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ABSTRACT2

The growing importance of financial technology platforms, based on interconnectedness,3
makes necessary the development of credit risk measurement models that properly4
take contagion into account. Evaluating the predictive accuracy of these models is5
achieving increasing importance to safeguard investors and maintain financial stability.6
The aim of this paper is twofold. On the one hand, we provide an application of7
Poisson autoregressive stochastic processes to default data with the aim of investigating8
credit contagion; on the other hand, focusing on the validation aspects, we assess the9
performance of these models in terms of predictive accuracy using both the standard10
metrics and a recently developed criterion, whose main advantage is being not dependent11
on the type of predicted variable. This new criterion, already validated on continuous and12
binary data, is extended also to the case of discrete data providing results which are13
coherent to those obtained with the classical predictive accuracy measures. To shed14
light on the usefulness of our approach, we apply Poisson autoregressive models with15
exogenous covariates (PARX) to the quarterly count of defaulted loans among Italian real16
estate and construction companies, comparing the performance of several specifications.17
We find that adding a contagion component leads to a decisive improvement in model18
accuracy with respect to the only autoregressive specification.19

Keywords: Credit risk, Systemic risk, Contagion, PARX models, Validation measures20

1 INTRODUCTION

The credit market is experiencing a large growth of innovative financial technologies (fintechs). In particular,21
peer-to-peer lending platforms propose a business model that disintermediates the links between borrowers22
and lenders and is based on a stronger interconnectedness between the agents with respect to the traditional23
banking system. Furthermore, peer-to-peer lenders often do not have access to individual borrowers’ data24
usually employed in banks’ credit scoring models, such as financial ratios and credit bureau information.25
In this context, models analyzing correlation in the default dynamics of different agents or sectors can26
effectively support credit risk assessment.27

More generally, interconnectedness, already known as a trigger of the great financial crisis in 2008-28
2009, is recognized as a source of systemic risk, i.e., according to the European Central Bank, “the29
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risk of experiencing a strong systemic event, which adversely affects a number of systemically important30
intermediaries or markets”. The impact that an event experienced by an economic agent or sector can have on31
other institutions in the market is often referred to as contagion. From an econometric viewpoint, statistical32
methods able to properly measure the systemic risk that arises from interconnectedness are necessary to33
safeguard both traditional intermediaries and peer-to peer lending investors, therefore maintaining financial34
stability.35

The first systemic risk measures have been proposed for the financial sector, in particular by Adrian and36
Brunnermeier (2011) and Acharya et al. (2012). These works consider financial market data, calculating37
the estimated loss probability distribution of a financial institution, conditional on an extreme event in the38
financial market. Being applied to market prices, these models are based on Gaussian processes.39

Financial market data have also been used in another recent approach to systemic risk, based on correlation40
network models, where contagion effects are estimated from the dependence structure among market prices.41
The first contributions in this framework are Billio et al. (2012) and Diebold and Yilmaz (2014), who42
derived contagion measures based on Granger-causality tests and variance decompositions. Ahelegbey et43
al. (2016) and Giudici and Spelta (2016) have extended the methodology introducing stochastic correlation44
networks.45
Networks represent a relevant modelling approach in peer-to-peer platforms, where continuous credit46
demand and lending activity makes available large amounts of transaction data. Network models have47
been recently applied to peer-to-peer lending platforms data by Ahelegbey et al. (2019) and Giudici and48
Hadji-Misheva (2019).49

Another possible approach to analyze contagion is to build discrete data models for the counts of50
default events. Including exogenous covariates in such models allows to test whether the failure of a51
given firm increases the probability that other failures occure conditional on a set of risk factors. For52
example, Lando and Nielsen (2010) model default times by Poisson processes with macroeconomic and53
firm-specific covariates entering the default intensities. Their methodology does not directly include a54
contagion component, but investigates possible contagion effects by testing whether the Poisson model55
is misspecified. Default counts are also modeled by Koopman et al. (2012) and, recently, by Azizpour et56
al. (2018), who use a binomial specification where the probability of default is a time-varying function of57
underlying factors, also including unobserved components.58

