112 537.1

4.3.k.50 3 98 1306 984 1012 2.85 990 0.61 983 0.10 651 TL

4.3.p.50 3 98 1306 1247 1267 1.60 1262 1.20 1239 0.64 59 TL

4.3.t.50 3 98 1306 1306 1306 0.00 1306 0.00 1303 0.23 42 TL

4.4.o.50 4 98 1306 1128 1140 1.06 1128 0.00 1128 0.00 3699 3397.7

4.4.r.50 4 98 1306 1268 1280 0.95 1274 0.47 1253 1.18 201 TL

4.4.t.50 4 98 1306 1302 1306 0.31 1306 0.31 1300 0.15 284 TL

5.2.h.50 2 64 1680 537 537 0.00 537 0.00 537 0.00 1 0.2

5.2.q.50 2 64 1680 1382 1397 1.09 1382 0.00 1382 0.00 97 150.1

5.2.z.50 2 64 1680 1680 1680 0.00 1680 0.00 1680 0.00 234 623.1

5.3.l.50 3 64 1680 763 765 0.26 763 0.00 763 0.00 3 0.7

5.3.s.50 3 64 1680 1376 1427 3.71 1388 0.87 1376 0.00 1023 TL

5.3.z.50 3 64 1680 1670 1670 0.00 1670 0.00 1670 0.00 93 856.2

5.4.p.50 4 64 1680 992 992 0.00 992 0.00 992 0.00 1 0.2

5.4.u.50 4 64 1680 1472 1473 0.07 1472 0.00 1472 0.00 3 3.2

5.4.z.50 4 64 1680 1661 1661 0.00 1661 0.00 1661 0.00 2 10.1

6.2.f.50 2 62 1344 683 683 0.00 683 0.00 683 0.00 1 0.1

6.2.j.50 2 62 1344 1081 1097 1.48 1081 0.00 1081 0.00 459 218.5

6.2.n.50 2 62 1344 1302 1304 0.15 1302 0.00 1302 0.00 278 397.3

6.3.j.50 3 62 1344 948 954 0.63 948 0.00 948 0.00 16 3.5

6.3.l.50 3 62 1344 1130 1146 1.42 1130 0.00 1130 0.00 143 70.9

6.3.n.50 3 62 1344 1265 1275 0.79 1265 0.00 1265 0.00 611 1344.0

6.4.n.50 4 62 1344 1179 1189 0.85 1179 0.00 1179 0.00 31 7.6

7.2.j.50 2 100 1458 701 722 3.00 701 0.00 701 0.00 167 680.6

7.2.o.50 2 100 1458 998 1001 0.30 998 0.00 998 0.00 29 1062.1

7.2.t.50 2 100 1458 1212 1212 0.00 1212 0.00 1212 0.00 2 654.4

7.3.o.50 3 100 1458 934 943 0.96 934 0.00 934 0.00 21 265.0

7.3.r.50 3 100 1458 1072 1085 1.21 1076 0.37 1072 0.00 16 TL

7.3.t.50 3 100 1458 1152 1160 0.69 1157 0.43 1134 1.56 7 TL

7.4.t.50 4 100 1458 1123 1124 0.09 1123 0.00 1123 0.00 3 27.2



ec8 e-companion to Orlis et al.: The TOP with Overlaps

Table EC.6 Detailed computational results of LNS on TOPO instances with overlap 10%

Inst |K| |S| |C| lbW gapWDB lbA gapADB lbB gapBDB gapBPB blb cpuF

1.2.j.10 2 30 285 141 0.00 141.0 0.00 141 0.00 0.00 141 5.6

1.2.n.10 2 30 285 240 0.00 240.0 0.00 240 0.00 0.00 240 6.5

1.2.r.10 2 30 285 280 0.00 280.0 0.00 280 0.00 0.00 280 7.9

1.3.p.10 3 30 285 221 0.00 221.0 0.00 221 0.00 0.00 221 7.9

1.3.q.10 3 30 285 234 0.00 234.0 0.00 234 0.00 0.00 234 8.4

1.3.r.10 3 30 285 251 0.00 251.0 0.00 251 0.00 0.00 251 8.2

3.2.l.10 2 31 800 599 0.00 599.0 0.00 599 0.00 0.00 599 10.3

3.2.p.10 2 31 800 721 0.00 721.0 0.00 721 0.00 0.00 721 10.4

3.2.t.10 2 31 800 800 0.00 800.0 0.00 800 0.00 0.00 800 0.0

3.3.s.10 3 31 800 720 0.00 720.0 0.00 720 0.00 0.00 720 12.3

3.3.t.10 3 31 800 760 0.00 760.0 0.00 760 0.00 0.00 760 11.7

4.2.f.10 2 98 1306 690 1.30 694.5 0.65 698 0.14 0.14 699 214.8

4.2.m.10 2 98 1306 1137 0.62 1140.7 0.29 1143 0.09 0.09 1144 424.9

4.2.t.10 2 98 1306 1306 0.00 1306.0 0.00 1306 0.00 -1.53 1306 14.7

4.3.k.10 3 98 1306 927 0.76 932.6 0.15 934 0.00 0.00 934 358.8

4.3.p.10 3 98 1306 1224 0.49 1225.2 0.39 1228 0.16 0.16 1230 496.3

4.3.t.10 3 98 1306 1303 0.23 1304.9 0.08 1306 0.00 -0.38 1306 600.5

4.4.o.10 4 98 1306 1061 0.57 1064.0 0.28 1066 0.09 0.09 1067 445.6

4.4.r.10 4 98 1306 1214 1.07 1217.7 0.76 1222 0.41 0.00 1222 522.8

4.4.t.10 4 98 1306 1286 0.70 1288.5 0.50 1291 0.31 -0.23 1291 581.8

5.2.h.10 2 64 1680 446 0.00 446.0 0.00 446 0.00 0.00 446 68.0

5.2.q.10 2 64 1680 1231 0.73 1238.0 0.16 1240 0.00 0.00 1240 170.8

5.2.z.10 2 64 1680 1672 0.48 1672.9 0.42 1673 0.42 0.42 1680 198.0

5.3.l.10 3 64 1680 634 0.47 635.2 0.28 637 0.00 0.00 637 103.5

5.3.s.10 3 64 1680 1250 0.00 1250.0 0.00 1250 0.00 0.00 1250 164.9

5.3.z.10 3 64 1680 1651 0.00 1651.0 0.00 1651 0.00 0.00 1651 209.0

5.4.p.10 4 64 1680 820 0.00 820.0 0.00 820 0.00 0.00 820 140.0

5.4.u.10 4 64 1680 1337 0.00 1337.0 0.00 1337 0.00 0.00 1337 174.2

5.4.z.10 4 64 1680 1639 0.00 1639.0 0.00 1639 0.00 0.00 1639 201.6

6.2.f.10 2 62 1344 603 0.00 603.0 0.00 603 0.00 0.00 603 89.7

6.2.j.10 2 62 1344 970 0.31 971.5 0.15 973 0.00 0.00 973 136.4

6.2.n.10 2 62 1344 1241 2.01 1249.6 1.31 1257 0.72 0.72 1266 161.8

6.3.j.10 3 62 1344 849 0.00 849.0 0.00 849 0.00 0.00 849 140.3

6.3.l.10 3 62 1344 1027 0.00 1027.0 0.00 1027 0.00 0.00 1027 147.7

6.3.n.10 3 62 1344 1186 0.42 1190.0 0.08 1191 0.00 0.00 1191 160.6

6.4.n.10 4 62 1344 1090 0.00 1090.0 0.00 1090 0.00 0.00 1090 174.9

7.2.j.10 2 100 1458 667 0.00 667.0 0.00 667 0.00 0.00 667 186.8

7.2.o.10 2 100 1458 950 0.63 955.4 0.06 956 0.00 0.00 956 290.6

7.2.t.10 2 100 1458 1182 0.25 1183.8 0.10 1185 0.00 0.00 1185 415.2

7.3.o.10 3 100 1458 874 1.37 884.8 0.14 886 0.00 0.00 886 294.7

7.3.r.10 3 100 1458 1030 0.87 1035.2 0.37 1038 0.10 0.10 1039 386.9

7.3.t.10 3 100 1458 1120 1.25 1124.5 0.84 1128 0.53 -1.51 1128 433.2

7.4.t.10 4 100 1458 1082 0.09 1082.9 0.01 1083 0.00 0.00 1083 439.3



e-companion to Orlis et al.: The TOP with Overlaps ec9

Table EC.7 Detailed computational results of LNS on TOPO instances with overlap 20%

