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Introduction
Argon (Ar) is a noble gas discovered 
in 1894.[1] Ar is a colorless, tasteless, 
odorless, noncorrosive, noninflammable, 
and nontoxic gas.[2] It is the most abundant 
noble gas, and the third major component 
of the air, with a concentration of 0.93%. 
Ar’s density is 38% higher than air, and the 
solubility in water and plasma is 24‑fold 
lower than that of carbon dioxide (CO2).

[3]

Ar has a full electron valence shell 
which avoids covalent binding with 
other elements; therefore, it is usually 
considered a nonreactive chemical gas, 
as known by its Greek name “αργός,” 
meaning “inert.”[4] Although  labeled as a 
“biologically” inert gas, recent evidence 
suggest that the drug can have significant 
effects. Narcotic effects have been 
described in divers since 1939 and further 
confirmed  by other studies.[5‑10] Besides 
narcosis, evidence of neuroprotection has 
been rising since the first report in a rodent 
model of hypoxic brain injury, in 1998.[11] 
In more recent years, the protective effects 
of Ar after ischemia became more evident 
preclinically.
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Abstract
The noble gas argon (Ar) is a “biologically” active element and has been extensively studied 
preclinically for its organ protection properties. This work reviews all preclinical studies employing 
Ar and describes the clinical uses reported in literature, analyzing 55 pertinent articles found by 
means of a search on PubMed and Embase. Ventilation with Ar has been tested in different models of 
acute disease at concentrations ranging from 20% to 80% and for durations between a few minutes up 
to days. Overall, lesser cell death, smaller infarct size, and better functional recovery after ischemia 
have been repeatedly observed. Modulation of the molecular pathways involved in cell survival, with 
resulting anti‑apoptotic and pro‑survival effects, appeared as the determinant mechanism by which 
Ar fulfills its protective role. These beneficial effects have been reported regardless of onset and 
duration of Ar exposure, especially after cardiac arrest. In addition, ventilation with Ar was safe both 
in animals and humans. Thus, preclinical and clinical data support future clinical studies on the role 
of inhalatory Ar as an organ protector.
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The aim of this work was to review all 
the preclinical studies employing Ar, both 
in vivo and in vitro, focused on organ 
protection, and its clinical uses.

Materials and Methods
A concurrent PubMed and Embase search 
was carried out and updated till October 
2017. “Ar” was used as MeSh and Emtree 
term for PubMed and Embase search, 
respectively. The following keywords were 
then used to narrow and focus the search: 
“neuroprotection,” “cardioprotection,” 
“organ protection,” “cellular protection,” 
“organ transplantation,” “ischemia 
‑reperfusion injury,” “hypoxic‑ischemic 
injury,” “perinatal asphyxia,” “cardiac 
arrest (CA),” “traumatic brain injury,” 
“pneumoperitoneum,” “lung volume 
measurement,” “cardiac output 
measurement,” “narcosis,” “diving,” and 
“hyperbarism.” During the selection, 
only English‑written articles with full 
text available were considered. Both 
in vitro and in vivo studies and human 
application of Ar were included in this 
review. Articles concerning the surgical 
use of Ar, i.e., “Ar laser,” “Ar beam,” and 
“Ar coagulation” were excluded. Articles 
selection was performed independently 
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by two authors (FN, SR). Fifty‑five pertinent articles 
were found and included.  Original results from a study 
performed by our group on a rat model of acute myocardial 
infarction (MI) were added.

Preclinical uses

Forty‑four preclinical studies were found.[3,12‑52] The 
majority (n = 25) of in vitro and in vivo studies with 
Ar focused on neuroprotection after a variety of 
brain damages,[12‑16,20,22,24‑31,33‑41,49] in which different 
neurological and behavioral tests were combined with 
histological and biochemical assays. Four studies 
evaluated the presence of cardioprotective effect after 
myocardial ischemia/reperfusion (I/R).[13,17,18,45] Nine 
studies focused on the preservation of other organs and 
tissues, such as ex vivo perfused  kidney and lung, and 
culture of human airway epithelium, kidney tubular, and 
osteosarcoma cells.[19,21,23,32,46‑48,52,53] A single study evaluated 
the influence of Ar inhalation on liver regeneration after 
partial hepatectomy.[53] Three in vivo studies investigated the 
effects and the mechanisms of action of Ar under hyperbaric 
condition.[42‑44] Five  studies specifically focused on the safety: 
In 2, Ar was administered as respiratory mixture to pigs;[36,52] 
while, in 3 studies, Ar was used to induce pneumoperitoneum 
for surgical laparoscopic procedures in place of CO2.

[3,50,51] 
The area of interest is summarized in Figure 1a.

Overall, both in vitro and in vivo studies provided evidence 
in support of a protective role of Ar, independently from 
the disease model and the duration and onset of exposure 
to the treatment (i.e., pre‑ or post‑acute event) [Figure 1b].

In vitro studies

Seventeen articles investigated the protective effects of 
Ar on cell damage [Table 1].[17‑33] In details, two studies 
were performed in rodent cardiomyocytes, and one of these 
included also additional investigations in human right atrial 
appendages obtained from patients undergoing coronary artery 
bypass or valve replacement surgery;[17,18] 9 in rat neurons or 
hippocampal slices;[24‑31,33] 5 in human cells (neuroblastoma, 
kidney, airway epithelium, osteosarcoma);[19‑23] and one in 
whole blood from rodents.[32] One in vitro study investigated 
whether Ar interacted with tissue plasminogen activator (tPA).

