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Abstract

Let r , s be coprime integers, s > 1 and odd. The characteristic polynomials of the matrices[
sin
( rmnπ

s

)]
0<m,n<s

and
[
sin
( rmnπ

s

)]
0<m,n<s
(mn,s)=1

are determined.
© 2004 Published by Elsevier Inc.

AMS classification: 15A18; 11A99
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1. Notations

The symbol δsomething assumes the value 1 when something holds, 0 otherwise.
For m, n, s ∈ N, (m, n) is the greatest common divisor of m, n; m|n means that
m divides n; m ≡ n(s) and m = n mod (s) mean that s|(m− n); n is said square-
free when p2�n for every prime p;

(
m
n

)
is the Jacobi symbol, i.e., the completely

multiplicative extension of the quadratic character for odd m, n; µ is the Möbius
function, i.e., the multiplicative function such that µ(p) = −1 and µ(ph) = 0 when
h > 1, for every prime p; φ is the Euler function, i.e., the multiplicative function
such that φ(ph) = ph−1(p − 1) for every power of prime ph; ψ := µ ∗ φ is the
Dirichlet convolution of µ and φ, i.e., ψ(n) =∑d|n µ(n/d)φ(d). By the definition
of µ, µ(s) /= 0, |µ(s)| = 1 and s squarefree are three equivalent events. Moreover,∑

d|s µ(d) = δs=1 and
∑

d|s ψ(d) = φ(s) for every s. At last, we denote by �x	,
Re x and Im x the integer, the real and the imaginary part of x, respectively.
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2. Introduction and motivations

Schur introduced the matrix

� :=
[

exp

(
2�imn

s

)]
0�m,n<s

,

where s is a positive integer. Since �4 = s2I, the eigenvalues are the numbers iν
√
s

for 0 � ν � 3. Schur has determined the multiplicity of every eigenvalue and used
such result to evaluate the Gaussian sum

∑s
n=1 e2�in2/s which is the trace of � (see

[12]). Moreover, such matrix represents the discrete Fourier transform on s points,
therefore it is extensively studied in Approximation Theory and Numerical Analysis.
In particular, there exists a broad literature about its eigenvalues and eigenvectors
(see [2,4,7,9,10]).

In this paper we study the four matrices

Mr,s := √
2
[
sin
( rmn�

s

)]
0<m,n<s

, M2r,s :=
[

sin

(
2rmn�

s

)]
0<m,n<s

,

M ′
r,s := √

2
[
sin
( rmn�

s

)]
0<m,n<s
(mn,s)=1

, M ′
2r,s :=

[
sin

(
2rmn�

s

)]
0<m,n<s
(mn,s)=1

,

where r, s are odd integers with (r, s) = 1 and s > 1. In particular we found their
eigenvalues, multiplicity included. Since these matrices are symmetric, also their
characteristic polynomials are determined. The normalizating factor

√
2 in the defini-

tion of Mr,s and M ′
r,s is introduced by convenience. Moreover, note that M2(r+s),s =

M2r,s and M ′
2(r+s),s = M ′

2r,s , hence the fact that r is odd is not a true restriction but
only a convenient assumption simplifying the proof of the results.

Matrices M·,s and M ′·,s are evidently related to �, but only Mr,s , satisfying the
identity M2

r,s = sI, has a behavior like that one of �. The following examples show
that the structure of the characteristic polynomial of the other matrices is strongly
influenced by the arithmetical properties of the parameters r and s: in all cases the
eigenvalues are 0 and ±√

d where d is a divisor of s but for non-squarefree s not
every divisor appears and the rule selecting the eigenvalues and their multiplicity is
not evident.

det(xI −M2,7) = x3(x2 − 7)(x − √
7)

det(xI −M6,7) = x3(x2 − 7)(x + √
7)

det(xI −M2,15) = x7(x2 − 15)3(x − √
15)

det(xI −M14,15) = x7(x2 − 15)3(x + √
15),

det(xI −M ′
2,7) = x3(x2 − 7)(x − √

7)
det(xI −M ′

6,7) = x3(x2 − 7)(x + √
7)

det(xI −M ′
2,15) = x4(x − √

3)(x2 − 5)(x − √
15)

det(xI −M ′
14,15) = x4(x − √

3)(x2 − 5)(x + √
15),
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s det(xI −M ′
1,s)

3·5 (x2 − 3)(x2 − 5)2(x2 − 3 · 5)
5·11 (x2 − 5)2(x2 − 11)5(x2 − 5 · 11)13

52 x4(x2 − 52)8

53 x20(x2 − 53)40

72 x6(x2 − 72)18

73 x42(x2 − 73)126

112 x20(x2 − 112)50

113 x110(x2 − 113)550

32 · 5 x8(x2 − 32)2(x2 − 32 · 5)6

33 · 5 x24(x2 − 33)6(x2 − 33 · 5)18

3 · 52 x8(x2 − 52)8(x2 − 3 · 52)8

32 · 52 x56(x2 − 32 · 52)32

33 · 52 x168(x2 − 33 · 52)96

32 · 7 x12(x2 − 32)2(x2 − 32 · 7)10

33 · 7 x36(x2 − 33)6(x2 − 33 · 7)30

3 · 72 x12(x2 − 72)18(x2 − 3 · 72)18

32 · 72 x108(x2 − 32 · 72)72

32 · 5 · 7 x48(x2 − 32)2(x2 − 32 · 5)6(x2 − 32 · 7)10(x2 − 32 · 5 · 7)30

In Section 3 we will provide some non-trivial preparatory results belonging to
the Number Theory, in Section 4 we will prove Theorem 7 giving the characteristic
polynomials of the matricesM·,s , in Section 5 we will prove Theorems 8 and 9 giving
the characteristic polynomials of the matrices M ′·,s . Some interesting corollaries are
there proved, too.

