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ABSTRACT: Two sol−gel synthetic routes for the prepara-
tion of CaTiO3:Pr

3+ red emitting phosphors were compared,
with the aim of producing nanostructured materials with
tailored luminescence/afterglow properties. The effect of the
synthetic parameters, such as the addition of a stabilizer and
calcination temperature, on the structural, morphological, and
optical properties was investigated. The desired perovskite
phase was obtained at a calcination temperature of 800 °C or
higher. Although the use of acetic acid as the chelating agent
leads to micrometric particles with heterogeneous composi-
tion, the presence of hydroxypropylcellulose (HPC) results in
smaller, less aggregated particles as well as in a high phase
purity. At the highest HPC content, surface Ca-rich impurities were detected, although no segregated Ca-rich phases were
detectable by X-ray powder diffraction analyses. Luminescence properties were found to be positively related to the phase purity
of the oxide, with the highest quantum yields at temperatures equal to or higher than 1000 °C. On the contrary, persistent
luminescence properties were highest at intermediate calcination temperatures and for samples synthesized with acetic acid.
Overall, a notable role of oxygen vacancies resulting from local Ca excess was observed, acting as trap levels promoting longer
relaxation pathways. Thanks to the small-sized particles and best steady-state luminescent properties due to a substantial decrease
of lattice defects, the HPC synthesis is a promising strategy for light-emitting diode applications. On the other hand, the acetic
acid synthesis promoted a higher defect density, which is required for an efficient yield of light emission in the long time range
and is thus more suitable for afterglow applications.

1. INTRODUCTION

Praseodymium-doped calcium titanate (CaTiO3:Pr
3+) is a

phosphor showing a red emission very close to the Interna-
tional Commission on Illumination coordinates of ideal red.1

Furthermore, this compound has a high chemical and thermal
stability, a good resistance to high-density electron irradiation,
and its luminescence efficiency can be maintained under a
prolonged flow of electric charge.2,3 These properties make
CaTiO3:Pr

3+ a promising candidate to substitute currently
available red luminescent materials in applications such as light-
emitting diode (LED) displays, low-voltage field emission
displays (FEDs), and plasma display panels.4

Furthermore, CaTiO3:Pr
3+ belongs to the class of persistent

phosphors, that is, materials exhibiting sustained light emission
for an extended duration after removal of the light source.
While materials with blue or green afterglow emission are
relatively common, red persistent phosphors are quite rare. As a
result, CaTiO3:Pr

3+ represents a promising material for a broad
range of applications, such as safety signage, sunlight storage,
and bioimaging.5

Owing to the luminescence and afterglow properties of
CaTiO3:Pr

3+, a great deal of effort has been devoted to

developing tailored synthetic routes of this material. A careful
design of the synthetic procedure is crucial to either reduce the
afterglow for display applications or, oppositely, to enhance the
afterglow for application as persistent phosphors.3,6 The most
commonly reported synthetic procedures are based on solid-
state reactions, especially for applications as luminescent
materials.7,8 Several other synthetic approaches for the
synthesis of pure and doped CaTiO3 have been reported,
such as solvothermal,9 hydrothermal,10,11 electrospinning,1

sputtering,12 sonochemical,2 and template synthesis.13,14

However, not all of the reported procedures are able to
provide at the same time a good degree of crystallinity and
nanometric morphologies. In this respect, sol−gel syntheses
present several advantages with respect to the more commonly
employed solid-state reactions, for example, lower reaction
temperatures, higher homogeneity of the final product, and
smaller particles.15 This latter aspect is favorable to applications
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in bioimaging as well as in displays like LED and FED, where
smaller grain sizes may reduce charge accumulation.16

In this work, different sol−gel synthetic approaches for the
synthesis of CaTiO3:Pr

3+ phosphors are compared with the aim
of controlling the particle morphology and tailoring the
luminescence/afterglow properties for different applications.
The two investigated approaches differ only for the type of
species added to modulate crystal growth and agglomeration
phenomena: a method in the presence of a chelating acid
(acetic acid) as hydrolysis inhibitor and another method based
on the addition of a polymer (hydroxypropylcellulose, HPC) as
steric stabilizer. To the authors’ best knowledge, these synthetic
approaches have never been previously adopted for the
preparation of phosphors based on CaTiO3. The effect of the
ensuing calcination step (in the range 600−1200 °C) is
discussed in detail. The prepared samples were thoroughly
characterized for their structural, morphological, optical, and
luminescence properties. The duration of the luminescence
after the removal of the light source was investigated by both
luminescence decay measurements (studying short emission, in
the microseconds range) and persistent luminescence measure-
ments (long emission, in the order of minutes).