Among the approaches to default counts modelling we focus on PARX models developed by Agosto et al.59
(2016), including autoregressive and exogenous effects in a time-varying Poisson intensity specification.60
A recent extension by Agosto and Giudici (2019) makes PARX models suitable to investigate default61
contagion. In this paper, PARX models are applied to default counts data in the Italian real estate sector.62

Validation is a critical issue in credit risk modelling, because of the interest in selecting indicators able63
to predict the default peaks, and achieves further importance in artificial intelligence systems, where the64
traditional accuracy measures based on probabilistic assumptions cannot always be implemented.65
In the specific case of contagion analysis, such as the one presented in this paper, model selection also66
assumes an explanatory role: the comparison of alternative specifications, including contagion components67
or not and considering different exogenous risk factors, provides a deeper insight into default correlation.68

In our empirical application we validate the models applied to default counts using several measures,69
including the Rank Graduation index RG, recently developed by Giudici and Raffinetti (2019). In Giudici70
and Raffinetti (2019), the purpose was to propose an index that is objective and not endogenous to the71
system itself. The Rank Graduation index (RG) was originally developed to deal with two real machine72
learning applications characterised, respectively, by a binary and a continuous response variable. It is based73
on the calculation of the cumulative values of the response variable, re-ordered according to the ranks of74
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the values predicted by the considered model. Giudici and Raffinetti (2019) showed that the RG metric75
is more effective than the AUROC (typically used for models with binary response variables) and the76
RMSE (typically used for models with continuous response variables). Specifically, in the binary case,77
it appears as an objective predictive accuracy diagnostic, since built on re-ordering the response variable78
values according to the predicted values themselves, and, in the continuous case, it is not affected by the79
presence of outliers. Here, the application of the Rank Graduation index is extended to the case of default80
count data and the related results are compared to those obtained with traditional measures, such as the81
likelihood-based criteria and RMSE. Given its attractive features and properties, both regulators and82
supervisors may be interested in the RG employment in artificial intelligence applications, in order to83
better understand and manage the business models and avoid decisions based upon wrong outputs which84
may lead to losses or reputational risks.85

The paper is organised as follows. Section 2 describes PARX models and how they can be used to study86
the default count dynamics and investigate possible contagion effects. Section 3 provides an overview of87
the main validation criteria and the basic elements characterising the Rank Graduation measure. Section 488
presents the empirical findings derived from the application and validation of PARX models for default89
counts. Section 5 concludes.90

2 PARX MODELS

The approach to default counts modeling applied in this work is based on PARX models (Agosto et91
al., 2016). PARX models assume that a count time series yt, conditional on its past, follows a Poisson92
distribution with a time-varying intensity λt > 0, whose formulation includes an autoregressive part and a93
d-dimensional vector of exogenous covariates xt := (x1t, x2t, ..., xdt)

′ ∈ Rd:94

yt|Ft−1 ∼ Poisson (λt)⇔ P (yt = y|Ft−1) =
λyt exp (−λt)

y!
(1)

λt = ω +

p∑
i=1

αiyt−i +

q∑
i=1

βiλt−i +
d∑

i=1

γif(xi)

with Ft−1 denoting the σ-field σ {y0, ..., yt−1, λ0, ..., λt−1, x0, ..., xt−1}, ω > 0, αi ≥ 0 (i = 1, 2, ..., p)95
and βi ≥ 0 (i = 1, 2, ..., q).96

When the vector of unknown parameters γ := (γ1, ..., γd) is null, the model reduces to Poisson97
Autoregression (PAR) developed by Fokianos et al. (2009), who showed how including past values98
of the intensity λt allows for parsimonious modelling of long memory effects. Note that exogenous99
covariates are included through a non-negative link function to guarantee that intensity is positive.100
The presence of both dynamic and exogenous effects makes PARX models suitable for describing count101
time series of events that cluster in time, as defaults are known to do. Furthermore, it can be shown that102
including an autoregressive component as well as covariates in a Poisson process generates overdispersion,103
that is unconditional variance larger than the mean, a typical feature of default count time series.104
Agosto et al. (2016) applied model (1) to Moody’s rated US corporate default counts, with the aim of105
distinguishing between the impact of past defaults on current default intensity - possibly due to contagion106
effects - and the impact of macroeconomic and financial variables acting as common risk factors. Recently,107
Agosto and Giudici (2019) proposed to extend PARX models to accomplish investigation of default108
contagion effects. Differently from model (1) and following Fokianos and Thjøstheim (2011), they use a109
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log-linear intensity specification. This allows to consider negative dependence on exogenous covariates,110
which can be useful in credit risk applications.111