The duration of the imposed insult varied from 30 min 
of hypoxia in cardiomyocytes,[17] to several hours under 
oxygen (O2) glucose deprivation condition,[21] up to 30 h in 
the drug‑induced toxicity studies.[31]

In these studies, cells and/or tissues were incubated in 
chambers containing Ar atmosphere in a concentration 
varying from 25% to 75% in air and/or O2. The average 
Ar exposure was 90 min, ranging from a minimum of 
5 min[17] up to 72 h.[26] In the majority of the studies, Ar 
was administered either immediately after the onset of 
the insult or delayed, up to 3 h later. In 3 studies, Ar was 
administered as a preconditioning agent.[18,19,21]

Overall, the in vitro studies showed improved cell 
survival and viability when Ar was used both pre and 
after the insult. More specifically, Ar reduced apoptosis 
in neuronal, tubular kidney, and airway epithelial 
cells.[19,21,22] As for cardioprotection after I/R, besides 
increasing cell viability,[18] Ar also diminished early 
depolarizations in the ventricle tissue, limiting the 
onset of ischemia‑triggered arrhythmias.[17] When Ar 
was applied on the human right atrial appendages after 
hypoxia/reoxygenation injury, the recovery of contractile 
activity was increased.[17]

Ar blocked the tPA thrombolytic effects at low 
concentration (25%), while the tPA catalytic and 
thrombolytic efficacy was increased at concentrations 
above 50%.  Thus, it was suggested that in the context 
of  ischemic stroke, Ar 75% could be given during ischemia 
to favor thrombolysis, but not after reperfusion.[33]

In vivo studies

Twenty‑four studies employed Ar as a potential protective 
treatment for brain, heart, and other organ preservation 
after different ischemic insults.[12‑17,22,27‑29,34‑41,45‑49,52] 
Six studies used swine models[13,36,37,47,48,52] and 
18 rodent ones, including rats, guinea‑pigs, 
and rabbits.[12,14‑17,22,27‑29,34,35,38‑41,45,46,49] In addition, three 
studies investigated the effects of Ar under hyperbaric 
conditions.[42‑44] A single study evaluated the effects on 
the initiation of liver regeneration in rats.[53]

Figure 1: (a) Focus and  summary of main results (b) of the in vitro and 
in vivo studies employing inhalatory argon

a

b
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Table 1: In vitro studies employing argon for cell and tissue preservation
Article Cell/tissue Model Ar treatment Histopathology/functionality Biochemistry
Lemoine 
et al., 2017[17]

1. Cardiomyo 
cytes
2. Human right 
atrial appendage

H/R Ar 70%
Duration: 5 min

EAD: ↑
Conduction blocks: ↑
Reentries: ↑
Contractile force: ↑

NA

Mayer et al., 
2016[18]

Cardiomyocytes Hypoxia + Ar 
preconditioning

Ar 50%
Duration: 1 h

Cell survival: ↑ HSP27: +
SOD2: +
VEGF: +
iNOS: +
COX2: ≈
STAT3: ≈
HSPA4: ≈
HIF1α: ≈
ERK1‑2 
phosphorylation: ≈
Akt: ≈

Hafner et al., 
2016[19]

Airway 
epithelial cells

N2O2 oxidative stress + 
Ar preconditioning

Ar 30‑50%
Duration: 
30‑180 min

Apoptosis: ↑
Cell viability: ↑

JNK: +
p38: +
ERK 1‑2: +
Akt: ≈

Ulbrich et al., 
2015[20]

Human 
neuroblastoma 
cells

Drug‑induced cell injury 
(rotenone)

Ar 25‑75%
Duration: 2‑4 h

Apoptosis: ↑ TLR 2 ‑ 4: ‑
IRAK 4: ‑
ERK1 ‑ 2: +
Caspase‑3: ‑

Rizvi et al., 
2010[21]

Human tubular 
kidney cells

OGD + Ar 
preconditioning

Ar 75%
Duration: 3 h

Cell viability: ≈ p‑AKT: ≈
HIF1α: ≈
Bcl 2: ≈

Ulbrich et al., 
2016[22]

Human 
neuroblastoma 
cells

Drug‑induced cell injury 
(rotenone)

Ar 75%
Duration: 2 h

NA Mithocondrial ΔΨ: ↑
ROS: ‑
NF‑kB: ‑
STAT3: ‑
IL‑8: ‑

Spaggiari 
et al., 2013[23]

Human 
osteosarcoma 
cells

Drug‑induced cell injury 
(STS, MTX, rotenone, 
antimycin A, menadione)

Ar 75%
Duration: 6‑16 h

NA Caspase 3: ‑
Cytochrome c: ‑
Mithocondrial ΔΨ: ↑

Fahlenkamp 
et al., 2012[24]

Neuronal, 
astroglial cells, 
and microglial 
cells 

Selective influence of
Ar on ERK 1‑2

Ar 50%
Duration: 15‑
120 min

NA Phospho‑ERK 1‑2: +
IL 1β: ‑/≈
TNFα: ≈
IL 6: ≈

Jawad et al., 
2009[25]

Neuronal cells OGD+hypoxia Ar 75%
Duration: 24 h

Cell viability: ↑ Cell reducing ability: 
↑

Loetscher 
et al., 2009[26]

Hippocampal 
slices

1. OGD
2. TBI above CA1

Ar 25‑74%
Duration: 72 h

OGD and TBI tissue injury: ↑ NA

David et al., 
2012[27]

Brain coronal 
slices

OGD Ar 25‑75%
Duration: 3 h

NA LDH release: ‑

Zhao et al., 
2016[28]

Rat cortical 
neuronal 
cultures

OGD Ar 70% + MTH
Duration: 2h

Neuronal death: ↑ HO‑1: +
p‑Akt: +

Contd...
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majority of the studies, Ar was applied as a potential 
treatment and thus administered either immediately after 
the insult, i.e., after resuscitation from CA,[13] or delayed 
up to 3 h later.[14] Only in 3 studies specifically focused 
on myocardial I/R, EVLP, and liver regeneration, Ar was 
employed as a preconditioning agent, before induction of 
the insult.[45,52,53]

Regarding the use of Ar as neuroprotective agent, only 4 
studies[27,34,35,38] evaluated the postinsult neurological recovery, 
and in half of them[35,37] there was evidence for a better 
outcome after Ar inhalation when compared to the control.

All the investigations, except one focusing on the safety 
of Ar,[36]   included histological evaluations, in different 

These studies reproduced the following human 
conditions: ischemic stroke, neonatal hypoxic‑ischemic 
encephalopathy (HIE), subarachnoid hemorrhage, MI;  CA, 
organ (kidney and lung) transplantation, exposure to 
hyperbaric condition, and liver surgery [Tables 2‑4].

