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Keywords:
 Marfan Syndrome (MFS) is a rare connective tissue disorder, resulting from mutations in the fibrillin-1 gene,
characterized by pathologic phenotypes in multiple organs, the most detrimental of which affects the thoracic
aorta. Indeed, thoracic aortic aneurysms (TAA), leading to acute dissection and rupture, are today the major
cause of morbidity andmortality in adult MFS patients. Therefore, there is a compelling need for novel therapeu-
tic strategies to delay TAA progression and counteract aortic dissection occurrence. Unfortunately, the wide phe-
notypic variability of MFS patients, together with the lack of a complete genotype-phenotype correlation, have
represented until now a barrier hampering the conduction of translational studies aimed to predict disease prog-
nosis and drug discovery. In this review, we will illustrate available therapeutic strategies to improve the health
of MFS patients. Starting from gold standard surgical overtures and the description of the main pharmacological
approaches, we will comprehensively review the state-of-the-art of in vivoMFS models and discuss recent clin-
ical pharmacogenetic results. Finally, we will focus on induced pluripotent stem cells (iPSC) as a technology that,
if integratedwith preclinical research and pharmacogenetics, could contribute in determining the best therapeu-
tic approach for eachMFS patient on the base of individual differences. Finally, we will suggest the integration of
preclinical studies, pharmacogenetics and iPSC technology as themost likely strategy to help solve the composite
puzzle of precise medicine in this condition.
© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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Background

Marfan Syndrome (MFS) is a rare autosomal Mendelian disease
(http://www.omim.org/; OMIM#154700), with a reported prevalence
from 4 to 20/100000 individuals, depending on diagnostic criteria and
ethnicity.1, 2 This monogenic connective tissue disorder, caused by a
mutation in the gene encoding for fibrillin-1 (FBN1), segregates as a
dominant trait in families. Notably, 20–25% of cases are nevertheless re-
ported to be due to de novo mutations.3

The cardinal diseasemanifestations in adultswithMFS include alter-
ations in the skeletal (long bones overgrowth, long slender digits, ante-
rior chest deformity, scoliosis and flatfoot), ocular (eye lens dislocation,
abnormal flat cornea and severemyopia) and cardiovascular (CV; aortic
root, proximal ascending aorta and pulmonary artery aneurysms, mitral
and aortic valve calcifications, dilated cardiomyopathy, arrhythmias and
myxomatous thickening of the mitral valve with prolapse and regurgi-
tation) systems.3–6 Although the clinical manifestations at skeletal and
ocular levels in MFS patients are prominent, the most detrimental clin-
ical phenotypes affect the CV system.4 In particular, thoracic aortic an-
eurysms (TAA) are observed in the vast majority of MFS patients and
aneurysm dissection is the main cause of mortality in adult patients.7

To date the main therapy for TAA in MFS remains surgery, as an
etiology-based pharmacological strategy is still lacking. Thus, the scien-
tific community is directing its efforts in finding novel therapeutic ap-
proaches to limit aortic dilatation. Here, we describe the genetic
background of MFS and outline the current and emerging strategies to
provide a comprehensive overview of the plethora of opportunities
that physicians and scientists hold to find the best path to counteract
the development of TAA in MFS patients. Although several reviews
have been previously published on this topic, we have chosen a unique
approach by providing a broad overview of all the available weapons
that have been gained from the most advanced discoveries in order to
integrate the best and most precise therapy for each MFS patient.

MFS Genetic Background

In 1991 Dietz et al. identified a recurrent mutation in the FBN1 gene
as the genetic cause of MFS.8 Since that time, more than 3000 FBN1mu-
tations have been described (http://www.umd.be/FBN1/).9 Interest-
ingly, the majority of these mutations are carried by the components
of single families.10 MFS patients carry FBN1 mutations mainly in het-
erozygosis, although in very few probands homozygous or compound
heterozygous mutations have been found.11–15

