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The possible occurrence of static/dynamic disorder at the Mg site in pyrope

(Mg3Al2Si3O12), with or without anharmonic contribution to the thermal

vibrations even at low temperatures, has been largely debated but conclusions

were contrasting. Here a report is given on the experimental charge density

distribution, �EXP, of synthetic pyrope at T = 30 K, built through a Stewart

multipolar expansion up to l = 5 and based on a very precise and accurate set of

in-home measured single-crystal X-ray diffraction amplitudes with a maximum

resolution of 0.44 Å. Local and integral topological properties of �EXP are in

substantial agreement with those of �THEO, the corresponding DFT-grade

quantum charge density of an ideal pyrope crystal, and those derived from

synchrotron investigations of chemical bonding in olivines. Relevant thermal

atomic displacements, probably anharmonic in nature, clearly affect the whole

structure down to 30 K. No significant (> 2.5�) residual Fourier peaks are

detectable from the �EXP distribution around Mg, after least-squares refinement

of a multipole model with anharmonic thermal motion at the Mg site.

Experimental findings were confirmed by a full analysis of normal vibration

modes of the DFT-optimized structure of the perfect pyrope crystal. Mg

undergoes wide displacements from its equilibrium position even at very low

temperatures, as it is allocated in a � 4.5 Å large dodecahedral cavity and

involved in several soft phonon modes. Implications on the interplay among

static/dynamic disorder of Mg and lattice vibrational degrees of freedom are

discussed.

1. Introduction

Garnets are very common silicates in the Earth’s upper

mantle. Their general formula, X3
2+Y2

3+Si3O12, allows a

significant compositional variability, as several combinations

of divalent and trivalent cations can be allocated in dodeca-

hedral (X) and octahedral (Y) lattice sites. Structural and

elastic properties of garnets determine seismic velocities at

different depths (Huang, 2014), lying therefore at the core of

any sensible model of the Earth’s composition. Moreover,

garnet-like structures receive continuous attention, as they

find application in cutting-edge industrial applications

(Thangadurai et al., 2015), including fabrication of advanced

electro-optical devices (Zhong et al., 2015) and high-

temperature ion conductors (Pinzaru & Thangadurai, 2014;

Geiger, 2013a; Buschmann et al., 2012; Galven et al., 2011). In

general, knowledge of the structure and dynamics of complex
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oxides at the atomic scale is

mandatory to understand their

properties at the macroscopic level.

In particular, cation disorder

(Schmidt et al., 2015) and anhar-

monicity effects (Nishimura et al.,

2016; Kisi & Yuxiang, 1998) are

known to influence lattice stability

(Palke et al., 2015) and ion trans-

port properties (Schmidt et al.,

2015; Nishimura et al., 2016).

Despite ongoing efforts, an unam-

biguous consent on the actual

interplay of cation disorder and

anharmonicity does not exist, as

they are strongly intertwined and

cannot be easily disentangled

through routine experimental

techniques (Dove, 1997).

In particular, conflicting state-

ments were reported on the mutual

occurrence of anharmonicity and

cation disorder in the pyrope

garnet (Pilati et al., 1996;

Armbruster et al., 1992; Sawada, 1993; Pavese et al., 1995;

Artioli et al., 1997). This mineral represents a key test case, as

it is one of the ideal end-members of a rich wealth of solid

solutions of isostructural garnet nesosilicates, including

almandine (Fe3Al2Si3O12) and grossular (Ca3Al2Si3O12).

Structural (Andrés et al., 1995; D’Arco et al., 1996), elastic

(Erba et al., 2014a,b; Kawai & Tsuchiya, 2015; Li et al., 2011),

electronic (Andrés et al., 1995), spectral (Maschio et al., 2013;

Dovesi et al., 2011) and surface (Massaro et al., 2014) prop-

erties of pyrope have been the object of several ab initio

simulations, whereas, on the experimental side, investigations

have been carried out to map its thermoelastic properties

throughout the p,V and T,V diagrams (Milani et al., 2015), as

well as to measure the steady-state plastic properties at high

temperature and pressure (Li et al., 2006). Coherent inelastic

neutron scattering on a powder sample at T = 14 and 30 K

(Pavese et al., 1998) aimed to clarify the sources of some

thermodynamic anomalies (Haselton & Westrum, 1980),

possibly related to static disorder of the Mg atom. Various

single-crystal X-ray diffraction (XRD) and neutron diffraction

multi-temperature studies (Armbruster et al., 1992; Sawada,

1993; Pavese et al., 1995), as well as lattice dynamic calcula-

tions (Pilati et al., 1996; Pavese et al., 1998), were also

performed. The diffraction experiments revealed possible

anharmonic thermal motion both at room temperature

(Sawada, 1993) and at 30 K (Artioli et al., 1997), but the

relatively low resolution could not help those authors to

decide whether the large anisotropic temperature factor of Mg

was indicative of a multi-site distribution of the cation around

its crystallographic ordered position. A more recent single-

crystal XRD investigation (Nakatsuka et al., 2011) at 20 points

in the temperature range 96.7–972.9 K has reopened the

debate (Geiger, 2013b; Nakatsuka et al., 2013), bringing

forward X-ray difference Fourier maps as documentation of

static disorder.

Here we aim to shed light on this problem by studying the

experimental electron density (ED) of synthetic pyrope,

Mg3Al2Si3O12 (Fig. 1), to an unprecedented level of precision

and accuracy at T = 30.0 (3) K. The idea is that any statistically

significant disorder of Mg2+ should be evident in accurate

residual density Fourier maps, as both high-order and low-

order data carry information on possible deviations from the

expected site stoichiometry. DFT-grade periodic calculations,

at both the experimental and th optimized lattice geometries,

complement experimental outcomes and provide insights on

the accuracy of the models proposed to account for the

observed ED features at the Mg crystallographic site. We

eventually prove that such features might indicate some kind

of displacive dynamic (not static) disorder, as they are strictly

related to vibrational degrees of freedom of the lattice and

possibly coupled with anharmonic contributions to anisotropic

displacement parameters (ADPs).