Our approach to this problem is the following. A direct search of the eigenvectors
ofM·,s (M ′·,s) appears difficult, but the matrixM2·,s (M

′2·,s) have integer entries and the
search of its eigenvalues seems to be an easier problem. Actually, we find a base of
eigenvectors of M2·,s (M ′2·,s). It is interesting to remark here that such eigenvectors are
given in terms of the values of suitable characters modulo s, in a similar (but much
more involuted) way to that one employed by Morton [10] to describe a base of
eigenvectors of �. Every eigenvalue d of M2·,s (M ′2·,s) produces a pair of eigenvalues

±√
d for M·,s (M ′·,s) whose multiplicities md,± can be determined by the fact that∑

d eigenvalue(md,+ −md,−)
√
d = TrM·,s (TrM ′·,s). In fact, the trace of M·,s (M ′·,s)

can be directly calculated and the numbers
√
d appearing in this formula are Q-linear

independent so that we can find md,+ −md,− for every d . Then, since md,+ +md,−
is the known multiplicity of d as eigenvalue of M2·,s (M ′2·,s), the values of each md,±
is found.

At last, a word about the origin of our interest for these matrices. Let m, s be
integers, s > 1, s odd and 0 < m < s. For every a ∈ N, let
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Ha
m,s :=

∞∑
n=1

rm,s(n)

n2a+1
, where rm,s(n) :=


1 if n = m mod (2s),
−1 if n = −m mod (2s),
0 otherwise.

(The series converges conditionally also when a = 0.) We are looking for a formula
giving the value of Ha

m,s .
The referee pointed to our attention the fact that m2a+1Ha

m,s = σ2a(m/2s) where

σk(z) :=
∞∑

ν=−∞

(
z

ν + z

)k+1

has been defined and extensively studied by Ehlich [5] (see also [6]). In particular,
the connection of σk(z) with the Bernoulli polynomials is known. Our approach is
different. Let

Fa(x) :=
∞∑
n=1

(−1)n

(n�)2a+1
sin(n�x),

uniformly convergent on every compact subset of (−1, 1), for every a ∈ N. A com-
parison with the known Fourier expansion of the Bernoulli polynomials Bk(x) (see
[13, Chapter 1.0]) shows that for x ∈ (−1, 1)

Fa(x) = (−4)a

(2a + 1)!B2a+1

(
1 − x

2

)
. (1)

Since the Bernoulli polynomials can be easily recovered by the identity

∞∑
k=0

Bk(x)

k! yk = yexy

ey − 1
,

the values of Fa can be easily calculated. The relevance of Fa in this context comes
from the fact that from the definition of Ha

m,s we have

s−1∑
m=1

(−1)mHa
m,s sin

(mn�
s

)
= �2a+1Fa

(n
s

)
for every n ∈ Z, (2)

so that by taking 0 < n < s, we recover a set of s − 1 linear equations for the s − 1
numbers Ha

m,s , with 0 < m < s.
A second identity can be deduced noting that Ha

dm,ds = d−2a−1Ha
m,s for every

integer d , so that from (2) we have

∑
d|s

s/d∑
m=1(

m, s
d

)
=1

(−1)m

d2a+1
Ha
m, s

d
sin

(
mn�

s/d

)
= �2a+1Fa

(n
s

)
∀n ∈ Z,
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that by the Möbius inversion formula (see [13, Chapter I.2, Theorem 8]) gives
s∑

m=1
(m,s)=1

(−1)mHa
m,s sin

(mn�
s

)

= �2a+1
∑
d|s

µ
( s
d

)(d
s

)2a+1

Fa

(n
d

)
∀n ∈ Z. (3)

Considering this identity for 0 < n < s, n coprime with s, we get a set of φ(s) linear
equations where only the φ(s) numbers Ha

m,s with (m, s) = 1 appear.
At last, we can generalize the previous equations by substituting n by rn in (2)

and (3), where r is a fixed integer coprime with s and n runs in 0 < n < s (n coprime
with s for (3).)

Identities (2) or (3) allow us to recover Ha
m,s as linear combination of values of

Fa but only if the matrices Mr,s and M ′
r,s , respectively, are invertible. For computa-

tional purposes we are also interested to find an efficient algorithm for the inverse
matrix so that not only the invertibility of those matrices but also the structure of
their characteristic polynomials has to be studied.

Actually, using the identityM2
1,s = sI, from (2) we get the formula we are looking

for

Ha
m,s = (−1)m

2�2a+1

s

s−1∑
n=1

Fa

(n
s

)
sin
(mn�

s

)
for 0 < m < s. (4)

Now that the constants Ha
m,s have been calculated, we can use them to provide a

new proof of the known formula for the values of the Dirichlet L-functions (for
the definition see [3]). In fact, let χ be a Dirichlet odd character modulo 2s and let
L(·, χ) be the corresponding Dirichlet L-function, then

L(2a + 1, χ) :=
∞∑
n=1

χ(n)

n2a+1
=

s∑
m=1

χ(m)Ha
m,s (5)

so that substituting (4) in (5) we get (note that χ(m) = 0 if m is even)

L(2a + 1, χ) = −2�2a+1

s

s−1∑
n=1

Fa

(n
s

) s∑
m=1

χ(m) sin
(mn�

s

)
.

