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Abstract

This paper deals with the Multiple Vehicle Balancing Problem (MVBP).
Given a fleet of vehicles of limited capacity, a set of stations with initial and
target inventory levels and a distribution network, the MVBP requires to
design a set of routes and pickup and delivery operations along each route
such that inventory is redistributed among the stations without exceed-
ing the vehicle capacities and such that routing costs are minimized. The
MVBP arises in bicycle sharing systems, where rebalancing of bicycles is
needed between stations to match their expected demands. The MVBP
is NP-hard, generalizing several problems in transportation like the Split
Delivery Vehicle Routing Problem. Using theoretical properties of the
problem, we propose an integer linear programming formulation. Lower
bounds are computed by a column generation routine embedding an ad-
hoc pricing algorithm; we also introduce strengthening valid inequalities.
Upper bounds are obtained by a memetic algorithm that focuses on rout-
ing and considers the pickup and delivery operations in a post-processing
phase. We combine lower and upper bounding routines in both exact and
matheuristic algorithms, obtaining proven optimal solutions for MVBP
instances with up to 25 stations and an unbounded number of vehicles,
or up to 20 stations and 5 vehicles.
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1 Introduction

Context

Self-service bicycle sharing systems are now widespread all over the world. After
several tries in different countries, systems like Vélo’V in Lyon (France) launched
in 2005 and its follower in Paris Vélib two years later have encountered a re-
markable success. Bicycle sharing systems are now present in more than 200
cities, including New York (U.S.A.) and Hangzhou (P.R.C.), the biggest bicycle
sharing network being in the latter city with about 2′400 stations and up to
60′000 bicycles. One of the issues faced by operators is to ensure that users are
consistently able to find bicycles at their departure station and available drop
racks at their destination station. In fact, especially during peak hours, many
users choose the same departure and arrival stations, yielding bicycles unavail-
ability at the first stations and empty racks unavailability at the latter stations.
The solution chosen by many operators is to rebalance stations by means of ded-
icated trucks, which pickup bicycles from certain stations and deliver them to
other ones, in order to fulfill at best an estimated demand. Given the costs and
the constraints of driving trucks in a urban environment, being able to efficiently
perform such a rebalancing is a key factor for the success of the whole system.
There are many other issues, e.g. station locations, rebalancing incentives, fleet
dimensioning. The interested reader can find in Laporte et al. [17] an updated
survey on the operations research questions raised by bicycle sharing systems.
The topic of the present paper comes under the first mentioned issue, namely
the rebalancing problem. More precisely, we are interested by static rebalancing
performed by several trucks, where “static” means that no users are allowed to
move the bicycles. This is the case when the system is closed or nearly idle
during night. Static rebalancing is classically opposed to dynamic rebalancing,
where the moves performed by the users cannot be neglected. There is currently
a lively research trend on these static and dynamic rebalancing problems. Raviv
et al. [20] wrote the first paper addressing the static problem with more than
one truck. They propose several models whose objective is to maximize user
satisfaction, and formulate them as mixed integer programs solved by CPLEX.
Since this approach is computationally expensive and considerably restricts the
size of the instances that can be solved within reasonable time, the authors
propose also a two-phase heuristic. Forma et al. [15] later presented a three-
step matheuristic for the same problem, which outperforms previous algorithms.
Schuijbroek et al. [22] propose a model inspired by [20], but different in the way
of calculating the users satisfaction (they use a server queueing system point
of view), which is solved through a cluster first-route second heuristic yielding
high quality solutions on real instances. Dell’Amico et al. [11] considered a
problem close to ours, with the objective of minimizing the total routing cost.
Nevertheless, they assume each station served by a single truck. They propose
four mixed integer linear programming formulations for the problem, solved by
a branch-and-cut able to optimally solve all their instances (taken from real sys-
tems) involving up to 50 stations and obtained relatively low optimality gaps
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in most of the remaining cases (up to 116 stations). We refer to the survey
mentioned above for other references on rebalancing.

The Multiple Vehicle Balancing Problem

In this paper we introduce a new routing problem, capturing the main features
of the task faced by the fleet of trucks in a static rebalancing context. We
call it the Multiple Vehicle Balancing Problem (MVBP). We assume that a
homogeneous fleet of vehicles of limited capacity is given, together with a set of
stations with initial and target inventory levels. The initial level is the number
of bicycles originally present in the station while the target level represents the
number of bicycles needed to meet an expected demand. We also assume that
the distances between the stations are known. The MVBP requires to find a set
of routes, each composed by a sequence of stations to be visited by a vehicle and
pickup and delivery operations along the route. The objective function is the
total distance travelled by the vehicles. Temporary storage is not allowed, i.e.
no bicycle can be loaded from a station whose target inventory is higher than or
equal to the initial one, or unloaded to a station whose target inventory is lower
than or equal to the initial one. In fact, temporary storage is uncommon in real
systems, since they may lead to vehicle synchronization issues. In Section 2.1,
we give the precise description of the problem.

From a methodological point of view, the MVBP is NP-hard and generalizes
several routing problems. For instance, when all stations have a target inventory
that is higher than the initial one, except for a single depot station, our MVBP
becomes the Split Delivery Vehicle Routing Problem (SDVRP) [3]. Dror and
Trudeau [13] have been the firsts to study this problem. They prove that the
split dimension of the problem may lead to savings in term of the objective
function; at the same time this feature substantially increases the complexity of
the problem [3]. Archetti et al. [4] present a tabu search algorithm to solve this
problem. A few years later, Archetti et al. [2] and Archetti et al. [1] propose
exact algorithms exploiting column generation and cutting planes, respectively.
They manage to find proven optimal solutions for instances with up to 100
customers, and one with 144 vertices, in a few hours of computation.

The MVBP belongs to the wide class of Pickup and Delivery vehicle routing
problems (PDVRPs), where a fleet of vehicles is used to transport requests
from the depot and/or some vertices to the depot and/or other vertices in
the network. For recent survey on PDVRPs, we refer the interested reader to
Baldacci et al. [6] for what concerns transportation of freight, and Schmid et
al. [21] for transportation of people. There is a vast literature on the PDVRP,
but to discuss this huge literature is out of the scope of the paper. Nevertheless
we cite Baldacci et al. [5], since the authors propose one of the most powerful
exact approaches for the PDVRP with time windows (PDPTW).

The MVBP can be classified as a many-to-many (M-M) vehicle routing
problem, in which a request has multiple origins (in our case pickup stations)
and multiple destinations (in our case delivery stations). It can also be seen
as the multi-vehicle counterpart of single vehicle problem studied by the three
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last authors in [9], even if in this latter work – and it is one of its interests –
temporary storage is allowed.

Contribution and plan

Our main contributions are the following:

• we investigate distinctive theoretical properties of optimal solutions. Such
properties extend those by Dror and Trudeau for the SDVRP [13];

• with the help of the aforementioned extensions of Dror and Trudeaus prop-
erties we model the MVBP with a set partitioning extended formulation
having one variable for each route with pickup and delivery operations;

• we design an effective way to solve the relaxation of our formulation by
means of column generation techniques, solving the pricing problem with
an algorithm adapted from Baldacci et al. [7];

• we introduce additional cuts for the MVBP to enhance the quality of
the lower bound and we show how to integrate them efficiently with our
pricing procedure;

• we present how to produce tight upper bounds by means of an efficient
memetic algorithm exploiting a particular combinatorial encoding of the
solutions. Such matheuristic solves to optimality almost all instances with
up to 20 vertices in an average computing time smaller than 10 minutes;

• we integrate together the procedures computing the lower and upper
bounds into an optimization framework that solves to optimality instances
with up to 20 vertices.