Inst |K| |S| |C| lbW gapWDB lbA gapADB lbB gapBDB gapBPB blb cpuF

1.2.j.20 2 30 285 147 0.00 147.0 0.00 147 0.00 0.00 147 6.0

1.2.n.20 2 30 285 244 0.00 244.0 0.00 244 0.00 0.00 244 6.9

1.2.r.20 2 30 285 280 0.00 280.0 0.00 280 0.00 0.00 280 8.4

1.3.p.20 3 30 285 226 0.00 226.0 0.00 226 0.00 0.00 226 8.0

1.3.q.20 3 30 285 239 0.00 239.0 0.00 239 0.00 0.00 239 8.3

1.3.r.20 3 30 285 254 0.00 254.0 0.00 254 0.00 0.00 254 8.2

3.2.l.20 2 31 800 603 0.00 603.0 0.00 603 0.00 0.00 603 9.9

3.2.p.20 2 31 800 730 1.37 739.0 0.14 740 0.00 0.00 740 10.4

3.2.t.20 2 31 800 800 0.00 800.0 0.00 800 0.00 0.00 800 0.0

3.3.s.20 3 31 800 720 0.00 720.0 0.00 720 0.00 0.00 720 12.6

3.3.t.20 3 31 800 760 0.00 760.0 0.00 760 0.00 0.00 760 12.1

4.2.f.20 2 98 1306 705 0.57 706.3 0.38 708 0.14 0.14 709 222.4

4.2.m.20 2 98 1306 1141 0.53 1144.1 0.25 1146 0.09 0.09 1147 431.9

4.2.t.20 2 98 1306 1306 0.00 1306.0 0.00 1306 0.00 0.00 1306 11.3

4.3.k.20 3 98 1306 934 0.54 936.1 0.31 939 0.00 0.00 939 361.6

4.3.p.20 3 98 1306 1228 0.41 1229.2 0.31 1233 0.00 0.00 1233 507.8

4.3.t.20 3 98 1306 1305 0.08 1305.7 0.02 1306 0.00 -0.31 1306 414.1

4.4.o.20 4 98 1306 1067 0.37 1067.7 0.31 1068 0.28 0.28 1071 450.4

4.4.r.20 4 98 1306 1219 1.31 1224.0 0.90 1226 0.73 -0.08 1226 533.5

4.4.t.20 4 98 1306 1288 0.70 1290.1 0.53 1292 0.39 -0.54 1292 601.8

5.2.h.20 2 64 1680 467 0.00 467.0 0.00 467 0.00 0.00 467 67.5

5.2.q.20 2 64 1680 1259 0.56 1264.6 0.11 1266 0.00 0.00 1266 168.0

5.2.z.20 2 64 1680 1675 0.30 1676.3 0.22 1680 0.00 0.00 1680 195.3

5.3.l.20 3 64 1680 665 0.00 665.0 0.00 665 0.00 0.00 665 101.7

5.3.s.20 3 64 1680 1277 0.00 1277.0 0.00 1277 0.00 0.00 1277 168.6

5.3.z.20 3 64 1680 1657 0.06 1657.6 0.02 1658 0.00 0.00 1658 215.7

5.4.p.20 4 64 1680 846 0.00 846.0 0.00 846 0.00 0.00 846 139.0

5.4.u.20 4 64 1680 1368 0.00 1368.0 0.00 1368 0.00 0.00 1368 183.0

5.4.z.20 4 64 1680 1644 0.00 1644.0 0.00 1644 0.00 0.00 1644 208.1

6.2.f.20 2 62 1344 619 0.00 619.0 0.00 619 0.00 0.00 619 94.2

6.2.j.20 2 62 1344 992 0.50 995.0 0.20 997 0.00 0.00 997 147.3

6.2.n.20 2 62 1344 1258 1.27 1266.0 0.63 1274 0.00 0.00 1274 177.4

6.3.j.20 3 62 1344 870 0.00 870.0 0.00 870 0.00 0.00 870 148.8

6.3.l.20 3 62 1344 1044 0.00 1044.0 0.00 1044 0.00 0.00 1044 157.4

6.3.n.20 3 62 1344 1203 0.58 1206.2 0.32 1208 0.17 0.17 1210 174.2

6.4.n.20 4 62 1344 1110 0.00 1110.0 0.00 1110 0.00 0.00 1110 187.8

7.2.j.20 2 100 1458 668 0.00 668.0 0.00 668 0.00 0.00 668 202.6

7.2.o.20 2 100 1458 958 0.21 959.8 0.02 960 0.00 0.00 960 318.5

7.2.t.20 2 100 1458 1182 0.42 1185.3 0.14 1187 0.00 0.00 1187 456.1

7.3.o.20 3 100 1458 901 0.00 901.0 0.00 901 0.00 0.00 901 341.9

7.3.r.20 3 100 1458 1041 0.58 1041.9 0.49 1045 0.19 -0.10 1045 412.5

7.3.t.20 3 100 1458 1125 1.16 1127.8 0.90 1129 0.80 -1.06 1129 479.3

7.4.t.20 4 100 1458 1082 0.28 1082.7 0.21 1085 0.00 0.00 1085 484.7



ec10 e-companion to Orlis et al.: The TOP with Overlaps

Table EC.8 Detailed computational results of LNS on TOPO instances with overlap 30%

Inst |K| |S| |C| lbW gapWDB lbA gapADB lbB gapBDB gapBPB blb cpuF

1.2.j.30 2 30 285 156 0.00 156.0 0.00 156 0.00 0.00 156 6.0

1.2.n.30 2 30 285 252 0.00 252.0 0.00 252 0.00 0.00 252 6.9

1.2.r.30 2 30 285 282 0.00 282.0 0.00 282 0.00 0.00 282 8.7

1.3.p.30 3 30 285 233 0.00 233.0 0.00 233 0.00 0.00 233 8.5

1.3.q.30 3 30 285 247 0.00 247.0 0.00 247 0.00 0.00 247 8.8

1.3.r.30 3 30 285 258 0.00 258.0 0.00 258 0.00 0.00 258 8.8

3.2.l.30 2 31 800 609 0.00 609.0 0.00 609 0.00 0.00 609 10.4

3.2.p.30 2 31 800 748 0.00 748.0 0.00 748 0.00 0.00 748 10.8

3.2.t.30 2 31 800 800 0.00 800.0 0.00 800 0.00 0.00 800 0.0

3.3.s.30 3 31 800 720 0.00 720.0 0.00 720 0.00 0.00 720 13.0

3.3.t.30 3 31 800 760 0.00 760.0 0.00 760 0.00 0.00 760 12.5

4.2.f.30 2 98 1306 709 1.27 711.2 0.96 712 0.84 -0.70 712 233.0

4.2.m.30 2 98 1306 1152 0.43 1153.9 0.27 1155 0.17 0.17 1157 435.0

4.2.t.30 2 98 1306 1306 0.00 1306.0 0.00 1306 0.00 0.00 1306 8.4

4.3.k.30 3 98 1306 935 1.50 937.7 1.21 944 0.53 0.53 949 377.7

4.3.p.30 3 98 1306 1236 0.16 1237.0 0.08 1238 0.00 0.00 1238 511.4

4.3.t.30 3 98 1306 1306 0.00 1306.0 0.00 1306 0.00 0.00 1306 197.7

4.4.o.30 4 98 1306 1073 1.30 1075.0 1.12 1076 1.02 1.02 1087 462.4

4.4.r.30 4 98 1306 1230 1.22 1232.1 1.05 1235 0.81 -0.08 1235 561.8

4.4.t.30 4 98 1306 1292 0.54 1293.9 0.39 1296 0.23 -0.39 1296 620.7

5.2.h.30 2 64 1680 479 0.00 479.0 0.00 479 0.00 0.00 479 67.6

5.2.q.30 2 64 1680 1278 0.39 1281.5 0.12 1283 0.00 0.00 1283 166.7

5.2.z.30 2 64 1680 1678 0.12 1678.2 0.11 1680 0.00 -1.19 1680 192.5

5.3.l.30 3 64 1680 684 0.00 684.0 0.00 684 0.00 0.00 684 99.3

5.3.s.30 3 64 1680 1292 0.00 1292.0 0.00 1292 0.00 0.00 1292 168.8

5.3.z.30 3 64 1680 1657 0.18 1659.0 0.06 1660 0.00 0.00 1660 216.9

5.4.p.30 4 64 1680 860 0.93 866.2 0.21 868 0.00 0.00 868 137.8

5.4.u.30 4 64 1680 1387 0.00 1387.0 0.00 1387 0.00 0.00 1387 187.0

5.4.z.30 4 64 1680 1646 0.00 1646.0 0.00 1646 0.00 0.00 1646 213.3

6.2.f.30 2 62 1344 641 0.00 641.0 0.00 641 0.00 0.00 641 93.2

6.2.j.30 2 62 1344 1014 0.49 1015.4 0.35 1017 0.20 0.20 1019 144.7

6.2.n.30 2 62 1344 1268 1.10 1272.7 0.73 1277 0.39 0.39 1282 180.0

6.3.j.30 3 62 1344 891 0.00 891.0 0.00 891 0.00 0.00 891 148.7

6.3.l.30 3 62 1344 1061 0.28 1063.4 0.06 1064 0.00 0.00 1064 153.8

6.3.n.30 3 62 1344 1213 0.74 1215.4 0.54 1218 0.33 0.33 1222 178.5

6.4.n.30 4 62 1344 1123 0.00 1123.0 0.00 1123 0.00 0.00 1123 184.1

7.2.j.30 2 100 1458 673 0.00 673.0 0.00 673 0.00 0.00 673 219.2

7.2.o.30 2 100 1458 961 0.42 962.3 0.28 963 0.21 0.21 965 346.7

7.2.t.30 2 100 1458 1186 0.51 1187.7 0.36 1189 0.25 -0.08 1189 484.6

7.3.o.30 3 100 1458 911 0.00 911.0 0.00 911 0.00 0.00 911 349.6

7.3.r.30 3 100 1458 1045 0.96 1047.2 0.74 1050 0.48 -0.48 1050 436.7

7.3.t.30 3 100 1458 1127 1.06 1129.6 0.83 1131 0.71 -1.59 1131 492.7

7.4.t.30 4 100 1458 1090 0.28 1091.6 0.13 1093 0.00 0.00 1093 501.0



e-companion to Orlis et al.: The TOP with Overlaps ec11

Table EC.9 Detailed computational results of LNS on TOPO instances with overlap 40%

