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Abstract

Some genetic control networks display temporal oscillations as a result of delays in their homeo-

static control. A relevant question about these systems is whether the oscillating regime is a rare

feature, or it corresponds to a sizeable volume of the space of parameters. The answer is not trivial

mainly due to the large number of parameters controlling the rate equations which describe the

network. We have developed an efficient sampling scheme of the parameter space, based on a Monte

Carlo algorithm, and applied it to a two-node system with delay, characterised by a 8-dimension

parameter space. The result is that the volume fraction of parameter space associated with oscil-

lations is small but not negligible, and it is weakly dependent on the duration of the delay. The

most critical parameter to control oscillations is the coupling production rates, which must have

opposite sign, giving rise to a negative feedback loop. The oscillating regions are connected except

along the equilibrium constants between the two species, not allowing neutral evolution along this

parameter.
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I. INTRODUCTION

Several genetic control system in the cell have been observed to display regular temporal

oscillations. This is the case, for example, of p53 [1, 2], Hes1 [3], NFκB [4] and Wnt [5]. As a

rule, these oscillations have a period of the order of tens of minutes to hours, are associated

to some specific mechanism and involve two main species linked in a feedback loop. P53

activates the transcription of Mdm2 which, in turn, promotes the degradation of p53; the

resulting 20 minute oscillations are thought to coordinate the cellular response to DNA

damage, causing growth arrest and eventually apoptosis [6]. Similarly, the oscillations of

Hes1, which inhibits the transcription of its own mRNA, are turned into spatially repetitive

units such as vertebrae, ribs and skeletal muscles during embryogenesis [7].

The simplest model to account for such oscillations is to describe the concentration of the

species involved in the feedback loop making use of rate equations, characterised by a delay

in the feedback. The delay summarises a set of molecular processes, which are not described

explicitly in the equations, but which anyway take a finite time to be finalised. For example,

in the case of the p53 loop, the expression of Mdm2 is activated by p53, but an increase in

the transcription of p53 is not expected to lead instantaneously to the activation of Mdm2,

due to the translocation, transcription and translation time associated with the process. The

description of feedback loops with delay rate equations led to a fruitful characterisation of

temporal oscillations for p53 [8], Hes1 [9], NFκB [10] and Wnt [11] (for reviews, see [12, 13]).

An important evolutionary question that one can put about these systems is how likely

a feedback loop displaying some delay undergoes temporal oscillations. The dynamical

behaviour of a feedback loop depends on a number of parameters, like dissociation constants,

protein expression rates and so on. One would like to understand whether the emergence of

oscillation requires that evolution carries out a careful fine–tuning of these parameters, or

oscillations are a likely outcome of the dynamics of these systems.

To investigate this point, we studied a general two–species feedback loop controlled by 9

parameters. We set realistic ranges of variation for the parameters, which define a hyper–

parallelepiped in the parameter space, and studied what fraction of the volume of the hyper–

parallelepiped is occupied by oscillating dynamics, as compared to that occupied by dynam-

ics which converges to a stationary state. In a two–dimensional system, chaotic behaviour

is ruled out by Poincaré–Bendixson theorem.
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Anyway, the systematic exploration of a 8–dimensional parameter space is rather cum-

bersome, and thus we developed a sampling scheme based on an optimisation principle. The

idea is to define a function of the trajectory of the system which is minimised as oscillations

appear, and to bias the exploration of parameter space with a Metropolis algorithm [14]

using this function as an energy. After the sampling is finished, one estimates the volume

of parameter space associated with oscillations by subtracting the effect of the bias, much

similarly to what one does to obtain the density of states from a thermodynamic sampling.

The data can be analysed with some advanced tools developed in connection with molec-

ular simulations, like the weighted–histogram method [15]. In this way one can quantify the

fraction of the space of parameters associated with oscillations, and also estimate the effect

of the different parameters in inducing them.

II. THE FEEDBACK MODEL

A quite general description of a two-species biological feedback loop can be given by the

delay rate equations

dx1

dt
= s1 + α12 ·

xh2(t− τ)

kh12 + xh2(t− τ)
− γ1x1

dx2

dt
= s2 + α21 ·

xh1(t− τ)

kh21 + xh1(t− τ)
− γ2x2, (1)

where x1 and x2 are the concentration of the two species, approximated as real numbers,

s1 and s2 are their unconditioned production rates, α12 and α21 are their production rates

dependent on the other species, γ1 and γ2 are their degradation rates. The coupling between

the two species is provided by a delayed sigmoidal function, where the delay summarises

a set of molecular processes which need some time to be completed, such as translocation,

transcription and translation. For simplicity, it was assumed that these processes are similar

for the two species and thus the same delay τ affects both of them. The sign of α12 and α21

determines if the relation between the two species is excitatory or inhibitory. We also set

h = 2 since it is known from literature this is a common biological value for Hill’s coefficient

([17]).