FBN1 mutations basically affect the production and function of the
encoded fibrillin-1, a glycoprotein of the extracellular matrix (ECM)
that through polymerization participates in microfibril network
formation.16 The loss of functional fibrillin-1 results in impairment of
tissue elasticity and structural support due to microfibrillar architecture
degeneration and ECM destruction. The molecular mechanisms under-
lying MFS have been extensively studied.17 In particular, transforming
growth factor β (TGF-β) has emerged as the major culprit in the devel-
opment of TAA and other clinical manifestations of MFS. This is likely
due to the inability of mutated fibrillin-1 to sequester the inactive
form of TGF-β resulting in its enhanced release and activation into the
extracellular environment.18–23

The relationship between FBN1 mutations and MFS patient pheno-
types has been thoroughly investigated, although patient stratification
is difficult because of the low number of MFS patients and the high
number of different FBN1mutations. Particularly, differences in pheno-
typic severity have been associated with different localization and type
of FBN1mutations. For instance, a mutational hot spot in FBN1 has been
identified that leads to the most detrimental MFS phenotype.24, 25

Specifically, patients carrying FBN1 mutations in exons 24–32 usually
present a complete phenotype, earlier disease exacerbation, higher
probability to develop ectopia lentis, scoliosis, aortic dilatation, mitral
valve abnormalities and consequently demonstrating a poorer
prognosis.24, 25 Moreover, it was observed that missense mutations
are associated with ectopia lentis, while mutations determining trun-
cated protein synthesis lead to more severe systemic phenotype.24, 26

Interestingly, a classification based on the final effect that mutations
have on fibrillin-1 has been devised subdividing mutations into
haploinsufficient (HI) and dominant negative (DN). The HI mutations
are usually due to insertions or deletions in FBN1 that can cause prema-
ture stop-codon formation with consequent prevention of protein
translation or degradation.27, 28 Thus, patients carrying HI FBN1 muta-
tions in heterozygosis only express the wild-type FBN1 allele and are
theoretically characterized by a reduced amount of normal fibrillin-1
protein production, resulting in a weaker aortic wall more susceptible
to high shear stress damage.27 On the other hand, DN mutations (usu-
allymissense or exon skippingmutations)mostly determine the forma-
tion of a fibrillin-1 with abnormal functionality due to disturbed protein
folding or defective activity. Patients carrying a heterozygous DNmuta-
tion should express a normal amount of fibrillin-1; however, it is likely
that only half of the produced protein (that derived from the wild-type
allele) is active. Theoretically, the DN condition should be characterized
by a discrete phenotypic variability due to the differing type and loca-
tion of the mutations that determine it.29 Functionally, it has been pos-
tulated that the abnormal activity of DN mutated fibrillin-1 could
negatively impact the subtle organization of fibrillar structure in the
ECM, particularly its strength and its interaction with TGF-β.27, 28

Interestingly, on the basis of this classification, Franken et al. recently
observed that patients carrying HI mutations, when compared with
patients carrying DN mutations, have a 2.5-fold increased risk for CV
disease (CVD) death, a 2.4-fold increased risk for combined CVDmortal-
ity and dissection, and a 1.6-fold increased risk for any aortic
complication.30 The association of theMFS aortic phenotypewithmuta-
tions resulting in truncated FBN1 has also been observed by other
groups. In one cohort of 80 MFS patients, those carrying truncating
mutations were reported to be more prone to develop aortic events, in-
cluding both TAA and type A dissections, than patients carrying mis-
sense mutations (57.1% vs. 13.6%).26

Some critical points about the HI-DN classification have recently
been raised due to the overlap between phenotypes induced by differ-
ent types of mutations.28 Precisely, Dietz reported that DN mutations
are frequently, but are not always associated with severe pediatric pre-
sentation and that HImutations are associatedwith phenotypes ranging
from mild presentations without cardiovascular involvement to the
classic MFS presentation.31 To overcome these crucial points, it has
been also postulated that the phenotypic variability among MFS pa-
tients carrying the same type of mutation could be due to alteration in
the expression of the normal FBN1 allele,32 a hypothesis that might
also explain the strong intra-familial clinical variability recorded inMFS.

