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ABSTRACT
Pinning of vortex lines in the inner crust of a spinning neutron star may be the mechanism that
enhances the differential rotation of the internal neutron superfluid, making it possible to freeze
some amount of angular momentum which eventually can be released, thus causing a pulsar
glitch. We investigate the general relativistic corrections to pulsar glitch amplitudes in the slow-
rotation approximation, consistently with the stratified structure of the star. We thus provide a
relativistic generalization of a previous Newtonian model that was recently used to estimate
upper bounds on the masses of glitching pulsars. We find that the effect of general relativity
on the glitch amplitudes obtained by emptying the whole angular momentum reservoir is less
than 30 per cent. Moreover, we show that the Newtonian upper bounds on the masses of large
glitchers obtained from observations of their maximum recorded event differ by less than a few
percent from those calculated within the relativistic framework. This work can also serve as a
basis to construct more sophisticated models of angular momentum reservoir in a relativistic
context: in particular, we present two alternative scenarios for macroscopically rigid and slack
pinned vortex lines, and we generalize the Feynman–Onsager relation to the case when both
entrainment coupling between the fluids and a strong axisymmetric gravitational field are
present.
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1 IN T RO D U C T I O N

Pulsars are extremely stable astronomical clocks. However, their
slow and predictable secular spin-down, due to conversion of rota-
tional energy into electromagnetic radiation and particle wind, can
be interrupted occasionally by impulsive spin-up events known as
glitches [see e.g. Espinoza et al. (2011) for a comprehensive ob-
servational study and Haskell & Melatos (2015) for an up-to-date
description of pulsar glitch models].

Large pulsar glitches, like the ones exhibited by the Vela, are
usually interpreted as manifestations of the presence of quantized
vortices which thread the internal superfluid bulk made of Cooper-
paired neutrons (Anderson & Itoh 1975). A central role in this sce-
nario is played by the effectiveness of the pinning mechanism (Alpar
1977; Epstein & Baym 1988): superfluid vortices immersed in the
solid nuclear lattice of the inner crust can find energetically con-
venient some particular vortex-nucleus geometrical configurations
(Donati & Pizzochero 2004; Donati & Pizzochero 2006), which
strongly hinder their motion. Also pinning to the magnetic flux

� E-mail: marco.antonelli23@gmail.com (MA); alessandro.montoli@
unimi.it (AM)

tubes in the core is sometimes invoked, as this possibility opens
interesting scenarios for both pulsar glitches and the study of the
internal magnetic field evolution (Ruderman, Zhu & Chen 1998).
The more the vortices are pinned, the more the superfluid is decou-
pled from the normal component and can flow independently from
the spinning-down normal component.

In the extreme case of perfect pinning, the only interaction be-
tween the two components is non-dissipative and consists of the
so-called entrainment effect, early introduced to describe the dy-
namics of superfluid mixtures (Andreev & Bashkin 1975). As a
consequence of the density-dependence of both pinning and en-
trainment, the neutron superfluid develops a differential rotation
with respect to the spinning-down normal component. The velocity
lag built up between the two components can also depend on how
much vortex lines are able to ‘creep-out’ the bulk superfluid; one
of earliest models of this type is that of Alpar et al. (1984). The
recoupling of the superfluid component following a large-scale vor-
tex unpinning (triggered by a still unknown mechanism) leads to a
small and fast spin-up of the normal component, namely a glitch
(Epstein & Baym 1992).

A consistent description of pulsar rotational dynamics was given
by Antonelli & Pizzochero (2017a), based on the assumption
of paraxial (rigid) vortices in a Newtonian framework; general
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relativity (GR) was only used to determine the stellar hydrostatic
structure. This is not, however, an accurate description for neutron
stars. For example, the most obvious correction that should be con-
sidered in GR is the use of relativistic moments of inertia (e.g. Hartle
1967; Ravenhall & Pethick 1994). In the same work, the authors
proposed a method to estimate the maximum glitch amplitude of
a neutron star of given mass: thus, the largest glitch recorded in a
given pulsar can in principle put constraints on its (observationally
unknown) mass, as recently proposed in Pizzochero et al. (2017).
Alternative methods for constraining the structure of neutron stars
using glitch observations have already been carried out in previous
works, among which Datta & Alpar (1993) and Alpar et al. (1993)
for the Vela pulsar as well as the more recent Link, Epstein &
Lattimer (1999), Andersson et al. (2012), Chamel (2013), and Ho
et al. (2015).

The aim of this work is to embed in a general relativistic frame-
work the method used to set an upper limit to the glitch amplitudes,
in order to estimate the corrections due to the presence of a strong
gravitational field to the mass upper bounds presented in Pizzochero
et al. (2017). Our study is developed in the slow-rotation approxima-
tion, appropriate for constructing models of non-millisecond pulsars
in GR (Andersson & Comer 2001). The methodology is based on
the two-fluid representation of superfluid neutron stars, wherein
all the charged components (protons, electrons, and lattice nuclei)
are considered as a single fluid coexisting with the superfluid neu-
trons. Following standard terminology (Andersson & Comer 2007),
these two fluids are usually referred to as ‘neutrons’ and ‘protons’
and are coupled via the so-called entrainment effect [see Chamel
& Haensel (2008) for an introduction to entrainment in neutron
stars].

The paper is organized as follows: in Section 2, we recall some
properties of the Newtonian model introduced in Antonelli &
Pizzochero (2017a), adding a new local unpinning prescription for
vortex lines with negligible tension at the hydrodynamical scale,
henceforth dubbed ‘slack’ vortices. In Section 3, we generalize
the previous results in the framework of a slowly rotating star in
GR. Finally, in Section 4 we study the variation of the maximum
glitch amplitudes under the different prescriptions, and we evaluate
the difference in the inferred mass upper limit. The basic formalism
needed here is briefly reviewed in Appendix A, while in Appendix B
we show a generalization of the Feynman–Onsager relation when a
strong gravitational field is present.

2 MAXIMUM G LITCH A MPLITUDES:
N E W TO N I A N FR A M E WO R K

An axisymmetric Newtonian model for pulsar glitches that is con-
sistent with the stratified structure of a neutron star, the differential
rotation of the superfluid and the presence of non-uniform entrain-
ment and pinning is described in Antonelli & Pizzochero (2017a),
hereafter Paper-I. This model provides a generalization of the early
two-rigid-components model of Baym et al. (1969) and is rigor-
ously built starting from some working hypotheses: the motion of
matter is purely circular (null macroscopic meridional circulation)
and the background stellar structure is that of non-rotating hydro-
static equilibrium in GR. Physical motivation behind this choice is
that one does not consider precession, nor rotational frequencies
comparable to the mass-shredding limit.

The normal component (labelled by p) rotates rigidly with a
slowly decreasing angular velocity �p, while the superfluid compo-
nent (labelled by n) can rotate non-uniformly with angular velocity
�n = �p + �np, but still around a common and fixed rotational

axis. Using standard cylindrical coordinates,1 the differential an-
gular velocity lag between the components is a function �np(x, z),
which can vary in time but does not depend upon the coordinate
ϕ, as can be shown by considering the continuity equation for the
n-component.

Entrainment provides a non-dissipative interaction between the
two components; it is introduced in the model by following the
Newtonian formalism presented in Prix (2004), where the momenta
per baryon of each fluid pn and pp are linear combinations of
the velocities of both fluids. In particular, we are interested in the
azimuthal component of the momenta

pnϕ = mn x (�p + (1 − εn)�np), (1)

ppϕ = mp x (�p + εp�np), (2)

the other components being zero. Here, mn and mp represent the
mass per baryon of the two fluids and the dimensionless entrainment
parameters εn and εp obey the constrain mnnnεn = mpnpεp, where nn

and np are the baryon number densities of each component. The total
baryon density is nB = nn + np. Since the superfluid is composed
entirely of neutrons, we can consider mn to be the neutron bare
mass. The quantum of circulation around a single vortex line is thus
κ = h/(2mn), where 2mn is the mass of a Cooper pair of neutrons.
Things are more subtle for the normal component, consisting of a
neutral mixture of protons, leptons (in particular electrons), thermal
excitations of the neutron superfluid and crustal neutrons that are
not in the conduction band (Carter, Chamel & Haensel 2006). As
a first approximation, β-equilibrium for a three-component star
(electrons, protons and neutrons) tells us that mp is at least the sum
of the proton and electron bare masses (Sourie, Oertel & Novak
2016). Further contributions from the non-superfluid neutrons in
the nuclear clusters can only rise the value of mp even closer to mn.