Inst |K| |S| |C| lbW gapWDB lbA gapADB lbB gapBDB gapBPB blb cpuF

1.2.j.40 2 30 285 162 0.00 162.0 0.00 162 0.00 0.00 162 6.3

1.2.n.40 2 30 285 254 0.00 254.0 0.00 254 0.00 0.00 254 7.6

1.2.r.40 2 30 285 284 0.00 284.0 0.00 284 0.00 0.00 284 9.3

1.3.p.40 3 30 285 235 0.00 235.0 0.00 235 0.00 0.00 235 9.0

1.3.q.40 3 30 285 248 0.00 248.0 0.00 248 0.00 0.00 248 9.5

1.3.r.40 3 30 285 263 0.00 263.0 0.00 263 0.00 0.00 263 9.4

3.2.l.40 2 31 800 615 0.16 615.6 0.06 616 0.00 0.00 616 11.0

3.2.p.40 2 31 800 750 0.00 750.0 0.00 750 0.00 0.00 750 12.1

3.2.t.40 2 31 800 800 0.00 800.0 0.00 800 0.00 0.00 800 0.0

3.3.s.40 3 31 800 720 0.00 720.0 0.00 720 0.00 0.00 720 14.2

3.3.t.40 3 31 800 760 0.00 760.0 0.00 760 0.00 0.00 760 13.7

4.2.f.40 2 98 1306 718 1.95 727.7 0.59 732 0.00 0.00 732 214.8

4.2.m.40 2 98 1306 1154 1.65 1156.2 1.45 1157 1.38 0.61 1164 451.9

4.2.t.40 2 98 1306 1306 0.00 1306.0 0.00 1306 0.00 0.00 1306 3.6

4.3.k.40 3 98 1306 945 2.65 961.6 0.87 970 0.00 0.00 970 359.5

4.3.p.40 3 98 1306 1238 0.89 1239.5 0.77 1241 0.64 -0.40 1241 528.8

4.3.t.40 3 98 1306 1306 0.00 1306.0 0.00 1306 0.00 -0.46 1306 129.7

4.4.o.40 4 98 1306 1098 1.09 1101.7 0.75 1103 0.63 0.63 1110 458.2

4.4.r.40 4 98 1306 1246 1.36 1252.7 0.82 1260 0.24 -0.16 1260 552.6

4.4.t.40 4 98 1306 1294 0.70 1296.0 0.54 1298 0.39 -0.39 1298 627.5

5.2.h.40 2 64 1680 500 0.00 500.0 0.00 500 0.00 0.00 500 68.9

5.2.q.40 2 64 1680 1302 0.84 1310.9 0.16 1313 0.00 0.00 1313 162.5

5.2.z.40 2 64 1680 1678 0.12 1678.0 0.12 1678 0.12 0.12 1680 215.4

5.3.l.40 3 64 1680 713 0.00 713.0 0.00 713 0.00 0.00 713 105.6

5.3.s.40 3 64 1680 1319 0.45 1322.7 0.17 1325 0.00 0.00 1325 166.4

5.3.z.40 3 64 1680 1660 0.12 1660.8 0.07 1662 0.00 0.00 1662 218.0

5.4.p.40 4 64 1680 899 1.11 905.6 0.38 909 0.00 0.00 909 137.1

5.4.u.40 4 64 1680 1416 0.00 1416.0 0.00 1416 0.00 0.00 1416 187.3

5.4.z.40 4 64 1680 1652 0.00 1652.0 0.00 1652 0.00 0.00 1652 211.4

6.2.f.40 2 62 1344 667 0.00 667.0 0.00 667 0.00 0.00 667 93.1

6.2.j.40 2 62 1344 1043 0.77 1046.0 0.48 1049 0.19 0.19 1051 140.6

6.2.n.40 2 62 1344 1278 0.94 1282.1 0.62 1286 0.31 0.16 1288 182.0

6.3.j.40 3 62 1344 920 0.33 922.1 0.10 923 0.00 0.00 923 144.7

6.3.l.40 3 62 1344 1091 0.46 1095.5 0.05 1096 0.00 0.00 1096 153.0

6.3.n.40 3 62 1344 1234 0.73 1235.7 0.59 1238 0.40 0.40 1243 177.4

6.4.n.40 4 62 1344 1153 0.00 1153.0 0.00 1153 0.00 0.00 1153 184.6

7.2.j.40 2 100 1458 687 0.58 690.6 0.06 691 0.00 0.00 691 233.3

7.2.o.40 2 100 1458 970 1.03 977.1 0.30 980 0.00 0.00 980 347.4

7.2.t.40 2 100 1458 1192 0.76 1193.7 0.61 1195 0.50 0.25 1198 486.4

7.3.o.40 3 100 1458 924 0.32 926.7 0.03 927 0.00 0.00 927 356.2

7.3.r.40 3 100 1458 1052 1.43 1054.9 1.15 1059 0.76 -0.57 1059 438.4

7.3.t.40 3 100 1458 1132 1.33 1134.7 1.08 1139 0.70 -1.49 1139 497.4

7.4.t.40 4 100 1458 1108 0.27 1110.4 0.05 1111 0.00 0.00 1111 488.6



ec12 e-companion to Orlis et al.: The TOP with Overlaps

Table EC.10 Detailed computational results of LNS on TOPO instances with overlap 50%