Furthermore, since DN mutations are more associated with the de-
velopment of ectopia lentis, it should bemore simple for clinicians to di-
agnose MFS in these patients early in life and, thus, begin prophylactic
treatment for aortic disease determining a slower progression of aortic
dilatation.29

Based on these controversial and complex scenarios,we believe that,
to date, a clear and complete genotype-phenotype correlation inMFS is
still missing, and further studies will be needed to unravel this intricate

http://www.omim.org
http://www.umd.be/FBN1


330 E. Rurali et al. / Progress in Cardiovascular Diseases 61 (2018) 328–335
question.10 However, we strongly feel that an effective FBN1 mutation
classification, together with a more precise genotype-phenotype corre-
lation, would be useful to develop an appropriate instrument to predict
disease progression, prognosis and response to drugs for each patient.

Current Therapeutic Strategies

Surgical Approaches

Since TAA is the MFS clinical feature most heavily impacting patient
prognosis, many efforts have been focused on strategies that limit aortic
enlargement and dissection occurrence. In the early 1970s, prior to the
recent advances in diagnostic and prophylactic surgical approaches for
TAA, MFS patients' lifespan was about 2/3 of that of healthy subjects.
During the last four decades, however, life expectancy of these patients
has dramatically increased to now near normal levels.3, 33, 34

To avoid a detrimental dissection event, the 2010 ACC/AHA/AATS
guidelines suggested that the TAA surgical correction for MFS patients
is necessary when the ratio between the maximal cross sectional area
of the ascending aorta or root (expressed in cm2) and patient's height
(expressed in meters) exceeds the value of 10.35 Afterwards, the 2014
ESC guidelines indicated that the elective surgical therapy should be
recommended when: 1) the aortic diameter exceeds 45 or 50 mm
(depending on the presence of family history of aortic dissection),
2) the aneurysm is rapidly dilating (at a rate higher than 3 mm/year),
3) in case of severe valve regurgitation or 4) before a planned
pregnancy.36

The surgical strategy basically consists of total aortic root replace-
ment with a vascular graft including coronary reimplantation, that can
be performed with a prosthetic aortic valve implant (TRR, Bentall
procedure)37 or a valve-sparing procedure (VSRR, David procedure,
Fig 1).38 Although the Bentall operation is considered the gold standard
for TAA surgery, the David procedure has become increasingly popular
whenever the patient presents with a morphologically and functionally
normal aortic valve. The latter option is particularly advantageous
as it does not require a prosthetic valve, thus avoiding life-long
Fig 1. Current therapeutic strategies for MFS-TAA. In the left panel are presented the more c
that basically consist of ARBs and/or β-blockers therapy. In the right panel are illustrated the cu
PEARS techniques. ARBs: angiotensin II receptor blockers, AngII: angiotensin II, AT1R: angiotensin II
root replacement, PEARS: personalized external aortic root support.
anticoagulant therapy, which is mandatory when a mechanical valve
is utilized, or durability issues that are common when a bio-prosthesis
is implanted in younger patients.39–41 Both these approaches are valu-
able options for treating TAA in MFS patients; however they are not
always definitive. Indeed, after a TRR the re-intervention rate is
~0.3%/year and the thromboembolic event rate is ~0.7%/year. Con-
versely, the VSRR has shown increased need for re-intervention
(~1.3%/year) but less thromboembolic events (~0.3%/year).39 As for
long-term patient outcome, Price et al. reported a 10-year survival
rate of 90.5% after TRR and 96.3% following VSRR.42

Interestingly, a more recent procedure based on the implantation of
a personalized external aortic root support (PEARS) is emerging for the
surgical management of TAA in patients at an early stage of aortic dila-
tation (Fig 1).43, 44 Briefly, a macroporous fabric sleeve, modeled on the
patient's aorta, is created by ‘computer aided design’ and ‘3D printing’
for implantation around aneurysmal aorta, with the aim to halt aortic
root expansion, thus limiting the risk of acute dissection.44, 45 Interest-
ingly, it has been observed that, over time, the macroporous mesh
completely integrates with the aortic adventitia.46 Despite only a hun-
dred patients currently being followed after PEARS implantation, the
functional positive effects of this innovative technique on longitudinal
ascending aortic wall stress due to the axial downward reduction have
already been reported, together with aortic valve competence restora-
tion incidentally being obtained in some patients.47–50