Let χ∗ be the character mod s inducing χ and suppose χ∗ to be primitive, then
a long and a slightly tricky computation proves the identity

2iχ̄∗(2)
s∑

m=1

χ(m) sin
(mn�

s

)
= (−1)nχ̄∗(n)τ (χ∗),

where τ(χ∗) is the Gaussian sum, so that from the previous formula we deduce

L(2a + 1, χ) = χ∗(2)�
2a+1iτ(χ∗)

s

s−1∑
n=1

(−1)nχ̄∗(n)Fa
(n
s

)
.
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Substituting (1) in this equation we obtain a formula giving L(2a + 1, χ) in terms of
the generalized Bernoulli numbers. Such formula is not new (see for example Theo-
rem 4.2 of [14]), but we think that our non-standard deduction is of some interest.

We conclude this section noting that by the orthogonality of the Dirichlet char-
acters modulo 2s we can represent Ha

m,s as a finite sum of the values of Dirichlet
L-functions, i.e.,

Ha
m,s = 2

φ(s)

∑
χ mod 2s
χ odd

χ̄(m)L(2a + 1, χ),

therefore to determinateHa
m,s and to determinate the values ofL(·, χ) at odd integers

are equivalent problems.

3. Tools from Number Theory

Proposition 1. Let s > 1 be odd and D|s. Let

κ(D, s) :=
∑
d: d|s

D|d

µ
( s
d

) φ(s)
φ(d)

d.

Then

κ(D, s) = D

∣∣∣µ ( s
D

)∣∣∣ δ(D,s/D)=1.

Proof. We remark that κ(1, s) is the Dirichlet convolution of multiplicative func-
tions of s, therefore it is multiplicative, too. As a consequence, in order to get the
claim when D = 1 it is sufficient to verify that κ(1, ph) = |µ(ph)| for every power
of prime ph. In fact,

κ(1, ph) =
∑
d|ph

µ

(
ph

d

)
φ(ph)

φ(d)
d

= φ(ph)

φ(ph)
ph − φ(ph)

φ(ph−1)
ph−1 =

{
1 if h = 1
0 if h > 1

which is the claim.
For D /= 1, κ(D, s) is not multiplicative and a different approach is necessary.

We note that D|s so that it is possible to find α, α′, β and γ such that

D = αβ, s = α′βγ,
with

(α, β) = (α, γ ) = (β, γ ) = 1, α|α′ and p|α ⇐⇒ p|α′.
As a consequence, every d dividing s and divided by D can be written as

d = AβS, where α|A, A|α′ and S|γ.
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By this decomposition we have

κ(D, s) =
∑
A:A|α′

α|A

∑
S|γ

µ

(
α′βγ
AβS

)
φ(α′βγ )
φ(AβS)

AβS

=
∑
A:A|α′

α|A

∑
S|γ

µ

(
α′

A

)
µ
(γ
S

) φ(α′)
φ(A)

φ(γ )

φ(S)
AβS

= β
∑
A:A|α′

α|A

µ

(
α′

A

)
φ(α′)
φ(A)

A
∑
S|γ

µ
(γ
S

) φ(γ )
φ(S)

S

= βκ(1, γ )
∑
A:A|α′

α|A

µ

(
α′

A

)
φ(α′)
φ(A)

A

= β|µ(γ )|
∑
A:A|α′

α|A

µ

(
α′

A

)
φ(α′)
φ(A)

A.

We note that φ(α′)
φ(A)

A = α′, since the hypotheses imply that p|A ⇐⇒ p|α ⇐⇒
p|α′, hence we get

κ(D, s) = α′β|µ(γ )|
∑
A:A|α′

α|A

µ

(
α′

A

)

= α′β|µ(γ )|
∑
A|α′/α

µ(A) = α′β|µ(γ )|δα′=α.

The proof concludes noting that α = α′ if and only if (D, s/D) = 1. �

Proposition 2. Let k, n be coprime odd integers. Then

G(k, n) :=
n∑
l=1

e2�i kl
2
n =

(
k

n

)√
n∗. (6)

In this formula
(
k
n

)
is the Jacobi symbol, n∗ = n if n = 1 mod (4) and n∗ = −n if

n = −1 mod (4) and
√−n = i

√
n where i is the same square root of −1 occurring

in the definition of G(k, n).
This important result is due to Gauss and its original proof is reproduced in

Rademacher [11]. A different proof due to Dirichlet is reproduced in Davenport
[3], other proofs can be found in [1]. Actually, the papers we consulted show in a
detailed way the proof of (6) only in the case of G(1, n), the validity of the gen-
eral case G(k, n) being claimed without any particular comment. We think that this
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passage deserves more attention, therefore we show here how (6) follows from the
particular cases which are well documented in literature, i.e., those ones of G(1, n)
and G(k, p), where n is an odd integer, p is an odd prime and k is an odd integer
coprime with p.

Proof. The proof is by induction on the number of different primes dividing n.
Suppose n = pu. When u = 1,G(k, p) is the simplest Gaussian sum and the claim is
well known (see [8, Proposition 8.2.1]). Suppose u > 1. It is evident that
G(kr2, pu) = G(k, pu) for every r which is coprime with p, therefore there exists
S, independent of k, such that

G(k, pu) =
{
G(1, pu) if k is a square mod (pu),
S if k is not a square mod (pu).