The rest of the paper is organized as follows: in Section 2 we focus on the
definition of the Multiple Vehicle Balancing Problem (MVBP) and of its main
properties. In Section 2.3 we show distinctive properties of the optimal solutions
and we model the MVBP in Section 2.4. Then, in Section 3 we show how to
obtain feasible lower bounds and we also detail our pricing problem. In Section 4
we introduce additional cuts. In Section 5, we describe a special polynomially
solvable subproblem and our memetic algorithm. In Section 6 we present our
optimization framework. Computational results and conclusions are given in
Section 7 and Section 8, respectively.

2 Models and properties

2.1 Problem formulation

We are given a complete directed graph G = (V,A) without loops. The vertex
set V is identified with integers 0, 1, . . . , n, where 0 is a special vertex that can
be seen as the depot. For each arc (i, j), there is a positive cost cij . These costs
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are assumed to satisfy the triangular inequality. There are M vehicles, each of
them of capacity Q ∈ Z+, aiming at moving inventory units in the graph. An
inventory level di ∈ Z is attached to each vertex i. If di > 0, there is a supply
of di units at i, which is then a pickup vertex. If di < 0, there is a demand of di
units at i, which is then a delivery vertex. The following relations are assumed
to hold throughout the paper:

n∑
i=0

di = 0, |di| ≤ Q ∀i ∈ V, and d0 = 0. (1)

The assumption |di| ≤ Q is not a strong restriction: a vertex i violating such
inequality can always be replaced by a clique of vertices i1, i2, . . . , ik with k =
d|di|/Qe such that their inventory levels are equal to Q, except for ik for which
we have |dik | = |di| − Q · (k − 1). The vehicles are requested to follow routes,
starting and ending at vertex 0, along which they carry inventory from the
pickup vertices to the delivery vertices in order to fulfill exactly the demand.
The vertices can be visited several times and by distinct vehicles, but temporary
storage is not allowed. It means that when inventory units are delivered at some
vertices, they cannot be picked up later again. It also means that during the
carrying process, the inventory level of each station varies monotonically, and
that a vertex i with di = 0 is never visited, except when i = 0.

Moreover, we call stop each vertex visit of a route and we assume that we are
given a bound T on the number of stops in a route. In such a way we distribute
the vertex visits between vehicles imposing a level of fairness among workers.

A schedule of a vehicle is a route with the load of the vehicle along each arc
traversed by the route. The cost of a schedule is the sum of the costs of the arcs
traversed by its route, and the cost of a collection of schedules is the sum of the
costs of the schedules. The Multiple Vehicle Balancing Problem aims at finding
the vehicle schedules satisfying the above requirements at a minimal cost.

2.2 Practical meaning

The graph G models the shortest paths in the bicycle sharing system. Each
vertex apart 0 is a station and the inventory is made of bicycles. The vehicles
are the trucks used for the rebalancing. A slightly more general problem would
allow temporary storage at stations – this is for instance the case in the already
cited work [9] – but the problem would then be of a formidable complexity,
especially because it would require synchronization issues. Since temporary
storage is not permitted, only the algebraic difference di between initial and
target levels matters. The bound T is a way to distribute the tasks between
the vehicles. If T = +∞, the optimal solution is achieved by a single vehicle:
concatenating the schedules of a feasible solution provides a solution of same
cost for a single vehicle, and this solution can be in general made smaller because
of the triangular inequality.
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2.3 Profitability properties

The MVBP have many degrees of freedom, leaving the option of combining
schedules in different ways. However, the following profitability properties hold,
which will allow us to consider a restricted set of solutions.

Consider the following features a solution of the MVBP may have.

Feature 1. Given any pair {i, j} of pickup or delivery vertices, the total number
of traversals of arcs (i, j) and (j, i) is at most one over all schedules of the
solution.

Feature 2. Given any pickup vertex i and any delivery vertex j, the arc (i, j)
is traversed at most once with a load smaller than Q over all schedules of the
solution, and the arc (j, i) is traversed at most once with a load larger than 0
over all schedules of the solution.

Feature 3. Given any pickup vertex i and any delivery vertex j, if there is
at least one traversal of (i, j) and one traversal of (j, i) in one schedule of the
solution, then all traversals of (i, j) of all schedules of the solution are done with
a load of Q inventory units.
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Figure 1: Assume Q = 10. The solid line route and the dotted line route
correspond both to a non-full vehicle traveling the arc (p, d). Transferring one
picked-up inventory unit from one of the route to the other leads to a move
between p and d with 10 inventory units – which is the vehicle capacity – and
the other with 8 inventory units, without changing the impact on the vertices.

The following proposition is a generalization of the Dror and Trudeau dom-
inance property [13].

Proposition 1. Provided that the problem is feasible, there always exists an
optimal solution satisfying simultaneously Features 1, 2, and 3.

Proof. The proof consists in showing that given an optimal solution, one can
always perform local changes without affecting neither the feasibility nor the
optimality of the schedules, and get a solution satisfying all Features simultan-
eously.

Feature 1 Consider an optimal solution. There is a traversal of {i, j} each
time there is a traversal of either (i, j) or (j, i) in a route. Suppose that we have

6



an optimal solution with at least two traversals of a pair {i, j} of pickup vertices.
Denote a1 (resp. a2) the number of inventory units loaded at i during the first
(resp. second) traversal, and denote b1 (resp. b2) the number of inventory units
loaded at j during the first (resp. second) traversal. Two cases have to be
considered.

Case a2 ≥ b1. We can take a1 + b1 inventory units at i instead of a1 and skip
j after the first traversal. The solution remains unchanged except for the
second traversal, where we take a2 − b1 inventory units on i and b1 + b2
inventory units on j.

Case a2 < b1. We can take a1 + a2 inventory units at i instead of a1 and
take b1 − a2 inventory units at j during the first traversal. The solution
remains unchanged except for the second traversal, where we skip i and
go directly to j, loading a2 + b2 inventory units.

In both cases, we are able to reduce by one the number of traversals of {i, j}
without further changing the solution, thereby without increasing its cost. Such
a reduction can be repeated if more than two traversals are performed. The
proof is similar if both i and j are delivery vertices.

Feature 2 Consider an optimal solution satisfying Feature 1. Let i be a pickup
vertex and j be a delivery one. Assume that the solution traverses at least twice
the arc (i, j), each time with strictly less than Q inventory units. Transferring
inventory units between these two traversals either allows to save one traversal,
or provides a traversal with Q inventory units. See Figure 1 for an illustration.
We get a similar conclusion if i is a delivery vertex and j a pickup one.

Feature 3 Consider an optimal solution satisfying Features 1 and 2. Let
i be a pickup vertex and j be a delivery one. Suppose that there is both a
traversal of (i, j) with strictly less than Q inventory units, and a traversal of
(j, i). We assume that during the traversal (j, i), there is at least one inventory
unit delivered on j and one inventory unit picked up on i, as otherwise one
vertex can be skipped without increasing the solution cost. This inventory unit
could be picked up from i and delivered on j during the unsaturated traversal
of (i, j). Hence, we can repeat this process until there is a load of Q inventory
units during the traversal of (i, j).

Proposition 1 ensures, as a corollary, that every schedule of an optimal solu-
tion satisfies independently those three features. In our algorithms we will thus
consider them in the following single schedule form.