Life Style and Pharmacological Approaches

Once the diagnosis of MFS has been confirmed, precautions regard-
ing behavioral and lifestyle measures should immediately be discussed
with the patient and their family. Although there are no clear reported
data regarding the dangers of physical activity (PA) in patients with
TAA, it is generally suggested that MFS patients avoid weightlifting as
well as intensive, contact and competitive sports, due to their potential
risk in aorta rupture. However, regular low-intensity and low-impact PA
is permitted in most people with MFS, after taking into consideration
their personal PA limitations.51
ommonly prescribed pharmacological treatments to reduce heart rate and blood pressure
rrent overtures for the surgical repair of the thoracic aorta dilated tract: the TRR, VSRR or
receptor type 1, β-AR: β-adrenergic receptor, TRR: total root replacement, VSRR: valve-sparing
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In parallel the most frequent pharmacological approach reserved to
MFS patients is aimed at decreasing heart rate and lowering blood pres-
sure (BP) average and amplitude to reduce the hemodynamic stress on
the proximal aorta.40 Specifically, the drugs commonly prescribed are
the β-adrenergic receptor antagonists (βBs) that can be administered
alone or in combination with angiotensin II (AngII) receptor type 1
(AT1R) blockers (ARBs, Fig 1).52,53 The β-blockers strategy was initiated
in 1971, when Halpern et al. suggested that the control of BP could be
fundamental to decrease haemodynamic stress on the proximal aorta
in MFS patients.54 Since that time several studies have been conducted,
but the efficacy of βBs in these patients remains controversial.55 Inter-
estingly, a recent meta-analysis revealed that only one low quality,
open-label, randomized clinical trial has been performed to assess the
efficacy of βBs (e.g. propranolol) in 70 MFS patients. It reported a de-
crease in aortic diameter growth rate, but not mortality reduction.55,56

Additional small studies have reported that βBs can limit aortic root
expansion,57–59 while others have shown no difference in aortic mea-
surements in patients receiving the drug.60 Dean et al. ascribed the het-
erogeneous efficacy of βB therapy in adult patients to the timing of
therapy, with greater efficacy seen when treatment was started in
younger patients with smaller aortas.61 Despite these variable results,
βBs have become themost prescribed therapy forMFS patients.62 Aten-
olol is often utilized because of longer half-life, greater cardiac selectiv-
ity and fewer side effects.63 Recently, the third-generation βB nebivolol
has emerged as a possible valuable alternative in MFS treatment due to
its effect on heart rate in association with anti-stiffness properties. In
this regard, a clinical trial to test nebivolol efficacy in MFS patients
has been designed64 and is currently recruiting (NCT00683124;
http://clinicaltrials.gov).

The recently unraveled role of AngII in MFS pathophysiology
has identifiedARBs as a potentially promising pharmacologic strategy.17

Indeed, the pivotal role of the AngII/AT1R axis in MFS aneurysm
development was confirmed by the effectiveness of ARB therapy in
reducing the rate of aortic root dilatation in MFS mice,20,65–67 as well
as in adult patients co-treated with βBs.52,68–71 Despite this finding,
MARFANSARTAN, a recently published placebo-controlled randomized
clinical trial, did not demonstrate the efficacy of ARBs inMFS patients.72

However, it is noteworthy that results from smaller studies evaluating
ARB therapy inMFS children and young adults73–76 have shown impres-
sive outcomes, both in severely affected childrenwhodid not previously
respond to other conventional therapies and in children with milder
MFS phenotypes. Overall, these patients showed a marked decrease in
aortic root dilatation rate.73–75 In another cohort of 608 children and
young adult MFS patients, Lacro et al. reported no significant difference
between patients allocated to ARB or βB treatment groups over a 3-year
follow-up, and that younger age was associated with a greater decrease
in aortic root dilatation in both groups.76