The minimum duration of the ischemic insult was 7 min 
in a model of CA in rats,[15] while the maximum duration 
was 18 h in the ex vivo lung perfusion (EVLP).[52] In these 
studies, Ar was always administered as inhalatory mixture, 
with a concentration varying from 25% up to 88% either 
in air or in a mixture of nitrogen (N2) and O2.  The average 
Ar exposure was approximately 1–4 h,[27,29,34] ranging 
from a minimum of 3 5‑min cycles in the MI studies,[45] 
up to 30 h in the organ transplantation models.[48] In the 

Table 1: Contd...
Article Cell/tissue Model Ar treatment Histopathology/functionality Biochemistry
Zhao et al., 
2016[29]

Rat cortical 
neuronal 
cultures 

OGD Ar 70%
Duration: 2 h

Cell viability: ↑ PI‑3K: +
Erk 1/2: +
mTOR: +
Nrf2: +
ROS: ‑

Harris et al., 
2013[30]

Mouse 
hippocampal 
slices

Focal mechanical trauma Ar 33%
Duration: 
30 mins‑24 h

Cell injury (PI): ↑ NA

Yarin et al., 
2005[31]

Rat organ of 
Corti cultures

1. Hypoxia
2. Drug‑induced cell 
injury (cisplatin)
3. Drug‑induced cell 
injury (gentamycin)

1. Ar 95%
Duration: 30 h
2. and 3. Ar 74%
Duration: 48 h

1. Number of OHC: ↑
Number of IHC: ↑
2. Number of OHC: ↑
Number of IHC: ≈
3. Number of OHC: ↑
Number of IHC: ↑

NA

David et al., 
2013[32] 

Enzymatic and 
thrombolytic 
efficiency of tPA

1. Catalytic efficiency:
tPA + specific 
chromogenic substrate + 
distilled water saturated 
solution
2. Thrombolytic 
efficiency

whole blood (rats) + 
saline + tPA saturated 
solution

Ar 25‑75%
Duration: 
120 min

NA 1. Catalytic efficacy
Ar 75%: +
Ar 50: ≈
Ar 25%: ‑

2. Thrombolytic 
efficacy

Ar 75%: +
Ar 50: ≈
Ar 30%: ‑

Grüßer et al., 
2017[33]

Hippocampal 
slices

TBI Ar 50%
Duration: 2 h

Cell survival≈ NA

↑: Treatment with Ar was significantly cell protective compared to control; ≈: Treatment with Ar was equivalent to control; +: Increased 
with Ar treatment compared to control; ‑: Decreased with Ar treatment compared to control, Ar: Argon, O2: Oxygen, CO2: Carbon 
dioxide, N2: Nitrogen, He: Helium, Kr Krypton, Xe Xenon, Ne: Neon, NA: Not available, H/R: Hypoxia‑reoxygenation, EAD: Early after 
depolarization, HSP: Heat shock protein, SOD: Superoxide dismutase, VEGF: Vascular endothelial growth factor, iNOS: Inducible nitric oxide 
synthase, COX: Cyclooxygenase, STAT: Signal transducers and activator of transcription, HIF: Hypoxia‑inducible factor, ERK: Extracellular 
signal‑regulated protein kinases, p‑Akt (also known as PKB): Phospho protein kinase B, N2O2: Nitrogen peroxide, JNK: c‑Jun N‑terminal 
kinase, p38: Protein 38, TLR: Toll‑like receptor, IRAK: IL‑1 Receptor‑associated kinase, Bcl: B‑cell lymphoma, OGD: Oxygen‑glucose 
deprivation, ΔΨ: Membrane potential, ROS: Reactive oxygen species, NFkB: Nuclear factor‑kB, IL: Interleukin, MTX: Mitoxantrone, 
STS: Broad‑spectrum kinase inhibitor staurosporine, LPS: Lipopolysaccharide, TNF: Tumor necrosis factor, TBI: Traumatic brain injury, 
LDH: Lactate dehydrogenase, MTH: Mild therapeutic hypothermia, HO‑1: Heme oxygenase‑1, PI‑3K: Phosphatidylinositol‑3‑kinases, 
mTOR: Mechanistic target of rapamycin, Nrf2: Nuclear factor (erythroid‑derived 2) factor 2, PI: Propidium iodide, OHC: Outer hair cells, 
IHC: Inner hair cells, tPA: Tissue plasminogen activator
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Table 2: In vivo studies employing argon for protection in models of acute cerebral and myocardial injury, for narcosis 
and for liver regeneration

Article Disease Model Comparison 
and duration of 
treatment

Functional 
assessment1

Histopathology Biochemistry 

Models of acute cerebral injury
Höllig et al., 
2016[34]

SAH Endovascular 
perforation 
technique

Ar/O2 50/50
Duration: 1 h

≈ Hippocampus DG: ↑
Hippocampus CA1: ≈
Hippocampus CA3/4: ≈

HIF1α: +
HO‑1: +

Zhuang et al., 
2012[35]

Perinatal HIE Right 
common 
carotid artery 
ligation + 
hypoxia

Ar/O2 70/30
Duration: 90 min

≈↑ Hippocampus CA1: ↑ 
Infarct size: ↑

Bcl‑2: +

Alderliesten 
et al., 2014[36]

Perinatal HIE Hypoxia Ar/room 
air30‑80/70‑20
Ar/room air 50/50
Ar/room air 50/50 + 
MTH
Duration: 1 h × 3

NA NA NA

Broad et al., 
2016[37]

Perinatal HIE Common 
bilateral 
carotid artery 
occlusion

Ar/O2/
N2 45‑50/30‑21/25‑29 
+ MTH
Duration: 2‑26 h

aEEG: ↑ Neocortex: ↑ 
Subcortical: ↑

PCr/pi: +
NTP/epp: +
Lac/NAA: ‑

Zhao et al., 
2016[29]