Inst |K| |S| |C| lbW gapWDB lbA gapADB lbB gapBDB gapBPB blb cpuF

1.2.j.50 2 30 285 168 0.00 168.0 0.00 168 0.00 0.00 168 6.5

1.2.n.50 2 30 285 255 0.00 255.0 0.00 255 0.00 0.00 255 7.8

1.2.r.50 2 30 285 285 0.00 285.0 0.00 285 0.00 0.00 285 0.1

1.3.p.50 3 30 285 237 0.00 237.0 0.00 237 0.00 0.00 237 9.3

1.3.q.50 3 30 285 254 0.00 254.0 0.00 254 0.00 0.00 254 9.8

1.3.r.50 3 30 285 265 0.00 265.0 0.00 265 0.00 0.00 265 9.7

3.2.l.50 2 31 800 619 0.32 620.6 0.06 621 0.00 0.00 621 11.7

3.2.p.50 2 31 800 752 0.00 752.0 0.00 752 0.00 0.00 752 12.2

3.2.t.50 2 31 800 800 0.00 800.0 0.00 800 0.00 0.00 800 0.0

3.3.s.50 3 31 800 720 1.39 725.6 0.61 730 0.00 0.00 730 14.6

3.3.t.50 3 31 800 760 0.00 760.0 0.00 760 0.00 0.00 760 14.2

4.2.f.50 2 98 1306 736 1.22 737.5 1.02 739 0.81 0.54 743 220.5

4.2.m.50 2 98 1306 1166 2.14 1167.3 2.03 1172 1.62 -1.28 1172 462.1

4.2.t.50 2 98 1306 1306 0.00 1306.0 0.00 1306 0.00 0.00 1306 2.0

4.3.k.50 3 98 1306 969 2.27 978.6 1.27 984 0.71 -0.10 984 370.2

4.3.p.50 3 98 1306 1245 1.37 1245.9 1.29 1247 1.20 -0.64 1247 540.8

4.3.t.50 3 98 1306 1306 0.00 1306.0 0.00 1306 0.00 -0.23 1306 35.0

4.4.o.50 4 98 1306 1116 1.16 1120.8 0.73 1127 0.18 0.09 1128 468.3

4.4.r.50 4 98 1306 1254 1.59 1262.1 0.94 1268 0.47 -1.18 1268 566.2

4.4.t.50 4 98 1306 1300 0.46 1300.8 0.40 1302 0.31 -0.15 1302 658.1

5.2.h.50 2 64 1680 537 0.00 537.0 0.00 537 0.00 0.00 537 79.2

5.2.q.50 2 64 1680 1373 0.66 1377.8 0.30 1382 0.00 0.00 1382 191.3

5.2.z.50 2 64 1680 1679 0.06 1679.1 0.05 1680 0.00 0.00 1680 250.8

5.3.l.50 3 64 1680 759 0.53 760.8 0.29 763 0.00 0.00 763 118.0

5.3.s.50 3 64 1680 1374 1.09 1375.5 0.98 1376 0.94 0.00 1376 207.9

5.3.z.50 3 64 1680 1669 0.06 1669.7 0.02 1670 0.00 0.00 1670 262.7

5.4.p.50 4 64 1680 992 0.00 992.0 0.00 992 0.00 0.00 992 152.5

5.4.u.50 4 64 1680 1472 0.00 1472.0 0.00 1472 0.00 0.00 1472 234.7

5.4.z.50 4 64 1680 1661 0.00 1661.0 0.00 1661 0.00 0.00 1661 260.7

6.2.f.50 2 62 1344 683 0.00 683.0 0.00 683 0.00 0.00 683 94.3

6.2.j.50 2 62 1344 1072 0.84 1076.4 0.43 1080 0.09 0.09 1081 138.3

6.2.n.50 2 62 1344 1295 0.54 1298.3 0.28 1301 0.08 0.08 1302 185.1

6.3.j.50 3 62 1344 947 0.11 947.8 0.02 948 0.00 0.00 948 144.9

6.3.l.50 3 62 1344 1129 0.09 1129.9 0.01 1130 0.00 0.00 1130 156.4

6.3.n.50 3 62 1344 1259 0.48 1261.8 0.25 1264 0.08 0.08 1265 179.6

6.4.n.50 4 62 1344 1177 0.17 1178.5 0.04 1179 0.00 0.00 1179 187.5

7.2.j.50 2 100 1458 692 1.30 696.6 0.63 701 0.00 0.00 701 221.5

7.2.o.50 2 100 1458 996 0.20 997.1 0.09 998 0.00 0.00 998 343.7

7.2.t.50 2 100 1458 1197 1.25 1200.6 0.95 1204 0.66 0.66 1212 492.7

7.3.o.50 3 100 1458 932 0.21 933.4 0.06 934 0.00 0.00 934 357.3

7.3.r.50 3 100 1458 1065 1.13 1066.4 0.99 1067 0.94 0.47 1072 448.8

7.3.t.50 3 100 1458 1143 1.22 1147.7 0.81 1152 0.43 -1.56 1152 504.9

7.4.t.50 4 100 1458 1123 0.00 1123.0 0.00 1123 0.00 0.00 1123 464.0



e-companion to Orlis et al.: The TOP with Overlaps ec13

Table EC.11 Detailed computational results of BCP1 on TOP instances of family 4

Inst |K| blb ubR gapR ubF gapF lbF gap nds cpuF

p4.2.a 2 206 206 0.00 206 0.00 206 0.00 1 0.1
p4.2.b 2 341 341 0.00 341 0.00 341 0.00 1 0.1
p4.2.c 2 452 458 1.33 452 0.00 452 0.00 5 1.0
p4.2.d 2 531 535 0.85 531 0.00 531 0.00 11 5.6
p4.2.e 2 618 623 0.93 618 0.00 618 0.00 11 13.3
p4.2.f 2 687 695 1.30 687 0.00 687 0.00 234 229.3
p4.2.g 2 757 770 1.81 757 0.00 757 0.00 524 787.8
p4.2.h 2 835 843 1.01 835 0.00 835 0.00 81 218.1
p4.2.i 2 918 918 0.00 918 0.00 918 0.00 1 16.2
p4.2.j 2 965 968 0.35 965 0.00 965 0.00 41 344.3
p4.2.k 2 1022 1028 0.62 1022 0.00 1022 0.00 155 1169.9
p4.2.l 2 1074 1080 0.56 1074 0.00 1074 0.00 47 1893.1
p4.2.m 2 1132 1132 0.00 1132 0.00 1132 0.00 1 331.8
p4.2.n 2 1174 1179 0.48 1174 0.00 1174 0.00 89 3584.4
p4.2.o 2 1218 1221 0.25 1218 0.00 1218 0.00 19 1592.0
p4.2.p 2 1242 1250 0.67 1248 0.48 1230 0.97 56 TL
p4.2.q 2 1268 1275 0.61 1273 0.39 1253 1.18 29 TL
p4.2.r 2 1292 1293 0.13 1293 0.08 1272 1.55 26 TL
p4.2.s 2 1304 1305 0.09 1304 0.00 1286 1.38 94 TL
p4.2.t 2 1306 1306 0.00 1306 0.00 1306 0.00 101 4569.8

p4.3.a 3 0 0 0.00 0 0.00 0 0.00 1 0.0
p4.3.b 3 38 38 0.00 38 0.00 38 0.00 1 0.0
p4.3.c 3 193 193 0.00 193 0.00 193 0.00 1 0.1
p4.3.d 3 335 335 0.18 335 0.00 335 0.00 1 0.2
p4.3.e 3 468 468 0.00 468 0.00 468 0.00 1 0.2
p4.3.f 3 579 582 0.62 579 0.00 579 0.00 3 1.7
p4.3.g 3 653 654 0.15 653 0.00 653 0.00 3 2.5
p4.3.h 3 729 732 0.54 729 0.00 729 0.00 16 15.9
p4.3.i 3 809 810 0.23 809 0.00 809 0.00 3 5.4
p4.3.j 3 861 870 1.08 861 0.00 861 0.00 71 223.1
p4.3.k 3 919 928 1.04 919 0.00 919 0.00 19 91.2
p4.3.l 3 979 994 1.58 979 0.00 979 0.00 203 1918.6
p4.3.m 3 1063 1063 0.03 1063 0.00 1063 0.00 2 46.0
p4.3.n 3 1121 1124 0.33 1121 0.00 1121 0.00 7 200.0
p4.3.o 3 1172 1178 0.52 1172 0.00 1172 0.00 15 310.1
p4.3.p 3 1222 1223 0.10 1222 0.00 1222 0.00 3 154.2
p4.3.q 3 1253 1255 0.23 1253 0.00 1253 0.00 8 479.8
p4.3.r 3 1273 1281 0.65 1277 0.31 1273 0.00 39 TL
p4.3.s 3 1295 1298 0.26 1296 0.08 1294 0.08 24 TL
p4.3.t 3 1305 1306 0.08 1305 0.00 1302 0.23 15 TL

p4.4.a 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p4.4.b 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p4.4.c 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p4.4.d 4 38 38 0.00 38 0.00 38 0.00 1 0.0
p4.4.e 4 183 183 0.00 183 0.00 183 0.00 1 0.1
p4.4.f 4 324 324 0.00 324 0.00 324 0.00 1 0.1
p4.4.g 4 461 461 0.11 461 0.00 461 0.00 1 0.2
p4.4.h 4 571 571 0.00 571 0.00 571 0.00 1 0.2
p4.4.i 4 657 664 1.13 657 0.00 657 0.00 5 2.0
p4.4.j 4 732 739 0.98 732 0.00 732 0.00 16 8.7
p4.4.k 4 821 829 1.06 821 0.00 821 0.00 21 17.0
p4.4.l 4 880 891 1.30 880 0.00 880 0.00 43 58.2
p4.4.m 4 919 942 2.51 921 0.22 919 0.00 2824 TL
p4.4.n 4 976 997 2.22 976 0.00 976 0.00 1402 3284.8
p4.4.o 4 1061 1067 0.63 1061 0.00 1061 0.00 5 24.4
p4.4.p 4 1124 1128 0.38 1124 0.00 1124 0.00 13 76.2
p4.4.q 4 1161 1179 1.58 1161 0.00 1161 0.00 253 3263.0
p4.4.r 4 1216 1231 1.28 1216 0.00 1215 0.08 441 TL
p4.4.s 4 1260 1271 0.91 1262 0.16 1254 0.48 118 TL
p4.4.t 4 1285 1295 0.85 1290 0.39 1278 0.54 76 TL

Avg 0.56 0.04 0.11 509.0



ec14 e-companion to Orlis et al.: The TOP with Overlaps

Table EC.12 Detailed computational results of BCP1 on TOP instances of family 5

Inst |K| blb ubR gapR ubF gapF lbF gap nds cpuF

p5.2.a 2 0 0 0.00 0 0.00 0 0.00 1 0.0
p5.2.b 2 20 20 0.00 20 0.00 20 0.00 1 0.0
p5.2.c 2 50 50 0.00 50 0.00 50 0.00 1 0.0
p5.2.d 2 80 80 0.00 80 0.00 80 0.00 1 0.1
p5.2.e 2 180 180 0.00 180 0.00 180 0.00 1 0.0
p5.2.f 2 240 240 0.00 240 0.00 240 0.00 1 0.0
p5.2.g 2 320 320 0.00 320 0.00 320 0.00 1 0.1
p5.2.h 2 410 410 0.00 410 0.00 410 0.00 1 0.1
p5.2.i 2 480 480 0.00 480 0.00 480 0.00 1 0.5
p5.2.j 2 580 580 0.00 580 0.00 580 0.00 1 0.2
p5.2.k 2 670 670 0.00 670 0.00 670 0.00 1 0.3
p5.2.l 2 800 800 0.00 800 0.00 800 0.00 1 0.2
p5.2.m 2 860 860 0.00 860 0.00 860 0.00 1 0.8
p5.2.n 2 925 930 0.54 925 0.00 925 0.00 4 3.7
p5.2.o 2 1020 1030 0.98 1020 0.00 1020 0.00 7 2.5
p5.2.p 2 1150 1150 0.00 1150 0.00 1150 0.00 1 0.4
p5.2.q 2 1195 1210 1.26 1195 0.00 1195 0.00 345 146.4
p5.2.r 2 1260 1260 0.00 1260 0.00 1260 0.00 4 4.6
p5.2.s 2 1340 1340 0.00 1340 0.00 1340 0.00 1 4.7
p5.2.t 2 1400 1400 0.00 1400 0.00 1400 0.00 10 14.5
p5.2.u 2 1460 1460 0.00 1460 0.00 1460 0.00 3 12.6
p5.2.v 2 1505 1510 0.33 1505 0.00 1505 0.00 679 1382.2
p5.2.w 2 1565 1570 0.32 1565 0.00 1565 0.00 220 533.2
p5.2.x 2 1610 1610 0.00 1610 0.00 1610 0.00 26 43.9
p5.2.y 2 1645 1650 0.30 1650 0.30 1635 0.61 754 TL
p5.2.z 2 1680 1680 0.00 1680 0.00 1680 0.00 1085 2556.6