2. RESULTS AND DISCUSSION

2.1. Structural Features. X-ray powder diffraction
(XRPD) measurements were carried out to identify the
crystalline structure of each sample. Figures 1 and S1 present
the XRPD patterns of Pr-doped and undoped samples,
respectively. The standard pattern of orthorhombic perovskite
CaTiO3 is reported as a reference.
The CaTiO3:Pr

3+ AA sample calcined at 600 °C (Figure 1a)
shows an XRPD pattern characteristic of a crystalline sample,
with calcite CaCO3 as the main component and smaller
amounts of other phases (anatase TiO2, orthorhombic CaTiO3,
and CaO). On the contrary, the two samples synthesized with
HPC and annealed at 600 °C (Figure 1b,c) show XRPD
patterns characteristic of an essentially amorphous phase, as
evidenced from the absence of well defined and intense peaks.
This observation is supported also by photoluminescence
measurements (vide infra). Similar to the doped sample, the
undoped CaTiO3 AA sample calcined at 600 °C is crystalline
(Figure S1) and presents calcite CaCO3 as main phase, with
CaO and CaTiO3 as minor components. Undoped samples
from HPC synthesis are much less crystalline (Figure S1). This
difference can be related to the presence of HPC, which has
been reported to affect the phase composition of oxides
synthesized via sol−gel reactions.17
Although all samples calcined at 800 °C present

orthorhombic perovskite CaTiO3 (ICDS 16688) as the main
component, the two sets of syntheses are rather different. The
AA_800 samples show orthorhombic CaTiO3 as the main
component and significant amounts of impurities, mainly
Ca(OH)2, rutile TiO2, and CaCO3, as clearly appreciable from
Figure 1a. Both samples from HPC synthesis calcined at 800 °C
instead are characterized by a higher phase purity.
In the samples annealed at 1000 and 1200 °C, all main peaks

can be assigned to the orthorhombic perovskite CaTiO3 phase,
with rutile TiO2 and Ca(OH)2 as minor impurities, more
appreciable in AA samples. The addition of HPC seems instead
to promote the perovskite phase, leading in most cases to pure
orthorhombic perovskite CaTiO3. As expected due to the low
dopant content adopted in this study (0.2%), XRPD patterns

do not show consistent evidence of a shift in the (112) peak
position in Pr-doped samples with respect to the undoped ones.
The obtained results are in good agreement with Fourier

transform infrared (FTIR) spectra (Figure S2), showing the

Figure 1. XRPD patterns of CaTiO3:Pr
3+ samples calcined at different

temperatures: (a) AA; (b) HPC 0.5 g; (c) HPC 1 g. The standard
pattern of orthorhombic CaTiO3 perovskite is reported as a reference,
highlighting the most intense peak, (112). The main impurity peaks
are also highlighted: CaCO3 (star), Ca(OH)2 (full square), CaO (full
circle), anatase TiO2 (empty circle), and rutile TiO2 (diamond).
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characteristic vibration modes of CaTiO3 for all samples
calcined above 600 °C: the peaks at ca. 530 and 420 cm−1 are
associated with the vibrations of Ca−O bonds18 and with the
asymmetrical stretching vibration of the Ti−O bond in TiO3

2−

groups,19 respectively. Other peaks are appreciable, especially at
the lowest calcination temperatures. In the case of the AA
series, the characteristic peaks of CaCO3 calcite (713, 875, and
1410 cm−1) are appreciable at 600 and 800 °C, in agreement
with XRPD data. On the other hand, the HPC samples calcined
at 600 and 800 °C present as the main feature a broad band at
2900−3700 cm−1, characteristic of the stretching vibration of
hydroxyl groups, with its bending counterpart at 1635 cm−1.
These HPC samples also present two peaks at 874 and 1439
cm−1, which might be related to amorphous CaCO3 on the
grounds of the absence of the component at 710 cm−1 and in
agreement with XRPD results. Increasing the calcination
temperature leads to the appearance of peaks related to
Ca(OH)2 (3645, 1465, and 875 cm−1) in the AA and HPC 1 g
series. Interestingly, no peaks related to Ca(OH)2 are
appreciable for the HPC 0.5 g series, also in agreement with
XRPD results showing only rutile TiO2 as minor contaminant
for both the undoped and doped samples of this series. It is
interesting to note that FTIR was able to detect Ca-rich species

also in samples whose XRPD patterns are consistent with those
of pure orthorhombic CaTiO3. Indeed local Ca excesses, such
as isolated defects or grouping with irregular periodicity, might
not be appreciable from XRPD analyses.20