In general, by using the constrain on the entrainment parameters,
the total momentum density π of the system can be also expressed
in terms of the two velocities vn and vp as

π = nn pn + np pp = mnnnvn + mpnpvp, (3)

which does not depend explicitly on entrainment. In particular, once
mn = mp has been assumed, the azimuthal component is

πϕ = nnpnϕ + np ppϕ = mnx(nB�p + nn�np). (4)

The total angular momentum L of the star (directed along the z-axis)
is the volume integral of the angular momentum density x πϕ :

L =
∫

x πϕ d3x = I �p + 	L[�np], (5)

where

I = 8π

3

∫
dr r4 ρ (6)

1 In this work we use standard spherical coordinates (r, θ , ϕ), where θ = 0
denotes the positive direction of the rotational axis and θ = π/2 is the
equatorial plane. The coordinate ϕ is the azimuthal angle. To follow the
notation of Paper-I, we also use cylindrical coordinates (x, ϕ, z), defined
as x = rsin θ and z = rcos θ . The z-axis coincides with the rotational axis,
whereas the inner–outer crust interface is the sphere of radius Rd, namely
(x, ϕ, ±z(x)) with z(x) = (R2

d − x2)1/2. The volume element in flat space is
d3x = dxdϕdz x or d3x = drdθdϕsin θr2. Within the relativistic slow-rotation
formalism, the spherical coordinates are Schwarzschild-like coordinates: in
particular the coordinate r = (x2 + z2)1/2 represents the circumferential
radius.
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is the Newtonian moment of inertia of the star and

	L[�np] =
∫

d3x (r sin θ )2ρn �np (7)

is the angular momentum reservoir associated with the lag; here,
we also defined the rest-mass density profiles of the star and of
the superfluid component as ρ = mnnB and ρn = mnnn, which are
functions of the radial coordinate r only.

As shown in Paper-I, the maximum glitch amplitude correspond-
ing to a given lag �np is

	�p[�np] = I−1 	L[�np] = In

I
〈�np 〉. (8)

To make contact with the terminology used in Paper-I, we intro-
duced the average lag

〈�np 〉 = I−1
n 	L[�np] (9)

using the Newtonian moment of inertia of the neutron component

In = 8π

3

∫
dr r4 ρn. (10)

It is thus possible to define the moment of inertia In relative to the
superfluid reservoir as the normalization factor of the distribution
	L defined in equation (7).

Remarkably, the glitch amplitude in equation (8) does not explic-
itly depend on entrainment: this is not surprising, as it is a direct
consequence of equation (3). The lag �np, however, is a dynamical
variable of the model and its time evolution will be affected by
entrainment (Antonelli & Pizzochero 2017b). Even if here we will
not study the equations of motion of the system, we still want to
maximize 	�p, in order to obtain a theoretical upper limit to the
observed glitch amplitudes. As explained in Paper-I, this is done by
considering the critical lag for unpinning �cr

np , corresponding to the
maximum reservoir that can be sustained by the pinning force (even
if perfect pinning is probably never realized in real neutron stars).
The upper limit 	�max on the glitch amplitude is thus obtained
by artificially emptying the whole reservoir of pinned superfluid,
namely

	�max = 	�p[�cr
np]. (11)

Estimates of �cr
np are based on the still poorly known physics

of vortices both in the crust and in the core of a neutron star. For
this reason, here we construct the critical lag for two alternative
physical scenarios: when vortex lines have an overall rigidity so
that they collectively organize into a stable array of paraxial vortex
lines, as early suggested by Ruderman & Sutherland (1974), and
when vortices are slack at the hydrodynamic scale, so that any
macroscopic portion of superfluid can flow independently from the
others. In both cases the critical angular velocity lag diverges as
∼1/x near the rotational axis. This, however, is not a flaw of the
model: first, we do not expect the reservoir to be completely filled
in real neutron stars, secondly, this kind of divergence is cured by
the fact that near the rotational axis the moment of inertia density
on a meridional slice of the star (the x–z plane) goes to zero as ∼x3.

Rigid vortex lines. This scenario is the one discussed in Paper-I,
where the infinite rigidity assumption is nothing but a prescription
used to model the configuration dynamics of vortex lines: an axially
symmetric and rigid configuration of vortices is a one-parameter
family of curves γ x that foliate a meridional slice of the star (no
toroidal vorticity is considered). Each curve, say e.g. γx0 , represents
the shape of a vortex line that intersects the equatorial plane at
x = x0. This construction simplifies the dynamical problem in a

significant manner, since it is now possible to use just the density of
vortex lines on the equatorial plane, a function dependent only on
x. Vortex creep, if present, can still modify the density of vortices
with the creeping vortex lines continuously rearranging their shape
from γ x to γ x + dx when moving from x to x + dx.

The simplest case of columnar rotation, where each curve γ x is
parallel to the rotational axis, has been studied in detail in Paper-I;
in this case it is useful to choose as parameter along the curve
the coordinate z (the generalization to rigid vortices that bend over
macroscopic distances is not difficult to derive). The motivation
behind such a scenario is the possibility that an array of quantized
lines behaves as a rigid bundle, with tension proportional to the
square of the number of vortices, thus providing a realization of the
Taylor–Proudman theorem, as proposed by Ruderman & Sutherland
(1974).

It is useful to define an auxiliary angular velocity x �v = pnϕ/mn,
namely

�v = �p + (1 − εn)�np. (12)

Introduction of this quantity is not strictly necessary but can be
useful as it is directly related (via the Feynman–Onsager relation,
reviewed in Appendix B) to the configuration of vortex lines: in
particular �v is stationary in the ideal limit of perfectly pinned
vortices. This is not true for �n, because entrainment couples the
neutron superfluid to the charged constituents of the p-component
which undergoes a steady and slow electromagnetic spin-down.
Depending on the context, we will also use the word ‘lag’ to indicate
�vp = �v − �p; we then have the relation

�vp = (1 − εn) �np. (13)

In the idealized scenario of parallel vortex lines, the Feynman–
Onsager relation implies that the quantity �vp is columnar, i.e.
depends only on the cylindrical radius x; conversely, equation (13)
shows that entrainment makes �np (and �n) non-columnar even in
the presence of straight vortices.

The angular momentum reservoir of equation (7) expressed in
terms of �vp is

	L[�vp/(1 − εn)] = 2π

∫
dx x3

∫
γx

dz
ρn

1 − εn

�vp, (14)

implying that equation (11) can be written as

	�max = Iv

I
〈�cr

vp〉. (15)

Here, the moment of inertia Iv is the normalization factor of the
distribution 	L in equation (14) that acts on the function �vp,
namely

Iv = 8π

3

∫
dr r4 ρn(r)

1 − εn(r)
. (16)

The unpinning lag �cr
vp is found by assuming that the magnitude of

the local Magnus force (per unit length) (Epstein & Baym 1992)

| f M| = κ ρn x �np = κ ρn x �vp (1 − εn)−1 (17)

integrated along γ x(z) must equal the mesoscopic pinning force
(per unit length) fP integrated along the same curve, namely the
non-local unpinning condition∫

γx

| f M| =
∫

γx

fP, (18)
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as proposed by Pizzochero (2011). In particular, for straight rigid
vortices the critical lag for unpinning is also columnar and given by

�cr
vp(x) =

∫
γx

fP

κ x
∫

γx

ρn

1−εn

. (19)

We remark that the theoretical pinning force fP and entrainment
coefficient εn are calculated as a function of the baryon number
density (or, equivalently, of the rest-mass density); once the density
profile of the star ρ = ρ(r) has been fixed (by imposing hydrostatic
equilibrium for a given mass), one can find the expressions for fP(r)
and εn(r).

Since the integral factor in the denominator of �cr
vp is the same

that appears in equation (14), it is straightforward to show that
equation (15) gives

	�max = π2

κ I

∫ Rd

0
dr r3 fP(r), (20)

where Rd is the radius corresponding to the interface between the in-
ner and the outer crust (drip radius). This expression was derived in
Paper-I; it shows that, when the maximum reservoir of angular mo-
mentum is determined by the unpinning condition on vortices (the
‘pinning paradigm’), the maximum glitch amplitude is independent
from entrainment: its value depends only on the radial profile fP(r)
of the pinning force (i.e. on the fP(nB) and ρ(nB) profiles and on the
stellar mass).

As long as only crustal pinning is considered (in this study we
assume fP(r) = 0 the core, i.e. there is no pinning of vortex lines
to magnetic flux tubes, a possibility that we do not consider here),
	�max does not depend on whether the vortex lines stretch across
the entire neutron star interior (both S- and P-wave superfluidity
reservoir, as discussed in Paper-I) or are limited to the crustal zone
(only S-wave superfluidity reservoir, the standard option found in
the literature). This fact can be understood physically from the
relations 	�p = 	L/I and 	L = In〈�np 〉; in the scenario where
the reservoir is limited to the crust, the S- and P-wave neutron
superfluids are weakly interacting and the core superfluid is strongly
coupled to the p-component; thus the moment of inertia In refers
only to the crustal neutrons (the core ones contributing to the p-
component) and is strongly reduced with respect to the case of
continuous and rigid vortices trough the star. This, however, is
compensated by the strongly increased value of the critical lag:
while the integrated pinning force is unchanged, the Magnus force
is now integrated along the crust alone and a larger lag is necessary
to reach the critical unpinning condition.