Feature 1s. Given any pair {i, j} of pickup or delivery vertices, the total num-
ber of traversals of arcs (i, j) and (j, i) in the schedule is at most one.

Feature 2s. Given any pickup vertex i and any delivery vertex j, the arc (i, j)
is traversed at most once with a load smaller than Q by the schedule, and the
arc (j, i) is traversed at most once with a load larger than 0 by the schedule.
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Feature 3s. Given any pickup vertex i and any delivery vertex j, if there is at
least one traversal of (i, j) and one traversal of (j, i) in the schedule, then all
traversals of (i, j) by the schedule are done with a load of Q inventory units.

2.4 Integer programming model

For a schedule s, we denote by lsi ∈ Z+ the total number of inventory units
either picked up or delivered at i, and by cs its cost. A schedule s is feasible if
the following hold simultaneously:

• its route starts and finishes at vertex 0, and contains at most T stops
i 6= 0,

• the number of inventory units carried over each arc of the route is at most
Q,

• we have 1 ≤ lsi ≤ |di| for all i ∈ V \ {0},

Let S be the set of feasible schedules that satisfy moreover Features 1s, 2s,
and 3s. According to Proposition 1, the following integer program models the
MVBP.

min
∑
s∈S

cszs

s.t.
∑
s∈S

lsi z
s = |di| ∀i ∈ V (i)∑

s∈S
zs ≤M (ii)

zs ∈ {0, 1} ∀s ∈ S.

(P)

Nothing prevents a priori to choose several times the same schedule for different
vehicles. However, since we suppose that |di| ≤ Q for each vertex i, any optimal
solution satisfying Proposition 1 selects each possible schedule at most once.
Indeed, Feature 2 ensures that if the same schedule is used by two vehicles
or more, its route is a sequence that alternates between pickup and delivery
vertices, and the load of the vehicle is Q when leaving a pickup vertex and 0
when leaving a delivery vertex. The fact that |di| ≤ Q for all i prevents then
the assignment of a same schedule to two vehicles or more. We therefore restrict
the values of zs to the set {0, 1}.

3 Continuous relaxation

In this section, we describe a method to solve the continuous relaxation of (P),
which we call (RP). We adopt a column generation approach, for which we
assume basic knowledge (see [12] for an introduction). We focus in this section
on how to solve the pricing problem, which consists here in finding the schedule
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s ∈ S of minimal reduced cost

cs = cs −
∑
i∈V

λil
s
i − ν, (2)

where the λi ∈ R and ν ∈ R− are respectively the values taken by the dual
variables associated to constraints (i) and constraint (ii) in (RP). The pricing
problem turns out to be a Shortest Path Problem with Resource Constraints
(see for example [16]). In our case paths do not need to be elementary: multiple
visits to the same vertex, each partially serving its demand, are allowed. The
method we propose is inspired by that of Baldacci et al. [5] for the PDPTW.
The procedure is divided into two phases: GENPATH and GENROUTE. In
GENPATH, partial schedules are computed. These partial schedules are either
forward partial schedules or backward partial schedules, which are respectively
starting at the depot and ending at an arbitrary vertex or vice versa. These
partial schedules are built by a systematic enumeration procedure, but the enu-
meration is restricted only to those partial schedules that can be extended to
schedules in S. In addition, dominance properties are used. In GENROUTE,
forward and backward partial schedules are selectively joined in feasible sched-
ules.

3.1 The GENPATH-GENROUTE procedure

Several adaptations are required to the algorithm of Baldacci et al. [5] for fitting
the MVBP, as the number of inventory units to be picked up or delivered at each
stop has to be decided, the vertices may be visited several times, and pickup
and delivery operations are not paired.

We define as forward partial schedule P a portion of a schedule in S, starting
at the depot and ending at an arbitrary vertex e(P ) with a load `(P ), including
at most bT2 c stops. A backward partial schedule is defined similarly, representing
a portion of a schedule in S starting at an arbitrary vertex e(P ) with a load
`(P ), and ending at the depot, including at most dT2 e stops. To ease notation
we denote by rPk the vertex that is the kth stop in the partial schedule P , and
by lPi the total number of inventory units picked up or delivered at vertex i in
partial schedule P . The cost of a partial schedule P with t stops is defined as

cP =

t∑
k=1

(crPk rPk+1
− λrPk lrPk ).

The generation of the set of forward partial schedules
−→
P in GENPATH is

detailed in Algorithm 1. In Step 13, by “P ′ violates feasibility rules”, we mean
“lP

′

i > di or the load of the vehicle exceeds Q on some arc”, and by “P ′ violates
profitability properties”, we mean that at least one of Features 1s, 2s, and 3s is
not satisfied by P ′.

GENPATH exploits partial enumeration and dominance tests to generate
the set of partial schedules that can belong to schedules in S. As in a classic
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Algorithm 1 GENPATH for forward partial schedules

1: Create the empty partial schedule P0 with cP0 = 0, e(P0) = 0, lP0
i = 0 for

each i ∈ V , P = {P0} and
−→P = ∅

2: if P = ∅ then
3: STOP
4: end if
5: P ∗ = arg min{lb(P ), P ∈P}
6: P = P \ {P ∗}
7: Insert in

−→
P forward partial schedule P ∗

8: if |P ∗| =
⌊
T
2

⌋
then

9: Return to 2
10: end if
11: for i ∈ V and δ ∈ {0, . . . , di − lP

∗

e(P∗)} do
12: Expand P ∗ from e(P ∗) to vertex i, obtaining a new partial schedule P ′,

and setting `(P ′) = `(P ∗) + δ (if i is pickup) or `(P ′) = `(P ∗)− δ (if i is
delivery), lP

′

j = lP
∗

j for each j ∈ V \ {i} and lP
′

i = lP
∗

i + δ
13: if P ′ violates feasibility rules or profitability properties then
14: Reject P ′

15: Return to 2
16: end if
17: let cP ′ = cP∗ + ce(P∗)i − λiδ
18: Compute lb(P ′)
19: if lb(P ′) > ρ then
20: Reject P ′

21: Return to 2
22: end if
23: if P ′ is dominated by any partial schedule in P then
24: Reject P ′

25: Return to 2
26: end if
27: Remove all partial schedules in P dominated by P ′

28: Insert P ′ in P
29: end for
30: Return to 2
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column generation approach, we select schedules having negative reduced cost.
However for the sake of the exposition we use an additional parameter ρ acting
as a threshold: during the pricing phase, only schedules having a reduced cost
less or equal to ρ are selected, ρ being equal to 0 when we compute the optimal
value of (RP). Such a threshold provides the additional flexibility that is needed
for a subsequent enumeration step, detailed in Section 6. A set of potentially
useful partial schedules P is kept, which initially contains a single empty partial
schedule. A lower bound lb(P ) on the minimum cost a schedule completing P is
computed (see Section 3.2). Iteratively, the partial schedule in P having best
bound is selected and extended, creating a new partial schedule for each pickup
(resp. delivery) vertex i and pickup (resp. delivery) inventory value δ that do
not violate feasibility rules and profitability properties; new partial schedules are
rejected also if the corresponding bound exceeds ρ. Finally, dominance rules are
applied to further reduce the number of partial schedules in P (see Section 3.3).
GENPATH is run twice, to obtain both forward and backward partial schedules.