The 6 rates and the 2 equilibrium constants were allowed to vary in a range of values

which we assume to be biologically relevant [18]. In particular, we set the constraints 10−10 ≤

si ≤ 100 mol/s, −100 ≤ αij ≤ −10−10 and 10−10 ≤ αij < 100 mol/s, 10−9 ≤ kij < 10 mol
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and 10−8 ≤ γi ≤ 10 s−1. We chose to express all times in seconds and all concentrations in

mol.

The set of initial conditions {x1(t), x2(t)}−τ<t≤0 was set to the constant values {x0
1, x

0
2}

obtained inserting a small perturbation ε in the fixed-point system of algebraic equations,

that is

x0
1 =

α12

γ1

· xh2
xh2 + kh12

+ (1 + ε)
s1

γ1

x0
2 =

α21

γ2

· xh1
xh1 + kh21

+ (1 + ε)
s2

γ2

. (2)

If either x0
1 or x0

2 is negative, it is set to zero. In the present calculation we chose ε =

0.2. Anyway, the fact that the functions at the right–hand–side of Eq. (1) are monotonic

guarantees that the system displays a single fixed point. Consequently, the system converges

to a stationary solution or oscillates independently on the initial point of the dynamics. In

other words, the oscillating or stationary character is a property of the system controlled

only by its parameters.

Equations (1) were solved with the adaptive–step Runge–Kutta method implemented

in the gsl libraries [16]. The length of each simulation is 105s, corresponding in order of

magnitude to the length of the cell cycle.

III. THERMODYNAMIC–LIKE SAMPLING OF THE SPACE OF PARAME-

TERS

Sampling the parameter space of the feedback model to identify the oscillating regions is

not straightforward. An exhaustive analysis of all the possible set of parameters is unfeasible

because of its high–dimensionality. Under the working hypothesis that the fraction of the

space of parameters corresponding to an oscillating behaviour is small, a random sampling

of the oscillating regions is not expected to be efficient. This problem is analogous to that of

thermodynamic sampling, that is looking for the conformations of a complex system which

have such a low energy to be statistically relevant according to Boltzmann distribution.

In the thermodynamic problem, a purely random sampling is inefficient because the den-

sity of states is a non–decreasing function of energy, and consequently a random sampling

would visit mainly high–energy states which are irrelevant according to Boltzmann statis-

tics. To solve this problem, Monte Carlo methods have been introduced [14], which generate
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a Markov chain that samples the space according to the very probability distribution one

wants to recover, usually the Boltzmann distribution. In this way relevant states are visited

more often than poorly–relevant ones.

Our strategy consists in sampling the parameter space of the model making use of a

Markov chain much similar to that used by Monte Carlo methods. Given a set of parameters

π ≡ {s1, s2, α12, α21, k12, k21, γ1, γ2}, we generated the solution trajectory as described in

Sect. II, and associated to it a quantity Ω which counts how many steady oscillations the

trajectory displayed. This is operatively defined as the number of maxima of x1(t) which

assume, within a relative error of 1%, the same value of x1(t) (and consequently, after a

transient, are not damped; cf. Fig. 1).

To favour the sampling of the high–Ω regions of the space of parameters, we started from

a random set π chosen within the ranges defined in Sect. II and changed randomly the

parameters, multiplying them by 10r, where r is a random number such that −1 < r < 1.

The multiplicative change of the parameters allows the system to explore efficiently all the

orders of magnitude (i.e., effectively exploring the logarithm of the rates). In the case of

αij, when the random move brings it above −10−12 or below 10−12, the sign is changed;

in this way the algorithm could sample continuously the two semi–regions in which the αij

are allowed to move. The move was then accepted with a rate given by the Metropolis–like

expression,

w(π → π′) = min

[
1, exp

(
Ω(π′)− Ω(π)

T

)]
. (3)

Here the parameter T is analogous to the temperature in a standard Metropolis simulation,

and controls the bias towards high vaues of Ω. This procedure is essentially equivalent to a

Metropolis simulation controlled by the energy (−Ω), where the minus causes the algorithm

to maximise Ω instead of minimising it, as usually done with the energy.

Given Eq. (3), one can then use all the armoury of Monte Carlo algorithms to improve the

sampling of the space of parameters and to analyse the data. For example, one can perform

a parallel tempering sampling, in which different replica are sampled simultaneously at

different temperatures, to help the system to jump through disconnected regions of non–

zero values of Ω [20]. Actually, one can use all the advanced sampling techniques which

were developed for enhancing the exploration of molecular conformations, such as simulated

tempering, umbrella sampling, metadynamics, etc. [21].