Slack vortex lines. Within our main hypothesis of null macroscopic
meridional circulation, the maximum glitch 	�max is exactly in-
dependent on entrainment in two different and opposite physical
situations: for vortex lines in a paraxial array and for completely
slack vortices that only feel the local pinning and the mesoscopic
Magnus force. In this latter case we assume the local unpinning
condition

| f M| = fP(r), (21)

so that the critical lag can now be expressed as

�cr
vp(x, z) = fP(r) (1 − εn(r))

κ sin θ r ρn(r)
.

Substituting in equation (15), we end up with the same result given
in equation (20).

We stress that here ‘slack’ is only referred to the behaviour of
vortices at the macroscopic hydrodynamic scale: a completely slack

vortex (that can stretch at the mesoscopic scale without any energy
cost) would bend even over lengths comparable to the radius of the
Wigner–Seitz cells in the crust. Thus, the slack vortices introduced
here are not tensionless at the mesoscopic scale, consistently with
the analysis of vortex pinning carried out by Seveso et al. (2016),
which incorporates the presence of non-zero single-vortex tension
to estimate the mesoscopic pinning force per unit length of vortex
line. Moreover, differently from the previous case, this scenario of
vortices that are macroscopically slack can lead to the development
of superfluid turbulence: if vortices pass through the crust–core
interface, the non-pinned section of vortex immersed in the core
can wrap around the rotational axis in an unstable configuration
(Greenstein 1970) and the vorticity can develop toroidal compo-
nents. It is not currently known, however, whether or not vortex
lines continuously pass from the region of 1S0 pairing to the region
of pairing in the 3P2–3F2 channel: studies based on the different
superfluid phases of 3He seem to indicate a non-trivial behaviour of
vortex lines at the phase boundary (Finne et al. 2006).

Note that in the case of slack vortex lines there is no real advantage
in preferring �v instead of �n, since there is no need to consider
a particular geometry of the vortex configuration: the same line of
reasoning can be followed by using directly equation (8) and �cr

np =
�cr

vp/(1 − εn). Moreover, any local phenomenological unpinning
condition can be used in place of equation (21). For example it
could be interesting to replace the usual Magnus force with the
Gorter–Mellink form for the mutual friction (Barenghi et al. 2001).
Since isotropic turbulence is unlikely to be relevant for neutron
stars (Andersson, Sidery & Comer 2007), here we take the usual
choice of Magnus-like mutual friction; when a better understanding
of polarized turbulence in neutron stars is achieved, our model can
be easily adapted by choosing a suitable unpinning condition to
replace equation (21).

3 MAXI MUM G LI TCH A MPLI TUDES:
SLOW-ROTATI ON FRAMEWORK

In this section we generalize the result given in equation (20) by
constructing a model of angular momentum reservoir in GR, con-
sistent with pinning of vortex lines to the crustal lattice. The model
is static, meaning that we do not discuss the dynamical equations
of the problem (i.e. how angular momentum is transferred between
the two fluids). Moreover, the stellar structure and composition, as
well as the space–time metric, are treated as a fixed background,
calculated by using the slow-rotation approximation, where the star
is assumed to be rigidly rotating (i.e. the two components are in a
state of corotation). These are not too severe limitations, since our
aim is just to provide an upper limit on the glitch amplitudes and
not to describe the rotational dynamics. However, much of the for-
malism and some intermediate results reported in this section can
be used as a basis for constructing dynamical models of superfluid
glitching pulsars (e.g. a slow-rotation general relativistic version of
the equations for pulsar rotation proposed in Paper-I). An example
of dynamical model for pulsar glitches with two rigid components
but in full GR is discussed in Sourie et al. (2017), where the au-
thors study the effect of GR on the characteristic rise time of large
glitches.

3.1 Axisymmetric space–time

In depth discussion of axisymmetric space–time around neutron
stars can be found in Friedman & Stergioulas (2013) and references
therein. Here, we just need a few basic notions, following from
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some strong initial assumptions (that are however standard in the
context of isolated and rotating relativistic stars): the neutron star
space–time is asymptotically flat, stationary and axisymmetric; in
particular it is a circular space–time, meaning that there are no
meridional macroscopic currents in the fluid. For the global chart
we use Schwarzschild-like coordinates (t, r, θ , ϕ), such that the
Killing vector associated with stationarity is ∂t and the circular
Killing vector is ∂ϕ . The metric, see e.g. Hartle & Sharp (1967),
can be written in terms of four functions 
, �, �, and ω as (setting
natural units c = 1)

g = −e2
(r,θ )dt2 + e2�(r,θ )dr2 + e2�(r,θ )

× [
r2dθ2 + r2 sin2 θ (dϕ − ω(r, θ )dt)2

]
. (22)

The coordinates θ and ϕ represent, respectively, the polar and az-
imuthal angles with respect to the rotational axis of the star (defined
as the set of points where the circular Killing vector vanishes).

The study of rotating neutron stars is significantly simplified
within the approximation of slow rotation, introduced by Hartle
(1967): for a star with mass M and radius R spinning with an
angular velocity �, the slow-rotation condition can be written as
R3�2/GM � 1, which implies the slightly less stringent condi-
tion �R � c (Andersson & Comer 2001). It is easy to see that,
for a typical pulsar with M ∼ 1 M� and R ∼ 10 km, spinning at
� ∼ 70 rad s−1 (like the Vela), this approximation works well.
The slow-rotation framework is less safe for a millisecond pulsar,
but so far only two millisecond pulsars have been seen glitching
(J1824−2452A, Cognard & Backer 2004, and J0613−0200, Mc-
Kee et al. 2016) and none of them is in the sample of pulsars
studied in Pizzochero et al. (2017), due to the small amplitude of
their glitches. Following Hartle (1967), at first order in � the metric
in equation (22) reduces to

g = [
(ω(r)r sin θ )2 − e2
(r)

]
dt2 + e2�(r)dr2 + r2dθ2

+ (r sin θ )2
[
dϕ2 − ω(r)(dϕ dt + dt dϕ)

]
. (23)

Of course, the metric functions that appear here and depend only
on r are not the same of equation (22). The centrifugal force and
consequent star deformation appear when second-order corrections
in � are taken into account and the spherical structure becomes
oblate. Within the two-fluid formalism, we work at first order in
�p. Also �np and ω are considered small; in particular, the quasi-
corotation condition �np � �p can be assumed for the present case
of pinning-induced lag.

3.2 The two-fluid model within the slow-rotation
approximation

The basic two-fluid formalism is briefly reviewed in Appendix
A, while an introduction to relativistic rotations can be found in
Friedman & Stergioulas (2013). Given the metric in equation (22),
the 3-velocities of the fluids measured by the local zero angular
momentum observer (ZAMO) are

vs = r sin θ e�−
(�s − ω), (24)

where s ∈ {n, p} is a component label. We impose rigid-body
rotation of the p-component and a quasi-corotating motion of the
n-component, namely �n(r, θ ) = �p + �np(r, θ ) and |r �np(r, θ )| �
r �p � c for r < Rd and θ ∈ [0, π ]. The corresponding 4-velocities
in the global chart are

us = Ws e−

(
∂t + �s∂ϕ

)
(25)

where we defined the Lorentz factors

Ws = (
1 − v2

s

)−1/2
. (26)

The local ZAMO rotates with angular velocity ω with respect to
an observer at rest at infinity; therefore, substitution of �s with
the frame-dragging angular velocity ω gives the 4-velocity of the
ZAMO in the global chart

z = e−

(
∂t + ω∂ϕ

)
. (27)

This vector field plays a special role in the 3 + 1 decomposi-
tion of space–time, since −z is the future-pointing unit normal to
the 3-surfaces defined by t = cost (Friedman & Stergioulas 2013;
Rezzolla & Zanotti 2013).