2.2. Morphology and Elemental Composition. Figure 2
reports the scanning electron microscope (SEM) images of Pr-
doped samples calcined at 800 and 1200 °C. Figure 2a shows
that the AA_800 sample presents micrometric, flat agglomer-
ates composed of sintered spherical particles that energy
dispersive X-ray (EDX) mapping confirmed to be CaTiO3. This
sample is highly inhomogeneous, presenting also smaller and
more porous aggregates (not shown) mainly composed of
CaO/Ca(OH)2. As appreciable from Figure 2b, increasing the
calcination temperature seems to lead to larger agglomerates.
Samples obtained from the synthesis with HPC present a

completely different and more homogeneous morphology
(Figure 2c−f). Both samples are made of looser aggregates of
polydispersed prismatic particles (Figure 2c,e). Although the
HPC 0.5 g sample presents micrometric particles (Figure 2c),
the sample synthesized with the highest HPC content is
composed of much smaller aggregates of nanometric particles
(Figure 2e). As a matter of fact, the addition of HPC to
homogeneous sols has been reported to increase the surface

Figure 2. SEM images of CaTiO3:Pr
3+ samples calcined at 800 (a, c, e) and 1200 °C (b, d, f): (a, b) AA, (c, d) HPC 0.5 g, and (e, f) HPC 1 g.
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area of the final powder due to its ability to bind to the particle
surface, preventing agglomeration between particles because of
steric hindrance.17,21,22 Interestingly, the effect of HPC on the
sample morphology is appreciable even at a calcination
temperature significantly higher than the degradation temper-
ature of HPC, which occurs at around 400 °C.23 Further
increasing the annealing temperature leads to larger particles
and sintering effects (Figure 2d,f).
EDX mapping (Figure S3c,d) shows that all of the elements

(Ca, Ti, Pr, and O) are distributed homogeneously in the
powders synthesized with HPC, within the detection limits of
the EDX mapping. In the case of the AA sample, a less
homogeneous composition is appreciable (Figure S3a,b), as

also confirmed by spot analyses of different aggregates (vide
supra). In all of the tested samples, no elemental impurities
were detected. The average measured Ca/Ti atomic ratios are
in agreement with nominal ones within experimental error. In
the case of the CaTiO3:Pr

3+ AA_800 sample, spot measure-
ments detected areas with much lower Ti content, which may
be indicative of impurity phases, as also supported by XRPD
results (vide supra). A precise Pr quantification is difficult
considering the low dopant nominal content (0.2%) due to the
limits of the analytical technique.
Total intensity cathodoluminescence (CL) images of HPC

samples show that the light is emitted homogeneously from the
entire sample (Figure 3). Barycenter images display the

Figure 3. CL images representing the total intensity spectrum measured at the maximum emission wavelength, the barycenter and the local spectra
of the CaTiO3:Pr

3+ sample HPC 1 g _800. The relative SEM image is reported in Figure S3.

Figure 4. DRS spectra in reflectance (a) and Kubelka−Munk units (b) of CaTiO3:Pr
3+ samples calcined at 1200 °C.
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dominant wavelength of emission, which is, for each powder,
constant throughout the sample. Local spectra compare the
emission peaks detected in spots of the sample presenting a low
and high emission intensity, respectively; they clearly show that
the wavelength of emission is fully comparable also among
areas of the sample showing different emission intensities. In
the case of the AA sample calcined at 800 °C, CL mapping
(Figure S4) reveals areas of very low emission intensity, which
can be related to the poor homogeneity shown by XRPD and
SEM-EDX results.
2.3. Optical Properties. The light absorption features of

the undoped and doped samples were investigated by UV−vis
diffuse reflectance spectroscopy (DRS) (Figure 4).
Figure 4 shows absorption features at 450−500 nm, which

correspond to 3H4 →
3PJ (J = 2, 1, 0) and 3H4 →

1I6 transitions
of Pr3+ ions.24 The valence-to-conduction band edges are
appreciable at ca. 335 nm. In addition, a shoulder at longer
wavelength (band edge at about 375 nm) is observed, in
agreement with previous reports.25,26 Interestingly, the intensity
ratio between the two absorption bands is different for the
HPC 0.5 g sample with respect to AA and HPC 1 g. The origin
of this band will be discussed in depth in Section 2.4.
The apparent band gap values, as determined by Tauc’s plots

assuming a direct band gap transition,27 are reported in Table
S1. They tend to decrease as a function of the annealing
temperature. Calculated values for samples annealed above 800
°C are in the range 3.5−3.6 eV, fully comparable with the
literature values for CaTiO3.

