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Abstract We show the existence of rational trace languages defined
over direct products of free monoids that have inherent ambiguity of the
order of logn and n1/2. This result is obtained by studying the rela-
tionship between trace languages and linear context-free grammars that
satisfy a special unambiguity condition on the position of the last step
of derivation.

Keywords: Automata and Formal Languages, Trace Monoids, Inherent Ambi-
guity of rational trace languages, Linear Context-free Languages.

1 Introduction

In this paper we study the inherent ambiguity of rational trace languages. Given
a trace monoid M , defined over an independence alphabet (Σ, I), the ambiguity
function of a regular (string) language L ⊆ Σ∗ is defined as the map associating
each n ∈ N with the maximum number of elements in L representing a trace
t ∈M of length smaller or equal to n. This function defines the ambiguity of L
as representative set of strings for the corresponding (rational) trace language
T = {t ∈ M | t ∩ L 6= ∅}. A notion of inherent ambiguity of a rational trace
language T ⊆ M can also be given by considering the smallest ambiguity func-
tion of a regular string language that represents T . Rational trace languages of
bounded inherent ambiguity have been studied in [4, 5] (see also [3]). A rational
trace language T is inherently k-ambiguous, where k is a positive integer, if T is
represented by a regular string language whose ambiguity function is bounded
by k, but it is not represented by any regular string language with ambiguity
function bounded by k-1. A rational trace language is unambiguous if it is in-
herently 1-ambiguous. It is known that if the independence relation is transitive
then all rational trace languages are unambiguous [5, 12]. On the contrary, if the
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independence relation is not transitive, then for any positive integer k there are
rational trace languages that are inherently k-ambiguous [4].

It is also known that there exist rational trace languages of unbounded in-
herent ambiguity, meaning that the ambiguity function of every representative
regular string language grows to infinity as the length of words increases [4]. In
the present work, we evaluate the order of growth of the (unbounded) inherent
ambiguity of some rational trace languages. We show that there exist two ra-
tional trace languages, defined over the direct product of free monoids, whose
inherent ambiguities are of the order of log n and n1/2, respectively. This result
is obtained by studying the relationship between such rational trace languages
and the class (denoted by G`) of linear context-free grammars that satisfy a spe-
cial unambiguity condition on the position of the last step of derivation. We say
that G` is the class of grammars with unambiguous turn position because they
are related to one-turn pushdown automata satisfying the following additional
property: All accepting computations on a given input turn the pushdown (i.e.
enter the popping phase) while the input tape head is reading the same cell. We
prove that for any language L generated by a grammar in G`, there exists a ra-
tional trace language T over a direct product A∗×B∗ of two free monoids, whose
inherent ambiguity is given by the inherent ambiguity of L (in the traditional
sense) restricted to the grammars in G`. This property allows us to apply the
results presented in [14] concerning the existence of sublinear inherent ambiguity
functions of linear context-free languages.

These results are also related to the analysis of the maximum coefficients of
rational formal series defined over various types of monoids [7, 6]. The general
goal of that line of research is to find out how the well-known asymptotic beha-
viour of the coefficients of rational series in noncommutative variables changes
when a partial or total commutation of variables is allowed. Our results in the
present work can be included in that general frame since the ambiguity function
of any regular grammar, generating a set of representatives of a given (rational)
trace language, is given by the maximum coefficients of a rational formal series
in partially commutative variables.

2 Basic notions

To fix notation we recall some basic notions concerning formal languages and
grammars. For a finite alphabet Σ we denote by Σ∗ the corresponding free
monoid and by ε the empty word. For any subset Γ ⊆ Σ and every x ∈ Σ∗,
πΓ (x) denotes the projection of x over Γ , i.e. the string obtained from x by
erasing all occurrences of letters not included in Γ . The length of x is denoted
by |x|, and |x|a := |π{a}(x)| is the number of occurrences of the symbol a ∈ Σ
in x. The reversal of x is denoted by xR (so, for instance, {x ∈ Σ∗ | x = xR} is
the set of palindromes over Σ). Finally, for every n ∈ N, we define Σ≤n = {x ∈
Σ∗ | |x| ≤ n}.