Perinatal HIE Right 
common 
carotid 
ligation + 
hypoxia

Ar/O2 70/30
Duration: 2 h

NA Neocortex: ↑
Infarct size: ↑

MDA: ‑
GSH: +
GSSG: ‑
TNFα, IL‑6: ‑
SOD1, NQO1: +

Zhao et al., 
2016[28]

Perinatal HIE Right 
common 
carotid 
ligation + 
hypoxia

Ar/O2 70/30 + MTH
Ar/O2 70/30
Duration: 2 h

NA Infarct size: ↑ HO‑1: +
Bcl‑2: +
Caspase 3: ‑
NF‑kB: ‑
Hippocampal 
GFAP: ‑

Ryang et al., 
2011[38]

Ischemic stroke Transient 
middle 
cerebral 
artery 
occlusion

Ar/O2 50/50
Duration: 1 h

↑ Neocortex: ↑
Basal ganglia: ↑
Infarct size: ↓

NA

David et al., 
2012[27]

1. Ischemic 
stroke
2. Excitotoxicity

1. Middle 
cerebral 
artery 
occlusion
2. Intrastriatal 
injection of 
NMDA

1. Ar/O2 50/50
2. Ar/N2/O2 15‑75
Duration: 3 h

1. ↑
2. ↓

1. ≈
2. ↑

NA

Fahlenkamp 
et al., 2014[39]

Ischemic stroke Transient 
middle 
cerebral 
artery 
occlusion

Ar/O2 50/50
Duration: 1h

NA Ischemic area: ≈↑ IL‑1β, IL‑6: +
iNOS, TGF‑β, NGF: 
+

Contd...
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Table 2: Contd...
Article Disease Model Comparison 

and duration of 
treatment

Functional 
assessment1

Histopathology Biochemistry 

Models of acute cerebral injury
Ulbrich et al., 
2014[40]

Retinal I/R Anterior 
chamber 
hypertension

Ar/O2/
N2 25‑75/21/4‑54
Duration: 1 h

NA Ganglional cell: ↑ Caspase 3: ‑
Bax: ‑
Bcl‑2: ‑
NF‑kB: ‑
Blood WC count: ‑

Ulbrich et al., 
2015[41]

Retinal I/R Anterior 
chamber 
hypertension

Ar/O2/N2 75/21/4
Duration: 1 h

NA Ganglion cells: ↑ HSP: ‑
ERK 1‑2: +
HO‑1: +

Ulbrich et al., 
2016[22]

Retinal I/R Anterior 
chamber 
hypertension

Ar/O2/N2 75/21/4
Duration: 1 h

NA ↑ IL‑8: ‑
MithocondrialΔΨ: +
ROS: ‑
NF‑kB, STAT3: ‑

Models of acute myocardial injury
Pagel et al., 
2007[45]

Infarction LAD 
occlusion

Ar/O2 70/30
Duration: 5 mins 
× 3*

NA Infarct size: ↑ NA

Ristagno 
et al., 2014[13]

Cardiac arrest LAD 
occlusion + 
VF

Ar/O2 70/30
Duration: 4 h

cUS: Systolic 
function (EF) 
≈↑

Infarct size: ≈↑ hs‑cTnT: ≈↑

Lemoine 
et al., 2017[17]

Infarction LAD ligation Ar/O2 80/20
Duration: 20 min

cMR: systolic 
function (LV 
volumes, 
EF) ↑
WMS ↑

NA NA

Models of narcosis
Balon et al., 
2002[42]

Ar narcosis Hyperbaric 
chamber

Ar 2 MPa + O2 0,04 
MPa
Duration: 2h

NA NA Striatal DA release: ‑

Balon et al., 
2003[43]

Ar narcosis Hyperbaric 
chamber

Ar 2 MPa + O2 0,04 
MPa
Duration: 100 min

First phase of 
compression 
hyperactivity, 
then 
hypoactivity

NA Striatal DA release: ‑

Abraini et al., 
2003[44]

Ar narcosis Hyperbaric 
chamber

Ar + O2 0,03 MPa
Compression rate: 
0,1 MPa/min

Increased 
threshold 
pressure 
for loss of 
righting reflex

NA NA

Models of liver regeneration
Ulmer et al., 
2017[53]

Liver 
regeneration

Partial 
Hepatectomy

Ar/O2 50/50 Weight of 
residual liver: 
≈

Proliferation↓Apoptosis≈ AST, ALT, 
bilirubin:≈
BrdU↓
Ki‑67↓
UNEL≈
HGF↓
IL‑6↓

Contd...
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brain areas. Overall, there was evidence for a mitigation 
of the brain tissue injury. In one study on a rat model of 
middle cerebral artery occlusion ,[27] Ar had contrasting 
effects, with a reduced infarct size in the cortical area, but 
an increased injury in the subcortical  area, compared to 
sham animals. However, in this study, animals treated with 
Ar had a significantly higher body temperature (average 
of 38.5°C), which could explain the greater brain damage 
compared to the controls.[27] In studies focused selectively 
on I/R injury in the retina, Ar confirmed its protective 
effects in a dose‑ and time‑dependent manner[40] [Table 2].

In a model of perinatal HIE, Ar inhalation had no effect on 
heart rate, arterial blood pressure and blood gases, cerebral 
O2 saturation, and electrocortical brain activity.[36]

Studies focused on neurological injury following 
resuscitation from CA are described in a dedicated section 
of this review.

Regarding the use of Ar as cardioprotective treatment, 3 
studies were individuated,[13,17,45] one of which investigated 
the cardioprotection within the broader post‑CA 
syndrome.[13] Overall, the studies provided evidence for a 
reduced infarct size and an improved left ventricle systolic 
function, evaluated either by echocardiography or magnetic 
resonance [Table 2].