GENROUTE is then run to selectively join the generated partial schedules
into a final set of all feasible, profitable, and non-dominated schedules whose

reduced cost is at most ρ. When sets
−→
P of forward partial schedules and

←−
P

of backward partial schedules are generated, we create full schedules by joining

their elements. We partition each of these sets into subsets
−→
Piw and

←−
Piw of

partial schedules P with `(P ) = w and e(P ) = i. The procedure is explained in
detail in Algorithm 2.

Algorithm 2 GENROUTE

1: S = ∅
2: for i ∈ V and w ∈ {0, . . . , Q} do

3: for P ∈ −→Piw and P ′ ∈ ←−Piw do
4: if P and P ′ are compatible then
5: s← append(P ,P ′)
6: if s is not dominated by any schedule in S then
7: Add s to S
8: Delete from S all schedules dominated by s
9: end if

10: end if
11: end for
12: end for

A forward partial schedule P and a backward partial schedule P ′ are com-
patible (Step 4) if the schedule obtained by appending P ′ to P respects all
feasibility rules and profitability conditions described above for the GENPATH
procedure. The schedule s obtained by combining P and P ′ has reduced cost
cs = cP + cP

′ − ν. A schedule s dominates a schedule s′ (Steps 6 and 8) if

lsi = ls
′

i for all i ∈ V and cs ≤ cs
′
. To increase the speed of the algorithm, we

sort
−→P iw and

←−P iw by non-increasing costs: as soon as cP + cP
′ − ν > ρ, inner

loops can be stopped, directly jumping to the next iteration of the outer ones.
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3.2 Completion bound

We briefly explain how the lower bound lb(P ) on the minimum reduced cost of
a schedule completing P is computed. We actually use a standard trick in a
vehicle routing context to bound the cost of a solution: we compute the partial
schedule by dynamic programming in such a way that each time we extend
to a vertex, its inventory level at previous steps is neglected. Computing the
minimum cost −→π (i, w) of a forward partial schedule ending at node i with final
load w or the minimum cost ←−π (i, w) of a backward partial schedule starting at
node i with initial load w can then be solved in polynomial time by dynamic
programming.

For P a forward partial schedule, we set lb(P ) = cP +−→π (e(P ), `(P ))−ν and
for P a backward partial schedule, we set lb(P ) = cP +←−π (e(P ), `(P ))− ν.

3.3 Dominance

Let P and P ′ be two forward partial schedules. The partial schedule P domin-
ates the partial schedule P ′ if

e(P ) = e(P ′), `(P ) = `(P ′), lPi ≤ lP
′

i for all i ∈ V, and cP ≤ cP ′ − ρ.

Indeed, when these dominance conditions are satisfied, any backward partial
schedule B that is compatible with P ′ is also compatible with P , and therefore
combining B with P always yields a better schedule. Moreover, even if com-
bining B with P produces an optimal schedule, no schedule can be produced
by combining B with P ′ whose value is within a constant ρ from optimality.
Therefore, partial schedule P ′ can be rejected without affecting optimality guar-
antees.

It is also useful to directly prevent the following set of extensions always
yielding dominated partial schedules. Let r → p → d → s be a sequence
of consecutive vertices in a partial schedule, where p is a pickup vertex from
where w bicycles are picked up and d is a delivery one where w′ are delivered.
An improved partial schedule skipping either p, d or both can be obtained in
following cases:

if (w < w′) and (cr,p + w(λp + λd)− (cr,p + cp,d) < −ρ) the forward partial sched-
ule skipping p and delivering only (w′ − w) bicycles at d has a lower cost

if (w = w′) and (crs + w(λp + λd)− (crp + cpd + cds) < −ρ) the forward par-
tial schedule skipping both p and d has a lower cost

if (w > w′) and (cps + w′(λp + λd)− (cpd + cds) < −ρ) the forward partial sched-
ule skipping d and picking up only (w−w′) bicycles at p has a lower cost

Similar conclusions can be drawn when the sequence is r → d → p → s,
where d is a delivery vertex and p is a pickup one (see Figure 2).
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Figure 2: New forward partial schedule when w < w′ and when the cost of the
forward partial schedule skipping p is lower than the one of the original

3.4 Implementation

Here, we provide details on how the pricing subproblem is solved in practice,
for which ρ is set to 0. Actually, we do not go in general to the end of the
GENPATH-GENROUTE procedure and thus we do not compute the exact value
of mins∈S cs. We stop GENPATH as soon as 15′000 partial schedules have been
generated1; if GENROUTE is able to find schedules whose reduced cost is neg-
ative, we perform early termination, which means inserting the corresponding
columns in the current pool of columns and going back to the master problem.
Otherwise, we resume GENPATH, generate up to 100′000 partial schedules,
and call GENROUTE again; as before, if negative reduced cost schedules are
found we perform early pricing termination. Otherwise, we go to the end of the
GENPATH-GENROUTE procedure to obtain the true value of mins∈S cs.

4 Valid inequalities

Two families of cuts are added to improve the quality of the lower bound.
First, a family of dual-feasibility cuts is obtained through dual-feasible functions.
Second, a set of profitability cuts is derived from the properties of Section 2.3.

We discuss for each family the corresponding impact on the pricing al-
gorithms. According to preliminary experiments, we found it useful to directly
insert all these cuts in the initial (RP), i.e. no dynamic cut separation is per-
formed in our implementation.

4.1 Superadditive and dual-feasible cuts

We consider three types of cuts obtained by applying some special families of
functions on both sides of constraints (i) of (P).

The first family is a novel one, which we specially designed for our MVBP.
Let k and d be two positive integers such that k ≤ d. We define for x ∈ [0, d]
the mapping

Fk,d(x) :=

{
2k
dx− 1 if k

dx is a positive integer

2
⌊
k
dx
⌋

otherwise.

1or as soon as all possible partial schedules have been generated, in case of small instances.
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Next proposition states that the functions Fk,d are superadditive.

Proposition 2. Fk,d satisfies the following

Fk,d(x) + Fk,d(y) ≤ Fk,d(x+ y)

for all x, y ∈ [0, d] such that x+ y ≤ d
Proof. When k

d (x+ y) is not an integer, we have Fk,d(x) + Fk,d(y) ≤ 2
⌊
k
dx
⌋

+

2
⌊
k
dy
⌋
≤ 2

⌊
k
d (x+ y)

⌋
= Fk,d(x + y). When both k

dx and k
dy are integer, we

have Fk,d(x) + Fk,d(y) = Fk,d(x+ y). To finish the proof, we consider the only
remaining case, namely when k

d (x + y) is an integer while none of k
dx and k

dy

are integer. Then, an integer  exists such that k
dx+ k

dy = , and since none of

the two summands on the left hand side is integer, we have
⌊
k
dx
⌋

+
⌊
k
dy
⌋
≤ −1.

Hence Fk,d(x) + Fk,d(y) = 2
⌊
k
dx
⌋

+ 2
⌊
k
dy
⌋
≤ 2 − 2 = Fk,d(x + y) − 1 ≤

Fk,d(x+ y).

We also considered two families of functions from the literature: FFS,1
k,d and

FCCM,1
k,d , introduced respectively by Fekete and Schepers [14] and by Carlier et

al. [8]. They are defined as follows for k ≤ d and x ∈ [0, d]:

FFS,1
k,d (x) :=

{
kx if (k+1)x

d is integer

b (k+1)x
d cd otherwise.

FCCM,1
k,d (x) :=


2(b dk c − bd−xk c) if x > d

2

b dk c if x = d
2

2bxk c if x < d
2 .