The value of S can be determined by summing G(k, pu) over k: we have

φ(pu)

2
(G(1, pu)+ S) =

pu∑
k=1
p�k

G(k, pu) =
pu∑
k=1

pu∑
l=1

e2�i kl
2

pu −
pu−1∑
k=1

pu∑
l=1

e
2�i kl2

pu−1 ,

changing the order of summation we get

φ(pu)

2
(G(1, pu)+ S) = pu

pu∑
l=1

δpu|l2 − pu−1
pu∑
l=1

δpu−1|l2

= pup
u−
⌊
u+1

2

⌋
− pu−1pu−� u

2 	 = pu−1p
u
2 (p − 1)δ2|u.

Since G(1, pu) = √
(pu)∗ (see [3]), we get

S = 2p
u
2 δ2|u −√(pu)∗. (7)

Let k be a non-square residue mod (pu). If u is even then (pu)∗ = pu and
(
k
pu

) = 1

so that by (7) S = p
u
2 = ( k

pu

)√
(pu)∗. If u is odd we have

(
k
pu

) = (k
p

) = −1, so that

by (7) again S = −√
(pu)∗ = ( k

pu

)√
(pu)∗, completing the proof of (6) when n is a

power of a prime.
To complete the induction it is sufficient to remark that for every coprime m, n

the isomorphism Z/mnZ ≈ Z/mZ × Z/nZ gives

G(k,mn) =
mn∑
l=1

e2�i kl
2

mn =
m∑
u=1

n∑
v=1

e2�i k(un+vm)
2

mn

=
m∑
u=1

n∑
v=1

e
2�i
(
knu2
m

+ kmv2
n

)
= G(km, n)G(kn,m), (8)
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and that√
m∗√n∗

√
(mn)∗

= (−1)
(m−1)(n−1)

4 =
(
m

n

)(
n

m

)
(9)

by the quadratic reciprocity law (see [8, Chapter 5]). Using (8), (9) and the inductive
hypothesis, in fact, we conclude that for (k, npu) = (n, pu) = 1,

G(k, npu) =G(kpu, n)G(kn, pu) =
(
kpu

n

)(
kn

pu

)√
n∗√(pu)∗

=
(

k

npu

)(
pu

n

)(
n

pu

)√
n∗√(pu)∗ =

(
k

npu

)√
(npu)∗. �

Proposition 3. Let k, n be coprime odd integers. Let

R(k, n) :=
n∑
l=1

(l,n)=1

e2�i kl
2
n .

Then

R(k, n) =

∏
p|n

((
kn/p
p

)√
p∗ − 1

)
= ∑

d|n
µ
(
n
d

) (
kn/d
d

)√
d∗ if n is squarefree,

0 otherwise,

where p runs on primes dividing n.

Proof. Firstly, let p be and odd prime, then by Proposition 2 we get

R(k, pu) =

(
k

p

)√
p∗ − 1 if u = 1,

0 otherwise.

In fact this is immediate for u = 1 and for u � 2 we have

R(k, pu) =
pu∑
l=1

e2�i kl
2

pu −
pu−1∑
l=1

e2�i kp
2 l2

pu =
pu∑
l=1

e2�i kl
2

pu − p

pu−2∑
l=1

e
2�i kl2

pu−2

=G(k, pu)− pG(k, pu−2) =
(
k

pu

)√
(pu)∗ −p

(
k

pu−2

)√
(pu−2)∗

= 0.

To complete the proof it is sufficient to remark that for every coprime m, n the iso-
morphism (Z/mnZ)∗ ≈ (Z/mZ)∗ × (Z/nZ)∗ gives

R(k,mn) =
mn∑
l=1

(l,mn)=1

e2�i kl
2

mn =
m∑
u=1

(u,m)=1

n∑
v=1

(v,n)=1

e2�i k(un+vm)
2

mn

=
m∑
u=1

(u,m)=1

n∑
v=1

(v,n)=1

e
2�i
(
knu2
m

+ kmv2
n

)
= R(km, n)R(kn,m),
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so that the claim follows by induction over the number of different primes dividing
n as for Proposition 2. �

The following proposition gives the value of the trace of M ′·,s .

Proposition 4. Let r, s be coprime odd integers, s > 1. Then TrM ′
r,s = 0 and

TrM ′
2r,s = |µ(s)|

∑
d|s

d≡3 (4)

µ
( s
d

)(ls/d
d

)√
d.

Proof. The claim about TrM ′
r,s is quite immediate. In fact,

TrM ′
r,s = √

2
s∑
l=1

(l,s)=1

sin

(
rl2�

s

)
,

but

sin

(
r(s − l)2�

s

)
= sin

(
rs� − 2rl� + rl2�

s

)
= − sin

(
rl2�

s

)
,

so that adding this identity for l = 1, . . . , s, with (l, s) = 1 we get TrM ′
r,s =

−TrM ′
r,s . The claim about TrM ′

2r,s follows by Proposition 3, since TrM ′
2r,s =

ImR(r, s). �

For every integer D let VD be the C-vector space which is generated by the prim-
itive characters modulo D. Moreover, let ED ⊆ VD and OD ⊆ VD be the subspaces
which are generated by even and odd characters, respectively. The following propo-
sition gives the dimensions of OD and ED .

Proposition 5. Let D > 1 be odd. Then

dimOD = 1
2 (ψ(D)− µ(D)), dimED = 1

2 (ψ(D)+ µ(D)).