Additional data come from a preliminary study in a rat 
model of myocardial I/R injury recently performed by our 
group (published in this review as original data). The left 
anterior descending was occluded for 30 min, and animals 
were randomized to receive 1‑h ventilation with Ar 70% 
versus N2 70% in O2, starting 5 min before reperfusion. One 

hour after reperfusion, rats were weaned from mechanical 
ventilation and returned to their cages. Six h after reperfusion 
plasma samples were collected for high‑sensitive cardiac 
troponin T (hs‑cTnT) assay and animals were sacrificed. 
Myocardial infarct size was assessed by tetrazolium 
chloride staining, and inflammatory response was evaluated 
in terms of neutrophil infiltration by naphthol staining. 
Rats treated with Ar showed a lower plasma level of 
hs‑cTnT compared to controls (median [interquartile 
range]: 3128 ng/L [1832–7053] vs. 7432 ng/L [4965–
10000]; P < 0.05) together with a trend toward a reduction 
in neutrophil infiltration (mean ± Standard error of 
mean: 77 ± 7 cells/mm2 vs. 92 ± 8.5 cells/mm2; P = not 
significant). Nevertheless, there was no reduction in infarct 
size.

In vivo studies on narcosis

Ar showed narcotic effects only under hyperbaric 
conditions.[42,55] Different theories have been proposed to 
explain this property.[9] Most likely, the increase of the 
inert gas pressure induces modification on cytoplasmic 
membrane and/or receptor condition, subsequently 
modifying the neurotransmission. Indeed, when rats 
were exposed to Ar at ≈ 19 atm for 2  h, dopamine 
release from striatum decreased by approximately 10% 
compared to animals that were not exposed to the gas.[41] 
Since the striatum coordinates different aspects of motor 
planning and motivation, a subsequent study investigated 
the relationship between motor activity and dopamine 
release in rats exposed to Ar in a pressurized chamber for 
100 min . During the compression period, a transient phase 
of hyperactivity was observed, followed by a decrease in 

Table 2: Contd...
Article Disease Model Comparison 

and duration of 
treatment

Functional 
assessment1

Histopathology Biochemistry 

Models of liver regeneration
Duration: 1 h# L i v e r ‑ b o d y 

weight ratio: ≈
TNF≈
ERK 1/2 ≈

*In this study, Ar was administered as pretreatment before MI, #In this study, Ar was administered before injury (preconditioning). ↑: Treatment 
with Ar was significantly protective compared to control; ≈↑: Treatment with Ar showed a trend toward protection compared to control; ≈: 
Treatment with Ar was equivalent to control; +: Increased with Ar treatment compared to control; ‑: Decreased with Ar treatment compared to 
control; ↓: Treatment with Ar was significantly detrimental. 1functional assessment included: neurological tests for model of acute cerebral injury; 
myocardial function after acute ischemic injury; and motor assessment under hyperbaric condition. Ar: Argon, O2: Oxygen, N2: Nitrogen, He: 
Helium, Xe: Xenon, NO: Nitrosous oxide, Ne: Neon, NA: Not available, SAH: Subarachnoid hemorrhage, DG: Dentate gyrus, HIF: hypoxia 
inducible factor, HO‑1: heme oxygenase‑1, HIE: hypoxic ischemic encephalopathy, Bcl‑2: B‑cell lymphoma 2, MTH: Mild therapeutic 
hypothermia; aEEG: amplitude‑integrated electo‑encephalogram, PCr/pi: Ratio of phosphocreatine to inorganic phosphate, NTP: Nucleoside 
triphosphate, epp: Exchangeable phosphate pool, Lac: Lactate, NAA: N‑acetylaspartate, MDA: Malondialdehyde, GSH: Glutathione, GSSG: 
Glutathione disulfide, TNFα: Tumor necrosis factorα, IL: interleukin, SOD: Superoxide dismutase, NQO1: nicotinamide adenine dinucleotide 
phosphate (NADP) dehydrogenase quinone 1, NF‑kB: Nuclear factor‑kB, GFAP: Glial fibrillary acid protein, NMDA: N‑Methyl‑D‑aspartic 
acid, iNOS: inducible nitric oxide synthase, TGF‑β: Transforming growth factorβ, NGF: Nerve growth factor, I/R: Ischemia/reperfusion, 
Bax: Bcl‑2‑associated X protein, WC: White cells, HSP: Heat shock protein, ERK 1/2: Extracellular signal‑regulated kinase, ΔΨ: Membrane 
potential, ROS: Reactive oxygen species, STAT3: Signal transducer and activator of transcription 3, LAD: Left anterior descending coronary 
artery, VF: Ventricular fibrillation, cUS: Cardiac ultrasound, EF: Ejection fraction, hs‑cTnT: High‑sensitivity cardiac troponin T, cMR: Cardiac 
magnetic resonance, LV: Left ventricle, WMS: Wall motion score, MPa: Megapascal, DA: Dopamine, AST: Aspartate aminotransferase, ALT: 
Alanine aminotransferase, BrdU: Bromodeoxyuridine, HGF: Hepatocyte growth factor
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the motor activity. More specifically, exposure to Ar at the 
pressure of ≈ 10 atm, showed motor hyperactivity, probably 
related both to the higher pressure and to the narcotic 
potency of the gas, dependent on its lipid solubility. When 
the pressure  was raised to ≈ 20 atm, loss of righting reflex 
was  observed, indicating the onset of the anesthetic effect. 
This subsequent decrease of behavioral activity could 
be ascribed to the decrease of dopamine release from 
the striatum that occurred when the 20 atm pressure was 
achieved and was kept constant for at least 10 min.[43]

Another study concerning Ar anesthetic properties 
analyzed the contribution of gamma‑aminobutyric 
acid (GABA) transmission as a possible mechanism of 
action for narcosis. Rats were treated with different GABA 

receptor antagonists (gabazine and flumazenil, as GABAA 
antagonists, and 2‑idrossisaclofene, as GABAB antagonist) 
and then exposed to Ar in a pressurized chamber. 
Pretreatment with GABAA inhibitors increased significantly 
the Ar threshold pressure for the loss of righting reflex. 
Instead, pretreatment with GABAB inhibitor showed no 
significant effects on narcosis[44] [Table 2].