FFS,1
k,d has been proved in [14] to be superadditive. The map FCCM,1

k,d is not
superadditive, but Carlier et al. (Theorem 4.3 in [8]) proved that it is dual-
feasible, meaning that ∑

j

FCCM,1
k,d (xj) ≤ FCCM,1

k,d (d)

holds for any list of xj ∈ [0, d] such that
∑

j xj ≤ d. We refer to [10] for a
complete survey on this technique.

Applying a superadditive or dual-feasible map f on constraints (i) of (P)
leads to new valid inequalities∑

s∈R

f(lsi )zs ≤ f(|di|).

With the maps Fk,|di|, F
CCM,1
k,|di| , and FFS,1

k,|di|, we get thus several new valid in-

equalities, for any choice of indices k. The reduced cost of a schedule (2) becomes
then

cs −
∑
i∈V

(
λil

s
i +

∑
k

(µk,iFk,|di|(l
s
i ) + ηk,iF

FS,1
k,|di|(l

s
i ) + ζk,iF

CCM,1
k,|di| (lsi ))

)
− v,
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where µ, η, and ζ are the dual variables, and where the sum over k is made over
the chosen indices.

The GENPATH-GENROUTE procedure works with almost no modifications
for these new reduced costs. When the algorithm extends to a node i with a
current load lP

∗

i and loading δ inventory units, the cost of the partial schedule
P ′ is defined as

cP ′ = cP∗ + ce(P∗)i − λiδ −
∑
k

(
µk,i(Fk,|di|(l

P∗

i + δ)− Fk,|di|(l
P∗

i ))+

ηk,i(F
FS,1
k,|di|(l

P∗

i + δ)− FFS,1
k,|di|(l

P∗

i )) + ζk,i(F
CCM,1
k,|di| (lP

∗

i + δ)− FCCM,1
k,|di| (lP

∗

i ))
)
.

(3)

The computation of the lower bound lb(·) is adapted accordingly (it only modi-
fies the cost of the transitions in the dynamic programming). In our implement-
ation we only keep inequalities having k = 2 and k = 3.

4.2 Profitability cuts

Proposition 1 implies that a traversal between two pickup vertices or two de-
livery vertices is done at most once in each profitable schedule. Therefore, we
considered the following clique inequalities:∑

s∈S1
i,j

zs ≤ 1 ∀i, j vertices of same type

where S1i,j is the set of all feasible and profitable schedules containing either the
arc (i, j) or the arc (j, i).

Similarly, proposition 1 allows us to include the following inequalities:∑
s∈S2

i,j

zr ≤ 1 ∀i, j vertices of distinct type

where S2i,j is the set of all feasible and profitable schedules containing the arc
(i, j) with a load strictly smaller than Q or strictly larger than 0 according to
the type of vertices i and j.

We include the contribution of the dual variable of each of these inequalities
in GENPATH in a similar way as in Section 4.1. We however neglect their
contribution during the computation of lb(·), in order to keep the completion
bounding procedure as fast as possible. Note that this might lead to generate
more partial schedules in GENPATH as needed, but the optimal value of the
pricing problem is not affected (and thus the value obtained for the relaxation
is not affected neither).

5 Upper bounds

To obtain good feasible integer solutions quickly we designed two heuristics.

15



5.1 Iterative rounding heuristic

The first one is a simple iterative rounding scheme to be run when column
generation is over. We consider the corresponding fractional solution, and fix
to one a variable of highest value in that solution. Then, column generation is
resumed, and the rounding process is iterated, until a feasible integer solution
is found, M variables are fixed to one, or an infeasible LP is detected. We note
that, when one of the latter two stopping conditions are met, such an iterative
rounding fails in finding feasible solutions.

5.2 Memetic algorithm

The second heuristic is a memetic algorithm. Efficient encodings of the schedules
are possible thank to the following proposition, generalizing Proposition 1 of [9]
to the multiple vehicle case.

Proposition 3. Consider an MVBP instance and suppose given M routes.
Deciding whether there is a sequence of pickup and delivery operations for each
route making the M routes a feasible solution of the MVBP can be performed
in polynomial time. Moreover in case the answer is ‘no’, the minimum number
of inventory units to remove from the supply and from the demand so that the
answer becomes ‘yes’ can also be computed in polynomial time.

In other words, when the answer is ‘no’, we can compute a new (d′i) in poly-
nomial time satisfying (1) such that the answer becomes ‘yes’ while minimizing
the number of inventory units removed.

Proof of Proposition 3. Let R1, . . . , RM be M routes. We indicate the vertex
in position k of route m by rmk . For each m = 1, . . . ,M , let Ĝm = (V̂ m, Âm)
be a digraph having one vertex for each occurrence of a vertex in Rm, and two
types of arcs:

1. route arcs: one for each arc in Rm, connecting the corresponding vertices
in V̂ m

2. load arcs: one for each occurrence of a vertex in Rm, connecting the
corresponding vertex in V̂ m to its next occurrence, if any.

We assign capacity Q to each route arc, capacity +∞ to each load arc of pickup
vertices, and capacity −∞ to each load arc of delivery vertices. Each graph Ĝm

resembles that used in the case of one vehicle in [9].
Now we define a support digraph Ĝ = (V̂ , Â) as the disjoint union of all

Ĝm, and we add to Â inter-route load arcs. These are defined as follows: for
each m = 1, . . . ,M , and for the vertex im encoding the last occurrence of any
vertex i in Rm, connect im to the vertex im

′
encoding the first occurrence of i

in a route rm
′
, if any, where m′ is chosen as small as possible with m′ > m. We

assign capacity +∞ to all inter-route load arcs. Finally, we add to V̂ a source
vertex s and a sink vertex t; for each pickup vertex i ∈ V , we connect s to the
first occurrence of i in V̂ with a initial arc of capacity di, and for each delivery
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φ φ′

φ ≥ φ′

φ′

φ′

ψ

φ = ψ + φ′ ≥ φ′

Figure 3: How to impose an inequality between the entering and the leaving
flows in a vertex

vertex i ∈ V , we connect the last occurrence of i in V̂ to t with a target arc of
capacity −di.

Further, in order to ensure that inventory units are not loaded at delivery
vertices, we replace such vertices as depicted in Figure 3. Such modification
avoids subsequent route arcs with increasing flow on delivery vertices. It is also
performed on pickup vertices to ensure that flow on their subsequent route arcs
does not decrease. Now, there is a bijection between s-t flows on Ĝ and feasible
rebalancing patterns.

The number of inventory units to be moved by vehicle m while going from
rmk to rmk+1 corresponds to the flow on route arcs; the number of inventory units
remaining in a vertex i after each visit of the vehicle m corresponds to the
flow on the arc between the corresponding occurrence and the next one, that
is flow on either load or inter-route load arcs. The initial and target number
of inventory units in each node corresponds to flow on starting and target arcs,
respectively. Further, the modifications of Figure 3 forbid unbalancing.

In particular, a maximum flow in Ĝ corresponds to a pattern rebalancing
the highest number of inventory units, as in the best case all starting and target
arcs are saturated. Since maximum flows problems can be solved in polynomial
time, so is the problem in the claim.

5.2.1 The algorithm

Memetic algorithms, denoted MA in the remainder of the paper, are improved
version of genetic algorithms and have been introduced by Moscato [18]. As for
genetic algorithms, a population of Γ tentative solutions (individuals) is received
in input and improved; a score is associated to each of them. The population
is subject to two transformations: only best individuals are retained (selection)
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and combined to create new individuals (cross-over), and local improvement is
applied on each new individual to reach feasibility and improve its score.