A context-free (c.f. for short) grammar is a 4-tuple G = (N,Σ,P, S), where
N and Σ are finite disjoint alphabets representing, respectively, the set of nonter-
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minals and the set of terminal symbols, S ∈ N is the initial symbol and P ⊆
N×(Σ∪ N)∗ a finite set of productions. Any production (A,α) can be also rep-
resented in the form A→ α. The productions (A, x), where A ∈ N and x ∈ Σ∗,
are called terminal productions. The one-step derivation =⇒G is defined as a
binary relation over (Σ∪N)∗ by setting βAγ =⇒G βαγ for every (A,α) ∈ P and
every β, γ ∈ (Σ ∪N)∗. The relation =⇒∗G is the reflexive and transitive closure
of =⇒G and the language L(G) generated by G is the set {x ∈ Σ∗ | S =⇒∗G x}.
A language L is context-free if it is generated by a c.f. grammar. The grammar
G = (N,Σ,P, S) is said to be linear if every nonterminal production in P is of
the form (A, xBy) where A,B ∈ N and x, y ∈ Σ∗. The language generated by
such a grammar is called linear c.f. language.

A derivation of a word β ∈ (Σ ∪ N)∗ from a symbol A ∈ N is a sequence of
elements α1, α2, . . . , αn ∈ (Σ ∪N)∗ such that A = α1, β = αn, αi =⇒G αi+1 for
i = 1, 2, . . . , n−1; the derivation is leftmost if each αi+1 is obtained by applying a
production to the leftmost nonterminal symbol in αi. Hence a leftmost derivation
from A to β can be represented by a sequence of productions τ ∈ P ∗, and we
denote it by A

τ
=⇒G β. Note that each derivation of a linear c.f. grammar is

leftmost.

3 Ambiguity functions of grammars and languages

A c.f. grammar G = (N,Σ,P, S) is called cycle-free if for every A ∈ N and every

τ ∈ P ∗, A τ
=⇒G A implies τ = ε. We also say that G is reduced if every A ∈ N

appears in a derivation of some word x ∈ L(G) from S. Also, G is said to be
proper if it is cycle-free and reduced. It is well-known that every c.f. grammar
can be transformed into a proper c.f. grammar generating the same language. If
G is a proper c.f. grammar then, for every word x ∈ L(G), there exists a finite

number of leftmost derivations S
τ

=⇒G x; we denote such a number by dG(x).

Moreover, for every n ∈ N, let d̂G(n) be the maximum value dG(x) for x ∈ Σ≤n.

Note that the function d̂G : N −→ N is monotone nondecreasing. We call d̂G the
ambiguity function of G. The grammar G is said to be unambiguous if d̂G(n) ≤ 1
for every n ∈ N. In the following we only deal with proper c.f. grammars G, and
hence the corresponding functions dG and d̂G are well-defined.

A c.f. language L is unambiguous if it is generated by an unambiguous c.f.
grammar. Otherwise L is said to be inherently ambiguous; in this case we say
that L is inherently k-ambiguous, for some integer k ≥ 2, if L can be generated
by some c.f. grammar whose ambiguity function is bounded by k, but no c.f.
grammar with ambiguity function bounded by k−1 can generate L. This notion
can be extended to nonconstant functions. However, before stating this definition
formally we observe that, for any inherently k-ambiguous c.f. language with
k ≥ 2, a shortest word with at least k leftmost derivations in a c.f. grammar
generating L can be arbitrarily long (its length depending on the grammar). For
c.f. languages L with an infinite inherent ambiguity it is often possible to specify
the length of a shortest word with a certain ambiguity up to a constant factor
depending on the c.f. grammar chosen to generate L. On the contrary, for any
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fixed length n there is a c.f. grammar G generating L such that all words of
length at most n are generated by G unambiguously. These remarks suggest the
use of the following notation (introduced in [18]) to define the inherent ambiguity
functions of c.f. languages.