Ex vivo studies

Regarding the use of Ar for organ preservation, kidneys 
and lungs were the preferred targets.[46‑48,52,54] Indeed, 
reduced acute tubular necrosis and inflammatory lesions 
accompanied by better renal function and faster recovery 
were observed after heterotopic autotransplantation in which 
the removed kidney was preserved in a cold storage solution 

Table 3: Ex vivo studies employing argon for organ preservation
Article Organ Model Animal Comparison and 

duration of treatment
Histopathology Functional 

assessment
Biochemistry

Irani et al., 
2011[46]

Kidney I/R + Renal 
transplantation

Rat Cold preservation 
solution saturated with
Ar 100%
Duration: 6 h

Organ structural 
architecture: ↑
Necrosis: ↑

CrCl: ↑
Urinary albumin: ↑

CD10: +
Caspase‑3: ‑

Faure 
et al., 
2016[48]

Kidney I/R + Renal 
transplantation

Pig Preservation solution 
saturated with
Ar 100%
Duration: 30 h

Tubular necrosis: ↑
Fibrosis: ↑
Apoptosis: ↑
Inflammation: ↑
Organ structural 
architecture: ↑

Diuresis: ↑
CrCl: ↑
EFNa: ↑
Uu/Pu: ↑
Tubulopathy 
duration: ↑

RAA/TBARS: +
HSP 27: +
IL1, IL6, TNFα: ‑
Caspase‑3: ‑
CD10: +

Martens 
et al., 
2016[47]

Lung 2‑h warm 
ischemia

Pig EVLP:
Ar 70%
Duration: 6 h

BAL: ≈
W/D: ≈
Necrosis: ≈
Inflammation: ≈

PVR: ≈
Ppeak: ≈
PaO2/FIO2: ≈

CT: ground glass 
opacities: ≈
Septal thickness: ≈
Consolidation: ≈ 

Martens 
et al., 
2017[52]

Lung 18‑h cold 
ischemia

Pigs Pre‑conditioning + 
EVLP
Ar79‑88%
Duration: 28 h

BAL: ≈
W/D: ≈
Necrosis: ≈ 
Inflammation: ≈
Congestion: ≈

PVR: ≈
Ppeak: ≈
PaO2/FIO2: ≈

Inflammatory 
cytokines: ≈
CT density: ≈

Smith 
et al., 
2017[54]

Kidney I/R Pig EVNP:
Ar 70%
Duration: 1 h

Tubular
dilatation: ≈
Epithelial shedding: ≈
Epithelial
flattening: ≈
Tubular debris: ≈
Vacuolation: ≈
Condensed tubular 
nuclei: ≈

Renal blood flow: +
Urine Output ≈CrCl 
≈Fractional excretion 
of sodium: ≈

Urinary HIF‑1α: ≈
Urinary IL‑6: ≈
Urinary IL‑8: ≈
Urinary TNF‑ α: ≈
Cytoplasmic
HIF‑1α: ≈
Nuclear HIF‑1 α: ≈

↑: Treatment with Ar was significantly graft protective compared to control; ≈: Treatment with Ar was equivalent to control; +: Increased with 
Ar treatment compared to control; ‑: Decreased with Ar treatment compared to control. Ar: Argon, O2: Oxygen, N2: Nitrogen, Xe: Xenon, 
NA: Not available, I/R: Ischemia‑reperfusion injury, CrCl: Creatinine clearance, CD: Cluster of differentiation, EFNa: fraction of excreted 
sodium, Uu/Pu: Urinary urea/plasma urea ratio, RAA/TBARS: Ascorbic acid/thiobarbituric acid reactivity, HSP 27: Heat shock protein 27, 
IL: Interleukin, TNF: Tumor necrosis factor, EVLP: Ex vivo lung perfusion, BAL: Bronchoalveolar lavage, W/D: Wet/dry ratio, PVR: Pulmonary 
vascular resistance, Ppeak: Peak airways pressure, PaO2/FIO2: Partial arterial oxygen pressure/fraction of inspired oxygen, CT: Computerized 
tomography imaging, EVNP: Ex vivo normothermic perfusion, HIF‑1α: Hypoxia‑inducible factor‑1 alpha
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saturated with pure Ar.[46,48] Smith et al. studied the effects 
of ex vivo normothermic perfusion with a gas composition 
of 70% Ar for 1 h, in a porcine model of kidney 
ischemia‑reperfusion injury. The authors did not observe 
any organoprotective effect as far as hemodynamics, renal 
function, functional parameters, inflammatory markers, and 
histological analysis were concerned.[54] In EVLP following 
a period of warm ischemic injury in the swine, 6‑h 
ventilation with a respiratory mixture containing 70% Ar in 
O2, did not show any benefit in graft function.[47] Indeed, 
no significant differences in ventilator parameters, such as 
pulmonary vascular resistance, peak airway pressure, and 
blood gases, nor in the histopathology, were observed, 
compared to a control ventilation with N2/O2. In 2017, the 
same group confirmed the above results in a model of cold 
I/R injury during EVLP.[51] Overall lungs were exposed to 
Ar at a different concentration ranging from 79% to 88% 
in O2 for 28 h. At the end of the exposure, no beneficial 
effects on graft quality were observed [Table 3].