Individuals Proposition 3 enables to encode an individual as a simple list of
M routes, one for each vehicle, each being in turn a list of integers representing
the sequence of visited vertices. The score of an individual is set as its cost
plus a penalty proportional to the total number of inventory units to remove in
order to make it feasible, which is again computed as described in the proof of
Proposition 3.

Selection and cross-over At each main iteration a single individual is se-
lected at random with a probability that is proportional to its score. After
preliminary experiments we designed the following procedure. We split the
population into two classes: the first containing 1/6 of the population, corres-
ponding to the best individuals, and the second containing the remaining ones.
Then, we perform a stratified sampling, selecting the first (resp. second) class
with probability 70% (resp. 30%), and then picking an individual in the selected
class with uniform probability. A second individual, instead, is chosen uniformly
at random among those of the whole population, avoiding repetitions.

To perform cross-over, we adapt the route-first, cluster-second method of
Prins [19]. To that purpose, a giant route is defined for each individual by
appending its routes in sequence one after the other. Then, a cut point is
selected, as a random integer from a uniform distribution between 1 and the
length of the shortest of the two giant routes. Then, the first part of the giant
route of the first individual is completed with the second part of the giant route
of the second individual. All vertices missing from both parts are collected
and organized in subsequence, respecting their precedences in the giant route of
the second individual. Such a sequence of residual vertices is then inserted in
between the first and the second part of the giant route of the new individual.
The second part of the giant route of the first individual, and the first part of
that of the second individual are combined similarly.

We get thus two giant routes. Each of them is then split into M routes, in
order to get two new individuals. After local improvements performed on these
new individuals, they are inserted in the population. To keep the population
size constant, the two individuals with worst score are then removed. How a
giant route is split into M routes to get a new individual and how the local
improvements are performed is explained in the next paragraph.

Giant route splitting and local improvement The one-vehicle version of
Proposition 3 [9] is used as a preliminary feasibility test on the giant route. If no
feasible rebalancing pattern can be obtained, then no feasible MVBP solution
can be obtained after splitting: a score +∞ is assigned to the new individual.

When the preliminary test is successful, the new giant route is split using
an adaptation of the procedure of the aforementioned paper by Prins. We
define an acyclic directed graph G̃ whose vertices are that of the giant route,
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therefore possibly including multiple occurrences of vertices of the original set
V . An arc (i, j) is created between two vertices if (a) there are at most (T − 3)
vertices between them on the giant route (b) i is a pickup vertex, j is a delivery
vertex, and the depot is not between i and j in the giant route (c) there are no
consecutive occurrences of the same vertex between i and j in the giant route.
Condition (a) ensures that the sequence between the two endpoints of such an
arc can lead to a route respecting the maximum length constraint, while (b)
and (c) avoid unprofitable schedules since a solution is always suboptimal if it
is composed of routes visiting the depot or having self-loops.

We set as weight of each arc (i, j) of G̃ the cost of the route starting and
ending with the depot and going through the sequence of vertices between i and
j on the giant route. The split is then obtained by computing a directed path in
G̃ of minimum weight, using at most M arcs, that can efficiently be calculated
by using dynamic programming.

Finally, local search is applied to the set of routes to reach a local minimum.
We included three types of moves: intra-route 2-OPT, inter-route 2-OPT and
CLEANING. In particular, we iteratively explore both intra-route 2-OPT and
inter-route 2-OPT neighbourhoods with a best-improvement policy, and we ap-
ply only the best move among the two neighbourhoods. When no improving
move is found we proceed to CLEANING, that is we modify the solution in
order to fulfill Feature 1s, 2s, and 3s.

While the giant route splitting is performed by considering route costs only,
each local improvement move is evaluated by computing also the best associated
rebalancing pattern, using the flow algorithm described in Proposition 3, and
thus obtaining the actual score of the individual.

Multistart and termination After a fixed number of selection and cross-
over iterations we re-initialize the population as follows. First, we drop a fraction
α of the population, that is we keep only the best α · Γ individuals. Then, we
randomly generate β · Γ new individuals and perform local improvement on
them. Finally, we keep only the overall best Γ individuals. The MA is stopped
after a fixed number of restarts.

Implementation After preliminary experiments we set the initial population
size to Γ = 30, generating the individuals differently in different calls of our
MA, as described in Section 6. We restart every 100 main iterations, and we
stop the MA after 6 restarts. At each restart we keep only a fraction α = 0.5
of the population, and generate a fraction β = 0.8 of new individuals.

6 Algorithms

We embed our lower and upper bounds into the following optimization frame-
work.
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(a) Initialize the MA of Section 5 with random routes, and run it, obtaining
an initial upper bound M1 and a population of good schedules.

(b) Solve (RP) with the column generation procedure described in Section 3
initialized with the schedules obtained in Step (a). Add cuts as described
in Section 4, and reoptimize with column generation. At the end, we have
a lower bound LB.

(c) Perform the iterative rounding heuristic. If a feasible MVBP solution is
obtained, whose value matches LB, then stop: optimality is proved.

(d) Calculate better feasible MVBP solutions with the MA of Section 5, start-
ing from a population including the final population of Step (a), and the
solution of Step (c) if any, obtaining an upper bound M2. If M2 = LB
then stop: optimality is proved.

(e) Generate all schedules whose reduced cost does not exceed ρ = M2−LB,
using GENPATH and GENROUTE (described in Section 3).

(f) Restrict S to schedules generated in Step (e) and solve to optimality the
resulting restricted integer program with the help of a general purpose
solver.

From a theoretical point of view, our algorithm yields global optimal solu-
tions (see Baldacci et al. [7]); however, our experiments show that it unfolds its
potential as a matheuristic, by making the following modifications: in Step (b),
we always stop GENPATH when the limit of 15’000 paths has been reached (i.e.
we stop after the first round of Section 3.4); we moreover skip Step (e) and give
to the solver the whole set of schedules generated in Step (b) and all schedules
of the best individual obtained at the end of Step (d). When 15’000 is reached
without having found a negative reduced cost schedule in Step (b), we just take
the fractional solution of the last LP as the initial fractional solution for the
iterative rounding heuristic.

7 Computational study and conclusions

All the algorithms have been coded in C++ and tested on a PC equipped with
an Intel Core i7 3770 CPU clocked at 3.40GHz and 8 GB of RAM. CPLEX 12.4
has been used for both solving the LP subproblems and as a general purpose
IP solver. All CPLEX options have been kept at default values, except for
multi-threading support, which has been turned off.

Our benchmark consists of the instances of [9] with up to 30 vertices. These
are randomly generated networks with vertices located in a two-dimensional
square of coordinates in [−500, 500] × [−500, 500], the depot being located at
(0, 0). Travelling costs cij are computed as the Euclidean distances between
vertices i and j. The demands of n − 1 vertices are randomly drawn from a
uniform distribution as an integer demand between [−10, 10], where positive
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values define pickup vertices, and negative values define delivery ones, while the
demand of the nth vertex is set to −∑n−1

i=0 di.
Additionally, we include in our benchmark new smaller instances with 10

vertices that are obtained by splitting instances with 20 vertices in half, with
respect to the order given in the input file. The full dataset consists therefore of
40 instances. The vehicle capacity Q was set to 10, the number |M | of available
vehicles to 5, and the the maximum number T of stops in each route to 10.