27−29

2.4. Photoluminescence (PL). Figure 5 reports the
excitation and emission PL spectra measured at room
temperature for each sample.
The shape of the excitation and emission peaks of the

CaTiO3:Pr
3+ AA samples does not vary by changing the

annealing temperature, apart from a slight red shift of the
excitation spectra. As for the samples synthesized with HPC, a
different trend is observed. Although the peak shapes of
samples annealed at 800, 1000, and 1200 °C are very similar,
the samples obtained at 600 °C show an almost featureless
excitation spectra, as expected due to their high amorphous
content (see XRPD results).
All of the samples show a main excitation band at ca. 330 nm,

which is consistent with the absorption edge of the diffuse
reflectance spectra and can be attributed to the valence band to
conduction band transition (Ti4+−O2− → Ti3+−O−). Fur-
thermore, an additional band at 280 nm is appreciable, which
can be attributed to the lowest field component of the 5d state
of Pr3+.30 In addition, both AA and HPC 1 g samples show an
excitation peak at 380 nm (26 300 cm−1), coincident with the
shoulder observed in DRS spectra (Figure 4), which is generally
assigned to a low-lying Pr-to-metal (Pr3+−Ti4+) intervalence
charge-transfer state.1,6 Interestingly, this peak is not appreci-
able in the excitation spectra of HPC 0.5 g samples. It is
noteworthy that the apparent red shift of the main excitation
peak of AA and HPC 1 g samples mirrors the progressive
increase of the component at 380 nm. The relative intensity of
the peak at 380 nm with respect to the one at 330 nm has been
reported to depend on synthetic conditions, such as the
calcination temperature,30 deposition in film,3 and local Ca
excesses.20 In particular, Otal and co-workers showed a
progressive increase of the relative intensity of the peak at
380 nm with local Ca excess.20 The relative intensity of the
peaks depends in fact on the relative concentrations of Pr3+,
Pr4+, and Ti3+ in the host CaTiO3, which vary with the synthetic

conditions.30 It should be noted that with respect to HPC 0.5 g
samples, the HPC 1 g and AA series showed appreciable
impurities of Ca-rich phases, such as Ca(OH)2 (see XRPD and
FTIR results).
On the other hand, the shape of emission spectra is

comparable for all of the samples. The peak at 628 nm can be
attributed to 4f2−4f2 transitions of Pr3+ ions from the excited
state 1D2 to the ground state 3H4,

25,31 whereas the much less
intense peak at 700 nm is due to 1D2−3H5 transitions (Figure
S5).
Table 1 reports the absolute PL quantum yield (QY) values

of CaTiO3:Pr
3+ samples calcined at 800, 1000, and 1200 °C.

Figure 5. Excitation and emission spectra of CaTiO3:Pr
3+ samples

annealed at different temperatures: (a) AA, (b) HPC 0.5 g, and (c)
HPC 1 g.

Table 1. Absolute Quantum Yield Values for the Three
Series of CaTiO3:Pr

3+ Samples

sample calcination temperature (°C) QY (%)

AA 800 5.4
1000 7.9
1200 10.2

HPC 0.5 g 800 5.4
1000 10.5
1200 6.9

HPC 1 g 800 N.A.
1000 10.5
1200 9.7
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Samples calcined at 600 °C were not analyzed due to their low
PL intensity.
A marked difference is appreciable between the AA and HPC

sample series. For AA samples, QY values increase monotoni-
cally as a function of the calcination temperature, reaching a
maximum for the sample treated at 1200 °C. In the case of
samples from the HPC synthesis, instead, the highest QY values
are reached at the annealing temperature of 1000 °C. In the
case of the AA series, the increase of QY with the calcination
temperature can be related to the higher phase purity obtained
at higher annealing temperatures. No similar trends can be
observed for QY values of HPC samples, possibly because these
samples show comparable CaTiO3 phase content at the three
investigated calcination temperatures and because of the
occurrence of sintering effects at increasing calcination
temperatures. The absolute QY of the top performing samples
of the three series are quite comparable (ca. 10.5%), which are
higher than that in the previous literature reports concerning
CaTiO3:Pr