Letting yjt the number of defaults in economic sector (or, more generally, group of borrowers) j at time t112
and ykt the number of defaults in sector k, they define the following model:113

yjt|Ft−1 ∼ Poisson(λjt) (2)

log(λjt) = ωj +

p∑
i=1

αji log(1 + yjt−i) +

q∑
i=1

βji log(λjt−i)

+
r∑

i=1

γjixt−i +
s∑

i=1

ζji log(1 + ykt−i)

with ωj , αji, βji, γji, ζji ∈ R and xt−i := (x1t−i, x2t−i, ..., xdt−i)
′ ∈ Rd being a vector of lagged114

exogenous covariates. In model (2), that the authors call Contagion PARX, ζj measures the effect of the115
covariate default count process on the response default counts, which can be interpreted as a contagion116
effect. Taking the log(·) + 1 of counts allows to deal with possible zero values. This specification can easily117
be extended to the case where the default counts of a set of different sectors, rather than only one covariate118
default series, are included among the regressors.119

3 MODEL VALIDATION

A basic issue of the artificial intelligence systems is the validation process for the model prediction quality120
assessment. In this paper, we consider the available literature for validation procedures and illustrate a new121
practice for the validation.122

In literature, several metrics aimed at comparing and improving the models are available, depending123
on the nature of data. As mentioned above, one of the focus of this paper is on the use of the Poisson124
autoregressive models for modelling default counts. The presence of a discrete response variable suggests125
the choice of the Root Mean Squared Error (RMSE) and the criteria based on likelihood, such as the Akaike126
Information Criterion (AIC) and Bayesian Information Criterion (BIC), as the most widely employed127
measures for the model predictive accuracy evaluation.128

It is worth noting that in the model validation research field, the lack of a standard metric, working129
regardless of the nature of the response variable to be predicted, is still a crucial drawback to be faced.130
Recently, Giudici and Raffinetti (2019) have worked out one possible solution by proposing a new measure,131
the RG Rank Graduation index, which is based on the calculation of the cumulative values of the response132
variable, according to the ranks of the values predicted by a given model. The main features of the RG133
criterion together with a brief description of the conventional validation measures are provided in the134
following subsections.135

3.1 Conventional model validation measures136

The RMSE, AIC and BIC criteria, intended as some of the most broadly used metrics for the model137
validation, are defined as follows:138
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RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2, (3)

where the yi’s and ŷi’s represent the response variable observed and predicted values (with i = 1, . . . , n),139
respectively,140

AIC = −2logL(θ̂|x1, . . . , xn) + 2k (4)

and141

BIC = −2logL(θ̂|x1, . . . , xn) + klog(n), (5)

where θ is the set of model parameters, logL(θ̂|x1, . . . , xn) is the log-likelihood of the model given the142
data x1, . . . , xn when evaluated at the maximum log-likelihood estimate of θ (θ̂), k is the number of the143
estimated parameters in the model and n is the number of observations.144

The best model, in terms of predictive accuracy, is the one that provides the minimum RMSE, AIC and145
BIC (for more details, see e.g. Hyndman and Koehler, 2006; Kuha, 2004).146

3.2 The RG as an additional model validation criterion147

Besides the conventional model validation criteria, the RG measure deserves a wider discussion,148
especially because it appears as a more general predictive accuracy criterion which does not depend149
on the type of data to be analysed. As mentioned above, in Giudici and Raffinetti (2019), the RG was150
proposed as a unique metric to assess the model predictive accuracy in presence of both binary and151
continuous response variables. Moreover, due to its features and construction it fulfills some attractive152
properties: 1) it appears as an objective criterion compared with the AUROC metric, which depends on153
the arbitrary choice of the cut-off points; 2) it is a robust criterion since non-sensitive to the presence of154
outliers. Given the topic of this paper, related to the employment of discrete data models for default counts,155
it is therefore worth to extend the frontiers of the RG application areas to the context of discrete response156
variables.157