p5.3.a 3 0 0 0.00 0 0.00 0 0.00 1 0.0
p5.3.b 3 15 15 0.00 15 0.00 15 0.00 1 0.0
p5.3.c 3 20 20 0.00 20 0.00 20 0.00 1 0.0
p5.3.d 3 60 60 0.00 60 0.00 60 0.00 1 0.0
p5.3.e 3 95 95 0.00 95 0.00 95 0.00 1 0.1
p5.3.f 3 110 110 0.00 110 0.00 110 0.00 1 0.0
p5.3.g 3 185 185 0.00 185 0.00 185 0.00 1 0.0
p5.3.h 3 260 260 0.00 260 0.00 260 0.00 1 0.1
p5.3.i 3 335 335 0.00 335 0.00 335 0.00 1 0.3
p5.3.j 3 470 470 0.00 470 0.00 470 0.00 1 0.0
p5.3.k 3 495 495 0.00 495 0.00 495 0.00 1 0.1
p5.3.l 3 595 604 1.54 595 0.00 595 0.00 5 0.6
p5.3.m 3 650 650 0.00 650 0.00 650 0.00 1 0.3
p5.3.n 3 755 755 0.00 755 0.00 755 0.00 1 0.7
p5.3.o 3 870 870 0.00 870 0.00 870 0.00 1 0.2
p5.3.p 3 990 990 0.00 990 0.00 990 0.00 1 0.2
p5.3.q 3 1070 1090 1.87 1070 0.00 1070 0.00 17 8.3
p5.3.r 3 1125 1155 2.67 1125 0.00 1125 0.00 139 117.1
p5.3.s 3 1190 1200 0.84 1190 0.00 1190 0.00 55 46.9
p5.3.t 3 1260 1270 0.79 1260 0.00 1260 0.00 53 63.4
p5.3.u 3 1345 1350 0.37 1345 0.00 1345 0.00 13 22.9
p5.3.v 3 1425 1430 0.35 1425 0.00 1425 0.00 35 54.3
p5.3.w 3 1485 1515 2.02 1493 0.54 1480 0.34 942 TL
p5.3.x 3 1555 1582 1.78 1555 0.00 1555 0.00 969 4416.3
p5.3.y 3 1595 1610 0.94 1604 0.56 1595 0.00 558 TL
p5.3.z 3 1635 1635 0.00 1635 0.00 1635 0.00 43 80.7

p5.4.a 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p5.4.b 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p5.4.c 4 20 20 0.00 20 0.00 20 0.00 1 0.0
p5.4.d 4 20 20 0.00 20 0.00 20 0.00 1 0.0
p5.4.e 4 20 20 0.00 20 0.00 20 0.00 1 0.0
p5.4.f 4 80 80 0.00 80 0.00 80 0.00 1 0.0
p5.4.g 4 140 140 0.00 140 0.00 140 0.00 1 0.0
p5.4.h 4 140 140 0.00 140 0.00 140 0.00 1 0.1
p5.4.i 4 240 240 0.00 240 0.00 240 0.00 1 0.0
p5.4.j 4 340 340 0.00 340 0.00 340 0.00 1 0.0
p5.4.k 4 340 340 0.00 340 0.00 340 0.00 1 0.1
p5.4.l 4 430 430 0.00 430 0.00 430 0.00 1 0.2
p5.4.m 4 555 555 0.00 555 0.00 555 0.00 1 0.1
p5.4.n 4 620 620 0.00 620 0.00 620 0.00 1 0.1
p5.4.o 4 690 690 0.00 690 0.00 690 0.00 1 0.3
p5.4.p 4 765 790 3.27 765 0.00 765 0.00 99 15.0
p5.4.q 4 860 860 0.00 860 0.00 860 0.00 1 0.4
p5.4.r 4 960 960 0.00 960 0.00 960 0.00 1 0.8
p5.4.s 4 1030 1050 1.94 1030 0.00 1030 0.00 127 34.7
p5.4.t 4 1160 1160 0.00 1160 0.00 1160 0.00 1 0.3
p5.4.u 4 1300 1300 0.00 1300 0.00 1300 0.00 1 0.2
p5.4.v 4 1320 1320 0.00 1320 0.00 1320 0.00 1 0.3
p5.4.w 4 1390 1415 1.80 1390 0.00 1390 0.00 51 34.6
p5.4.x 4 1450 1486 2.53 1450 0.00 1450 0.00 511 656.0
p5.4.y 4 1520 1520 0.00 1520 0.00 1520 0.00 14 12.8
p5.4.z 4 1620 1620 0.00 1620 0.00 1620 0.00 1 1.1

Avg 0.34 0.02 0.01 137.0



e-companion to Orlis et al.: The TOP with Overlaps ec15

Table EC.13 Detailed computational results of BCP1 on TOP instances of family 6

Inst |K| blb ubR gapR ubF gapF lbF gap nds cpuF

p6.2.a 2 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.2.b 2 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.2.c 2 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.2.d 2 192 192 0.00 192 0.00 192 0.00 1 0.0
p6.2.e 2 360 360 0.00 360 0.00 360 0.00 1 0.0
p6.2.f 2 588 588 0.00 588 0.00 588 0.00 1 0.1
p6.2.g 2 660 660 0.00 660 0.00 660 0.00 1 0.1
p6.2.h 2 780 780 0.00 780 0.00 780 0.00 1 0.1
p6.2.i 2 888 888 0.00 888 0.00 888 0.00 1 1.6
p6.2.j 2 948 948 0.00 948 0.00 948 0.00 1 0.9
p6.2.k 2 1032 1032 0.00 1032 0.00 1032 0.00 2 2.6
p6.2.l 2 1116 1116 0.00 1116 0.00 1116 0.00 1 2.2
p6.2.m 2 1188 1188 0.00 1188 0.00 1188 0.00 134 104.4
p6.2.n 2 1260 1260 0.00 1260 0.00 1260 0.00 28 20.0

p6.3.a 3 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.3.b 3 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.3.c 3 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.3.d 3 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.3.e 3 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.3.f 3 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.3.g 3 282 282 0.00 282 0.00 282 0.00 1 0.0
p6.3.h 3 444 444 0.00 444 0.00 444 0.00 2 0.2
p6.3.i 3 642 642 0.00 642 0.00 642 0.00 1 0.1
p6.3.j 3 828 828 0.00 828 0.00 828 0.00 1 0.1
p6.3.k 3 894 936 4.70 894 0.00 894 0.00 615 102.7
p6.3.l 3 1002 1014 1.20 1002 0.00 1002 0.00 11 3.6
p6.3.m 3 1080 1104 2.22 1080 0.00 1080 0.00 487 252.4
p6.3.n 3 1170 1170 0.00 1170 0.00 1170 0.00 10 5.6

p6.4.a 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.4.b 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.4.c 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.4.d 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.4.e 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.4.f 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.4.g 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.4.h 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.4.i 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p6.4.j 4 366 366 0.00 366 0.00 366 0.00 1 0.0
p6.4.k 4 528 528 0.00 528 0.00 528 0.00 6 0.5
p6.4.l 4 696 708 1.72 696 0.00 696 0.00 49 4.0
p6.4.m 4 912 940 3.13 912 0.00 912 0.00 11 1.3
p6.4.n 4 1068 1068 0.00 1068 0.00 1068 0.00 1 0.1

Avg 0.31 0.00 0.00 12.0



ec16 e-companion to Orlis et al.: The TOP with Overlaps

Table EC.14 Detailed computational results of BCP1 on TOP instances of family 7

Inst |K| blb ubR gapR ubF gapF lbF gap nds cpuF

p7.2.a 2 30 30 0.00 30 0.00 30 0.00 1 0.0
p7.2.b 2 64 64 0.00 64 0.00 64 0.00 1 0.0
p7.2.c 2 101 101 0.00 101 0.00 101 0.00 1 0.1
p7.2.d 2 190 190 0.00 190 0.00 190 0.00 1 0.1
p7.2.e 2 290 290 0.00 290 0.00 290 0.00 1 0.4
p7.2.f 2 387 387 0.00 387 0.00 387 0.00 1 0.8
p7.2.g 2 459 459 0.00 459 0.00 459 0.00 1 1.8
p7.2.h 2 521 523 0.51 521 0.00 521 0.00 54 64.1
p7.2.i 2 580 585 0.86 580 0.00 580 0.00 18 47.8
p7.2.j 2 646 648 0.33 646 0.00 646 0.00 9 43.5
p7.2.k 2 705 706 0.20 705 0.00 705 0.00 3 81.4
p7.2.l 2 767 767 0.06 767 0.00 767 0.00 1 81.6
p7.2.m 2 827 831 0.48 827 0.00 827 0.00 19 357.0
p7.2.n 2 888 892 0.49 888 0.00 888 0.00 3 206.6
p7.2.o 2 945 948 0.37 945 0.00 945 0.00 17 325.3
p7.2.p 2 1002 1002 0.00 1002 0.00 1002 0.00 1 130.8
p7.2.q 2 1044 1048 0.48 1044 0.00 1044 0.00 99 3198.6
p7.2.r 2 1094 1094 0.02 1094 0.00 1094 0.00 1 265.3
p7.2.s 2 1136 1138 0.18 1136 0.00 1136 0.00 12 976.9
p7.2.t 2 1179 1179 0.05 1179 0.00 1179 0.00 1 268.0