Proof. For every d|D there are φ(d) characters modulo D which are induced by
some character modulo d , therefore by the inclusion-exclusion principle the number
of primitive characters modulo D is

∑
d|D µ(d)φ(D

d
) = ψ(D). We prove the claim

by induction over the number of different primes dividing D. Suppose D = ph for
some odd prime p. Let g be a generator of the cyclic group (Z/DZ)∗. Every char-
acter modulo D is known when its value at g is known, therefore {χl}φ(D)−1

l=0 where
χl(g) = e2�il/φ(D) is a complete set of the characters. Moreover, χl is primitive if
and only if p�l and it is an even character if and only if l is even, so that there are
(ψ(D)− µ(D))/2 characters in OD . The C-linear independence of distinct charac-
ters is known, hence the proof of the claim when D = ph is complete. Suppose now
D = mn for some odd and coprime integers m, n. Let χ and η be characters of Vm
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and Vn, respectively. Then χη is a primitive character modulo mn, i.e., an element of
VD . It is easy to verify the linear independence of the characters which are generated
in this way. In fact, suppose

∑
χ,η aχ,η(χη)(r) = 0 for every r , where χ runs on Vm

and η on Vn. Take a generic r = um+ vn so that∑
η

(∑
χ

aχ,ηχ(vn)

)
η(um) = 0 ∀u, v.

By hypothesis (m, n) = 1 and the characters modulo n are C-linear independent,
therefore the previous identity implies∑

χ

aχ,ηχ(vn) = 0 ∀v, η.

Using again the C-linear independence of the characters modulo m we get

aχ,η = 0 ∀χ, η.
Evidently χ ∈ Om, η ∈ On or χ ∈ Em, η ∈ En imply χη ∈ ED while χ ∈ Em, η ∈
On or χ ∈ Om, η ∈ En imply χη ∈ OD , therefore, from the previous argument and
the inductive hypothesis we have

dimOD � dimEm dimOn + dimEn dimOm

= 1
4

(
(ψ(m)+ µ(m))(ψ(n)− µ(n))

+ (ψ(n)+ µ(n))(ψ(m)− µ(m))
)

= 1
2 (ψ(D)− µ(D)).

Similarly

dimED � dimEm dimEn + dimOm dimOn

= 1
4

(
(ψ(m)+ µ(m))(ψ(n)+ µ(n))

+ (ψ(m)− µ(m))(ψ(n)− µ(n))
)

= 1
2 (ψ(D)+ µ(D)).

Therefore

ψ(D) = dimVD = dimOD + dimED

� 1
2 (ψ(D)− µ(D))+ 1

2 (ψ(D)+ µ(D)) = ψ(D),

so that the equalities dimOD = 1
2 (ψ(D)− µ(D)), dimED = 1

2 (ψ(D)+ µ(D)) fol-
low. �

Remark 6. The previous proposition proves that for every pair of coprime odd inte-
gers m, n we have the isomorphisms

Omn � (Em ⊗On)⊕ (Om ⊗ En), Emn � (Em ⊗ En)⊕ (Om ⊗On).
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4. Eigenvalues of M·,s

Theorem 7. The characteristic polynomials of the matrices M·,s are

det(xI −Mr,s) =
(
x2 − s

) s−1
2
,

and
det(xI −M2r,s) = x

s−1
2 (x − √

s)m+(x + √
s)m− ,

where{
m+ +m− = s−1

2 ,

m+ −m− = (r
s

)
δs≡3 (4).

Proof. The first claim. We already remarked that M2
r,s = sI, therefore x2 − s is the

minimal polynomial of Mr,s and its characteristic polynomial must be
det(xI −Mr,s) = (x − √

s)m+(x + √
s)m− (10)

for some m+, m− � 1 with m+ +m− = s − 1. Let us consider the trace of Mr,s .
From (10) we get

(m+ −m−)
√
s = Tr(Mr,s) = √

2
s−1∑
n=1

sin

(
rn2�

s

)

= √
2
(s−1)/2∑
n=1

(
sin

(
rn2�

s

)
+ sin

(
r(s − n)2�

s

))

= √
2
(s−1)/2∑
n=1

(
sin

(
rn2�

s

)
− sin

(
rn2�

s

))
= 0,

hence m+ = m− and the claim follows.
The second claim. An explicit computation shows that (M2

2r,s)n,m = s
2 (δn=m −

δn=s−m) so that by induction on s it is possible to prove that the characteristic poly-
nomial of M2r,s is

det
(
xI −M2

2r,s

) = x(s−1)/2(x − s)(s−1)/2.

As a consequence the characteristic polynomial of M2r,s must be
det(xI −M2r,s) = x(s−1)/2(x − √

s)m+(x + √
s)m−

for some m+, m− with m+ +m− = (s − 1)/2. Let us consider the trace of M2r,s .
By Proposition 2 we get

(m+ −m−)
√
s = Tr(M2r,s) =

s−1∑
n=1

sin

(
2rn2�

s

)
= ImG(r, s) =

(
r

s

)√
s δs≡3 (4)

and the claim is proved. �
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5. Eigenvalues of M ′·,s

Theorem 8. The characteristic polynomial of M ′
r,s is

det(xI −M ′
r,s) = xd0

∏
d|s

(d,s/d)=1
µ(s/d) /=0

(x2 − d)(ψ(d)−µ(d))/2,

with

d0 := φ(s)−
∑
d|s

(d,s/d)=1
µ(s/d) /=0

(ψ(d)− µ(d)).