Let f : N −→ R+ be a monotone nondecreasing function. Then we define

OT (f) = {g : N −→ R+ | g is monotone nondecreasing,

∃c, n0 ∈ N : ∀n ≥ n0 g(n) ≤ f(cn)},
ΩT (f) = {g : N −→ R+ | g is monotone nondecreasing, f ∈ OT (g)},
ΘT (f) = OT (f) ∩ΩT (f)

The remarks given below follow from the previous definitions and allow a compar-
isons with the standard set Θ(f) representing functions of the same asymptotic
order of growth as f(n).

1. For every pair of distinct k, j ∈ N\{0}, ΘT (k) 6= ΘT (j) while Θ(k) = Θ(j);

2. For every pair of distinct a, b > 0,ΘT (a log n) 6= ΘT (b log n) whileΘ(a log n) =
Θ(b log n);

3. For every a > 0, ΘT (na) = Θ(na);

4. For every distinct a, b > 1, ΘT (an) = ΘT (bn) while Θ(an) 6= Θ(bn).

Note that for sublinear functions f(n) the class ΘT (f) is a refinement of Θ(f).
The two classes coincide for polynomial f(n)’s, while Θ(f) is a refinement of
ΘT (f) for exponential functions f(n).

Definition 1 Let G be a family of c.f. grammars and let f : N −→ R+ be a
monotone nondecreasing function. We say that a c.f. language L is inherently
f -ambiguous with respect to G if:

1. L = L(G) for some c.f. grammar G ∈ G such that d̂G ∈ ΘT (f), and

2. for every c.f. grammar G′ ∈ G such that L = L(G′) we have d̂G′ ∈ ΩT (f),

i.e. there exists c ∈ N such that f(n) ≤ d̂G′(cn) for all positive n ∈ N large
enough.

We simply say that L is inherently f -ambiguous if it is inherently f -ambiguous
with respect to the class of context-free grammars.

The ambiguity function of c.f. grammars and languages has recently been
studied in [14, 15, 16]. In particular it is known that the ambiguity function
of any c.f. grammar either is polynomially bounded or it has an exponential
growth (Gap theorem). A similar gap does not exist between constant ambigu-
ity functions and polynomially bounded ambiguity functions. In [15] linear c.f.
grammars are shown which have ambiguity functions of the order ΘT (log n) or
ΘT (
√
n). Finally, in [16] it is shown that if f is the ambiguity function of some

c.f. grammar then there exists some c.f. language that is inherently f -ambiguous.
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4 Context-free languages with one unambiguous turn

In this work we are interested in the c.f. grammars corresponding to those one-
turn pushdown automata that satisfy the following additional condition: All
accepting computations over an arbitrary input x turn the pushdown after read-
ing the same prefix of x. In order to introduce them formally, consider a c.f.
grammar G = (N,Σ,P, S) such that P ⊆ N × (Σ∗NΣ∗ ∪ {ε}). Note that any
linear c.f. language can be generated by a grammar of this form. Given x ∈ L(G),
we say n ∈ N is a turn position of x according to G if S =⇒∗G uAv =⇒G x, for
some A ∈ N , u, v ∈ Σ∗, where x = uv and u is the prefix of x of length n.

Definition 1. We say that a linear c.f. grammar G = (N,Σ,P, S) has an un-
ambiguous turn position if P ⊆ N × (Σ∗NΣ∗ ∪ {ε}) and every x ∈ L(G) has a
unique turn position according to G. The languages generated by these grammars
are called linear c.f. languages with unambiguous turn position.

For instance it is easy to see that the language {aibjck | i = j ∨ i = k} can be
generated by a grammar of that type, while the same property does not hold for
{aibjck | i = j ∨ j = k}.

These grammars are related to one-turn pushdown automata. We recall that
a pushdown automaton is one-turn if in any computation there is at most one
turn from pushing to popping. Thus any computation here works in two phases:
In the first one the pushdown cannot decrease while in the second phase it
cannot grow. These machines are a special case of so-called reversal bounded
pushdown automata [1, 11], where only a finite number of turns from pushing to
popping or vice versa are allowed (they also correspond to nonterminal bounded
c.f. languages [10, Section 5.7]).