Once the sampling reached convergence, the data were analysed with a weighted–
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histogram method [15]. The main quantity of interest to quantify the fraction of space

of parameters associated with oscillations is the density

g(Ω) =

∫
d8π δ(Ω(π)− Ω), (4)

which is analogous to the density of states of thermodynamic systems. From the histograms

NT (Ω) collected from the simulations at different temperatures, one can obtain the most

likely form of g(Ω) compatible with them, obtaining [15]

g(Ω) =

∑
T NT (Ω)∑

T NT exp[Ω/T ]/ZT
(5)

where NT =
∑

Ω NT (Ω) and the ZT is obtained solving the set of implicit equations∑
Ω

∑
T ′ NT ′(Ω)∑

T ′ NT ′ exp[Ω/T ′ − Ω/T ] · ZT/ZT ′
= 1. (6)

The function g(Ω) is proportional to the volume of the parameter space characterised by a

given oscillation number Ω, independent on the bias used to make the sampling efficient.

IV. HOW LIKELY ARE OSCILLATIONS?

Simulations of the kind described in Sect. III were conducted for different choices of the

delay (τ = 500, 1000, 1500, 2000, 2500s), using each time three temperature parameters (T =

1, 2, 3). The simulations are computationally quite demanding, and took approximately 6

months of cpu time on Intel i7 3.4Ghz processors.

The resulting g(Ω) for different delays are displayed in Fig. 2 in semi–logarithmic scale.

The points at Ω = 0 and 1 indicate sets of parameters not associated with oscillations.

At all values of the delay τ , g(Ω) displays an overall decreasing trend, compatibly with

the idea that the stationary behaviour is the most common outcome, while oscillations are

somewhat disfavoured. However, the strongest decrease occurs at Ω . 10, corresponding to

a oscillation frequency of less that 10−4 s−1, while the decrease is only marginal at larger

values of Ω. From the simulations it is difficult to assess if the wavy behaviour at large Ω is

a real physical effect or noise associated with the finite statistics.

The volume fraction of the space of parameters associated with oscillating solutions of

Eq. (1), defined by

f =

∑
Ω>1 g(Ω)∑
Ω≥0 g(Ω)

, (7)
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is displayed in Fig. 3 as a function of the delay τ . The volume fraction displays a spike

at small delays (τ = 500s), reaching a fraction of f = 0.027, and then converges to an

almost constant value of f = 0.004. Perturbing the definition of f , for example defining as

oscillating also the solutions displaying Ω = 1 does not change the qualitative behaviour of

this plot, suggesting that it is quite robust.

The effect of the 8 parameters of the model in inducing oscillations is displayed in Fig. 4,

where the value of Ω sampled at the different values of the parameters of the rate equations

are plotted for the Monte Carlo simulation generated at τ = 500s. The simulations with the

other delays are qualitatively similar (data not shown). Since the system of rate equations

(1) is symmetric, we collected in the same plots the rates corresponding to the two species.

The dependence of oscillations on the mutual couplings αij (i = 1, 2) is bimodal, dis-

playing large values of Ω at small (in absolute value) negative and at large positive values

of αij. To further investigate this point, we plotted in Fig. 5 the dependence of Ω on the

product α12 · α21. Oscillations (Ω > 1) appears only if the product is negative and small.

In other words, the equations must describe a negative feedback loop, in which one species

activate the other, which, in turn, inhibits the former. Moreover, in the inset of Fig. 5 it

is shown the maximum value of Ω as a function of the larger between α12 and α21. The

curve is approximately straight, indicating that to obtain oscillations with high frequency,

the larger αij must be large and that such a relation is linear.

As a function of the equilibrium constants kij, the oscillation parameter Ω is rather

variable, filling densely the scatter plot except for a region between 10−7 and 10−5 mol.

Although one cannot rule out that the lack of points in this region is due to a bad sampling,

the otherwise dense appearance of the plot, and the straight boundary between the populated

and non–populated region may suggest the this region of parameter space is actually depleted

of oscillating trajectories.

The scatter plot of Ω as a function of the degradation rates γi gathers all points with

Ω > 1 at γi > 101s−1. Note that the values of γi determine the time scale of the dynamics

of xi(t) and, in absence of fixed ranges of variability of all the parameters, its value would

be irrelevant, setting the time units of all the rates. The accumulation of the points with

Ω > 1 at the higher border of γi indicates that if it were allowed to be increased beyond

this border, the system could find new oscillating regions by decreasing the other rates;

this would anyway results in rates assuming unrealistic values when compared with the
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underlying molecular processes.