p7.3.a 3 0 0 0.00 0 0.00 0 0.00 1 0.0
p7.3.b 3 46 46 0.00 46 0.00 46 0.00 1 0.0
p7.3.c 3 79 79 0.00 79 0.00 79 0.00 1 0.0
p7.3.d 3 117 117 0.00 117 0.00 117 0.00 1 0.0
p7.3.e 3 175 175 0.00 175 0.00 175 0.00 1 0.1
p7.3.f 3 247 247 0.00 247 0.00 247 0.00 1 0.1
p7.3.g 3 344 344 0.00 344 0.00 344 0.00 1 0.2
p7.3.h 3 425 427 0.59 425 0.00 425 0.00 3 1.4
p7.3.i 3 487 494 1.62 487 0.00 487 0.00 17 12.9
p7.3.j 3 564 567 0.62 564 0.00 564 0.00 3 5.8
p7.3.k 3 633 633 0.00 633 0.00 633 0.00 1 10.7
p7.3.l 3 684 689 0.77 684 0.00 684 0.00 11 119.2
p7.3.m 3 762 762 0.08 762 0.00 762 0.00 1 11.9
p7.3.n 3 820 820 0.00 820 0.00 820 0.00 1 18.5
p7.3.o 3 874 875 0.21 874 0.00 874 0.00 3 82.1
p7.3.p 3 929 933 0.46 929 0.00 929 0.00 13 312.8
p7.3.q 3 987 987 0.00 987 0.00 987 0.00 1 93.7
p7.3.r 3 1026 1036 1.04 1028 0.19 1022 0.39 9 TL
p7.3.s 3 1081 1086 0.53 1081 0.00 1081 0.00 14 2466.6
p7.3.t 3 1120 1128 0.74 1122 0.18 1117 0.27 9 TL

p7.4.a 4 0 0 0.00 0 0.00 0 0.00 1 0.0
p7.4.b 4 30 30 0.00 30 0.00 30 0.00 1 0.0
p7.4.c 4 46 46 0.00 46 0.00 46 0.00 1 0.0
p7.4.d 4 79 79 0.00 79 0.00 79 0.00 1 0.0
p7.4.e 4 123 123 0.00 123 0.00 123 0.00 1 0.0
p7.4.f 4 164 164 0.00 164 0.00 164 0.00 1 0.0
p7.4.g 4 217 217 0.00 217 0.00 217 0.00 1 0.1
p7.4.h 4 285 285 0.00 285 0.00 285 0.00 1 0.2
p7.4.i 4 366 366 0.00 366 0.00 366 0.00 1 0.2
p7.4.j 4 462 462 0.03 462 0.00 462 0.00 1 0.4
p7.4.k 4 520 523 0.73 520 0.00 520 0.00 9 3.5
p7.4.l 4 590 591 0.27 590 0.00 590 0.00 3 3.1
p7.4.m 4 646 659 2.16 646 0.00 646 0.00 67 76.6
p7.4.n 4 730 730 0.11 730 0.00 730 0.00 1 3.2
p7.4.o 4 781 785 0.61 781 0.00 781 0.00 21 78.9
p7.4.p 4 846 847 0.12 846 0.00 846 0.00 3 24.7
p7.4.q 4 909 910 0.11 909 0.00 909 0.00 3 27.4
p7.4.r 4 970 973 0.34 970 0.00 970 0.00 5 253.5
p7.4.s 4 1022 1023 0.18 1022 0.00 1022 0.00 3 85.7
p7.4.t 4 1077 1077 0.08 1077 0.00 1077 0.00 1 16.9

Avg 0.26 0.01 0.01 168.3



e-companion to Orlis et al.: The TOP with Overlaps ec17

Table EC.15 Detailed computational results of LNS on TOP instances of family 4

Inst |K| |S| |C| lbW gapWblb lbA gapAblb lbB gapBblb blb cpuF

p4.2.a 2 98 1306 206 0.00 206.0 0.00 206 0.00 206 5.6
p4.2.b 2 98 1306 341 0.00 341.0 0.00 341 0.00 341 25.3
p4.2.c 2 98 1306 452 0.00 452.0 0.00 452 0.00 452 56.1
p4.2.d 2 98 1306 531 0.00 531.0 0.00 531 0.00 531 93.2
p4.2.e 2 98 1306 618 0.00 618.0 0.00 618 0.00 618 130.0
p4.2.f 2 98 1306 677 1.48 684.3 0.39 687 0.00 687 150.3
p4.2.g 2 98 1306 750 0.93 755.0 0.26 757 0.00 757 159.5
p4.2.h 2 98 1306 835 1.71 835.0 0.00 835 0.00 835 175.3
p4.2.i 2 98 1306 918 0.00 912.2 0.64 918 0.00 918 191.7
p4.2.j 2 98 1306 962 0.31 962.6 0.25 965 0.00 965 218.5
p4.2.k 2 98 1306 1022 0.00 1022.0 0.00 1022 0.00 1022 237.2
p4.2.l 2 98 1306 1074 0.00 1073.8 0.02 1074 0.00 1074 263.9
p4.2.m 2 98 1306 1132 0.00 1132.0 0.00 1132 0.00 1132 286.8
p4.2.n 2 98 1306 1172 0.17 1173.8 0.02 1174 0.00 1174 328.2
p4.2.o 2 98 1306 1218 0.00 1218.0 0.00 1218 0.00 1218 347.9
p4.2.p 2 98 1306 1239 0.24 1240.9 0.09 1242 0.00 1242 410.3
p4.2.q 2 98 1306 1265 0.24 1267.2 0.06 1268 0.00 1268 454.3
p4.2.r 2 98 1306 1284 0.62 1290.0 0.16 1292 0.00 1292 485.0
p4.2.s 2 98 1306 1302 0.15 1303.4 0.05 1304 0.00 1304 535.8
p4.2.t 2 98 1306 1306 0.00 1306.0 0.00 1306 0.00 1306 19.7

p4.3.a 3 98 1306 0 0.00 0.0 0.00 0 0.00 0 0.0
p4.3.b 3 98 1306 38 0.00 38.0 0.00 38 0.00 38 0.0
p4.3.c 3 98 1306 193 0.00 193.0 0.00 193 0.00 193 1.9
p4.3.d 3 98 1306 335 0.00 335.0 0.00 335 0.00 335 18.1
p4.3.e 3 98 1306 468 0.00 468.0 0.00 468 0.00 468 35.4
p4.3.f 3 98 1306 579 0.00 579.0 0.00 579 0.00 579 70.5
p4.3.g 3 98 1306 653 0.00 653.0 0.00 653 0.00 653 96.9
p4.3.h 3 98 1306 728 0.14 728.9 0.01 729 0.00 729 150.0
p4.3.i 3 98 1306 799 1.25 808.0 0.12 809 0.00 809 191.5
p4.3.j 3 98 1306 860 0.12 860.9 0.01 861 0.00 861 202.2
p4.3.k 3 98 1306 915 0.44 917.2 0.20 919 0.00 919 231.3
p4.3.l 3 98 1306 975 0.41 978.5 0.05 979 0.00 979 239.7
p4.3.m 3 98 1306 1053 0.95 1060.0 0.28 1063 0.00 1063 255.8
p4.3.n 3 98 1306 1121 0.00 1121.0 0.00 1121 0.00 1121 270.0
p4.3.o 3 98 1306 1171 0.09 1171.7 0.03 1172 0.00 1172 314.5
p4.3.p 3 98 1306 1222 0.00 1222.0 0.00 1222 0.00 1222 335.6
p4.3.q 3 98 1306 1253 0.00 1253.0 0.00 1253 0.00 1253 359.5
p4.3.r 3 98 1306 1269 0.32 1271.3 0.13 1273 0.00 1273 368.0
p4.3.s 3 98 1306 1292 0.23 1294.5 0.04 1295 0.00 1295 409.6
p4.3.t 3 98 1306 1304 0.08 1304.1 0.07 1305 0.00 1305 422.8

p4.4.a 4 98 1306 0 0.00 0.0 0.00 0 0.00 0 0.0
p4.4.b 4 98 1306 0 0.00 0.0 0.00 0 0.00 0 0.0
p4.4.c 4 98 1306 0 0.00 0.0 0.00 0 0.00 0 0.0
p4.4.d 4 98 1306 38 0.00 38.0 0.00 38 0.00 38 0.0
p4.4.e 4 98 1306 183 0.00 183.0 0.00 183 0.00 183 0.0
p4.4.f 4 98 1306 324 0.00 324.0 0.00 324 0.00 324 9.4
p4.4.g 4 98 1306 461 0.00 461.0 0.00 461 0.00 461 29.1
p4.4.h 4 98 1306 571 0.00 571.0 0.00 571 0.00 571 42.4
p4.4.i 4 98 1306 657 0.00 657.0 0.00 657 0.00 657 81.1
p4.4.j 4 98 1306 732 0.00 732.0 0.00 732 0.00 732 112.8
p4.4.k 4 98 1306 820 0.12 820.8 0.02 821 0.00 821 158.0
p4.4.l 4 98 1306 879 0.11 879.9 0.01 880 0.00 880 231.3
p4.4.m 4 98 1306 916 0.33 918.5 0.05 919 0.00 919 260.4
p4.4.n 4 98 1306 972 0.41 975.3 0.07 976 0.00 976 262.8
p4.4.o 4 98 1306 1051 0.95 1058.4 0.25 1061 0.00 1061 301.8
p4.4.p 4 98 1306 1119 0.45 1122.1 0.17 1124 0.00 1124 321.9
p4.4.q 4 98 1306 1160 0.09 1160.7 0.03 1161 0.00 1161 334.5
p4.4.r 4 98 1306 1203 1.08 1209.0 0.58 1216 0.00 1216 342.1
p4.4.s 4 98 1306 1257 0.24 1258.7 0.10 1260 0.00 1260 361.5
p4.4.t 4 98 1306 1282 0.23 1283.9 0.09 1285 0.00 1285 375.9