In 2015, two additional studieswere published evaluating short-term
vascular andhaemodynamic effects (e.g. pulseway velocity, arterial stiff-
ness, left ventricular function) in MFS patients treated with ARBs or βBs
alone. The results of both studies suggest that either of these classes of
medicationmay be effective by improving vascular function via their dis-
tinct mechanisms.77,78 To further clarify the ability of ARBs to interfere
with MFS pathology and their mechanism of action when administered
alone, more controlled clinical studies are ongoing (The Oxford Marfan
Trial [NCT01949233], NCT00723801; http://clinicaltrials.gov).

In case of intolerance to βBs, angiotensin converting enzyme inhibi-
tors (ACEi) or calcium channel blockers (CCB) may also be utilized.79

ACEi act by blocking the abnormal activation of the renin-angiotensin
system, a known cause of aortic dilatation, while CCB prevent the influx
of calcium from the extracellular space into cells and have a negative
ionotropic action.62,80 The efficacy of CCB is currently under debate,
both in humans and in MFS mice, in which it has been recently shown
that the CV phenotype may worsen with CCB administration.55,62,80

In summary, since published clinical studies have involved drugs
that i) do not specifically target MFS-related mechanisms, and ii) are
variably effective in these patients, it appears difficult to define which
pharmacological therapy is most favorable for delaying TAA dilatation
and dissection occurrence in MFS. Thus, to date the gold standard ther-
apy for significant TAA in MFS remains surgery.

Novel Therapeutic Perspectives

The search for potential MFS targets for novel classes of molecules is
ongoing, with the dual purpose of better understanding TAA pathologi-
cal mechanism and being able to slow aortic disease progression. To
pursue these aims, the combination of different tools such asMFS trans-
genic mice, pharmacogenetics and induced pluripotent stem cell (iPSC)
is the most complete approach to reach the personalized medicine goal
(Fig 2).

Mouse Models

During the last two decades, several different transgenic mice
models of MFS have been developed and are currently being used to in-
vestigate pathogenic mechanisms and validate novel treatment ap-
proaches. The most promising animal models developed to study
fibrillin 1 function are the hypomorphic model (mgR), the Fbn1-null
(mgN), and the C1039G mouse model (Table 1).21,81,82 In particular,
the Fbn1mgR and the Fbn1mgNmice show fibrillin1 under-expression, re-
capitulating the HI condition and MFS manifestations, while the
Fbn1C1039G mice harbour a FBN1 mutation similar to that more fre-
quently carried by MFS patients and express a normal level of FBN1 re-
capitulating the DN condition (Fig 2). The most attractive novel
approaches are reported in Fbn1mgR/mgR mice and concern i) the man-
agement of TGF-β signalling for controlling its dimorphic effect on aortic
aneurysm progression83 and ii) the inhibition ofmatrix metalloprotein-
ases (MMPs) obtained with doxycycline.84 Briefly, Cook et al. reported
that TGF-β neutralization could exacerbate TAA progression in MFS
mice when the treatment was initiated in the perinatal period (before
aneurysm formation), while it determined TAA mitigation when the
treatment was administered in the postnatal life (after aneurysm
formation).83 In addition, Baxter and collaborators showed that doxycy-
cline administration significantly prolongedMFSmice lifespan delaying
aneurysm rupture, probably through the inhibition of the MMP-2 and
MMP-9 production and the consequent decrease in aortic elastic fibre
fragmentation.84,85 Interestingly, both these treatments were more ef-
fective in diminishing aortic aneurysm progression when combined
with losartan administration.83,86 Another emerging approach for MFS
aortic aneurysm treatment came from preclinical studies based on the
use of statins in Fbn1C1039G mice. Specifically, a positive role of prava-
statin in attenuating aortic root dilatation and preserving elastin within
the aortic wall was observed.87,88

Future studies are needed to evaluatewhether the preclinical results
obtained in MFS mouse models after TGF-β neutralization, doxycycline
and pravastatin administration will be clinically applicable.