One can prove that a language L is a linear c.f. language with unambiguous
turn position if and only if L is accepted by a one-turn pushdown automaton
satisfying the following additional condition: every string x ∈ L admits a unique
prefix u such that every accepting computation on input x terminates its push-
ing phase after reading u. The inherent ambiguity of these languages has been
studied in [14] where two such languages are shown that are, respectively, in-
herently log n-ambiguous and inherently

√
n-ambiguous. To recall this result in

detail we need some preliminary definitions.
Given a special symbol # not included in the finite alphabet Σ, consider

the language E = {x ∈ (Σ ∪ {#})∗ | |x|# is even}. We define the function
spiral : E −→ E by induction, setting spiral(u) = u for all u ∈ Σ∗, and
spiral(u#v#x) = (u#spiral(x)#v) for every u, v ∈ Σ∗ and every x ∈ E. Fur-
ther, given a relation R ⊆ Σ∗ ×Σ∗ and a language F ⊆ Σ∗, define

L(R) = {u#vR | (u, v) ∈ R} , S(R) = {uR#v | (u, v) ∈ R} and

L(R,F) = (L(R)#)∗F(#S(R))∗

The relation R is said to be simple if L(R) is generated by an unambiguous c.f.
grammar (N,Σ ∪{#}, P, S) such that P ⊆ N × (Σ∗NΣ∗ ∪{#}). The following
proposition can be proved from the definitions by a suitable construction (for a
similar analysis see [14, Sec.3]).
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Proposition 1 If R ⊆ Σ∗ × Σ∗ is a simple relation and F ⊆ Σ∗ is a regular
language then spiral(L(R,F)) is a linear c.f. language with unambiguous turn
position.

In the present work we are especially interested in two linear c.f. languages
with unambiguous turn position, denoted by Lln and Lsqrt, respectively. These
languages are defined by

Lln = spiral(L(R1,F)) and Lsqrt = spiral(L(R2,F))

where R1 = {(ai, a2i) | i ∈ N, i ≥ 1}, R2 = {(ai, ai+1) | i ∈ N, i ≥ 1}, F = {a}∗.
The following properties are again proved in [14, Sect.3].

Proposition 2 The language Lln ⊆ {a,#}∗ is inherently log n-ambiguous and
can be generated by a linear c.f. grammar with unambiguous turn position G
such that d̂G(n) ∈ ΘT (log n). Analogously, Lsqrt ⊆ {a,#}∗ is inherently

√
n-

ambiguous and can be generated by a linear c.f. grammar with unambiguous
turn position G′ such that d̂G′(n) ∈ ΘT (

√
n).

5 Rational trace languages

In this section we recall the basic notions concerning trace monoids and the
corresponding languages (see for instance [8, 9] for more details).

Given a finite alphabet Σ and an irreflexive and symmetric relation I ⊆
Σ ×Σ, let ≡I be the reflexive and transitive closure of the relation ∼I defined
by

xaby ∼I xbay ∀x, y ∈ Σ∗, ∀(a, b) ∈ I.

The relation ≡I is a congruence over Σ∗, i.e. an equivalence relation preserving
concatenation between words. For every x ∈ Σ∗ the equivalence class [x] =
{y ∈ Σ∗ | y ≡I x} is called trace, the quotient monoid Σ∗/ ≡I is called trace
monoid and usually denoted by M(Σ, I). Clearly, for every t ∈ M(Σ, I), all
strings in t have the same length and we denote it by |t|. The pair (Σ, I) is
called independence alphabet and it is usually represented by an undirected
graph where Σ is the set of nodes and I the set of edges. If Σ is the union of
two nonempty disjoint sets A, B and I = (A × B) ∪ (B × A) then M(Σ, I) is
isomorphic to the direct product A∗×B∗; in this case, any trace [x] is represented
by the pair (πA(x), πB(x)) and we simply write M(Σ, I) = A∗ ×B∗.