Use of argon after cardiac arrest

The use of Ar ventilation for neuroprotection after CA 
was explored in 6 studies,[12‑16,49]  [Table 4]. All these 
studies reported both neurological recovery, evaluated 
with various neurobehavioral tests, and tissue damage, 
assessed by histopathology and biochemistry. Of the 5 
studies using the rat model of CA, 4 were from the same 
research group[12,14,15,49] that investigated the effect of 1 h of 
ventilation with a mixture of 70% Ar in O2 initiated 1 h after 
resuscitation. After a no‑flow of 7 min, postresuscitation 
ventilation with Ar led to a better and faster neurological 
recovery during the following 7 days compared to the 
control ventilation. The results were  assessed by a battery 
of tests, including the rodent neurological deficit score, the 
open field, and the Morris water maze tests.[15] This good 
functional recovery was paralleled by a significantly lower 
brain damage in the neocortex and the hippocampal CA 3 
and 4 regions. In a subsequent study employing the same 
model of CA and cardiopulmonary resuscitation, it was 
confirmed that such beneficial effects of Ar treatment were 
dose‑dependent.[12] Indeed, both the neurological outcome 
and the histopathological brain damage were confirmed to 
be improved compared to controls, after exposure to Ar at 
a concentration of either 40% or 70% after resuscitation; 
however, the neuroprotective effects were significantly 
more pronounced when the inhalatory mixture contained 
70% Ar in place of 40%.[12] A third study introduced further 
data showing that the 70% Ar‑induced neuroprotection 
persisted even when the onset of the treatment was 
delayed up to 3 h after resuscitation.[14] More recently, 
neuroprotection of Ar was investigated in conjunction 
with mild therapeutic hypothermia (MTH), based on the 
hypothesis that the combination of these 2 interventions 
could boost protection, further improving neurological 
outcome after CA.[49] Thus, in the same model, rats were 
treated with MTH at 33°C (6 h) and 1 h ventilation 

with 70% Ar. Surprisingly, the results showed that the 
combined treatment, similarly to a control ventilation with 
air/O2, generated worse neurological recovery together 
with greater neuronal degeneration in hippocampal CA1 
region when compared to MTH alone. Unfortunately, in 
this study the treatment with Ar alone, as a reference, was 
absent and thus no further considerations on the effect of 
Ar could be made.

In a model of CA with an underlying acute MI in swine, a 
4‑h ventilation with a mixture of 70% Ar–30% O2 initiated 
immediately after resuscitation was compared to a control 
ventilation with an equivalent percentage of N2/O2. This 
study confirmed the Ar‑induced neuroprotective effects 
previously shown in rats. More specifically, animals 
that received Ar achieved a faster and more complete 
neurological recovery, already 24 h after CA, in contrast 
to controls, in which a neurological impairment persisted 
up to 72 h after resuscitation.[13]   The improvement 
in neurological recovery was confirmed by different 
neurological tests and by the circulating level of serum 
neuron‑specific enolase, a biomarker of neuronal damage. 
Histopathology supported this benefit on neurological 
recovery, showing lesser brain injury in animals that were 
treated with Ar compared to controls. In addition, a trend 
toward a smaller myocardial infarct size was also observed 
after inhalation of Ar.[13] The same group has recently 
replicated these results showing a beneficial effects of Ar 
ventilation on neuro‑ and cardioprotection in a more severe 
model of CA (abstract only available).[56] 

In a model of CA in rodents induced with KCl and 
esmolol, 24‑h ventilation with a mixture of 50% Ar‑50% 
O2was conducted, starting 15 min after resuscitation. As 
the primary outcome, neuronal damage was assessed by 
histopathology, while as secondary outcome, neurologic 
tests were performed. A trend toward a lesser neuronal 
damage after Ar treatment was reported.[16]

Mechanism of organ protection

The description of the potential mechanisms of action 
involved in the Ar protection derives mainly from in vitro 
studies and have been further confirmed in vivo. Ar appeared 
to possess O2‑like properties, which could explain its 
neuroprotective effects by partially restoring mitochondrial 
respiratory enzyme activity and reducing N‑methyl‑D‑aspartic 
acid‑induced neuronal death.[27] Moreover, Ar plays 
anti‑apoptotic effects modulating the molecular pathways 
involved in cell survival. In details, it increases extracellular 
signal‑regulated kinase (ERK) 1/2 phosphorylation, 
already after 30 min of exposure; it blocks the apoptosis 
cascade;[24,29,41] it upregulates the expression of the 
anti‑apoptotic protein B‑cell lymphoma‑2;[28,35] it activates 
the toll‑like receptor 2 and 4, which reduce caspase‑3 
activity[20,22,28] and mediate the intracellular signaling involved 
in the production of pro‑inflammatory cytokines, growth 
factors, and cell survival[4] [Table 1].
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Reperfusion can also contribute to cell death, and particularly 
on cardiomyocyte, it can induce ventricular arrhythmias 
and contractile dysfunction subsequent to the opening of 
the mitochondrial permeability transition pore (MPTP). 
MPTP is a nonselective channel of the inner mitochondrial 
membrane that opens at reperfusion, causing mitochondrial 
calcium‑phosphate overload,   and dissipates mitochondrial 
membrane potential. Phosphatidylinositol‑3‑kinase, ERK 
1–2 and 70 kDa ribosomal protein s6 kinase inhibit MPTP 
opening by their actions on several downstream signaling 
molecules that modulate the transition state of the pore 
either directly (via endothelial nitric oxide synthase, p53, 
glycogen synthase kinase) or indirectly by affecting the 
pro‑ and anti‑apoptotic B‑cell lymphoma protein. Thus, 
Ar by acting on the same pathways, directly or indirectly, 
through reperfusion injury salvage kinase, prevents the 
MPTP opening.[17,45]

 Safety of argon use

Even though safety was not the primary endpoint of all 
the above described in vivo studies, none of them has ever 
reported safety concerns related to the inhalatory exposure 
to Ar. In 12 in vivo studies,[12‑16,27,36‑38,45,49,52] continuous 
hemodynamic parameters and repeated blood gas analyses 
were performed during Ar ventilation. Ar did not affect 
neither hemodynamics nor ventilation, in terms of 
respiratory gas  exchange. Three studies have also reported 
body weight as an indicator of animal’s wellbeing during 
the days after Ar ventilation, and none of them reported 
significant changes.[16,34,35]

Two studies aimed to specifically evaluate the safety of Ar 
ventilation in pigs.[36,52] In 1 study, a 6‑h ventilation with 
Ar 79% in pigs showed no toxic effects, as demonstrated 
by serum biomarkers and assessment of liver and kidney 
function and structure.[52] In the other study, neonatal 
piglets were ventilated with Ar at different concentrations, 
ranging from 30% to 80% in O2, for a total of 3 h. Effects 
on hemodynamics and blood gases were evaluated, and 
prolonged ventilation with Ar was confirmed to be safe at 
each concentration. A similar study observed an augmented 
hypothermic protection at 48 h after hypoxia‑ischemia 
with Ar from 2 to 26 h, shown by improved brain energy 
metabolism, faster electrical brain activity recovery and 
reduced cell death.[37]