To improve the numerical stability during column generation, in (RP) we
relax constraints (i) in ≥ form, thereby restricting λi dual variables to be non-
negative. From a theoretical point of view, this comes at the expense of a
possible weakening in the quality of the relaxation. However, preliminary ex-
periments showed that such a weakening is negligible in all instances but one,
while stability is substantially improved. In Step (f) however, constraints (i) are
considered as in the original form, with an equality. In the appendix we report
a detailed discussion on this issue.

7.1 Solving instances to proven optimality

In a first run of experiments we test our approach as an exact optimization
algorithm. In Table 1 we report the results obtained with our implementation,
setting a time limit of 3 hours for each run. For each instance we report the
number n of vertices with demand di 6= 0, the upper bound M1 found after
the first call of the memetic algorithm (Step (a)), the lower bound LB found
by the column generation procedure (Step (b)), the upper bound RO found
after the iterative rounding heuristic (Step (c)) and the upper bound M2 found
after the second call to the memetic algorithm (Step (d)), the final upper bound
UB computed by solving the restricted IP with the solver (Step (f)), the gap g
between UB and LB, and the overall computing time (t). The instances solved
to proven optimality by the solver (in Step (f) in Section 6) are marked with a
star symbol in the UB column, and those whose computation hit the time limit
are marked with a dash in the time column. Similarly, a dash symbol indicates
those bounds that could not be computed within the time limit.

We observe that our algorithm solves to proven optimality all the instances
with 10 vertices and 4 instances with 20 vertices. The iterative rounding heur-
istic always provides a feasible solution when it was possible to compute the
LB. Moreover, the value found by this heuristics is in almost all cases the best
one found by the overall method. The memetic algorithms is effective, finding
an optimal solution at the first call on around 37% of the instances. Such value
grows to 45% if we also consider the second call. Furthermore, the lower bound
given by the column generation procedure is of excellent quality for instances
up to 20 vertices, and the average gap for the instances for which this lower
bound has been computable is less than 10%.
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Instance n M1 LB RO M2 UB g (%) t (s)

n10q10A 10 3055 3055.00 3055 3055 3055* - 38.52
n10q10a 10 3719 3611.25 3719 3719 3719* 2.98 93.38
n10q10B 10 3745 3631.95 3745 3745 3704* 1.98 98.01
n10q10b 10 3192 3114.50 3192 3192 3192* 2.49 66.31
n10q10C 10 3392 3258.00 3392 3392 3392* 4.11 5759.59
n10q10c 10 4239 4239.00 4239 4239 4239* - 37.27
n10q10D 10 3273 3147.33 3273 3273 3199* 1.64 486.33
n10q10d 10 4497 4206.83 4497 4497 4497* 6.90 107.51
n10q10E 10 4921 4857.29 4921 4921 4876* 0.39 252.86
n10q10e 10 3846 3675.60 3835 3823 3823* 4.01 264.34
n10q10F 10 4044 3794.88 4044 3796 3796* 0.03 44.13
n10q10f 10 3468 3283.46 3468 3468 3468* 5.62 73.33
n10q10G 10 4151 3735.61 4151 4151 3973* 6.35 229.8
n10q10g 10 4179 4075.20 4179 4179 4179* 2.55 81.51
n10q10H 10 3959 3772.06 3959 3959 3959* 4.96 715.83
n10q10h 10 4168 4043.89 4168 4168 4168* 3.07 2211.82
n10q10I 10 4026 3711.20 4026 4026 3963* 6.78 119.52
n10q10i 10 2677 2632.50 2677 2677 2645* 0.47 2867.46
n10q10J 9 3125 3125.00 3125 3125 3125* - 285.28
n10q10j 10 3453 3392.40 3453 3453 3453* 1.79 96.8

n20q10A 17 4826 4758.00 4826 4826 4826* 1.43 1102.45
n20q10B 18 5391 5051.63 5391 5391 5391 6.72 -
n20q10C 20 6508 6317.00 6508 6508 6508 3.02 -
n20q10D 19 6399 6208.00 6208 6208 6208* - 509.07
n20q10E 18 6632 6216.77 6632 6506 6506 4.65 -
n20q10F 20 5222 5162.82 5222 5222 5222* 1.15 863.68
n20q10G 19 5867 5466.36 5867 5867 5867 7.33 -
n20q10H 18 6546 5824.36 6546 - 6546 12.39 -
n20q10I 19 5279 4879.63 5279 5279 5279 8.18 -
n20q10J 16 4545 4545.00 4545 4545 4545* - 770.56

n30q10A 29 7178 6637.53 7178 - 7178 8.14 -
n30q10B 25 7274 - - - 7274 100.00 -
n30q10C 28 7513 - - - 7513 100.00 -
n30q10D 28 8024 6729.90 8024 - 8024 19.23 -
n30q10E 26 7136 6497.56 7136 - 7136 9.83 -
n30q10F 29 7014 6450.80 7014 - 7014 8.73 -
n30q10G 27 9819 8879.76 9819 - 9819 10.58 -
n30q10H 27 7705 6640.78 7705 7458 7458 12.31 -
n30q10I 27 6462 - - - 6462 100.00 -
n30q10J 27 7092 - - - 7092 100.00 -

Table 1: Results on the instances with up to 30 stations.
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7.2 Using the algorithm as a matheuristic

In a second run we test our approach when turned into a matheuristic as de-
scribed in the Section 6. In Table 2 we report for each instance the number of
vertices with demand di 6= 0 (n), the upper bound UB obtained previously, the
upper bound UB’ obtained by the matheuristic, the gap between them (g), and
the computing time (t) in seconds.

For what concerns solutions quality, we first observe that our algorithm finds
the optimal solution for almost 50% of the instances. Furthermore, for more
than 70% of the instances UB’ is equal to UB, while in the remaining ones
the gap is always less than 5%. We also observe that for instances n20q10I,
n30q10A, n30q10G, and n30q10J our algorithm used as matheuristic improves
the UB obtained as an exact approach. Such results are obtained within an
average computing time that is an order of magnitude smaller than the exact
approach one.

7.3 Solving the Split Delivery VRP

The MVBP is a generalization of the SDVRP as noted in Section 1 and in
principle our algorithm may be used to solve it by a simple remapping of the
instances. Of course, many special purpose techniques, tailored to the SDVRP,
cannot be applied to the MVBP. Therefore, in an effort of evaluating the com-
putational price of the additional modeling flexibility of MVBP, in a third run
of experiments we consider the set of instances of the SDVRP taken from [2]
with at most 50 vertices. In a simple preprocessing step we rescale both ca-
pacities and demand coefficients by a factor 10, obtaining capacity 10 for each
vehicle; then, the bound T is also set to 10, since at least one unit of capacity is
spent whenever a customer is visited. Also, we consider an unbounded number
of vehicles |M |, and therefore constraint (ii) becomes useless in formulations
(P) and (RP). To match the MVBP instance structure, a pickup vertex at a
zero-distance from the depot is also added, containing all the commodities to
be delivered at the other vertices.

In Table 3 we report the results obtained by our exact approach with a
maximum computing time of 6 hours. For each instance we report the number
of vertices with demand di 6= 0 (n), the final lower and upper bounds given by
our algorithm (LB and UB, respectively), the gap between LB and UB (g),
the computing time (t), the optimal solution of the instance as reported in [2]

(z*), and the gaps from LB and UB to z* (g LB
z*

and g UB
z*

, respectively).