For every trace monoid M(Σ, I) the subsets T ⊆ M(Σ, I) are called trace
languages and, for every L ⊆ Σ∗, we define [L] = {[x] ∈ M(Σ, I) | x ∈ L}
as the trace language represented by L. A trace language is called rational if
it is represented by a regular language. The class of rational trace languages
over M(Σ, I) is denoted by Rat(M(Σ, I)). This class has been widely studied
in the literature and it coincides with the smallest family of trace languages
including the finite sets in M(Σ, I) and closed under the operation of union,
product and Kleene closure (over the trace monoid). We recall that the trace
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languages recognizable by finite automata define a subclass of Rat(M(Σ, I)) (the
two classes coincide if and only if the relation I is empty).

Here we are interested in a natural notion of ambiguity for a trace language
which depends on the number of representative strings of its elements. Formally,
given a language L ⊆ Σ∗, let amL : M(Σ, I) −→ N be defined by:

amL(t) = |(t ∩ L)|,

for all t ∈M(Σ, I). In other words amL(t) is the number of representative strings
of t in L. For every n ∈ N we also define

âmL(n) = max{amL(t) | |t| ≤ n}.

Following [3], for every positive k ∈ N we denote by Ratk(M(Σ, I)) the family
of all trace languages T represented by some regular language L ⊆ Σ∗ such that
âmL(n) ≤ k for all n ∈ N. Clearly we have

Rat1(M(Σ, I)) ⊆ Rat2(M(Σ, I)) ⊆ . . . ⊆
∞⋃
k=1

Ratk(M(Σ, I)) ⊆ Rat(M(Σ, I))

It was proved in [4] that for some trace monoids all these inclusions are strict.
Some of these separation results can also be proved by studying the correspond-
ing generating functions [3]. The elements of Rat1(M(Σ, I)) are also called un-
ambiguous rational trace languages. This class coincides with the smallest family
of trace languages including the finite sets of M(Σ, I) and closed with respect
to unambiguous rational operations; it is also known that Rat1(M(Σ, I)) =
Rat(M(Σ, I)) if and only if I is transitive [5, 12].

Using the notation given in Section 3 we can define the inherent ambiguity of
rational trace languages. Let f : N −→ N be a monotone nondecreasing function
and let T ⊆M(Σ, I)) be a rational trace language. We say that T is inherently
f -ambiguous if:

1. T = [L] for some regular language L ⊆ Σ∗ such that âmL = ΘT (f), and
2. for every regular language L′ such that T = [L′] we have âmL′ = ΩT (f), i.e.

there exists c ∈ N such that f(n) ≤ âmL′(cn) for all positive n ∈ N large
enough.

We recall that in [4] an inherently k-ambiguous rational trace language Tk ⊆
{a}∗ × {b, c}∗ is exhibited for every positive k ∈ N.

6 Bipartite grammars

Given two finite disjoint alphabets Σ, Γ and a finite set N of nonterminal sym-
bols, let P`(N,Σ, Γ ) be the set of linear productions given by

P`(N,Σ, Γ ) = N × (ΣN ∪NΓ ∪N ∪ {ε}).
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We denote by G`(Σ,Γ ) the corresponding set of grammars,

G`(Σ,Γ ) = {(N,Σ ∪ Γ, P, S) | P ⊆ P`(N,Σ, Γ )}.

Note that every grammar in G`(Σ,Γ ) is linear context-free with unique turn
position and generates a language included in Σ∗Γ ∗.

We also define the set of regular productions Pr(N,Σ, Γ ), and the corres-
ponding family of grammar Gr(Σ,Γ ), by

Pr(N,Σ, Γ ) = N × ((Σ ∪ Γ )N ∪N ∪ {ε}) ,
Gr(Σ,Γ ) = {(N,Σ ∪ Γ, P, S) | P ⊆ Pr(N,Σ, Γ )}.

Clearly the class of languages generated by grammars in Gr(Σ,Γ ) is the family
of the regular languages over the alphabet Σ ∪ Γ .