3+ micrometric materials with the same dopant
content19 and higher or comparable to other lanthanide-doped
CaTiO3 phosphors with same dopant amounts.32,33 It should
be noted that several factors influence the reliable evaluation of
absolute QY values of powder samples, which are highly
scattering materials. Absolute quantum yields can be
determined by the integrated sphere method. However, several
factors can affect the measurement, especially reabsorption
effects,34 which require a careful optimization of the measure-
ment setup.35

2.5. Effect of Temperature on Photoluminescence.
With the purpose of investigating the sample luminescence
behavior at different temperatures, PL spectra of samples
calcined at 1200 °C were measured in the −263/77 °C
temperature range (Figures S6 and S7). PL spectra measured in
the −263/−73 °C range are characterized by narrow peaks
typical of the 4f−4f transitions in lanthanides, whereas, as
expected, at higher temperatures, peaks become broader and
less intense. Emission spectra recorded at low temperatures
(−263 °C) show nine components, in agreement with the Stark
splitting of 1D2 and 3H4 manifolds of the Pr3+ ion at low
temperature.3 Spectral shapes are similar among different
samples, with the notable exception of the excitation spectra of
HPC 0.5 g samples (vide supra), as particularly evident at −263
°C.
A temperature-dependent line broadening of emission

transitions is expected due to the electron distribution in
vibrational levels at thermal equilibrium. However, although
thermal line broadening should decrease the peak height as a
function of temperature, the total emission intensity should be
instead independent of temperature unless thermal quenching
of the emission occurs. In the present case, a temperature
dependence of the total emission intensity was observed
(Figure 6), in agreement with previous reports.6,36 The increase
in total emission intensity with temperature, observed especially
for the HPC 0.5 g sample, might indicate that the electron
transfer process is thermally activated. Above a certain
temperature, thermal quenching effects become dominant for
all samples. Figure 6 shows that the energy barrier for thermal
quenching varies among the different samples: the maximum
total emission is observed at −196 °C for the sample AA_1200,
at −263 °C for HPC 1 g_1200, and at −123 °C for HPC 0.5
g_1200. This implies that the temperature dependence of
luminescence can be controlled, for example, by changing the
synthetic condition. Inaguma et al.36 reported that the emission

upon band gap excitation is promoted with increasing
temperature and attributed this phenomenon to a thermally
activated electron transfer from the ground state of Pr3+ ion,
3H4, to the valence band. They instead observed a much more
limited temperature dependence of emission intensity upon
photoexcitation with a wavelength of 375 nm. Interestingly, the
HPC 0.5 g sample, which lacks the excitation band at 375 nm,
shows a higher activation energy from the 4fn state to its cross-
over with the quenching state.

2.6. Luminescence Decay. Figure 7 compares the
luminescence decay curves of 1D2−3H4 transitions in samples

calcined at 1200 °C. The relative fitting parameters and the
fraction of slow decay, f 3, are reported in Table 2.
For all samples, three exponential components turned out to

be necessary for a good fit, revealing similar decay times for the
different samples, of the order of 50 μs, 380 μs, and a few

Figure 6. Total emission intensity (excitation at 328 nm) as a function
of the measurement temperature for CaTiO3:Pr

3+ samples calcined at
1200 °C.

Figure 7. Luminescence decay curves of 1D2−3H4 peaks of
CaTiO3:Pr

3+ samples calcined at 1200 °C.

Table 2. Decay Parameters of the 1D2−3H4 Transition for
CaTiO3:Pr

3+ Samples Calcined at 1200 °C

sample
I1

(au)
τ1
(μs) I2 (au)

τ2
(μs) I3 (au)

τ3
(μs) f 3

AA 0.97 53 0.002 387 0.0026 5808 0.20
HPC 0.5 g 0.38 57 0.007 375 0.0007 2592 0.07
HPC 1 g 0.80 50 0.023 387 0.0010 5418 0.10
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thousand microseconds. Different decay components of
luminescent emission are typically reminiscent of dopants in
different environments in the host lattice. The “slow”
component in Table 2 should probably be interpreted as the
first part of the afterglow; the fact that the “AA” sample has the
largest fraction of slow decay nicely fits the fact that the
afterglow is longest for this sample. The HPC 0.5 g sample
shows the lowest f 3 value; these results are compatible with
afterglow decay times (vide infra) and a possible explanation
will be discussed in Section 2.7. Given the limited amount of
data, only the orders of magnitude of the decay times in Table 2
should be trusted, and the absolute values should only be
interpreted as approximations.
The effect of temperature on the luminescence decay was

also investigated. Figure S8 compares the luminescence decay
curves measured at −263 °C of 1D2−3H4 peaks of CaTiO3:Pr