Pharmacogenetics

In the context of personalizedmedicine, the study of the genetic dif-
ferences that may affect specific drug responses appears promising in
understanding how to most effectively treat MFS patients. To this pur-
pose the classification approach based on the final effect of the genetic
mutation on the protein is a novel concept aimed to overcome the
high number of different disease-causing mutations already described
(Fig 2).

Franken et al. showed that ARB losartanwas effective in reducing ar-
terial BP, as well as in slowing aortic root dilatation in MFS patients car-
rying HI FBN1mutations, but not in those carrying the DNmutations.27

In these patients the mean arterial BP did not correlate with aortic root
dilatation rate, suggesting that the impact of losartan could not simply
be ascribed to its BP lowering action.27 It was also speculated that

http://clinicaltrials.gov
http://clinicaltrials.gov


Fig 2. Available tools to solve the puzzle of precise therapy for TAA inMFS. In the upper-left panel are represented the threemore commonly usedmousemodels for preclinical studies:
the Fbn1mgR/mgR and the Fbn1mgN/+presenting a haploinsufficientfibrillar phenotype, and the Fbn1C1039G/+presenting a dominant negative phenotype. In the lower-left panel is illustrated
the pharmacogenetic tool which is the study of the drug response in patients classified on the basis of their genotype. Specifically, in respect to healthy subjects that showa normalfibrillar
structure, patients carrying haploinsufficient mutations have theoretically less fibrillin-1, while patients carrying dominant negative mutations are supposed to present a dysfunctional
fibrillar structure. Different ECM pattern could determine various response to pharmacological treatment. In the right panel are illustrated the potentialities of the personalized
medicine for MFS based on patient-specific cell models. Starting from the ESC of the inner mass cell or from the iPSC obtained from patient skin biopsy, several cardiovascular cells
characterized by the patient genotype and phenotype can be obtained to test and develop drugs, and to stratify patients for clinical trials and cohort studies. MFS: Marfan syndrome,
Fbn1: fibrillin-1, TAA: thoracic aortic aneurysm, ESC: embryonic stem cells, iPSC: induced pluripotent stem cells.
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patients carrying an HI FBN1mutation have enhanced beneficial effects
from ARB therapy in comparison to patients carrying DNmutations be-
cause of higher activation of AngII signalling. However, it is worth
highlighting that patients in this study were adults that had not
required aortic root surgery and did not stop previously prescribed
medications before enrollment (βBs use in 70–75% of the cohort).69

Therefore, it is possible that the study population was enriched with
milder cases (also evidenced by the low aortic dilation rate during the
study) and that the βB therapy, administrated at different dosages, in-
fluenced the effect of losartan.28 To confirm these results, it will be im-
portant to evaluate the impact of ARB therapy alone on a more
heterogeneous population of MFS patients considering their underlying
FBN1 mutations. Although this study is a milestone in a pharmacoge-
netic perspective, further investigations are needed to confirm the
validity of this classification, considering the discordant opinions re-
ported in the literature about the phenotype heterogeneity of patients
carrying DN or HI mutations and also among family members present-
ing the same mutation.27,28

Patient-Specific Cell Models

A new tool in the field of personalized medicine concerns MFS
patient-specific cell models, useful to advance mechanistic knowledge
and assist in drug discovery. Among new patient-based cell platforms,
those involving human embryonic stem cells (ESC) and iPSC appear par-
ticularly promising. The ESChave anunlimited capacity to proliferate and
are able to differentiate in all the three embryonic germ layer derivatives.
Notably, the iPSC hold the same proliferative and differentiating



Table 1
Common MFS mouse models.