The Komar total angular momentum is given by

L = −
∫ (

Tαβ − 1

2
T ν

ν gαβ

)
(∂ϕ)α zβ dV , (28)

where Tμν is the energy–momentum tensor of the system and

dV = e�+2� d3x

is the volume form of the three-surface. By using the energy–
momentum defined in equation (A7) and remembering that
Ws = −g(us, z) and g(∂ϕ, z) = 0, one obtains the expression

L =
∫ (

Wnpnϕnn + Wpppϕnp

)
e�+2� d3x,

where psϕ are the azimuthal component of the momenta defined in
equations (A4) and (A5). It is tempting to draw an analogy with
the non-relativistic relations of equations (3)–(5). In particular, we
would like to split the azimuthal component of the total canonical
momentum density2

πϕ = Wnpnϕnn + Wpppϕnp

as done in equation (4), in order to single out the superfluid reservoir
contribution hidden in L. Due to the presence of the Lorentz factors,
however, the relation between the momenta and the velocities in the
above equation is non-linear, and it is not possible to separate πϕ

into two terms that depend only on �p and �np, respectively.
We now implement the slow-rotation approximation, by keep-

ing only terms that are at most linear in �p and using the metric
in equation (23). Direct expansion gives for various quantities of
interest

Ws = 1 + O(�2
p) (29)

� = WnWp(1 − vnvp) = 1 + O(�2
np) (30)

	 = vn − vp

1 − vnvp

= x e−
�np + O(�2
p) (31)

uϕ
s = e−
�s + O(�3

p) (32)

usϕ = e−
x2(�s − ω) + O(�3
p) (33)

εs = 2 α

ns μs

+ O(�2
np), (34)

2 Note that, differently from the Newtonian case of equation (3), the total
canonical momentum density in GR turns out to be entrainment depen-
dent. Explicit dependence on entrainment, however, appears only at order
O(�p�2

np).
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where the Lorentz factor �, the lag velocity in the frame of reference
of the normal component 	, and the entrainment parameters εs are
defined in equations (A1), (A2), and (A6), respectively. Using the
above approximations in equations (A4) and (A5), one obtains the
expressions

pnϕ = μn x2 e−
(�̄p + (1 − εn)�np), (35)

ppϕ = μp x2 e−
(�̄p + εp�np), (36)

where �̄p = �p − ω. Leaving aside the fact that here the canonical
momentum is an angular momentum instead of a linear momentum,
the above equations are completely analogous to equations (1) and
(2): as expected the mass per baryon mn is replaced by the enthalpy
per baryon μs, while the only effect of curved space–time is in the
presence of the factor

√−gtt = e−
. The total angular momentum
in the slow-rotation approximation is thus given by

L =
∫

d3x e�−
 x2 [(μnnn + μpnp)�̄p + μnnn�np)]. (37)

Note that this formula was derived by taking only the linear terms
of an expansion in �p and assuming that �n is of the same order of
�p: for its validity, there is no need to invoke the smallness of the
lag expressed by the additional quasi-corotation condition.

Finally, making use of the Feynman–Onsager relation (whose
relativistic generalization is given in Appendix B), we can introduce
the auxiliary angular velocity �v = �p + �vp by imposing that

gασ uσ
v = pnα/μn,

where uv is the 4-velocity associated with a fictitious v-component,
defined in terms of �v in the same way as done for un and up, namely
via equations (24) and (25). In general, the relation between �vp, �p

and �np given above is complicated by the presence of the Lorentz
factors Wv in uv and � in pn. However, it can be greatly simplified
by assuming slow rotation: in this case, expansion of equation (A4)
and of g(uv) in powers of �̄p gives

�vp = (1 − εn)�np + O(�2
p), (38)

implying that within the slow-rotation approximation the definition
of �v is the same as that given by equation (13) in the Newtonian
framework.

3.3 Relativistic corrections to the moments of inertia

Following Hartle (1967), the moment of inertia (to first order in �)
for a slowly and rigidly rotating star is

I = 8π

3c2

∫ R

0
dr r4e�(r)−
(r) (E(r) + P (r))

�̄(r)

�
, (39)

where P(r) and E(r) are the pressure and energy density profiles
inside the star, �̄(r) = � − ω(r) encodes the rotational frame-
dragging in GR and the ratio �̄(r)/� does not depend on the angular
velocity � and is smaller than one. Relativistically, the mass den-
sity is ρ = E/c2, so that we will use mass and energy density as
synonyms.

In the slow-rotation approximation, the background neutron
star structure can be found by solving the spherical Tolman–
Oppenheimer–Volkoff (TOV) equations, since deformations are
second order in �. More precisely, microscopic calculations (per-
formed at zero temperature in flat space–time) can provide an equa-
tion of state (EOS) for neutron star matter, namely the dependence of
energy density, pressure and composition (in particular, the neutron
fraction yn = nn/nB) on the baryon number density nB, from which

a barotropic relation P = P(ρ) can be derived. Given an EOS and
for any fixed mass, the density profile ρ(r) and the metric functions

(r) and �(r) can obtained through the standard TOV equations,
while �̄(r) follows from the integration of an additional equation.
We do not review the method here, since it can be found in many
previous articles or books (see e.g. Glendenning (2000) and refer-
ences therein). Following this prescription, one can thus find the
radial profile of all relevant quantities, in particular E(r) = ρ(r)c2,
P(r), nB(r), yn(r); also the profiles fp(r) and εn(r) can be found from
any given microscopic expression for fp(nB) and εn(nB).

Although some previous studies have already introduced partial
moments of inertia within the slow-rotation approximation (as done
e.g. by Newton, Berger & Haskell 2015), we want to further discuss
this issue in the present context, since the derivation of In and Iv
in a relativistic context is more subtle than in the Newtonian case.
In order to clarify all the assumptions needed to proceed, we have
to come back to the total angular momentum of equation (37). We
first remark that the thermodynamic Euler relation for a two-fluid
system is (Langlois, Sedrakian & Carter 1998)

E = μnnn + μpnp − �, (40)

where � is the generalized pressure of the system. However, the
quantity that plays the role of inertia in equation (39) is the enthalpy
density, E + P , of a barotropic fluid: we thus impose � = P, even if
a velocity lag is present (see also Appendix A). Now, by looking at
equation (37), there is the need to specify nnμn and npμp. We thus
impose chemical equilibrium (μp = μn = μ∗), so that the above
Euler relation reduces to the enthalpy density of a simple barotropic
fluid

E + P = μ∗nB,

where μ∗ plays the role of a mean effective inertial mass per baryon
(Friedman & Stergioulas 2013).

In the limit of no differential rotation (� = P) and of chemical
equilibrium, we have

nnμn = ynnBμ∗ = yn(E + P ),

where yn = nn/nB is the superfluid fraction. Under these two ad-
ditional assumptions, the total angular momentum in equation (37)
can be written as

L = I �p + 	L[�np], (41)

where I is given in equation (39) and

	L[�np] =
∫

d3x e�−
 yn(E + P ) x2 �np. (42)

We remark that in the decomposition of the total angular momentum
in a global component corotating at �p plus the contribution of the
neutron reservoir represented by the lag, as done in equation (41),
only the global part contains the effect of frame-dragging: the reser-
voir 	L[�np] presents no factor �̄(r)/�. This is not so surprising,
since the corrections due to frame-dragging and encoded in the use
of �̄(r) = � − ω(r) cancel out when considering a lag between
angular velocities [cf. also equations (35) and (36)].

Again, we can introduce the partial moment of inertia In as the
normalization factor of the distribution defined by 	L; momentarily
reintroducing the c factors, it turns out to be

In = 8π

3c2

∫ Rd

0
dr r4e−
+� yn (E + P ) . (43)
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This allows to define the average lag 〈�np 〉 (weighted with In) and
hence write the angular momentum of the reservoir as

	L[�np] = In〈 �np 〉. (44)

We point out that, although we used the same symbol, the quantity
In does not represent the moment of inertia I tot

n of the entire n-
component3, but only that of the reservoir associated with a given
lag, in the sense of equation (44). While in the Newtonian framework
the two quantities are the same, in the relativistic context they are
distinguished concepts.

Obviously, this argument introduces the more subtle problem
of justifying chemical equilibrium. Andersson & Comer (2001)
showed that chemical equilibrium between the two components
in a neutron star implies corotation of them, and it is thus only
approximatively realized in our context where the fluids must ro-
tate differentially in order to produce a glitch (the slowness of
electroweak interactions, however, may help to maintain equilib-
rium). Later, Sourie et al. (2016) have shown the inverse reasoning:
starting from the hypothesis of corotation and assuming chemical
equilibrium at the centre of the star, it is possible to infer chemical
equilibrium throughout the entire star. The additional condition of
quasi-corotation is then necessary to ensure very small departures
from chemical equilibrium and from rigid rotation, and thus guar-
antee the consistency of equation (43) with the rigid-body Hartle’s
formalism.