3+

samples calcined at 1200 °C. A faster decay was consistently
observed at −263 °C than at room temperature (Table S2), in
agreement with previous reports about CaTiO3:Pr

3+.37 The
longer lifetimes observed at room temperature with respect to
those at −263 °C can be considered the result of a thermal-
activated process, involving charge storage from shallow surface
traps.37 This latter mechanism would be inefficient at low
temperatures because of the deficiency of thermally released
energy.
2.7. Afterglow Properties. Persistent luminescence

emission spectra measured at room temperature (not shown)
are consistent with photoluminescence, indicating that the
afterglow results from the 1D2−3H4 transition of Pr3+. Figure 8
reports the afterglow decay curves of the three sets of samples.

At the annealing temperature of 600 °C, only the AA sample
presents a limited afterglow, whereas the HPC samples do not
show afterglow emission as expected on grounds of their
amorphous nature.
All of the samples calcined at temperatures ≥800 °C present

appreciable afterglow emission. The slowest decay of afterglow
is observed for CaTiO3:Pr

3+ samples calcined at intermediate
calcination temperatures: 800 °C (AA and HPC 1 g) and 1000

°C (HPC 0.5 g). These findings are also supported by the
decay times of the phosphors (Table 3).

The decay times of the phosphor for AA samples are
generally higher than those of the other samples, whereas HPC
0.5 g samples presents the lowest. The highest decay time is
shown by the AA_800 phosphor, which presents a decay time
higher than that in previous literature reports.20,38 It is worth
noting that AA samples have the highest content of impurity
phases, in particular Ca-rich ones, whereas HPC 0.5 g samples
consistently showed the absence of Ca excess. The presence of
local Ca excess has been related to the favored formation of
oxygen vacancies that are known to act as charge-carrier traps,
increasing decay times.6,20,30 This supports the observation that
the ideal preparation conditions for a phosphor strongly
depend on the area of application: to improve the steady-state
luminescence, the number of defects should be minimized,
whereas such defects are essential for obtaining a high afterglow
time and intensity.
Figure 9 compares the total light output of the different

samples. The total light output in the entire investigated range
(from 10 to 3600 s, Figure 9a) is compared with the slow
afterglow (100−3600 s, Figure 9b).
The trend of the slow afterglow (Figure 9b) is different from

the total light output in the entire range (Figure 9a). As a
matter of fact, the highest total light output in Figure 9a is
shown by the sample AA_1000, whereas in the slow afterglow
(100−3600 s), it is shown by AA_800. Such a difference shows
that for the sample calcined at 1000 °C, almost all of the light
comes out in the first few minutes, possibly as a result of
shallower traps.
The fact that the optimum annealing temperature for the

afterglow properties of the AA series is 800 °C, whereas it is
1200 °C for steady-state luminescence, can be attributed to a
competition between two effects: on one hand, a higher
processing temperature leads to a better phase purity, which
enhances the luminescent intensity and decreases nonradiative
recombination. On the other hand, the afterglow is dependent
on the existence of some intrinsic electronic and/or structural
defects, which are decreasing in number with higher annealing
temperatures. The persistent luminescence intensity is propor-
tional to the number of traps for energy storage and to the
recombination efficiency of the released carriers with
luminescent centers. The nature of energy storage trapping
centers in CaTiO3:Pr

3+ has been attributed to different
mechanisms; the Pr3+ dopant itself acts as a hole trap and
Pr4+ and oxygen vacancies as electron-traps.6,30 The highest
persistent luminescence intensity is observed for the samples
prepared at 800 °C, owing to the high number of defects
promoting afterglow. A further increase in the calcination
temperature reduces the impurity content, in particular of Ca-

Figure 8. Afterglow decay curves of CaTiO3:Pr
3+samples calcined at

600 (light blue line), 800 (blue), 1000 (green), and 1200 °C (red): (a)
AA, (b) HPC 0.5 g, and (c) HPC 1 g.