The dependence of Ω on the constant sources si is straightforward, the system displaying

oscillations only when both si are negligible. When this is not the case, the two equations

are essentially decoupled, and the process becomes approximately a birth–death process,

converging to a stationary solution.

V. DISCUSSION AND CONCLUSIONS

Oscillations in the concentrations of proteins are a response of the cell to external stimuli

that has been observed in several cellular contexts [1–4, 22–24]. Even one of the simplest

system displaying oscillations, that is a two–node delayed feedback loop, can be difficult

to study because one has little control over the numerical values of the parameters which

control the model. For most systems, only a qualitative accounting of the relation between

genes is available [25], sometimes with the specification that the relation is excitatory or

inhibitory, but the associated numbers are unknown [26]. When these are available, they

are often extracted from biochemical or model experiments, and not directly related to the in

vivo situation. Consequently, one is compelled to study the model by varying its parameters

in a realistic, usually wide, range of values. However, this procedure is not straightforward

even in the simple case of a two–node system, because this is defined by eight numerical

parameters, and their exhaustive scan is unfeasible.

To face this problem, we have applied the sampling techniques and the analysis strategies

originally developed to study molecular systems in the canonical ensemble. Analogously to

the sampling of the space of parameters of out rate equations, molecular systems typically

display a very high dimensionality, often reaching 105−106 degrees of freedom. This suggests

that these techniques can be effective also to study larger regulatory networks, controlled

by many more parameters. In the case of molecular systems, sampling techniques build a

Markov chain in conformational space to exploit energy correlations and thus find the low–

energy conformations, which are the most rare but at the same time the most significant

according to Boltzmann distribution. Similarly, we generated Markov chains in the space

of the parameters of the delay equations, biasing the search for highly–oscillating solutions

through a temperature–like parameter. Once we explored the available parameter space,

using multiple temperatures to fasten the exploration, we removed the bias to obtain the
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actual density of parameters associated with oscillations at various frequencies.

The result is that oscillations occupy a small, but not negligible volume (fraction of

percent) of the entire parameter space. This fraction is quite independent on the delay,

and increases only at small delay values (cf. Fig. 6). Oscillations appear only for negative

feedback loops, within a rather well–defined range of the parameter which couples the two

species, and only if their spontaneous production rate is negligible. All these data point to

a scenario in which evolution had to search actively for oscillations. Although we already

know that α12 and α21 must have opposite sign for the system to display oscillations [12], we

let the system explore the whole parameter space to prove the generality of the approach and

to constrain the sampling as little as possible; the constrain on the sign of this parameter

eventually emerges as a result.

The projections of the oscillating regions of the space of parameters along the direction of

the different rates are usually connected. Different seems to be the case along the direction

of the equilibrium constants kij, which displays a gap spanning more than two orders of

magnitude. This means that once evolution tunes the rates to produce oscillations, it is

quite easy to adjust them, for example, to change their frequency. On the other hand,

the model predicts an evolutionary barrier on the equilibrium constant which defines the

interaction properties between the two species.
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FIG. 1: (Upper panel) An example of oscillating solution x1(t) of the feedback loop, displaying

Ω = 54. (Lower panel) An example of Monte Carlo sampling of the space of parameters, where the

system first visits a region corresponding to stationary solutions (Ω ≤ 1) and later finds oscillating

solutions.
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FIG. 2: The density g(Ω) calculated for dfferent values of the delay τ .
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FIG. 3: The fraction f of space of parameters associated with fluctuating trajectories, defined as

Ω > 1, as a function of the delay τ (circles). To test the robustness of the result, we perturbed the

definition of fluctuating trajectories, calculating the behaviour of f at Ω > 2 (squares) and Ω > 0

(diamonds).
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FIG. 4: The values of the number of oscillations Ω associated with the points of parameter space

sampled by the simulation carried out at τ = 500s and T = 1 projected, respectively, onto the

parameters αij , kij , γi and si. To make the results more readable, αij is plotted in a linear scale,

while the other parameters in logarithmic scale. The density of points in each region of the plots

reflects the probability that the delay equations display a specific value of Ω for the value of the

parameters that define that region.
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FIG. 5: The values of Ω sampled by the simulation carried out at τ = 500s and T = 1 as a function

of the product between the αij of the two species. In the inset, the maximum value of Ω as a

function of the larger between α12 and α21.
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FIG. 6: The values of Ω sampled as a function of α12 and k21 suggest that the oscillating region is

a small but not negligible part of the parameter space.
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