Finally, from equation (42) we can derive the moment of inertia of
the auxiliary v-component. This is trivial in the slow-rotation limit
because of equation (38): the moment of inertia associated with
the v-component is thus the relativistic analogue of equation (16),
namely

Iv = 8π

3c2

∫ Rd

0
dr r4e−
+� yn (E + P )

1 − εn

. (45)

A similar definition, but with an additional factor �̄/�, is also
present in the work of Newton et al. (2015): in order to account for
entrainment in the crust, the authors simply divide the integrand
in equation (39) (limited to the neutron component) by the
dimensionless effective neutron mass m∗

n(r)/mn = 1 − εn(r). This
is not inconsistent with our approach, since in their study the
authors are referring to the moment of inertia of the entire (rigid)
n-component I tot

n .

3.4 Relativistic corrections to the maximum glitch amplitudes

In the previous subsection, we derived the relativistic generalization
of equation (5) within the slow-rotation framework developed by
Hartle; the formula for the maximum glitch amplitude derived from
angular momentum conservation is still given by equations (11)
and (8), but now one needs to consider the relativistic definitions
of I and 	L, as given respectively in equations (39) and (42). For
this calculation it is not necessary to introduce explicitly the partial
moments of inertia.

Before moving to the numerical estimates of the maximum glitch
amplitudes, we still need to discuss the critical unpinning lag in a
relativistic framework. As in the Newtonian case, we will evaluate
the difference in the maximum glitch amplitudes for two opposite
(non-local, or rigid, and local, or slack) unpinning conditions. In
both cases, we need the Magnus force per unit length of vortex line;

3 For rigid rotation of the n-component, this is given by I tot
n =

8π
3c2

∫ R
0 dr r4e�−
yn (E + P ) �̄n/�n, consistently with equation (39).

its modulus is given by (Langlois et al. 1998)

fM = κ mnnnvL, (46)

where vL is the speed of a segment of vortex line as seen in the local
frame comoving with the superfluid flow. When lines are pinned,
they are forced to move with the normal component and vL = 	,
the relative speed of the protons with respect to the neutrons. By
using equation (31), the local Magnus force is thus

fM = κ mn yn nB e−
 x �np, (47)

that is the slow-rotation analogue of equation (46). For sake of
clarity and in coherence with equation (39), in the following we
reinstate the c factors in the quantities that will be evaluated nu-
merically in the next section (the moments of inertia and the upper
limits for the glitch amplitudes).

Rigid vortex lines. We try to adapt the Newtonian phenomenolog-
ical treatment of macroscopically rigid vortices to the relativistic
context. Not surprisingly, extending to GR the non-local unpinning
condition is tricky: to proceed, we somewhat arbitrarily generalize
the critical lag of equation (19) as

�cr
vp(x) =

∫
γx

dl fP

κ x
∫

γx
dl mnnn

1−εn
e−


. (48)

Our aim at the present level is just to provide a test-case for the non-
local unpinning condition: since the actual configuration of vortices
in a steadily spinning-down neutron star is unknown (provided that
such a stable configuration exists), we decide to parametrize the
curves γ x in the planes of constant t and ϕ as γx0 (z) = (x0, z). The
line element along the curve is4

dl =
√

gαβ

dγ α
x

dz

dγ
β
x

dz
dz = √

gzzdz =
√

z2

r2
e2� + x2

r2
dz.

Numerically, the critical lag in equation (48) does not differ signif-
icantly from those presented in Paper-I, with a marked peak in the
cylindrical region immersed in the inner crust. The corresponding
maximum glitch amplitude turns out to be

	�max = 4π

Iκ

∫ Rd

0
dx x2

∫ z(x)

0
dz

yn (E + P )

1 − εn

e�−


×
(∫

γx

dl fP

) (∫
γx

dl
mnnnc

2

1 − εn

e−


)−1

(49)

and is entrainment dependent. This is not a drawback of our choice
for the curves γ x: the dependence on entrainment cannot be can-
celled out simply because the integrals containing the rest-mass
and enthalpy densities do not simplify, as they do in the Newtonian
framework.

Equation (48) gives a lag that depends only on x (when
Schwarzschild coordinates are used), which, according to the results
presented in Appendix B, is realized for bent vortices. Therefore,
the assumed straight lines γ x do not follow the lines of macroscopic
vorticity, which are expected to bend towards the centre of the star
(Rothen 1981). It may be interesting to study the configuration of
bent vortices γ x that are consistent with a columnar �cr

vp(x), by using
the Feynman–Onsager relation in Appendix B, and then integrate

4 In cylindrical coordinates the metric in the Hartle slow-rotation ap-

proximation has components gxx = x2

r2 e2� + z2

r2 , gzz = z2

r2 e2� + x2

r2 , and

gxz = zx
r2 (e2� − 1).
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Table 1. We list some properties of the three EOSs used: Mmax is the maximum non-rotating gravitational
mass that the EOS can sustain, while nedge is the baryon density at the crust–core interface [see also Fantina
et al. (2013) for a study of the global properties of non-rotating neutron stars constructed with the same
EOSs used here]. For comparison we also list the baryon density at which the pinning force used in this
work becomes zero.

EOS nedge (fm−3) Mmax Ref.

SLy4 0.076÷0.077 2.05 M� Douchin & Haensel (2001)

BSk20 0.0854 2.16 M� Goriely, Chamel & Pearson (2010)

BSk21 0.0809 2.28 M� Goriely et al. (2010)

fP 0.0776 β = 3, L = 5000 of Seveso et al. (2016)

the forces along such curves. This should lead to a slightly smaller
maximum glitch amplitude, since vorticity is more concentrated in
the central region of the star, and less in the external pinning region,
where vortices are completely immersed in the crust (Sourie et al.
2017). In other words, more realistic vortex lines arrangements are
expected to make the rigid maximum glitch amplitude more sim-
ilar to the slack one. At this level we stick to the assumption of
straight lines, just to test the robustness of 	�max against different
unpinning prescriptions and its dependence on entrainment.

Slack vortex lines. In the case of slack vortex lines, it is possible to
follow a more rigorous line of reasoning. By taking equation (47)
and imposing the local condition of equation (21), we find

�cr
np(r, θ ) = fP(r) e
(r)

κ r sin θ mnnn(r)
.

Then, equations (11) and (42) immediately give

	�max = π2

Iκ

∫ Rd

0
dr r3 e�(r) E(r) + P (r)

mn nB(r) c2
fP(r), (50)

in complete analogy with the Newtonian maximum glitch amplitude
reported in equation (20) (in the non-relativistic limit, P � E and
ρ ≈ mn nB imply that the fraction in the integral is ≈1). With the
local prescription, the effects of entrainment on the maximum glitch
cancel out in GR as well.

In the slow-rotation approximation, this critical lag is associ-
ated with a relative velocity 	cr = xe−
�cr

np between protons and
neutrons, describing a laminar flow on concentric spherical shells.
In particular, by considering that the pinning forces estimated by
Seveso et al. (2016) display peaks of the order of 1015 dyne cm−1

around mnnB ≈ 3 × 1013 g cm3, we have

	cr = fP

κ mn yn nB
� 10−5 c.

For comparison, the slowest pulsar studied by Pizzochero et al.
(2017) is J0631+1036, whose angular velocity of 21.8 rad s−1 cor-
responds to an equatorial velocity of order ≈10−3c. Thus, the ap-
proximations of slow rotation and quasi-corotation are consistent
with the pinning paradigm.

4 N U M E R I C A L R E S U LTS

In Section 3, we generalized the model presented in Paper-I and
reviewed in Section 2, embedding the previous work in a relativistic
framework and proposing two different prescriptions to calculate the
critical lag for unpinning and the corresponding maximum glitch
amplitudes. We now discuss the numerical results for the partial
moments of inertia and the maximum amplitudes; then, by following

the simple argument proposed in Paper-I, we estimate Mmax,5 the
absolute upper bounds on the mass of a pulsar which were discussed
in Pizzochero et al. (2017) and for which we want to evaluate the
relativistic corrections.

The input used in our numerical calculations is summarized in
Table 1; we adopted three unified barotropic EOSs (SLy4, BSk20,
and BSk21), for which the superfluid fraction yn(nB) is provided
together with P(nB) and E(nB): these are calculated consistently
for all regions of the neutron star (hence the adjective ‘unified’).
For the mesoscopic pinning forces, we used the recent results of
Seveso et al. (2016) (the more realistic case β = 3, L = 5000; note
these pinning forces are given in terms of rest-mass density, i.e.
they depend on nB). For entrainment, we adopted the entrainment
parameters calculated in Chamel & Haensel (2006) for the core and
in Chamel (2012) for the crust (also given in terms of nB).

4.1 Relativistic moments of inertia

It is well known that the relativistic moment of inertia given in
equation (39) can have a marked discrepancy with respect to its non-
relativistic counterpart. Although only the total moment of inertia
appears in the calculation of the maximum glitch, it is interesting
to discuss the relativistic corrections also to the partial ones, since
they frequently appear in dynamical studies of pulsar glitches.