Our algorithm is able to solve to optimality three instances out of nine.
Furthermore, we observe that the average gap between LB and z* is small,
proving the effectiveness of our bounding procedure also for the SDVRP.
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Instance n UB UB’ g(%) t(s)

n10q10A 10 3055 3055 0.00 52.73
n10q10a 10 3719 3719 0.00 52.65
n10q10B 10 3704 3745 1.11 44.53
n10q10b 10 3192 3192 0.00 56.60
n10q10C 10 3392 3392 0.00 149.65
n10q10c 10 4239 4239 0.00 38.60
n10q10D 10 3199 3273 2.31 76.15
n10q10d 10 4497 4497 0.00 39.89
n10q10E 10 4876 4921 0.92 51.14
n10q10e 10 3823 3823 0.00 130.33
n10q10F 10 3796 3796 0.00 87.35
n10q10f 10 3468 3468 0.00 38.32
n10q10G 10 3973 3973 0.00 74.74
n10q10g 10 4179 4179 0.00 47.49
n10q10H 10 3959 3959 0.00 76.12
n10q10h 10 4168 4168 0.00 73.10
n10q10I 10 3963 4026 1.59 50.12
n10q10i 10 2645 2645 0.00 117.96
n10q10J 9 3125 3125 0.00 72.62
n10q10j 10 3453 3453 0.00 56.15

n20q10A 17 4826 4826 0.00 326.66
n20q10B 18 5391 5391 0.00 442.33
n20q10C 20 6508 6508 0.00 488.61
n20q10D 19 6208 6399 3.08 469.08
n20q10E 18 6506 6632 1.94 295.27
n20q10F 20 5222 5222 0.00 828.72
n20q10G 19 5867 5867 0.00 499.47
n20q10H 18 6546 6546 0.00 440.93
n20q10I 19 5279 5227 -0.99 481.45
n20q10J 16 4545 4545 0.00 318.77

n30q10A 29 7178 7065 -1.57 1819.89
n30q10B 25 7274 7274 0.00 1302.04
n30q10C 28 7513 7513 0.00 1329.45
n30q10D 28 8024 8024 0.00 1196.11
n30q10E 26 7136 7136 0.00 1228.42
n30q10F 29 7014 7014 0.00 1744.97
n30q10G 27 9819 9766 -0.54 1914.57
n30q10H 27 7458 7705 3.31 966.85
n30q10I 27 6462 6462 0.00 1490.14
n30q10J 27 7092 7081 -0.16 2165.14

Table 2: Results on the instances with up to 30 stations.
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Instance n LB UB g (%) t (s) z* g LB
z*

(%) g UB
z*

(%)

SD1 9 21555.56 22828* 5.90 1878.71 22828 5.90 0.00
SD2 17 66475.99 72000 8.31 - 70828 6.55 1.65
SD3 17 42840.00 43040* 0.47 2592.71 43040 0.47 0.00
SD4 25 62895.56 63062* 0.26 18450.39 63062 0.26 0.00
SD5 33 132514.59 149935 13.15 - 138994 4.89 7.87
SD6 33 82988.89 95527 15.11 - 83086 0.12 14.97
SD7 41 345261.00 402000 16.43 - 364000 5.43 10.44
SD8 49 486218.50 550000 13.12 - 506828 4.24 8.52
SD9 49 197319.03 214962 8.94 - 204288 3.53 5.22

Table 3: Results on Split Delivery VRP instances with up to 50 stations.

8 Conclusions

In this paper we introduced a new routing problem, the Multiple Vehicle Bal-
ancing Problem, which generalizes already difficult routing problems such as
the Split Delivery Vehicle Routing Problem. Using theoretical properties of the
problem, we propose an integer program model and an optimization framework
that can be used both as an exact algorithm and as a matheuristic. When used
as an exact approach, our algorithm could solve to proven optimality instances
up to 20 vertices; when used as a matheuristic, it unfolded its potential, solving
instances with up to 30 vertices in reasonable computing time. Our methods
prove to be a viable tool also for solving instances of the simpler Split Delivery
Vehicle Routing Problem, providing an appealing trade-off between modeling
flexibility and numerical solution effectiveness.

Even if our contributions are mainly methodological, we can also discuss
their practical interest. Instances of real systems of bicycle sharing may include
thousands of stations, but those actually requiring optimized rebalancing oper-
ations may be a substantially restricted subset. When such conditions holds,
our methodology might be used to optimize even real case instances, being able
to automatically discard irrelevant vertices in a preprocessing phase.
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Figure 4: With Q := 2, M := +∞, T := 5, an example of instance for which
the optimal values of the relaxations (RP)

=
and (RP)

≥
differ

Appendix

This appendix deals with the impact of relaxing the equality to inequality con-
straints in the relaxation proposed in Section 3. We denote as (RP)

=
and (RP)

≥

the two linear programs. While in traditional Vehicle Routing Problems, this
change has no impact on the optimal value of the relaxation, in our MVBP it
could.

In fact, consider a network as that of Figure 4. The number near each
vertex i corresponds to di. The number near each edge, instead, represents
the shortest-path distance between the two endpoints, that is 1 for the edges
incident to the depot, and δ � 1 for the others. The other parameters are set
as follows: Q := 2, M := +∞, T := 5.

It is easy to check that no schedules except the following may be selected in
an optimal solution of either (RP)

=
or (RP)

≥
.

rs ls cs

s1 (v1, v2, v3, v4) (2, 2, 1, 1) 2 + 4δ
s2 (v1, v4, v3, v2) (1, 1, 2, 2) 2 + 4δ
s3 (v5, v6, v7, v8) (1, 1, 2, 2) 2 + 4δ
s4 (v5, v8, v7, v6) (1, 1, 2, 2) 2 + 4δ
s5 (v1, v2, v3, v6) (2, 2, 2, 2) 4 + 6δ
s6 (v1, v4, v3, v6) (2, 1, 1, 2) 4 + 6δ

For (RP)
≥

, the primal solution zs1 = 1/2, zs2 = 1/2, zs3 = 5/6, zs4 = 1/3,
zs5 = 1/4 and zs = 0 elsewhere is feasible and has a total cost of 16/3 + 61/6δ.
The bottom network of Figure 5 shows the dual values associated to each vertices
for in the corresponding dual solution. It is easy to check that they satisfy the
constraints of the dual of (RP)

≥
, proving optimality.

Such a solution is infeasible for (RP)
=

; instead, the primal solution zs1 =
1/4, zs2 = 1/2, zs3 = 1, zs5 = 1/4, zs6 = 1/4 and zs = 0 elsewhere, whose
corresponding dual solution is depicted in Figure 5 (top), is optimal and has a
total cost of 11/2 + 10δ, that when δ < 1 is greater than 16/3 + 61/6δ.
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Figure 5: Feasible dual solutions of (RP)
=

and (RP)
≥

, which can be proved to
be optimal

We finish with a proof that no optimal schedule for (P) can be missing from
the set generated in Step (e) of the full optimization algorithm, even if the

reduced costs are computed according to an optimal (RP)
≥

solution instead
of an optimal (RP)

=
one, as we do in our implementation. To that purpose,

consider (P)
≥

as the version of (P) in which constraints (i) are considered with

≥. It is the integer version of (RP)
≥

. Let s be a schedule present in an optimal
solution of (P). This optimal solution of (P) has a cost non greater than M2 and
is a feasible solution of (P)≥. The reduced cost of s with respect to an optimal

basis of (RP)
≥

is thus at most ρ = M2 − LB and will thus be generated in
Step (e). The proof is written here without speaking about the added valid
inequalities, but the argument remains exactly the same.
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