The interest in applying the RG index to default count data is also linked to some typical features shown158
by the time series of defaults. The common presence of peaks and outliers makes indeed preferable to159
evaluate predictive accuracy of default count models through concordance measures rather than error160
measures that are known to be sensitive to outliers.161

In order to better highlight the main strengths of our validation approach, a brief overview on the RG162
construction seems to be basic. The proposal is based on the so-called C concordance curve, which is163
obtained by ordering the normalised Y response variable observed values according to the ranks of the164
predicted Ŷ values provided by the model.165

Let Y be a discrete response variable and let X1, . . . , Xp be a set of p explanatory variables. Suppose166
to apply a model such that ŷ = f(X). The model predictive accuracy is assessed by measuring the167
distance between the set of the C concordance curve points, whose coordinates are denoted with168
(i/n, (1/(nȳ))

∑i
j=1 yr̂j ), where ȳ = 1

n

∑n
i=1 yi and yr̂j represents the j-th response variable value169

ordered by the rank of the corresponding predicted value ŷj (with j = 1, . . . , i and i = 1, . . . , n), and the170
set of the bisector curve points of coordinates (i/n, i/n). As an example, the graphical representation of171
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the C concordance (in red) and bisector (in black) curves is displayed in Figure 1. Figure 1 reports also172
two other curves: the response variable LY Lorenz curve (in blue), which is defined by the normalised Y173
values ordered in non-decreasing sense, and the response variable L

′
Y dual Lorenz curve (in green), which174

is defined by the normalised Y values ordered in non-increasing sense.175
Both the response variable Lorenz and dual Lorenz curves take a remarkable role in the RG measure176

construction, especially the response variable LY Lorenz curve. Indeed, since the model predictive accuracy177
degree depends on the distance between the bisector and the C concordance curves, it follows that the more178
the C concordance curve moves away from the bisector curve, the more the model predictive accuracy179
improves. This because the bisector curve detects a model without predictive capability. Indeed, if ŷi = ȳ,180
for any i = 1, . . . , n, through some manipulations, the coordinates of the C concordance curve becomes181
(i/n, i/n), which perfectly corresponds to the coordinates of points characterising the bisector curve.182
Analogously, if the C concordance curve perfectly overlaps with the LY Lorenz curve, then the model183
is perfect because it preserves the ordering between the observed response variable Y values and the184
corresponding Ŷ estimated values. In such a case, the coordinates of the C concordance curve become185
(i/n, (1/(nȳ))

∑i
j=1 y(j)), where y(j)’s, with j = 1, . . . , i and i = 1, . . . , n, are the response variable186

values ordered in non-decreasing sense.187

Figure 1 about here188

Based on the above considerations, the RG measure takes the following expression:189

RG =
n∑

i=1

{
(1/(nȳ))

∑i
j=1 yr̂j − i/n

}2

i/n
=

n∑
i=1

{
C(yr̂i)− i/n

}2
i/n

, (6)

where C(yr̂j ) =

∑i
j=1 yr̂j∑n
i=1 yi

represents the cumulative values of the (normalised) response variable Y . The190

RG measure in (6) appears as an absolute metric, since it takes values in the close range [0, RGmax], where191
RGmax is the maximum value that can be achieved. Trivially, the maximum RG value can be reached if192
the model perfectly explains the response variable, meaning that the C concordance curve indifferently193
overlaps with the response variable Lorenz or dual Lorenz curves. Indeed, the distance between the Y194
Lorenz or dual Lorenz curves and the bisector curve is the same, being the two curves symmetric around195
the bisector curve. A normalized RG measure is then defined as the ratio between the absolute RG measure196
ad its maximum value RGmax.197