Avg 0.2313 0.0708 0.0000 196.2



ec18 e-companion to Orlis et al.: The TOP with Overlaps

Table EC.16 Detailed computational results of LNS on TOP instances of family 5

Inst |K| |S| |C| lbW gapWblb lbA gapAblb lbB gapBblb blb cpuF

p5.2.a 2 64 1680 0 0.00 0.0 0.00 0 0.00 0 0.0
p5.2.b 2 64 1680 20 0.00 20.0 0.00 20 0.00 20 0.1
p5.2.c 2 64 1680 50 0.00 50.0 0.00 50 0.00 50 0.7
p5.2.d 2 64 1680 80 0.00 80.0 0.00 80 0.00 80 1.3
p5.2.e 2 64 1680 180 0.00 180.0 0.00 180 0.00 180 6.6
p5.2.f 2 64 1680 240 0.00 240.0 0.00 240 0.00 240 13.3
p5.2.g 2 64 1680 320 0.00 320.0 0.00 320 0.00 320 24.7
p5.2.h 2 64 1680 410 0.00 410.0 0.00 410 0.00 410 38.1
p5.2.i 2 64 1680 480 0.00 480.0 0.00 480 0.00 480 33.9
p5.2.j 2 64 1680 580 0.00 580.0 0.00 580 0.00 580 38.8
p5.2.k 2 64 1680 670 0.00 670.0 0.00 670 0.00 670 43.2
p5.2.l 2 64 1680 800 0.00 800.0 0.00 800 0.00 800 46.0
p5.2.m 2 64 1680 860 0.00 860.0 0.00 860 0.00 860 49.2
p5.2.n 2 64 1680 925 0.00 925.0 0.00 925 0.00 925 50.9
p5.2.o 2 64 1680 1020 0.00 1020.0 0.00 1020 0.00 1020 54.8
p5.2.p 2 64 1680 1150 0.00 1150.0 0.00 1150 0.00 1150 59.9
p5.2.q 2 64 1680 1195 0.00 1195.0 0.00 1195 0.00 1195 64.0
p5.2.r 2 64 1680 1260 0.00 1260.0 0.00 1260 0.00 1260 66.6
p5.2.s 2 64 1680 1330 0.75 1339.0 0.07 1340 0.00 1340 71.7
p5.2.t 2 64 1680 1400 0.00 1400.0 0.00 1400 0.00 1400 73.9
p5.2.u 2 64 1680 1460 0.00 1460.0 0.00 1460 0.00 1460 77.8
p5.2.v 2 64 1680 1495 0.67 1501.0 0.27 1505 0.00 1505 82.1
p5.2.w 2 64 1680 1560 0.32 1560.0 0.32 1560 0.32 1565 85.8
p5.2.x 2 64 1680 1590 1.26 1597.5 0.78 1610 0.00 1610 88.9
p5.2.y 2 64 1680 1635 0.61 1639.0 0.37 1645 0.00 1645 91.3
p5.2.z 2 64 1680 1670 0.60 1672.0 0.48 1680 0.00 1680 84.5

p5.3.a 3 64 1680 0 0.00 0.0 0.00 0 0.00 0 0.0
p5.3.b 3 64 1680 15 0.00 15.0 0.00 15 0.00 15 0.2
p5.3.c 3 64 1680 20 0.00 20.0 0.00 20 0.00 20 0.2
p5.3.d 3 64 1680 60 0.00 60.0 0.00 60 0.00 60 0.9
p5.3.e 3 64 1680 95 0.00 95.0 0.00 95 0.00 95 0.8
p5.3.f 3 64 1680 110 0.00 110.0 0.00 110 0.00 110 1.5
p5.3.g 3 64 1680 185 0.00 185.0 0.00 185 0.00 185 7.9
p5.3.h 3 64 1680 260 0.00 260.0 0.00 260 0.00 260 8.0
p5.3.i 3 64 1680 335 0.00 335.0 0.00 335 0.00 335 17.9
p5.3.j 3 64 1680 470 0.00 470.0 0.00 470 0.00 470 30.4
p5.3.k 3 64 1680 495 0.00 495.0 0.00 495 0.00 495 43.0
p5.3.l 3 64 1680 595 0.00 595.0 0.00 595 0.00 595 52.6
p5.3.m 3 64 1680 650 0.00 650.0 0.00 650 0.00 650 52.4
p5.3.n 3 64 1680 755 0.00 755.0 0.00 755 0.00 755 54.8
p5.3.o 3 64 1680 870 0.00 870.0 0.00 870 0.00 870 53.7
p5.3.p 3 64 1680 990 0.00 990.0 0.00 990 0.00 990 59.1
p5.3.q 3 64 1680 1070 0.00 1070.0 0.00 1070 0.00 1070 63.0
p5.3.r 3 64 1680 1125 0.00 1125.0 0.00 1125 0.00 1125 64.9
p5.3.s 3 64 1680 1190 0.00 1190.0 0.00 1190 0.00 1190 63.8
p5.3.t 3 64 1680 1260 0.00 1260.0 0.00 1260 0.00 1260 67.6
p5.3.u 3 64 1680 1345 0.00 1345.0 0.00 1345 0.00 1345 69.2
p5.3.v 3 64 1680 1420 0.35 1424.0 0.07 1425 0.00 1425 72.1
p5.3.w 3 64 1680 1475 0.68 1481.5 0.24 1485 0.00 1485 73.7
p5.3.x 3 64 1680 1530 1.63 1544.5 0.68 1555 0.00 1555 76.4
p5.3.y 3 64 1680 1590 0.31 1592.0 0.19 1595 0.00 1595 79.8
p5.3.z 3 64 1680 1635 0.00 1635.0 0.00 1635 0.00 1635 82.7

p5.4.a 4 64 1680 0 0.00 0.0 0.00 0 0.00 0 0.0
p5.4.b 4 64 1680 0 0.00 0.0 0.00 0 0.00 0 0.0
p5.4.c 4 64 1680 20 0.00 20.0 0.00 20 0.00 20 0.0
p5.4.d 4 64 1680 20 0.00 20.0 0.00 20 0.00 20 0.0
p5.4.e 4 64 1680 20 0.00 20.0 0.00 20 0.00 20 0.0
p5.4.f 4 64 1680 80 0.00 80.0 0.00 80 0.00 80 1.1
p5.4.g 4 64 1680 140 0.00 140.0 0.00 140 0.00 140 1.8
p5.4.h 4 64 1680 140 0.00 140.0 0.00 140 0.00 140 1.9
p5.4.i 4 64 1680 240 0.00 240.0 0.00 240 0.00 240 4.4
p5.4.j 4 64 1680 340 0.00 340.0 0.00 340 0.00 340 10.1
p5.4.k 4 64 1680 340 0.00 340.0 0.00 340 0.00 340 9.6
p5.4.l 4 64 1680 430 0.00 430.0 0.00 430 0.00 430 21.6
p5.4.m 4 64 1680 555 0.00 555.0 0.00 555 0.00 555 36.5
p5.4.n 4 64 1680 620 0.00 620.0 0.00 620 0.00 620 55.2
p5.4.o 4 64 1680 690 0.00 690.0 0.00 690 0.00 690 55.1
p5.4.p 4 64 1680 765 0.00 765.0 0.00 765 0.00 765 68.3
p5.4.q 4 64 1680 860 0.00 860.0 0.00 860 0.00 860 68.4
p5.4.r 4 64 1680 960 0.00 960.0 0.00 960 0.00 960 66.9
p5.4.s 4 64 1680 1030 0.00 1030.0 0.00 1030 0.00 1030 68.9
p5.4.t 4 64 1680 1160 0.00 1160.0 0.00 1160 0.00 1160 66.1
p5.4.u 4 64 1680 1300 0.00 1300.0 0.00 1300 0.00 1300 69.1
p5.4.v 4 64 1680 1320 0.00 1320.0 0.00 1320 0.00 1320 74.8
p5.4.w 4 64 1680 1385 0.36 1386.0 0.29 1390 0.00 1390 78.8
p5.4.x 4 64 1680 1445 0.35 1449.5 0.03 1450 0.00 1450 82.2
p5.4.y 4 64 1680 1520 0.00 1520.0 0.00 1520 0.00 1520 81.8
p5.4.z 4 64 1680 1620 0.00 1620.0 0.00 1620 0.00 1620 85.9