A word of caution is necessary, however, regarding the Newtonian
framework: since the background configuration is actually fixed by
the integration of the TOV equations, it is not clear what should be
interpreted as ‘inertia’ of the system in this spurious scenario. In
Section 2 we adopted a strict Newtonian definition, where inertia
corresponds to rest-mass, namely we used the rest-mass density
ρ = mnnB; of course this is at odds with the relativistic definition
of inertia ρ = E/c2 of Section 3: even in flat space–time, the en-
ergy density provided by the EOS contains the contribution of the
hadronic nucleon–nucleon interaction and thus it is in principle a
different quantity than mnnBc2 (numerically, however, they start to
differ by more than 10 per cent, only for densities �1015g cm−3).
Indeed, most studies existing in the literature take the more consis-
tent choice of always adopting the relativistic definition of density
and use it in different prescriptions for the moments of inertia (ei-
ther the Newtonian expressions or some GR approximations, like
the one discussed in Ravenhall & Pethick (1994)). In particular, this
was the approach adopted in Paper-I as well as in Pizzochero et al.
(2017) and we will adhere to it in the following: in the Newtonian
framework, we take ρ = E/c2 and ρn = ynρ in equations (6), (10),
and (16). Note that the Newtonian maximum glitch amplitude of
equation (20) is not affected by this alternative choice, as long as

5 In Pizzochero et al. (2017), the notation Mabs was used instead of Mmax.
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Figure 1. The moments of inertia I (solid lines) and In (dashed lines) are
shown for the three EOSs considered and for the mass interval [0.8 M�,
2.5 M�]. A comparison is made between the non-relativistic moments of
inertia (orange curves, labelled by ‘N’) and the relativistic ones calculated
in the slow-rotation approximation (dark blue curves, labelled by ‘GR’).
The curves are terminated at the maximum mass allowed by each EOS, as
reported in Table 1.

one works coherently by using the same definition of the mass den-
sity ρn also in the Magnus force. This ambiguity is inherent to the
spurious nature of the Newtonian scenario and disappears in the GR
framework.

In Fig. 1 we compare the moments of inertia in the two frame-
works (the labels N and GR stand for ‘Newtonian’ and ‘GR slow-
rotation’, respectively) by plotting I and In as a function of the
gravitational mass M for the three unified EOSs. For the moment
of inertia In associated with the superfluid reservoir, we have cho-
sen the scenario of vortices that thread continuously the entire star,
so that both the crustal and core superfluid contribute to the angu-
lar momentum reservoir; as already mentioned, this is the scenario
investigated in Paper-I and in Pizzochero et al. (2017).

As expected from several existing studies with various EOSs,
the total relativistic moment of inertia is significantly larger than
its Newtonian counterpart, with discrepancies up to 50 per cent for
large stellar masses. The discrepancies are even more dramatic for
the reservoir, where In always exceeds the total moment of inertia I,
indicating that the effect of �̄/� in the integrand of I is more severe
than the diminishing effect of yn in the integrand of In. Although
unusual this result is not a physical contradiction, as discussed
previously. The only consistency requirement is I tot

n < I , which
holds by construction.

To better visualize the difference between the two frameworks,
in Fig. 2 we plot the ratios In/I and Iv/I as a function of mass in the
N and GR scenarios for the three EOSs: this kind of ratio is often
found in dynamical studies of pulsar glitches. In particular, the fig-
ure allows to estimate the influence of entrainment: the advantage
of using the v-component (determined only by the vortex configu-
ration) is that Iv encodes entirely the effect of entrainment on the
physical n-component. When entrainment parameters are set to zero
Iv tends to In: therefore, comparison of the two quantities quantifies
the global dynamical effect of the non-dissipative coupling between
the two components for a given vortex configuration. For the case
under study of core plus crust continuous reservoir, the differences
are altogether quite small, no more than some percent in the GR
scenario. Moreover, for masses larger than ∼1.1 M� we find that
Iv > In, while smaller masses yield Iv < In, in both frameworks: the
entrainment parameters adopted here are large and negative in the
crust, but small and positive in the core.

Figure 2. Moments of inertia of the superfluid component in the whole
star in units of the total moment of inertia for the mass range [0.8 M�,
2.5 M�]. We make comparison between two cases: when strong entrainment
is present (and thus the quantity of interest is Iv/I, solid lines) and when
the entrainment profile is zero (in this case Iv is equal to In and we plot
the ratio In/I, dashed lines). In both cases we show the curves calculated
in the Newtonian framework (orange curves, labelled by ‘N’) and in the
slow-rotation approximation (blue curves, labelled by ‘GR’).

Figure 3. Moments of inertia of the superfluid in the crustal pinning region
in units of the total moment of inertia for the mass range [0.8 M�, 2.5 M�];
as in Fig. 2, Iv/I is the case with entrainment (solid lines), while In/I is
the case without entrainment (dashed lines). Again, we show the curves
calculated in the Newtonian framework (orange curves, labelled by ‘N’) and
in the slow-rotation approximation (blue curves, labelled by ‘GR’).

When the superfluid reservoir extends into the core, the crust
contribution to Iv dominates for light stars (which present a thick
crust), while for more massive stars (with thinner crusts) it is the
core contribution that prevails. This is different than the case in
which the superfluid reservoir is confined into the crust, defined
as the region where nB < nedge (see Table 1): entrainment has a
marked decreasing effect on the moment of inertia of the crustal
superfluid (cf. Andersson et al. 2012; Chamel 2013). As seen in
Fig. 3, the presence of entrainment actually reduces by a factor
3–4 the effective moment of inertia of the crustal superfluid. On
the other hand, the presence of relativistic corrections works in the
opposite direction, by slightly increasing Iv/I.

4.2 Maximum glitch amplitudes

We now come back to the main goal of this paper and we compare the
maximum glitch amplitudes in the two frameworks. Once the input
has been fixed (EOS, pinning forces and entrainment coefficient),
the maximum glitch amplitude can depend only on the stellar mass.
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Figure 4. The maximum glitch amplitude 	�max evaluated with the SLy4
EOS is plotted as a function of mass for the three models studied: the
Newtonian case (model N, orange solid line), and the two relativistic cases
with rigid (model R, blue solid line) and slack (model S, blue dashed line)
vortices. For model R, the scenario adopted is that of straight rigid vortices
that thread the whole star.

In the following, we will discuss three cases, corresponding to the
different scenarios explored in the previous sections:

Model N. This is the Newtonian framework adopted in Pizzochero
et al. (2017): the maximum glitch amplitude as a function of mass
	�max(M) is calculated with equation (20). As already remarked,
the Newtonian result does not depend on the entrainment parameters
and it is not necessary to specify how vortices are arranged, since
both the parallel and slack vortex configurations give the same
result. Moreover, also the extension of vortices inside the core is
unimportant, as long as vortex lines extend at least across the region
where pinning is present. In this paper we assumed the scenario
of only crustal pinning and, as reported in Table 1, the region of
non-zero pinning lies inside the inner crust for the three EOSs
considered. Therefore, the Newtonian results for 	�max(M) are
valid for both cases of continuous vortex lines and only crustal
reservoir.

Model R. This is the relativistic generalization of model N for
the case of straight rigid vortices, where the non-local unpinning
condition is implemented: the function 	�max(M) is calculated
from equation (49). In this case the presence of entrainment and the
extension of vortices affect 	�max(M); the results shown here refer
to continuous vortices across the star interior, the general scenario
adopted in Paper-I and Pizzochero et al. (2017). We remind that
equation (49) was actually derived in a non-rigorous way, so that
model R should be taken more as a test for the dependence of
the maximum glitch amplitudes on phenomenologically reasonable
(although not consistent) critical lags, like that of equation (48).

Model S. This is the relativistic generalization of model N for the
case of slack vortices, where the local unpinning condition is imple-
mented: the function 	�max(M) is calculated from equation (50).
This seems to be a natural generalization of its Newtonian counter-
part, and all the remarks made for model N are still valid in this GR
extension.

To show an example of the typical result, in Fig. 4 we fix the
SLy4 EOS and plot the function 	�max(M) for the three models.
We observe that both relativistic models give maximum glitch am-

Figure 5. Relativistic corrections to the maximum glitch amplitudes
	�max(M) for the three EOSs (identified by different colours). We plot the
quantities 	�R

max/	�N
max − 1 (solid lines) and 	�S

max/	�N
max − 1 (dashed

lines), where the superscript indicates the model used (cf. Fig. 4).

plitudes that are slightly larger than their Newtonian counterpart,
with model S closer to the non-relativistic case.