Now we define a natural correspondence between Gr(Σ,Γ ) and G`(Σ,Γ ). For
every (A,α) ∈ Pr(N,Σ, Γ ), let µ(A,α) ∈ P`(N,Σ, Γ ) be given by

µ(A,α) =

{
(A,αR) if α ∈ ΓN
(A,α) otherwise.

(1)

Function µ extends to grammars by setting µ : Gr(Σ,Γ ) −→ G`(Σ,Γ ) so that,
for every G ∈ Gr(Σ,Γ ) where G = (N,Σ ∪ Γ, P, S)

µ(G) = (N,Σ ∪ Γ, µ(P ), S).

Such a function is a bijection and hence µ−1(G) is well-defined for every G ∈
G`(Σ,Γ ). Moreover, function µ defined in Equation (1) extends to a monoid
isomorphism µ : (Pr(N,Σ, Γ ))∗ −→ (P`(N,Σ, Γ ))∗. Thus, for every grammar

G = (N,Σ ∪ Γ, P, S) ∈ Gr(Σ,Γ ), if S
τ

=⇒G w for some τ ∈ P ∗ and some

w ∈ (Σ ∪ Γ )∗, then S
µ(τ)
=⇒µ(G) z for some z ∈ Σ∗Γ ∗.

The previous functions give rise to analogous correspondences among lan-
guages. Let ϕ : (Σ ∪ Γ )∗ −→ Σ∗Γ ∗ be the map such that

ϕ(w) = πΣ(w) · (πΓ (w))R

for every w ∈ (Σ ∪ Γ )∗. This function is useful to deal with the representative
strings of traces in the monoidM = Σ∗×Γ ∗. The following properties are easily
proved which refer to that monoid:

Remark 1. For every u, v ∈ (Σ ∪ Γ )∗, [u] = [v] if and only if ϕ(u) = ϕ(v);

Remark 2. The extension ϕ : M −→ M defined by ϕ([w]) = [ϕ(w)], is an
involution, i.e. ϕ(ϕ(t)) = t for every t ∈M.

The first property above implies the following

Proposition 3 Let G1, G2 be two grammars in Gr(Σ,Γ ). Then [L(G1)] = [L(G2)]
if and only if ϕ(L(G1)) = ϕ(L(G2)).
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We now present the main property of functions µ and ϕ, which allows us to
define a correspondence between derivations in regular and linear c.f. grammars.

Proposition 4 For every G ∈ Gr(Σ,Γ ), G = (N,Σ ∪ Γ, P, S), every τ ∈ P ∗
and every w ∈ (Σ ∪ Γ )∗, we have

(∃u ∈ [w] such that S
τ

=⇒G u) if and only if (S
µ(τ)
=⇒µ(G) ϕ(w))

Proof. Let w be an arbitrary word in (Σ ∪ Γ )∗. Reasoning by induction on the
length of derivation one can prove the following statements:

1. If S
τ

=⇒G uA holds for any A ∈ N , τ ∈ P ∗ and u ∈ (Σ ∪ Γ )∗, then

S
µ(τ)
=⇒µ(G) xAy, where x = πΣ(u) and y = (πΓ (u))R. Moreover if u ∈ [w]

then ϕ(u) = xy = ϕ(w);

2. If S
τ ′

=⇒µ(G) xAy for any A ∈ N , τ ′ ∈ µ(P )∗, x ∈ Σ∗ and y ∈ Γ ∗ such

that xy = ϕ(w), then µ−1(τ ′) defines a derivation S
µ−1(τ ′)

=⇒ G uA for some
sentence uA, where u ∈ (Σ ∪ Γ )∗ is obtained by a shuffle of x and yR. Note
that, for every shuffle u of x and yR, we have u ∈ [xyR] and ϕ(u) = xy.

Then the result follows by observing that in both grammars G and µ(G) any
derivation ends with an empty production. 2

The previous result has two useful consequences.