Avg 0.1012 0.0485 0.0041 43.0



e-companion to Orlis et al.: The TOP with Overlaps ec19

Table EC.17 Detailed computational results of LNS on TOP instances of family 6

Inst |K| |S| |C| lbW gapWblb lbA gapAblb lbB gapBblb blb cpuF

p6.2.a 2 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.2.b 2 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.2.c 2 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.2.d 2 62 1344 192 0.00 192.0 0.00 192 0.00 192 6.2
p6.2.e 2 62 1344 360 0.00 360.0 0.00 360 0.00 360 27.2
p6.2.f 2 62 1344 588 0.00 588.0 0.00 588 0.00 588 41.7
p6.2.g 2 62 1344 660 0.00 660.0 0.00 660 0.00 660 40.5
p6.2.h 2 62 1344 780 0.00 780.0 0.00 780 0.00 780 44.9
p6.2.i 2 62 1344 888 0.00 888.0 0.00 888 0.00 888 50.4
p6.2.j 2 62 1344 948 0.00 948.0 0.00 948 0.00 948 52.1
p6.2.k 2 62 1344 1032 0.00 1032.0 0.00 1032 0.00 1032 57.2
p6.2.l 2 62 1344 1110 0.54 1111.8 0.38 1116 0.00 1116 62.8
p6.2.m 2 62 1344 1170 1.54 1184.4 0.30 1188 0.00 1188 65.9
p6.2.n 2 62 1344 1242 1.45 1252.2 0.62 1260 0.00 1260 69.7

p6.3.a 3 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.3.b 3 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.3.c 3 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.3.d 3 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.3.e 3 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.3.f 3 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.3.g 3 62 1344 282 0.00 282.0 0.00 282 0.00 282 7.7
p6.3.h 3 62 1344 444 0.00 444.0 0.00 444 0.00 444 24.9
p6.3.i 3 62 1344 642 0.00 642.0 0.00 642 0.00 642 39.8
p6.3.j 3 62 1344 828 0.00 828.0 0.00 828 0.00 828 56.8
p6.3.k 3 62 1344 894 0.00 894.0 0.00 894 0.00 894 55.2
p6.3.l 3 62 1344 1002 0.00 1002.0 0.00 1002 0.00 1002 55.2
p6.3.m 3 62 1344 1080 0.00 1080.0 0.00 1080 0.00 1080 58.0
p6.3.n 3 62 1344 1170 0.00 1170.0 0.00 1170 0.00 1170 62.4

p6.4.a 4 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.4.b 4 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.4.c 4 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.4.d 4 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.4.e 4 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.4.f 4 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.4.g 4 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.4.h 4 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.4.i 4 62 1344 0 0.00 0.0 0.00 0 0.00 0 0.0
p6.4.j 4 62 1344 366 0.00 366.0 0.00 366 0.00 366 9.6
p6.4.k 4 62 1344 528 0.00 528.0 0.00 528 0.00 528 26.3
p6.4.l 4 62 1344 696 0.00 696.0 0.00 696 0.00 696 46.1
p6.4.m 4 62 1344 912 0.00 912.0 0.00 912 0.00 912 58.3
p6.4.n 4 62 1344 1068 0.00 1068.0 0.00 1068 0.00 1068 69.9

0.0840 0.0311 0.0000 25.9



ec20 e-companion to Orlis et al.: The TOP with Overlaps

Table EC.18 Detailed computational results of LNS on TOP instances of family 7

Inst |K| |S| |C| lbW gapWblb lbA gapAblb lbB gapBblb blb cpuF

p7.2.a 2 100 1458 30 0.00 30.0 0.00 30 0.00 30 0.0
p7.2.b 2 100 1458 64 0.00 64.0 0.00 64 0.00 64 0.2
p7.2.c 2 100 1458 101 0.00 101.0 0.00 101 0.00 101 0.9
p7.2.d 2 100 1458 190 0.00 190.0 0.00 190 0.00 190 4.4
p7.2.e 2 100 1458 290 0.00 290.0 0.00 290 0.00 290 18.7
p7.2.f 2 100 1458 387 0.00 387.0 0.00 387 0.00 387 42.0
p7.2.g 2 100 1458 459 0.00 459.0 0.00 459 0.00 459 75.0
p7.2.h 2 100 1458 521 0.00 521.0 0.00 521 0.00 521 92.8
p7.2.i 2 100 1458 578 0.35 579.6 0.07 580 0.00 580 131.4
p7.2.j 2 100 1458 646 0.00 646.0 0.00 646 0.00 646 137.7
p7.2.k 2 100 1458 704 0.14 704.3 0.10 705 0.00 705 151.4
p7.2.l 2 100 1458 767 0.00 767.0 0.00 767 0.00 767 155.1
p4.2.m 2 100 1458 821 0.73 825.2 0.22 827 0.00 827 175.9
p7.2.n 2 100 1458 888 0.00 888.0 0.00 888 0.00 888 181.4
p7.2.o 2 100 1458 945 0.00 945.0 0.00 945 0.00 945 203.1
p7.2.p 2 100 1458 1002 0.00 1002.0 0.00 1002 0.00 1002 208.7
p7.2.q 2 100 1458 1041 0.29 1043.2 0.08 1044 0.00 1044 233.8
p7.2.r 2 100 1458 1094 0.00 1094.0 0.00 1094 0.00 1094 247.2
p7.2.s 2 100 1458 1135 0.09 1135.3 0.06 1136 0.00 1136 266.9
p7.2.t 2 100 1458 1176 0.26 1177.4 0.14 1179 0.00 1179 283.5

p7.3.a 3 100 1458 0 0.00 0.0 0.00 0 0.00 0 0.0
p7.3.b 3 100 1458 46 0.00 46.0 0.00 46 0.00 46 0.0
p7.3.c 3 100 1458 79 0.00 79.0 0.00 79 0.00 79 0.2
p7.3.d 3 100 1458 117 0.00 117.0 0.00 117 0.00 117 0.8
p7.3.e 3 100 1458 175 0.00 175.0 0.00 175 0.00 175 1.8
p7.3.f 3 100 1458 247 0.00 247.0 0.00 247 0.00 247 5.6
p7.3.g 3 100 1458 344 0.00 344.0 0.00 344 0.00 344 14.7
p7.3.h 3 100 1458 424 0.24 424.8 0.05 425 0.00 425 38.6
p7.3.i 3 100 1458 487 0.00 487.0 0.00 487 0.00 487 59.9
p7.3.j 3 100 1458 564 0.00 564.0 0.00 564 0.00 564 86.7
p7.3.k 3 100 1458 633 0.00 633.0 0.00 633 0.00 633 121.7
p7.3.l 3 100 1458 681 0.44 683.7 0.04 684 0.00 684 132.9
p4.3.m 3 100 1458 762 0.00 762.0 0.00 762 0.00 762 160.8
p7.3.n 3 100 1458 820 0.00 820.0 0.00 820 0.00 820 185.0
p7.3.o 3 100 1458 860 1.63 871.2 0.32 874 0.00 874 202.1
p7.3.p 3 100 1458 920 0.98 926.2 0.30 929 0.00 929 231.2
p7.3.q 3 100 1458 987 0.00 987.0 0.00 987 0.00 987 235.1
p7.3.r 3 100 1458 1021 0.49 1022.8 0.31 1026 0.00 1026 260.9
p7.3.s 3 100 1458 1081 0.00 1081.0 0.00 1081 0.00 1081 261.9
p7.3.t 3 100 1458 1118 0.18 1118.3 0.15 1120 0.00 1120 275.7

p7.4.a 4 100 1458 0 0.00 0.0 0.00 0 0.00 0 0.0
p7.4.b 4 100 1458 30 0.00 30.0 0.00 30 0.00 30 0.0
p7.4.c 4 100 1458 46 0.00 46.0 0.00 46 0.00 46 0.0
p7.4.d 4 100 1458 79 0.00 79.0 0.00 79 0.00 79 0.3
p7.4.e 4 100 1458 123 0.00 123.0 0.00 123 0.00 123 1.1
p7.4.f 4 100 1458 164 0.00 164.0 0.00 164 0.00 164 1.4
p7.4.g 4 100 1458 217 0.00 217.0 0.00 217 0.00 217 3.7
p7.4.h 4 100 1458 285 0.00 285.0 0.00 285 0.00 285 6.9
p7.4.i 4 100 1458 366 0.00 366.0 0.00 366 0.00 366 16.4
p7.4.j 4 100 1458 462 0.00 462.0 0.00 462 0.00 462 32.9
p7.4.k 4 100 1458 518 0.39 519.8 0.04 520 0.00 520 51.5
p7.4.l 4 100 1458 590 0.00 590.0 0.00 590 0.00 590 73.0
p7.4.m 4 100 1458 646 0.00 646.0 0.00 646 0.00 646 109.8
p7.4.n 4 100 1458 730 0.00 730.0 0.00 730 0.00 730 141.2
p7.4.o 4 100 1458 781 0.00 781.0 0.00 781 0.00 781 165.3
p7.4.p 4 100 1458 846 0.00 846.0 0.00 846 0.00 846 183.9
p7.4.q 4 100 1458 909 0.00 909.0 0.00 909 0.00 909 216.6
p7.4.r 4 100 1458 970 0.00 970.0 0.00 970 0.00 970 228.2
p7.4.s 4 100 1458 1022 0.00 1022.0 0.00 1022 0.00 1022 241.3
p7.4.t 4 100 1458 1077 0.00 1077.0 0.00 1077 0.00 1077 277.6

Avg 0.1031 0.0313 0.0000 110.6