To better visualize our general results, in Fig. 5 we show for
the three EOSs the relative difference between the relativistic mod-
els R and S and the Newtonian one, namely we plot the curves
	�R

max/	�N
max − 1 and 	�S

max/	�N
max − 1, where the superscript

indicates the model used. We observe that in model R the rela-
tivistic corrections increase with stellar mass, with values between
5 per cent and 30 per cent for all EOSs; conversely, for model S the
dependence on mass of the corrections is weak, with values between
3 per cent and 5 per cent for all the masses allowed by the EOSs.

4.3 Relativistic corrections to the upper bounds
on pulsar masses

Now, following the argument of Paper-I and using the results of the
previous subsection, we estimate the upper bound on pulsar masses
that can be obtained from observations. This method was recently
applied to a sample of large glitchers in Pizzochero et al. (2017):
an upper limit on the stellar mass can be obtained from the largest
recorded glitch, while future observations of even larger glitches
will further constrain the mass.

For a given pulsar, whose largest observed glitch ampli-
tude is 	�, the upper bound on the mass Mmax is given by
	� = 	�max(Mmax). The value of Mmax is only dependent on
the choice of the pinning force and the EOS used to calculate the
function 	�max(M) for models N and S, while model R requires
also the entrainment coefficients (as discussed previously, how-
ever, from the results in Fig. 2 we expect the maximum glitch to
vary at most by some percent when entrainment is set to zero).
A graphical representation of the procedure used to estimate the
upper bound is shown in Fig. 6, where we plot the inverted func-
tion M = M(	�max) for the three EOSs; here, the curves re-
fer to model R, the one showing the largest relativistic correc-
tions, but qualitatively these curves are very similar in all mod-
els, as can be seen in Fig. 4. Vertical dotted lines indicate the
maximum glitch recorded for a small sample of large glitchers
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Figure 6. Graphical representation of the upper mass limit for a glitching
pulsar. In the figure we plot the inverse of the function 	�max(M) for the
three EOSs; the scenario considered here is that of model R (straight rigid
vortices that thread the whole star). We also report the largest observed glitch
	� for some of the pulsars studied in Pizzochero et al. (2017): the errors on
	� are negligible, except for J0537−6910 and J0205+6449, which have a
relative error of ≈10 per cent. For each pulsar, the value of Mmax is found by
considering the intersection of the grey dashed lines (corresponding to the
value of 	�) with one of the three curves. Taking the Vela as an example,
the range of Mmax arising from the EOSs considered here is highlighted with
a shaded band.

(the glitch amplitudes are extracted from the Jodrell Bank Glitch
Catalog6).

As an example, we consider the benchmark case of the Vela pulsar
(J0835−4510), whose largest observed glitch to date has amplitude
2.17 × 10−4 rad s−1. By looking at Fig. 6, the Vela should have a
mass lower than Mmax ≈ 1.5 M�, when SLy4 or BSk21 are used,
slightly less for BSk20. Instead of listing the mass upper bounds
corresponding to all the 51 large glitchers known to date (those with
maximum recorded glitch larger than ≈5 × 10−5 rad s−1) and their
deviation with respect to the Newtonian result, we prefer to plot the
discrepancy between the relativistic and non-relativistic values of
Mmax as a function of the maximum glitch amplitude.

In Fig. 7 we show for the three EOSs the relative difference
between the relativistic models R and S and the Newtonian one,
namely we plot the curves MR

max/M
N
max − 1 and MS

max/M
N
max − 1,

where the superscript indicates the model used. The main remark
is that the relativistic corrections to Mmax are always positive and
small, less than 5 per cent for all masses allowed by the EOSs; in
particular, for model S the discrepancies are smaller than 1 per cent.
The conclusion is that the upper bounds on masses presented in
Pizzochero et al. (2017) are quite robust: in the scenario of slack
vortex lines, they are uniquely determined by the pinning force
profile and the EOS adopted, while they are independent on en-
trainment and on the extension of vortices in the core, and are
basically unaffected by GR corrections.

5 C O N C L U S I O N S

In this article we have generalized the model presented in Paper-I,
by embedding it in a relativistic framework and proposing an al-
ternative scenario with slack vortex lines at the hydrodynamical
scale. We have thus been able to extend to the GR regime the results

6 Data are available at www.jb.man.ac.uk/pulsar/glitches.html, see also Es-
pinoza et al. (2011).

Figure 7. Relativistic corrections to the mass upper bound Mmax as a func-
tion of the largest observed glitch for the three EOSs (identified by dif-
ferent colours). We plot the quantities MR

max/M
N
max − 1 (solid lines) and

MS
max/M

N
max − 1 (dashed lines), where the superscript indicates the model

used (cf. Fig. 4).

presented in Pizzochero et al. (2017) for the upper bounds on pul-
sar masses that can be derived from the amplitude of their largest
observed glitch.

The line of reasoning is the same for both the Newtonian and
the slow-rotation GR formalism: the main point is to recognize in
the total angular momentum L the contribution of the differentially
rotating superfluid, as done in equations (41) and (42). Then, both
the non-local (model R) and local (model S) prescriptions for unpin-
ning allow to calculate the critical lag sustainable by the reservoir
of pinned vorticity and from this the maximum glitch amplitude
compatible to the pinning paradigm can be derived. Finally, inver-
sion of the relation 	�max(M) enables to determine the mass upper
limit as a function of the largest observed glitch.

In the Newtonian framework of Paper-I and Pizzochero et al.
(2017), here model N, the maximum allowed glitch turns out to be
the same for the two vortex scenarios and is given by equation (20):
the expression depends only on the pinning force profile and on the
EOS chosen to describe neutron star matter. Therefore, the Newto-
nian upper bounds on masses are not affected by entrainment or by
vortex extension in the core (if only crustal pinning is considered,
as done here).

The slow-rotation GR corrections to the maximum glitch am-
plitudes depend only slightly on the vortex scenario adopted. The
scenario with rigid vortices (model R) gives results for 	�max(M)
that differ by less than 30 per cent from their Newtonian counter-
parts for all the three unified EOSs considered here; moreover, they
depend only slightly on entrainment, as shown by the behaviour of
the moments of inertia In and Iv of the angular momentum reservoir.
Altogether, the upper bounds on masses are increased by less than
5 per cent when GR effects are accounted for (although not fully
consistently in this non-local model).

The scenario with slack vortices (model S) can be extended to GR
in a rigorous way, yielding the expression in equation (50) for the
maximum glitch amplitude; this is the natural generalization of its
Newtonian counterpart and the same general considerations apply
in the present case. We find quite small relativistic corrections to
	�max(M), of less than 5 per cent; in turn, this implies that the mass
upper bounds are very slightly increased by GR effect, always less
than 1 per cent for all EOSs.
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We have also studied the partial moments of inertia in the two
extreme scenarios of superfluid reservoir which extends through the
whole star and of crust-confined reservoir, presented in Figs 2 and 3,
respectively. Apart from GR corrections (which tend to increase the
ratio Iv/I), strong entrainment has much more impact in the case
of crust-confined vortices, reducing the ratio Iv/I by a factor of ∼3
(Fig. 3).

In conclusion, our study shows that the upper bounds on pul-
sar masses presented in Pizzochero et al. (2017) are changed by
at most some percent when GR is enforced. Altogether, these
mass upper limits are robust, since they are not affected by en-
trainment effects or by superfluid properties of the core–crust
interface, both issues being still open at present. Conversely, their
dependence on the pinning force profile and on the EOS describing
the whole star can be further explored: different pinning scenar-
ios (e.g. core pinning) or alternative stellar structures (e.g. exotic
interiors) would correspond to different mass constraints. In turn,
these could be tested in the future against observations, as more data
about glitching pulsars (possibly in binary systems) accumulate.

Our analysis is made simple by the circularity hypothesis, i.e.
the macroscopic flow of both components is laminar. However the
assumed absence of macroscopic meridional circulation may be in
contradiction with the fact that fluid motion in a spinning up (or
down) sphere is a combination of a toroidal flow and meridional
circulation for all Reynolds numbers, as discussed with applications
to neutron stars by Peralta et al. (2006) and van Eysden & Melatos
(2013). In the case of non-zero meridional circulation (i.e. the possi-
ble presence of macroscopic toroidal vorticity), the system loses the
fundamental invariance under the simultaneous inversion t → −t,
ϕ → −ϕ, so that in principle the space–time metric gains additional
off-diagonal components. While this is certainly interesting for a
detailed dynamical description of the internal hydrodynamic prob-
lem, it is not clear how this further complication would affect the
values of global quantities, like the upper bound on the maximum
glitch amplitudes discussed in this work.