MFS mouse
model

Main cardiovascular phenotypic manifestation References

Fbn1mgR/+ - Normal phenotype throughout life 81
Fbn1mgR/mgR - No phenotypic abnormalities at birth

- Medial calcification and aortic aneurysm
formation

- Death for aortic aneurysm dissection
during early adulthood

Fbn1mgN/+ - Half amount of functional fibrillin 1
- Normal phenotype throughout life

82

Fbn1mgN/mgN - Total lack of fibrillin 1
- Neonatal death due to rupture of aortic

aneurysm
Fbn1C1039G/+ - Half amount of dysfunctional fibrillin 1

- Development of proximal aortic aneurysms
and mitral valve thickening

- Normal lifespan

21

Fbn1C1039G/C1039G - Total amount of dysfunctional fibrillin 1
- Death during perinatal period
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capacities of ESC, without the ethical issues of embryo employment
(Fig 2).89

Since ESC and iPSC have the same genotype and phenotype of the
donor, they offer a valid tool for disease modelling. This aspect is of par-
amount importance for translational purposes, since many drugs re-
ported to be efficient in animal models have been found not to be
effective in humans. This gap in translation highlights the necessity to
move from studies grounded on animalmodels to patient-specific strat-
egies. In this regard, patient-derived iPSC in particular open up newper-
spectives in patient-centered care, as they could be used to uncover key
patho-mechanistic insights and in preclinical trials to assess for individ-
ual toxicity and drug responsiveness.90 For all these features iPSC are
now in the limelight.

Concerning the MFS pathological scenario, patient-derived iPSC re-
cently showed similarities to patient-derived ESC, especially in terms
of skeletogenic phenotype, thus they could be used indiscriminately in
disease modelling.91,92 In particular, it was observed in both cell lines
an enhanced activation of TGF-β signalling, a classical feature of MFS,
causing a strong inhibition of osteogenesis and promotion of
chondrogenic differentiation without TGF-β supplementation.91

However, inMFS themost detrimental alteration concerns the aortic
wall, in which smooth muscle cells (SMC) were ascribed as the major
cell type involved in the disease pathogenesis.17 In this regard, a study
by Saito et al. reveals that the MFS iPSC-derived SMC (MFS iPSC-SMC)
had characteristics similar to those of SMC isolated from MFS patients'
aneurysmal aortic wall. Moreover, MFS iPSC-SMC showed augmented
TGF-β signalling and expressed more mature contractile proteins and
transcription regulator of smooth muscle genes in comparison to iPSC-
SMC derived from healthy subjects.93

More recently, Granata et al. developed a MFS vascular model
starting from dermal fibroblasts of patients and generating MFS iPSC-
SMC that were then differentiated into the three embryonic origin-
specific SMC lineages.94 The lineage that best recapitulated theMFS aor-
tic phenotype was derived from neural crest (NC-SMC), which showed
hyperactivation of both the TGF-β canonical and non-canonical path-
way in respect to healthy subject NC-SMC at early developmental
stages.94 Interestingly, three different drugs (i.e. losartan, doxycycline
and anti-TGF-β treatment) were tested on this model and results indi-
cated that losartan was the most effective drug in reducing ECM degra-
dation inMFS NC-SMC. Losartan, however, only showed a partial rescue
in impaired proliferation and had no effect on cell death.94 In light of
these results, it appears hopeful that iPSC will provide an optimal plat-
form for the process of drug development and patient stratification
(i.e. responder selection) for clinical trials or cohort studies in MFS
(Fig 2).90
Conclusions

Several novel therapeutic strategies are under investigation aimed at
amelioratingMFS patient outcomes and lifespan. Since a givenmolecule
efficacymay not be equivalent for all MFS patients due to their intrinsic
genomic differences, the goal of precisemedicine is laborious to achieve.
In this regard, we firmly believe that the choice of a pertinentmodelling
strategy is fundamental to discover the effective treatment for limiting
TAA development and progression in MFS. To this end it is essential to
consider together i) mouse models to study TAA pathological mecha-
nism and to assess potential efficient drugs, ii) iPSC technology to test
on patient-specific cells the in vivo identified compounds and to individ-
ualize the best responders and stratify patients for future clinical trial,
and iii) pharmacogenetics to treat MFS patients with different medica-
tions based on their inherent characteristics. Only such an integrated
approach involving all the presented tools will be the most likely solu-
tion for the composite puzzle of precise medicine for TAA in MFS.
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