Table 3. Decay Times of Phosphor (Time until the
Luminance Has Decayed to 0.32 mcd m−2) for Different
CaTiO3:Pr

3+ Samples

t (s)

calcination temperature (°C) AA HPC 0.5 g HPC 1 g

600 92 3 9
800 737 221 442
1000 246 278 248
1200 374 155 199
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rich phases, which might result in a loss of oxygen vacancies.39

As a result, the afterglow emission is reduced.
The calcination temperature has a strong influence on the

afterglow properties of sample CaTiO3:Pr
3+ AA and a lower

influence on the samples synthesized with HPC, mirroring the
diverse effect of calcination temperature on phase purity for the
two sets of samples. Further, the samples synthesized with
acetic acid showed values of total light output higher than those
of the samples synthesized with HPC (also in agreement with
decay times of the phosphors). This higher persistent
luminescence might be the result of more defective crystals
for samples of the AA series, related to their higher content of
Ca-rich phases and local Ca excess.

3. CONCLUSIONS

In this work, two sol−gel synthetic routes for the preparation of
CaTiO3:Pr

3+ were developed. The role of the calcination
temperature on the material properties was investigated in a
wide temperature range (600−1200 °C). The desired perov-
skite phase was obtained at a calcination temperature of 800 °C
or higher. The presence of HPC, able to adsorb at the oxide
surface reducing coalescence via enhanced steric hindrance,
results in smaller, less aggregated particles as well as in a high
phase purity. The AA synthesis instead leads to micrometric
particles with heterogeneous composition. The role of the HPC
content was also investigated, showing that increasing the HPC
content further reduces the particle size and agglomeration.
Interestingly, the sample with the highest HPC content shows
the presence of Ca-rich impurities, as determined by attenuated
total reflection Fourier transform infrared (ATR-FTIR)
analyses; although no segregated Ca-rich phases were
appreciable from XRPD analyses, these effects might be traced
back to a higher presence of surface defects in this sample. PL
measurements showed that luminescence properties are mainly
related to the phase purity of the oxide. The presence of Ca
excess, resulting in oxygen vacancies, was related to effects on
the samples’ absorption and excitation spectra. On the other
hand, a more complex effect was found on persistent
luminescence properties. Although the samples calcined at
the lowest temperature showed a negligible afterglow emission,
the highest energy storage capability was exhibited by the
CaTiO3:Pr

3+ AA sample calcined at 800 °C. This indicates that
a good degree of crystallization is needed for both steady-state

PL and afterglow. However, annealing at 1200 °C leads to a
diffusion degree that is too high for the afterglow phenomenon
to occur. As a matter of fact, persistent luminescence requires
the presence of trap levels, which are related to lattice defects,
such as oxygen vacancies. The synthetic procedure played a
significant role in the afterglow emission: samples from the
synthesis with acetic acid showed the highest persistent
luminescence, possibly as a result of the presence of local Ca
excess, whereas the HPC 0.5 g samples showed the lowest
afterglow.
Therefore, samples from the acetic acid synthesis are better

candidates as red persistent phosphors. On the other hand,
considering their high luminescent emission, low afterglow, and
smaller particles, samples from HPC synthesis may be
considered the most promising red phosphors for display
applications.

4. EXPERIMENTAL METHODS

4.1. Materials Synthesis. Reagents were of analytical
grade; they were purchased from Sigma-Aldrich and used
without further purification. MilliQ water was used to prepare
solutions and suspensions.
CaTiO3:Pr

3+ powders were synthesized by the sol−gel
method, followed by calcination at different temperatures.
Two different synthetic procedures were compared: an acetic
acid-based route and an HPC-based route. In both synthetic
approaches, the precursor materials were CaCO3, titanium
tetraisopropoxide (TTIP) and PrCl3. The Pr/Ti molar ratio
was fixed to 0.2% to limit concentration quenching effects.31

Undoped CaTiO3 samples were also synthesized as reference.
The general procedure was the following: 3.7 mL of a 0.02 M
PrCl3 acidic solution (prepared in HCl 0.1 M) was added to
10.84 g of TTIP while stirring continuously and using an ice
bath. Then, 11.52 g of 2-propanol was added, leading to the
formation of a transparent sol. Subsequently, a CaCO3 solution
was added drop-by-drop to the reaction mixture in 30 min. The
reaction mixture was then stirred for 90 min and dried in an
oven for 24 h at 70 °C. The obtained xerogels were calcined at
different temperatures (600, 800, 1000, and 1200 °C) for 4 h in
an unventilated oven, using a 3.3 °C min−1 heating rate.
The two synthetic approaches differed only in the

preparation of the CaCO3 solution. In the acetic acid-based
approach, 3.72 g of CaCO3 were mixed with 10.52 g of glacial