From the point of view of the stellar structure, our model is sta-
tionary since we modelled matter as a barotropic fluid at corotation.
Within our working hypotheses, the presence of a differential veloc-
ity lag of the neutrons with respect to the rigid normal component
does not affect the background structural properties of the star (like
composition or the frame-dragging angular velocity ω). A general
formalism to treat slowly rotating superfluid neutron stars can be
found in Andersson & Comer (2001), where the authors determine
the effect of the differential rotation of both components on ω, as
well as the induced changes in the neutron and proton densities
and the change in shape of the star. These refinements are probably
worth further investigation and tests with realistic equations of state.
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with a single-component superfluid at finite temperature, where the
normal part represents a fluid of thermal excitations. The magnetic
field is assumed to enforce rigid-body rotation.

We adopt the covariant formulation of many interacting fluids
developed by Carter and collaborators [see Langlois et al. (1998),
more recent reviews are Andersson & Comer (2007) and Chamel
& Haensel (2008)], where the clear distinction between transport
currents and momenta allows a simple implementation of the en-
trainment effect [see Rezzolla & Zanotti (2013) for the distinction
between ‘coupled’ and ‘interacting’ multifluids]. A concise review
of the formalism is also presented in Sourie et al. (2016).

We consider two fluids, loosely denoted by ‘neutrons’ that flow
with 4-velocity uμ

n and ‘protons’ that flow with uμ
p , both normalized

to −1. The respective 4-currents and scalar number densities are
related to the velocities in the usual way, nμ

n = nnu
μ
n and nμ

p = npuμ
p .

Another fundamental quantity is the Lorentz factor

� = −uα
nupα, (A1)

which allows to define the square speed of the neutrons in the frame
of the protons as

	2 = 1 − 1/�2. (A2)

Note that 	 = x|�n − �p| when we take the non-relativistic limit of
our circular model (Prix, Comer & Andersson 2002). Once we allow
for a non-zero lag 	 between the components, the system cannot be
described by a simple barotropic EOS: the internal energy density
takes the form E(np, nn,	

2) with an explicit dependence on 	.
At this point, it is useful to recall a fundamental property of the

single perfect fluid at zero temperature: the first law of thermody-
namics reads dE = μ dnB, where nB is the total baryon density and
μ = (P + E)/nB is the chemical potential, that coincides with the
enthalpy per baryon. The idea is to promote thermodynamically
conjugate variables to dynamically conjugate ones by rewriting the
first law as −dE = pν dnν with the aid of the definition pα = μuα

and of the fact that dn = −uαdnα (i.e. duαuα = 0). If −E is in-
terpreted as a Lagrangian density, then pν can be regarded as the
canonical momentum per particle. Similarly, for two interacting
fluids we impose that

− dE = pn
ν dnν

n + pp
ν dnν

p. (A3)

Now the EOS can depend on 	 and the first law is properly
generalized as

dE =
∑

s

μs dns + α d	2,

where μs are the effective chemical potentials of the two fluids and
s ∈ {n, p} is just a label for the two species. The presence of the
scalar function α gives rise to a non-dissipative interaction between
the fluids. Since

μsdns = −μsus α dnα
s

and

d	2 = 2
∑
s 
=q

dnν
s

(
usν

�2ns

− uqν

�3ns

)
,

it is straightforward to find that

−dE =
∑
s 
=q

dnν
s

[
usν

(
μs − 2α

�2ns

)
+ uqν

(
2α

�3ns

)]
.

Comparison with (A3) gives

pnα/μn = (1 − εn)unα + (εn/�)upα, (A4)

ppα/μp = (1 − εp)upα + (εp/�)unα. (A5)

Coherently with Rezzolla & Zanotti (2013), Sourie et al. (2016),
and many others, the dimensionless entrainment parameters εn and
εp are defined as

εs = 2 α

�2 ns μs

(A6)

that implies nnμnεn = npμpεp. The same relation holds in the non-
relativistic formulation with the chemical potentials replaced by the
masses per baryon ms. Thanks to this relation between the entrain-
ment parameters, the energy-momentum tensor of the system

T αβ = nnp
β
n uα

n + nppβ
puα

p + � gαβ (A7)

turns out to be symmetric.
At corotation, i.e. 	 = 0, the two fluids can be in β-equilibrium

(μn = μp = μ∗ and ns = n∗
s ). In this case uα

s = uα and � = 1 imply
that psα = μ∗ uα , while the energy-momentum tensor becomes

T
αβ

(	=0) = nB μ∗ uβuα + �(	=0) g
αβ. (A8)

This is the usual energy-momentum form of a single perfect fluid
with pressure P = � (	 = 0) and enthalpy density

nB μ∗ = E(ns = n∗
s , 	 = 0) + P ,

as can be checked by considering T
αβ

(	=0)uαuβ .

APPENDI X B: R ELATI VI STI C
F E Y N M A N – O N S AG E R R E L AT I O N

The canonical momentum per particle of a perfect fluid at T = 0 is the
1-form p = μ g(u) (Friedman & Stergioulas 2013), where μ = (E +
P )/nB is a scalar that represents the enthalpy per particle (or the
chemical potential per baryon) and g(u) is the fluid covelocity. The
momentum can thus be naturally integrated over one-dimensional
manifolds embedded in the space–time.

At the mesoscopic scale the superfluid flow is irrotational, thus
the superfluid can rotate only if its domain is not simply connected:
the topological defects correspond to world sheets into the domain
whose intersection with the three-space defines a vortex line, see for
example (Prix 2000). Integration of p along a closed path C inside
the superfluid domain is subject to a Bohr–Sommerfeld quantization
rule∫

C
p = hN

2
, (B1)

where the factor of 2 accounts for Cooper pairing, h is the Planck
constant and N represents the sum of the winding numbers of C
around each topological defect.

This formula can be made more explicit within the assumption
of circular space–time, for example by choosing C to be an integral
curve of ∂ϕ , defined by t = t0, r = r0, θ = θ0. Given the metric in
equation (22), the azimuthal component of the canonical momentum
pϕ is actually the angular momentum per baryon

pϕ = μW e�r sin θ v = μW e−
(e�r sin θ )2�̄,

where W = (1 − v2)−1/2 and v = e�−
r sin θ �̄ is the fluid speed
measured by the local ZAMO. The angular velocity does not need
to be a constant, but can be a function �(r, θ ). The momentum
restricted on the curve C is p|C = pϕ(r0, θ0)dϕ, so that the integral
in equation (B1) is trivial and gives

pϕ(r0, θ0)/mn = κN (r0, θ0)

2π
.
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The bare neutron mass mn has been introduced in order to obtain
the quantum of circulation κ = h/(2mn). The Feynman–Onsager
relation is thus given by

�̄√
1 − v2

= κ e
 N (r, θ )

2π (e�r sin θ )2(μ/mn)
. (B2)

This relation simplifies within the Hartle slow-rotation approxi-
mation: we just have to keep at most the linear terms in � (or �̄)
and use equation (23) in order to find

� − ω(r) = κ e
(r) N (r, θ )

2π (r sin θ )2(μ(r)/mn)
+ O(�2), (B3)

where � is the angular velocity measured by a distant ZAMO. Note
that the Feynman–Onsager relation depends explicitly on general
relativistic frame-dragging, through the metric function ω(r).

In the Newtonian limit the specific enthalpy is μ/(c2mn) ≈ 1 and
one recovers the usual non-relativistic Feynman–Onsager relation

�(r, θ ) = κ N (r, θ )

2π (r sin θ )2
.

In this limit, when vortices are parallel to the z-axis, N is a function
of only r sin θ and the angular velocity � is columnar. This ceases
to be true even at the level of the slow-rotation approximation due

to the presence of the spherical metric functions (ω and 
) and of
the stratified equilibrium enthalpy μ(r). In the above relations, it is
also possible to use the fact that the quantity μ̄ = μ(r)e
(r)/mn is
constant throughout the star (Glendenning 2000) so that it can be
thought as a factor that rescales κ .

For our two components system, equation (B1) is still valid once
the four-momentum per baryon p is replaced with pn. This implies
that the Feynman–Onsager relation for the two-fluid system with
entrainment is obtained by replacing � with �v in equation (B2).
In particular, for the slow-rotation limit we can use equation (B3)
and obtain

�vp(r, θ ) = −�̄p(r) + κ e2
(r)N (r, θ )

2π μ̄n (r sin θ )2
+ O(�2

p), (B4)

where μ̄n = μn(r)e
(r)/mn and �̄p(r) = �p − ω(r). It is now
straightforward to rewrite this equation in terms of �np via equa-
tion (38) and thus see how entrainment modifies the expression
for the physical velocity lag �np(r, θ ) associated with the vortex
configuration N (r, θ ).
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