Finally, we remark that when some of the Ŷ values are equal to each other, we take into account the198
adjustment suggested by Ferrari and Raffinetti (2015) in order to solve the re-ordering problem. Specifically,199
the original Y values associated with the equal Ŷ values are substituted by their mean.200

4 APPLICATION

In this section we provide the application of PARX models to Italian corporate default counts data in201
the real estate sector and their evaluation through different validation measures. Bank of Italy’s Credit202
Register collects the quarterly number of transitions to bad loans in major economic sectors. Bad loans203
are exposures to insolvent debtors that cannot be recovered and that the bank must report as balance sheet204
losses. Being an absorbent state, the number of loans turned out to be bad in a given period can be used as205
a proxy of the default count at that time. The data are quarterly and divided by economic sector. Among206
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the sectors included in the database we focus on the Real Estate and Commercial ones, using data covering207
the period March 1996 - June 2018 (90 observations). The real estate sector includes both real estate and208
construction companies and was one of the most hit by the recent financial crisis. Our choice is motivated209
by the economic interest in verifying the impact that the default dynamics of commercial firms, highly210
influenced by the changes in consumption behaviour, may have on the real estate sector. Possible contagion211
from the commercial to the real estate sector is mainly due to the decrease of both business and private212
investments by the owners of commercial activities, causing a reduction in the demand of new buildings213
and real estate services.214

Figure 2 shows the default count time series of the two economic sectors considered. Both series exhibit215
clustering and a possible structural break in 2009, with an increase in both level and variability. Table 1216
reports the main summary statistics for the response variable of our exercise, that is the default counts217
among real estate Italian firms, while Figure 3 shows the autocorrelation function of the series. Both the218
presence of overdispersion (the empirical variance is 506468.7 and the empirical average 1132.9) and the219
slowly decaying autocorrelation encourage the use of PARX to model the data.220

Figure 2 about here221

Table 1 about here222

Figure 3 about here223

To investigate credit contagion effects between the two sectors and show our validation procedure, we224
consider the model regressing real estate sector default counts on their past values and on past commercial225
sector default counts.226

An important robustness and validation step when applying PARX models is assessing the effects of227
including exogenous covariates summarising the macroeconomic context, such as the business cycle. The228
aim is to verify to what extent the macroeconomic stress affecting all the economic agents and sectors229
explains the default and contagion dynamics.230
Thus, we first estimate a model (Full Contagion PARX) that, according to specification (2), includes both a231
contagion component and the exogenous covariate GDP in a log-linear intensity specification1:232

log(λt) = ω+α log(1 + yt−1) + γ1GDPt−1 + γ2GDPt−2 + ζ1 log(1 + yCt−1) + ζ2 log(1 + yCt−2) (7)

where GDPt is the Italian GDP growth rate and yCt is the number of defaults among commercial sector233
companies at time t.234

From Table 2, reporting the parameter estimates for the model above, note that the effect of GDP variation235
on the real estate sector default risk is significant at the second lag, suggesting a delayed effect of the236
business cycle on the corporate solvency dynamics which is reasonable from an economic point of view.237
Also the impact of commercial sector default counts turns out to be significant with a two quarters lag.238

Table 2 about here239

1 The number of lags has been determined through preliminary model selection based on likelihood ratio and BIC criterion.
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In order to highlight the contribution of the different components - autoregressive, contagion and240
exogenous - and validate the model we then consider two alternative specifications.241

We first estimate a PARX model that, following specification (1), includes an autoregressive and an242
exogenous component in a linear intensity specification:243

λt = ω + αyt−1 + γ1GDP
−
t−1 + γ2GDP

−
t−2 (8)

where GDP− := IGDP<0|GDP |, that is the absolute value of the negative part of GDP growth rate.244
This ensures that default intensity is positive, as needed in the linear specification. Fitting the model245
above, we do not find significant effects of GDP decrease on the real estate sector. Thus, the model246
reduces to an only autoregressive Poisson model as the previously cited PAR. According to this result,247
while negative correlation with the business cycle taken into account by the log-linear model significantly248
explains the default dynamics, the positive association between the GDP decrease and the default counts is249
not significant in our exercise. This highlights the advantage of using specifications that allow to consider250
negative dependence.251