Corollary 5 For every G ∈ Gr(Σ,Γ ) and every w ∈ (Σ ∪ Γ )∗

|[w] ∩ L(G)| ≤
∑
v∈[w]

dG(v) = dµ(G)(ϕ(w)) (2)

Corollary 6 For every G ∈ Gr(Σ,Γ ) we have L(µ(G)) = ϕ(L(G)).

Therefore ϕ maps regular languages over the alphabet Σ ∪ Γ into linear c.f.
languages with one turn position. The correspondence is not bijective. Moreover,
in Corollary 5 the inequality of Equation (2) becomes an identity whenever the
grammar G is unambiguous. This proves the following

Proposition 7 For every unambiguous G ∈ Gr(Σ,Γ ) and every w ∈ (Σ ∪ Γ )∗

we have amL(G)([w]) = dµ(G)(ϕ(w)).

The previous properties allow to prove the relationship between the inherent
ambiguity of rational sets in Σ∗×Γ ∗ and the inherent (with respect to G`(Σ,Γ ))
ambiguity of linear c.f. languages with unambiguous turn position. The following
theorem states the correspondence in the simpler direction.

Theorem 8 Given a pair of disjoint alphabets Σ,Γ and a monotone nondecreas-
ing function f : N −→ R+, let T be an inherently f -ambiguous rational trace
language over the monoid Σ∗ × Γ ∗. Then there exists a linear c.f. language
L ⊆ Σ∗Γ ∗ that is inherently f -ambiguous with respect to the set G`(Σ,Γ ).
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Proof. Let R ⊆ (Σ ∪ Γ )∗ be a regular language such that [R] = T and assume
âmR ∈ ΘT (f). Consider an unambiguous grammar G ∈ Gr(Σ,Γ ) generating R.
By Corollary 6, µ(G) generates the language L = ϕ(R) and, by Proposition 7,

âmR = d̂µ(G). This means that L is generated by a grammar in G`(Σ,Γ ) whose
ambiguity function is in ΘT (f).

On the other hand, let G′ ∈ G`(Σ,Γ ) be a grammar generating L = ϕ(R)
and consider the grammar F ∈ Gr(Σ,Γ ) given by F = µ−1(G′). By Proposition
4 we get [L(F )] = T , which implies âmL(F ) ∈ ΩT (f). As a consequence also

d̂G′ ∈ ΩT (f) because, by Corollary 5, âmL(F )(n) ≤ d̂G′(n) for every n ∈ N. 2

6.1 Example

As a further application of the previous properties we describe a trace language
of inherent ambiguity 2 that is slightly simpler than an analogous example given
in [4].

Let M be the trace monoid given by M = {a}∗ × {b, c}∗. Let L be the
language defined by the regular expression c∗(ab)∗∪ (ac)∗b∗ and set T = [L]. We
want to show that T is inherently 2-ambiguous. To this end first observe that
amL(t) ≤ 2 for all t ∈ T . Now, consider a regular language R ⊆ {a, b, c}∗ such
that [R] = T and let G ∈ Gr({a}, {b, c}) be an unambiguous grammar generating
R. We have to prove that amR([x]) ≥ 2 for some x ∈ R.

By Corollary 6 we know that µ(G) generates the language ϕ(R), the map
ϕ : {a, b, c}∗ −→ a∗{b, c}∗ being defined by

ϕ(w) = πa(w) · (π{b,c}(w))R , ∀w ∈ {a, b, c}∗

Since R represents T and

T = {[w] | π{b,c}(w) ∈ c∗b∗ ∧ (|w|a = |w|b ∨ |w|a = |w|c)},

for every w ∈ R we have ϕ(w) = πa(w) · πb(w) · πc(w), and hence

ϕ(R) = {aibjck | i = j ∨ i = k}

It is known that this is is a linear inherently 2-ambiguous c.f. language [10];
therefore there exists u ∈ ϕ(R) such that dµ(G)(u) ≥ 2. Thus, choosing x in R
so that ϕ(x) = u, by Proposition 7 we get amR([x]) = dµ(G)(u) ≥ 2.