In 3 studies, Ar was used as a substitute of CO2 in inducing 
pneumoperitoneum during laparoscopic surgery to evaluate 
its safety  profile.[3,50,51] Ar insufflation into the abdominal 
cavity produced hemodynamic modifications, mainly 
related to increases in abdominal pressure and perhaps 
to a potential effect on systemic vascular resistances 
(effect observed in 1 study[50] but not replicated in the 
other[51]). No significant changes in respiratory functions 
were observed. Since Ar is lesser soluble than CO2, an 
increased risk of hemodynamic instability exits in the 
instance of accidental gas embolism.[3]

Finally, because Ar is denser than air, it could be argued 
that ventilation with such a gas could increase respiratory 
resistance.[5] However, none of the preclinical studies 
reported such a condition after prolonged exposure to Ar. 
Moreover, a study with a model of vigorous ventilation 
in a respiratory resistance machine showed no changes in 
respiratory resistance at atmospheric pressure, and up to 4 
atm, when Ar 80% was compared to air.[5]

Clinical uses of argon

Since the sixties, Ar was applied for the measurement 
of lung volumes,[57‑59] with the rebreathing/gas‑dilution 
technique. Ar 6%–7% has been also used to calculate the 
cardiac output CO.[60,61] and for the estimation of global 
myocardial blood flow.[62]

In these studies, subjects were exposed to a single or a few 
breaths of an isobaric mixture of Ar and no conclusions on 
safety issues may be extrapolated.

The feasibility of Ar use was addressed by studies involving 
divers.  In these studies, divers breathed Ar mixtures for 
long periods in hyperbaric conditions. In 1939, motor 
and cognitive impairment, such as slowed mental activity, 
inability to perform efficient manual work and emotional 
disturbances, which might lead to loss of consciousness, 
were described in divers breathing a mixture of 69% Ar, 
20% O2and 11% N2 from 1 to 10 atm.[5] In another study, 10 
subjects performed mental arithmetic tasks while exposed to 
Ar 80% in O2 at 1, 4, and 7 atm. Again, Ar under hyperbaric 
condition showed more narcotic effects.[55]

The longest exposure to Ar under hyperbaric condition 
was in 1998.[63] Four male volunteers participated in a 
simulated diving at 10 m for 7 days with following gas 
mixture: O2 0.2 ± 0.005 kg/cm2, N2 0.8 ± 0.01 kg/cm2 and 
Ar 1.0 ± 0.01 kg/cm2. No effects on central nervous system 
electrophysiology and functional test, cardiopulmonary 
system, i.e., electrocardiogram, oxihemometry, and 
biochemical analysis of urine, were detected. All measured 
data did not exceed physiological range. Under hyperbaric 
pressure, a workload of 100 Wt was performed 62% higher 
when breathing Ar 15% in O2 than N215% in O2. Moreover, 
the exposure to a hypoxic Ar‑N2 mixture containing 
O2 0.15 ± 0.005 kg/cm2, instead of O2 0.2 ± 0.005 kg/cm2, 
determined an increase in the performed work volume, 
showing that Ar causes a positive effect on organism 
adaptation to hypoxia.

Another study performed on 8 human volunteers 
investigated the possible adverse effects from breathing 
isobaric mixture of 80% Ar and 20% O2 for 30 min. The 
authors did not observe narcosis nor coagulation nor 
fibrinolysis abnormalities, which would have been present 
in case of gas embolism.[64]

More recently, Ar inhalation has been proposed to 
measure the global cerebral blood flow (CBF), by a 



Nespoli, et al.: Inhalatory argon and organ protection

Annals of Cardiac Anaesthesia  |  Volume 22 | Issue 2 | April‑June 2019 133

modification of the Kety‑Schmidt technique.[65] To establish 
this new  method, 30 anesthetized patients undergoing 
cardiovascular surgery were subjected to ventilation with 
70% Ar in O2 for 15 min, before the surgical procedure 
and CBF was evaluated.[66] Ar ventilation did not show any 
influence on cerebrovascular circulation or metabolism, 
evaluated by transcranial Doppler sonography nor 
difference in content between arterial and jugular‑venous 
lactate, glucose, and O2, respectively.

Summary of evidence and future perspectives

Ar might diminish the neurological and myocardial damage 
after a hypoxic‑ischemic insult.

Indeed, Ar has been tested in different models of ischemic 
insult, at concentrations ranging from 20% up to 80%. 
Overall, Ar emerged as a protective agent on cells, tissues, 
and organs, showing less cell death, reduced infarct size and 
faster functional recovery. More specifically, encouraging 
data has been reported in animal studies on CA in which a 
better and faster neurological recovery was achieved when 
Ar was used in the postresuscitation ventilation. More 
importantly, these benefits have been replicated in different 
studies, enrolling both small and large animals. Ventilation 
with Ar in O2 has been demonstrated to be safe both in 
animals and humans.

Based on all the evidence described in this article, the 
protective effects of Ar should be evaluated in a clinical 
scenario, in particular, those concerning the neuroprotective 
properties after CA which are strongly supported by 
preclinical evidence. Finally, Ar can be simply administered 
through a ventilator which is modified to be compatible 
with the gas mixture Ar/O2/air, in variable proportions, 
provided in dedicated cylinders.  Indeed, Ar has a relatively 
low cost, approximately 9 Euro cent per liter,[13] 10‑fold 
lower than anesthesia agents such as sevoflurane and 
isoflurane and 100‑fold lower than xenon. 

Conclusions
Ar use has been described in a variety of preclinical and 
human studies. Inhalatory Ar seems to be potentially 
beneficial in the context of organ protection after different 
types of insults. Safety data show nontoxic effects. Thus, 
preclinical and clinical data support future clinical studies 
on the inhalatory Ar therapy.
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