Analogously,

Theorem 9. The characteristic polynomial of M ′
2r,s is

det(xI −M ′
2r,s) = xd0

∏
d|s

(d,s/d)=1
µ(s/d) /=0

(x − √
d)md,+(x + √

d)md,− ,

where d0 := φ(s)− 1
2

∑
d|s

(d,s/d)=1
µ(s/d) /=0

(ψ(d)− µ(d)) and md,± are the solutions of

{
md,+ +md,− = 1

2 (ψ(d)− µ(d))

md,+ −md,− = cr,s,d
(11)

with

cr,s,d =
{
µ
(
s
d

) (
rs/d
d

)
if s is squarefree, d ≡ 3 (4),

0 otherwise.

Remark 10. Since ψ(1)− µ(1) = 0, 1 is never eigenvalue of M ′·,s .

Remark 11. Using the multiplicativity of the function ψ it is easy to verify that
when n is odd

ψ(n)− µ(n) = µ(n)(n− 1) mod (4).

This fact shows that a “correction” term cr,s,d is necessary in order to (11) has integer
solutions.

Remark 12. When s is an odd prime M·,s = M ′·,s , therefore the conclusions of
Theorems 8 and 9 have to accord to Theorem 7, as a simple check shows.

At last, we come back to the original problem of the invertibility of matrices M·,s
and M ′·,s . Theorem 7 and the following corollary of Theorems 8 and 9 show that only
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Mr,s is invertible for every s and that (3) can be used to recover Ha
m,s only when s is

squarefree.

Corollary 13. det(M ′
2r,s) = 0 and

det(M ′
r,s) =


0 if s is not squarefree

(−s) 1
2 (s−1) if s is prime∏

p|s p
1
2 (p−2)φ(s/p) if s is squarefree and not prime,

where p runs on primes dividing s.

Proof. In Theorem 9 the exponent d0 is always positive, hence M ′
2r,s is not invert-

ible.
By Theorem 8 detM ′

r,s /= 0 if and only if s is squarefree. In the last case, remem-
bering that for every integer n,

∑
d|n µ(d) = δn=1 and

∑
d|n ψ(d) = φ(n), we get

det(M ′
r,s) =

∏
d|s
(−d) 1

2 (ψ(d)−µ(d))

= (−1)
1
2

∑
d|s (ψ(d)−µ(d))

∏
p|s

p
1
2

∑
d|s/p(ψ(pd)−µ(pd))

= (−1)
φ(s)

2
∏
p|s

p
1
2 (ψ(p)

∑
d|s/p ψ(d)−µ(p)

∑
d|s/p µ(d))

= (−1)
φ(s)

2
∏
p|s

p
1
2 (ψ(p)φ(s/p)−µ(p)δs=p). �

We come now to the proof of Theorems 8 and 9. As first step we compute the
matrix M ′2·,s .

Proposition 14. Let r, s be coprime odd integers, s > 1. For every pair m, n co-
prime with s, 0 < m, n < s, let (M ′2·,s)m,n be the mth, nth entry of the matrix M ′2·,s ,
then (

M ′2
r,s

)
m,n

=
∑
d|s

µ
( s
d

) (
d
(
δm≡n(2d) − δm≡−n(2d)

)
+ δm/≡n(2)

(
δm/≡n(2d) − δm/≡−n(2d)

) )
,

(
M ′2

2r,s

)
m,n

=
∑
d|s

µ
( s
d

) d
2

(
δm≡n(d) − δm≡−n(d)

)
,

both independent of r.



G. Molteni / Linear Algebra and its Applications 382 (2004) 39–59 53

Proof. Since for all integers l, s,

δ(l,s)=1 =
∑
d|(l,s)

µ(d) =
∑
d|s

µ(d)δd|l ,

for every function f we have
s∑
l=1

(l,s)=1

f

(
l

s

)
=

s∑
l=1

δ(l,s)=1f

(
l

s

)
=

s∑
l=1

∑
d|s

µ(d)δd|lf
(
l

s

)

=
∑
d|s

µ(d)

s∑
l=1

δd|lf
(
l

s

)
=
∑
d|s

µ(d)

s/d∑
l=1

f

(
l

s/d

)
,

so that changing d ↔ s/d we obtain
s∑
l=1

(l,s)=1

f

(
l

s

)
=
∑
d|s

µ(s/d)

d∑
l=1

f

(
l

d

)
.

Using this identity we have(
M ′2

r,s

)
m,n

= 2
s∑
l=1

(l,s)=1

sin

(
lrm�

s

)
sin

(
lrn�

s

)

=
∑
d|s

µ(s/d)

d∑
l=1

(
2 sin

(
lrm�

d

)
sin

(
lrn�

d

))

=
∑
d|s

µ(s/d)

d−1∑
l=0

(
cos

(
lr(m− n)�

d

)
− cos

(
lr(m+ n)�

d

))

=
∑
d|s

µ(s/d)

d−1∑
l=0

Re
(

e
lr(m−n)�i

d − e
lr(m+n)�i

d

)
.

The proof of the first claim is completed noting that for every k, d ∈ N,

2d|k ⇒
d−1∑
l=0

Re
(

e
lk�i
d

)
= d,

2d�k ⇒
d−1∑
l=0

Re
(

e
lk�i
d

)
= Re

(
ek�i − 1

e
k�i
d − 1

)
= Re

(
(−1)k − 1

e
k�i
2d − e

−k�i
2d

e− k�i
2d

)

= Re

(
(−1)k − 1

2i sin k�
2d

e− k�i
2d

)
= 1 − (−1)k

2
= δk≡1 (2).