7 Main result

Here we present our main contribution stating a sort of reverse version of The-
orem 8.

Theorem 9 Let Σ be a finite alphabet and let f : N −→ R+ be a monotone
nondecreasing function. Assume L ⊆ Σ∗ is an inherently f -ambiguous c.f. lan-
guage generated by a linear c.f. grammar G with unambiguous turn position such
that d̂G ∈ ΘT (f). Then there exists a rational trace language T ⊆ Σ∗ ×Σ∗ that
is inherently f -ambiguous, where Σ is an isomorphic copy of Σ.
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Proof. Without loss of generality we may assume that G is a 4-tuple G =
(N,Σ,P, S) where P ⊆ N × (ΣN ∪NΣ ∪{ε}). We also define Σ = {a | a ∈ Σ}.
For every u ∈ Σ∗, let u ∈ Σ

∗
be the word obtained from u by replacing

every occurrence of a by a, for each a ∈ Σ. We define the grammar G by
G = (N,Σ ∪Σ,P , S) where

P = (P ∩N × (ΣN ∪ {ε})) ∪ {A→ Ba | A→ Ba ∈ P}.

Note that G ∈ G`(Σ,Σ). Since G has an unambiguous turn position, for every
x ∈ L there exists a unique pair of words u, v ∈ Σ∗ such that x = uv and uv is
generated by G; moreover

dG(x) = dG(uv)

and L(G) = {uv ∈ Σ∗Σ∗ | uv ∈ L}. As a consequence d̂G = d̂G proving that also
the ambiguity function of G is in ΘT (f). Actually, the correspondence between
G and G extends to a bijective map between the set of all linear c.f. grammars
with unambiguous turn position generating L, and the family of all grammars in
G`(Σ,Σ) that generate L(G). Since such a map keeps the number of derivations
of all words we deduce that L(G) is inherently f -ambiguous with respect to
G`(Σ,Σ).

Now consider the grammar F = µ−1(G). Since F ∈ Gr(Σ,Σ), the language

T = [L(F )] is a rational trace language over the monoid M = Σ∗ × Σ∗. By
Corollary 5, for every w ∈ (Σ ∪Σ)∗ we have

amL(F )([w]) = |[w] ∩ L(F )| ≤ dG(ϕ(w))

and hence, since |w| = |ϕ(w)|, for every integer n ≥ 1 we get

âmL(F )(n) ≤ f(n),

proving that the inherent ambiguity of T is of the order OT (f).
In order to prove that T is at least f -ambiguous, consider an unambiguous

grammar Gr ∈ Gr(Σ,Σ) such that [L(Gr)] = T . By Proposition 7, for every
w ∈ (Σ ∪Σ)∗ we have amL(Gr)([w]) = dµ(Gr)(ϕ(w)) and hence for every n ∈ N

âmL(Gr)(n) = d̂µ(Gr)(n).

Moreover, by Proposition 3 we have ϕ(L(Gr)) = ϕ(L(F )) implying that µ(Gr)
and G generate the same language. Since L(G) is inherently f -ambiguous with

respect to G`(Σ,Σ), we get d̂µ(Gr) ∈ ΩT (f) and hence also âmL(Gr) ∈ ΩT (f),
which concludes the proof. 2

By applying Theorem 9 and Proposition 2 we obtain the following

Corollary 10 There exist two rational languages T1 and T2 over the trace mon-
oid {a,#}∗ × {a,#}∗ that are, respectively, inherently log n-ambiguous and in-
herently

√
n-ambiguous.
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We conclude by recalling that the class of ambiguity functions of c.f. gram-
mars (and c.f. languages) is wider than the family of functions considered in this
work. It also includes sublogarithmic functions, and even divergent functions
growing as slowly as any computable total (nondecreasing divergent) function
[17]. However, the corresponding grammars obtained so far are not linear and
hence our approach cannot be applied to determine trace languages of analog-
ous inherent ambiguity. Thus, a natural open problem arises whether there exist
rational trace languages of sublogarithmic inherent ambiguity.
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