Figure 9. Total light output during afterglow measurements of CaTiO3:Pr
3+ samples as a function their calcination temperature: (a) light emission

from 10 to 3600 s (total afterglow) and (b) light emission from 100 to 3600 s (slow afterglow).
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acetic acid. In the HPC-based approach, 3.72 g of CaCO3 was
added to an aqueous HPC solution, prepared dissolving the
chosen amount of HPC (MW ∼ 100 000) in 66.6 mL of water,
and ca. 10 mL of HCl (37%) was introduced to obtain a clear
solution. To investigate the effect of the HPC content on the
final properties of the CaTiO3 material, two different amounts
of HPC were tested (1 and 0.5 g).
In the following, samples will be labeled as AA_x, HPC 1

g_x and HPC 0.5 g_x, where x is the calcination temperature.
4.2. Characterization Techniques. X-ray powder dif-

fraction (XRPD) patterns were acquired at room temperature
using a Siemens D5000 Bragg-Brentano goniometer graphite-
monochromated Cu Kα radiation (λ = 0.15406 nm) at 40 kV ×
40 mA nominal X-rays power. θ:2θ scans were performed
between 10 to 90°, with step sizes 0.01−0.04° wide.
Fourier transform infrared (FTIR) spectroscopy measure-

ments were carried out using a PerkinElmer Spectrum 100
ATR-FTIR spectrometer.
Scanning electron microscope (SEM) images were acquired

with a Zeiss LEO 1430 (30 keV), equipped with a
backscattered electron detector as well as an energy dispersive
X-ray (EDX) analysis system. Specimens were coated with an
Au thin film to reduce charging effects.
Cathodoluminescence (CL) and EDX mapping images were

collected with a Hitachi S3400N scanning electron microscope
operating at 15 kV, equipped with an optical fiber, and analyzed
using an EMCCD camera (Princeton Instruments ProEM
16002) attached to a Princeton Instruments Acton SP2358
spectrograph.
Diffuse reflectance spectroscopy (DRS) analyses were

performed on a Shimadzu UV2600 UV−vis spectrophotometer
equipped with an integrating sphere. Spectra were acquired in
the range of 250−750 nm, using BaSO4 as a total white
reference. Band gap values were estimated by Tauc’s plots.40

Photoluminescence (PL) measurements were performed
using an FS920 fluorescence spectrometer (Edinburgh Instru-
ments). Measurements at different temperatures were carried
out using an Oxford Optistat CF cryostat. The total emission
intensity was measured using the same setup of PL measure-
ments, keeping the same geometry during every measurement
and integrating the spectra over the 550−700 nm wavelength
range.
Absolute PL quantum yield determinations were carried out

with a Quantaurus-QY spectrometer (Hamamatsu), equipped
with an integrating sphere. Samples were placed in optical
quartz cells, used as reference. Excitation wavelengths were
varied in the range of 230−360 nm (10 nm for each
measurement); the maximum QY values were always
determined in the 320−330 nm range. The emitted
fluorescence in the range of 580−750 nm was detected by a
multichannel detector. Measurements were performed at room
temperature, according to a previously reported experimental
setup.41

Luminescence decay measurements were conducted with an
Intensified Charge Coupled Device (ICCD) Andor DH720 at
two different temperatures (room temperature and −263 °C)
by using an Oxford Optistat CF cryostat. Excitation was
performed using a pulsed nitrogen laser (wavelength 337 nm,
pulse duration <1 ns, pulse frequency 1 Hz), and detection was
carried out at 612 nm. The response time of the detection
system was determined by the laser pulse width and the
switching time of the ICCD image intensifier (3 ns), leading to
an overall response time of less than 5 ns, which is orders of

magnitude below the time scale of the observed phenomena.
After noise removal, the peaks of the different transitions were
integrated and the decay curve was fitted as a function of time t
by a triple exponential

= + +τ τ τ− − −I t I I I( ) e e et t t
1

/
2

/
3

/1 2 3 (1)

where I is the luminescence intensity, I1, I2, and I3 are the
amplitudes for each component, and τ1, τ2, and τ3 are the decay
constants of the three components, respectively. From the
determined amplitudes and decay constants, the fraction of
slow decay, f 3, was determined according to the following
equation
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The persistent luminescence analysis was conducted by
irradiating the sample with an unfiltered 150 W short arc
xenon lamp (LOT Quantum Devices) at an illumination
intensity of 1000 lx for 5 min and then measuring its afterglow
emission for 1 h with an International Light Technology
ILT1700 photometer, equipped with an SPM68 detector
calibrated in cd m−2. The decay time of the phosphor was
determined as the time in which its emission decays to 0.32
mcd m−2 (3.2 × 10−4 cd m−2).
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