The second claim can be proved in a similar way. �
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The proofs of the theorems are essentially equivalent but some important technical
differences appear, hence we complete them separately.

5.1. Proof of Theorem 8

By Proposition 14 the entry (M ′2
r,s)m,n is zero when m /≡ n(2). As a consequence,

there exists a permutation J such that

JM ′2
r,sJ

−1 =
(
Ns 0
0 Ns

)
, (12)

where Ns is a matrix of order 1
2φ(s)× 1

2φ(s) whose entries are

(Ns)m,n :=
∑
d|s

µ
( s
d

)
d(δm≡n(d) − δm≡−n(d))

with 1 � m, n � s, (mn, 2s) = 1.

Proposition 15. Let s > 1 be an odd integer, let D|s and let f ∈ OD. Let vf be
the vector of Cφ(s)/2 whose entries are vfm with (m, 2s) = 1, 1 � m � s, and whose
value is vfm = f (m). Then vf is an eigenvector of Ns with eigenvalue κ(D, s).

Proof. It is sufficient to prove the claim when f = χ , where χ is an odd primitive
character modulo D. We have∑

n

(Ns)m,nv
χ
n =

s∑
n=1

(n,2s)=1

∑
d|s

µ
( s
d

)
d(δn≡m (d) − δn≡−m (d))v

χ
n

=
∑
d|s

µ
( s
d

)
d

s∑
n=1

(n,2s)=1

(δn≡m (d) − δn≡−m (d))v
χ
n

=
∑
d|s

µ
( s
d

)
d


s∑

n=1
(n,2s)=1
n≡m (d)

vχn −
s∑

n=1
(n,2s)=1
n≡−m (d)

vχn


=
∑
d|s

µ
( s
d

)
d

s∑
n=−s

(n,2s)=1
n≡m (d)

χ(n) =
∑
d|s

µ
( s
d

)
d

s∑
n=1

(n,s)=1
n≡m (d)

χ(n).

(13)

The restriction n = mmod (d) can be eliminated using the orthogonality of the char-
acters modulo d , i.e., the identity

∑
η mod d η̄(m)η(n) = φ(d)δn≡m (d), obtaining∑

n

(Ns)m,nv
χ
n =

∑
d|s

µ
( s
d

) d

φ(d)

∑
η mod d

η̄(m)

s∑
n=1

χ̃η(n),
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where χ̃η is the character modulo s which is induced by the character χη (which is a
character modulo l.c.m.(d,D).) The inner sum

∑s
n=1 χ̃η(n) is not zero (and its value

is φ(s)) if and only if D|d and η is induced by χ̄ , since χ is primitive. Therefore,∑
n

(Ns)m,nv
χ
n =

∑
d: d|s

D|d

µ
( s
d

) dφ(s)
φ(d)

χ(m) = κ(D, s)vχm. �

From Propositions 1 and 15 we get the following characterization of the eigen-
spaces of Ns .

Proposition 16. Let Td be the d-eigenspace of Ns. Then dim Td is

1
2 (ψ(d)− µ(d))

for d ∈ N, d|s,
|µ(s/d)| = 1
and (d, s/d) = 1,

1
2

∑
d|s

µ(s/d)=0
(d,s/d)=1

(ψ(d)− µ(d))+ 1
2

∑
d|s

(d,s/d)>1

(ψ(d)− µ(d)) for d = 0,

0 otherwise.

In particular, kerNs = {0} if and only if s is squarefree.

Proof. Evidently the vectors generated in Proposition 15 by different Od spaces are
linearly independent, therefore from Proposition 1 we get the lower-bounds

dim T0 = dim kerNs �
∑
d|s

µ(s/d)=0
(d,s/d)=1

dimOd +
∑
d|s

(d,s/d)>1

dimOd,

and

dim Td � dimOd when d|s, |µ(s/d)| = 1, (d, s/d) = 1.

Adding these inequalities and using Proposition 5 we get

1

2
φ(s) � dim kerNs +

∑
d|s

|µ(s/d)|=1
(d,s/d)=1

dimOd

�
∑
d|s

µ(s/d)=0
(d,s/d)=1

dimOd +
∑
d|s

(d,s/d)>1

dimOd +
∑
d|s

|µ(s/d)|=1
(d,s/d)=1

dimOd

=
∑
d|s

dimOd = 1

2

∑
d|s

(ψ(d)− µ(d)) = 1

2
φ(s).

This inequality proves that there are no other eigenvalues and that the dimension
of every eigenspace is that one stated in the claim. �
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A simple argument concludes the proof of the theorem. In fact, by (12) and the
previous proposition we get that the eigenvalues of M ′2

r,s are 0 and the integers d
dividing s such that s/d is squarefree and coprime with d , with multiplicities d0
(whose value is defined in the statement of the theorem) and ψ(d)− µ(d), respec-
tively. It is important to recall that d = 1 is not an eigenvalue: its multiplicity is
ψ(1)− µ(1) = 0. As a consequence, the eigenvalues of M ′

r,s are 0 and ±√
d, where

d is chosen as before. Let m0 be the multiplicity of 0 and let md,+ and md,− be
those ones of

√
d and −√

d, respectively. From Proposition 16 (and (12)) we have
m+,d +md,− = ψ(d)− µ(d), so that

m0 = φ(s)−
∑
d|s

(d,s/d)=1
|µ(s/d)|=1

d>1

(m+,d +md,−) = φ(s)−
∑
d|s

(d,s/d)=1
|µ(s/d)|=1

d>1

(ψ(d)− µ(d)) = d0.