The last competing model is a Contagion PARX without other covariates than commercial sector default252
counts (γ parameters equal to 0 in specification (2)):253

log(λt) = ω + αyt−1 + ζ1 log(1 + yCt−i) + ζ2 log(1 + yCt−2) (9)

We now compare the in-sample performances of the three models above: PAR model, Contagion PARX254
model and Full Contagion PARX model by using the RMSE, AIC, BIC and RG validation measures. The255
results are illustrated in Table 3.256

Table 3 about here257

First note that the Full Contagion PARX model is the most performing according to RMSE, AIC and258
BIC criteria. In particular, moving from the PAR to the Contagion PARX specification leads to a decrease259
of nearly 24% in the RMSE. The model ordering changes when considering the RG index. The model260
showing the higherRG index is indeed the Contagion PARX one, with a value of 6.114. The Full Contagion261
PARX model shows a slightly lower value (6.098), while the RG index of the PAR model is 5.796. As262
RGmax = 6.709, it follows that the PAR model explains the 86.4% of the variable ordering, compared263
with the 90.9% of the Full Contagion PARX Model and the 91.1% of the Contagion PARX Model.264

According to all the considered measures, adding the contagion component leads to a decisive increase265
in model performance with respect to the only autoregressive specification, with a decrease of 18% in266
RMSE and an increase of nearly 3.5% in accuracy. Considering the negative association between the267
macroeconomic stress and default risk considerably reduces the error measure - the decrease in RMSE with268
respect to the Contagion PARX model is around 7% - but does not improve model performance in terms269
of accuracy, measured through the RG index. In such a case, the choice of the preferable specification270
depends on the objective of model comparison. If the aim, as in our contagion analysis, is validating a271
model that well explains the empirical distribution of the data even with a limited number of parameters,272
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rather than getting a point forecast of the response variable, decisions based on a concordance measure are273
more appropriate.274

5 CONCLUSION

In this paper, we have illustrated an application of PARX models, which investigate contagion through275
Poisson autoregressive stochastic processes, and we have evaluated the predictive accuracy of different276
specifications. While previous works focused on the theory development and extension of PARX, we277
concentrate on the issue of validating these models and measuring the contribution of contagion and278
exogenous components to their predictive performance. For doing so, we resorted to a novel metric, called279
RG index, which is independent on the involved response variable nature. Specifically, the RG measure,280
originally considered in the cases of binary and continuous data, was here extended with the aim of covering281
also the case of discrete data.282

Fitting several PARX-type specification to the quarterly count of defaulted loans in the Italian real estate283
sector, we find evidence of a significant effect of commercial sector defaults on real estate default risk.284
We also find that considering the effect of the business cycle improves model performance according285
to likelihood-based criteria and traditional error measures, but it does not increase predictive accuracy286
according to the new concordance metric.287
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Mean Std. dev. Min Max
1132.9 711.7 368 2825

Table 1. Summary statistics for the real estate sector default counts: Italian data

variable estimate standard error t-stat
constant -0.1339 0.3285 0.4075

real estate sector bad loans in t− 1 0.6062 0.1591 3.8103***
commercial sector bad loans in t− 1 -0.2886 0.2689 -1.0732
commercial sector bad loans in t− 2 0.7161 0.1299 5.5129***

GDP growth rate in t− 1 -0.0341 0.0284 -1.2009
GDP growth rate in t− 2 -0.0705 0.0274 -2.5732**

Table 2. Parameter estimates for real estate sector default counts

Model RMSE AIC BIC RG
Full Contagion PARX Model 207.68 -1256019 -1256004 6.098
Contagion PARX Model 222.02 -1255643 -1255633 6.114
PAR Model 272.06 -1254332 -1254327 5.796

Table 3. Validation measures for the considered models
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Figure 1. The LY (blue) Lorenz curve, dual L
′
Y (green) Lorenz curve and the C (red) concordance curve
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Figure 2. Default count time series of real estate and commercial corporate sector (logarithmic scale):
Italian data
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Figure 3. Sample autocorrelation function of real estate default count time series: Italian data
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