Moreover, from Proposition 4 we get

0 = Tr(M ′
r,s) =

∑
d|s

(d,s/d)=1
|µ(s/d)|=1

d>1

(md,+ −md,−)
√
d. (14)

Let us consider the integers d appearing in this equation. There is only one d which
is a square, at most, and this fact happens if and only if s is not squarefree. For
every other d appearing in (14) it is possible to find a prime pd such that pd |d with
odd order and pd �d ′ if d ′ /= d . As a consequence the numbers

√
d are linearly Q-

independent so that (14) implies md,+ = md,−. Since we know that md,+ +md,− =
ψ(d)− µ(d), we conclude that md,+ = md,− = 1

2 (ψ(d)− µ(d)) and the proof of
Theorem 8 is completed.

5.2. Proof of Theorem 9

Proposition 17. Let s > 1 be an odd integer let D|s and let f ∈ VD. Let vf be the
vector of Cφ(s) whose entries are vfm with (m, s) = 1, 1 � m � s and whose value
is vfm = f (m). When f ∈ ED, v

f ∈ kerM ′2
2r,s and when f ∈ OD then vf belongs

to the eigenspace of M ′2
2r,s with eigenvalue κ(D, s).

Proof. It is sufficient to prove the claim when f = χ , where χ is a primitive char-
acter modulo D. We have∑

n

(M ′2
2r,s)m,nv

χ
n =

s∑
n=1

(n,s)=1

∑
d|s

µ
( s
d

) d
2

(
δn≡m (d) − δn≡−m (d)

)
vχn

=
∑
d|s

µ
( s
d

) d
2

s∑
n=1

(n,s)=1

(
δn≡m (d) − δn≡−m (d)

)
vχn
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=
∑
d|s

µ
( s
d

) d
2


s∑

n=1
(n,s)=1
n≡m (d)

vχn −
s∑

n=1
(n,s)=1

n≡−m (d)

vχn

 .

The inner sum is zero when χ is even, but for odd χ we get∑
n

(M ′2
2r,s)m,nv

χ
n =

∑
d|s

µ
( s
d

)
d

s∑
n=1

(n,s)=1
n≡m (d)

χ(n)

which is the same term appearing in (13): the proof is completed by the same argu-
ment used there. �

From Propositions 1 and 17 we get the following characterization of the eigen-
spaces of M ′2

2r,s .

Proposition 18. Let Sd be the d-eigenspace of M ′2
2r,s . Then dim Sd is

1
2 (ψ(d)− µ(d))

for d ∈ N, d|s,
|µ(s/d)| = 1
and (d, s/d) = 1,

φ(s)
2 + 1

2

∑
d|s

µ(s/d)=0
(d,s/d)=1

(ψ(d)− µ(d))+ 1
2

∑
d|s

(d,s/d)>1

(ψ(d)− µ(d)) for d = 0,

0 otherwise.

In particular, dim kerM ′2
2r,s � φ(s)/2, with dim kerM ′2

2r,s = φ(s)/2 if and only if s
is squarefree.

Proof. Evidently the vectors generated in Proposition 17 by different Od and Ed

spaces are linearly independent, therefore from Propositions 1 and 17 we get the
lower-bounds

dim S0 = dim kerM ′2
2r,s �

∑
d|s

dimEd +
∑
d|s

µ(s/d)=0
(d,s/d)=1

dimOd +
∑
d|s

(d,s/d)>1

dimOd,

and

dim Sd � dimOd when d|s, |µ(s/d)| = 1, (d, s/d) = 1.

Adding these inequalities and using Proposition 5 we get

φ(s) � dim S0 +
∑
d|s

|µ(s/d)|=1
(d,s/d)=1

dim Sd � φ(s)

2
+ 1

2

∑
d|s

(ψ(d)− µ(d)) = φ(s),
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therefore there are no other eigenvalues and the dimension of every eigenspace is
that one which is stated in the claim. �

Now we conclude the proof. The previous proposition shows that the eigenvalues
of M ′2

2r,s are 0 and the integers d dividing s such that s/d is squarefree and co-
prime with d , with multiplicities d0 (the constant which is defined in Theorem 9)
and ψ(d)− µ(d), respectively (note that d = 1 is not an eigenvalue: its multiplicity
is ψ(1)− µ(1) = 0.) As a consequence, the eigenvalues of M ′2

2r,s are 0 and ±√
d ,

where d is chosen as before. Let m0 be the multiplicity of 0 and let md,+ and md,−
be those ones of

√
d and −√

d , respectively. From Proposition 18 we have md,+ +
md,− = (ψ(d)− µ(d))/2, so that

m0 = φ(s)−
∑
d|s

(d,s/d)=1
|µ(s/d)|=1

d>1

(m+,d +md,−) = φ(s)− 1

2

∑
d|s

(d,s/d)=1
|µ(s/d)|=1

d>1

(ψ(d)− µ(d)) = d0.

Moreover, from Proposition 4 we get

0 = Tr(M ′
r,s)− Tr(M ′

r,s) =
∑
d|s

(d,s/d)=1
|µ(s/d)|=1

d>1

(md,+ −md,− − cr,s,d )
√
d. (15)

As for the proof of Theorem 8 we know that the numbers
√
d appearing in (15) are

Q-linear independent, therefore system (11) is proved.
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