2. Materials and methods

2.1. Notes on the original data collection

The original pyrope sample was grown by hydrothermal

methods (Armbruster et al., 1992) and investigated using XRD

at 100 and 293 K. This report is based on XRD data we had

collected at T = 30 K on the same sample ground to a sphere

(1 ’ 0.45 mm) and then used by Pavese et al. (1995).

However, their data reduction, processing and analysis differ

from ours (see xx2.2–2.4 below).
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Figure 1
(a) Packing scheme of pyrope along the [001] axis, as retrieved from the current single-crystal X-ray
analysis at T = 30 K. Displacement ellipsoids correspond to a 50% probability level and were all
enhanced by a factor 10 to be clearly visible. (b) Coordination polyhedra of Al (octahedron), Mg
(dodecahedron) and Si (tetrahedron) corresponding to the frame highlighted in (a). Realised with
DIAMOND (Crystal Impact, 2014).



2.2. Data collection

The data collection was performed on a four-circle

diffractometer equipped with graphite-monochromated

Mo K� radiation (� = 0.71073 Å) and a Samson cryostat

(Samson et al., 1980), where the sample is enclosed in an

evacuated, nearly isothermal cavity, ensuring a maximum

fluctuation of �0.3 K. T was set to 30 K to make our results as

comparable as possible with those from neutron diffraction (T

= 30 � 1 K) on a natural sample of pyrope (Artioli et al.,

1997).

A total of 7486 diffracted intensities were measured out to

2� = 109� [(sin �/�)max = 1.14 Å–1] using a scintillation counter

point-detector. Consolidated procedures for low-temperature

high-quality data collection and reduction were adopted

(Destro et al., 2000, 2004, 2005, 2010; Lo Presti et al., 2006; Lo

Presti & Destro, 2008). They include: (i) a re-measurement of

the strongest reflections at a lower current setting, to minimize

problems associated with counter saturation effects, and (ii)

measurement of selected profiles at the largest feasible scan

width, to evaluate part of the scan-truncation correction (see

below). In addition, a second set of data was collected after

changing the crystal orientation, to better identify multiple

reflections in the subsequent data processing. All other details

of the data collection are provided in the supporting infor-

mation.

2.3. Data reduction

Apart from the absorption correction, discussed in detail in

x3.1.1 below, other steps of the data processing were: (i) the

identification and rejection of numerous data tainted by the

Renninger effect (Renninger, 1937); (ii) the estimation of

scan-truncation losses (Destro & Marsh, 1987, 1993; Destro,

1988), which is crucial to determine reliable ADPs; (iii) the

corrections for Lorentz and polarization effects; (iv) the

merging and weighted averaging of equivalent reflections

(Rmerge = 0.0134), to end up with a set of 788 unique reflec-

tions, of which only three had I < 0. No thermal diffuse scat-

tering (TDS) correction was deemed necessary, because of the

very low temperature at which diffraction data were recorded.

Outcomes of statistical tests to assess the quality of the dataset

are shown in x3.1. We remark that, at variance with previous

crystallographic works on the title compound, we do not reject

any weak or low-angle positive intensity, such as, for example,

the |Fo| < 6�(Fo) and the sin �/� � 0.24 Å�1 classes of reflec-

tions (Pavese et al., 1995; Nakatsuka et al., 2011, 2013). The

practice of pruning the dataset by excluding data which cannot

be reliably reproduced by the structural/ED model, although

justified if some measurements are affected by unavoidable

biases, necessarily implies a loss of information, which might

reflect in rather unpredictable ways into the least-squares

outcomes. As a consequence, our description of the thermal

motion disagrees, to various extents, with those published so

far (see xx3.2 and 3.3). Further details can be found in the

supporting information, xS1–S2.

2.4. Multipole refinements

Least-squares refinements were carried out with the

VALRAY2000 suite of programs (Stewart et al., 2000),

representing the electron density �EXP(r) in the framework of

the Stewart’s pseudoatom formalism (Stewart, 1976). Atomic

scattering factors were derived from Stewart’s localized

atomic orbitals (Stewart, 1980). The interested reader can find

full details of the least-squares procedure within the

supporting information (xS5). Our final model, labelled

hereinafter as ANH, included a multipole expansion of

symmetry-allowed poles up to the l = 5 level (tricontadipoles)

for Al, Mg and Si cations1 and up to l = 4 (hexadecapoles) for

the O anion. A single scaling radial parameter � (KP0 in

VALRAY2000) was also refined for each atomic species.

Oxygen was the only atom allowed to have its crystallographic

coordinates relaxed. As for the thermal motion, non-vanishing

harmonic ADPs, Uijs, were augmented by Gram–Charlier

(GC) coefficients up to the third order (Cijk) for Si and O, and

up to the fourth-order (Dijkl) for Mg and Al (see x3.3.2). An

attempt was also made to apply fourth-order GC terms to all

atoms, but fourth-order tensors of Si and O had negative 4I0

trace invariants (Kuhs, 1992), indicating that their contribution

to the atomic p.d.f. is essentially flat. We therefore restricted

the GC expansion to the third-order for these atoms. A total

of 93 parameters was refined in the last cycles. The refinement

process ended with R(F) = 0.0084, R(F 2) = 0.0081, wR(F 2) =

0.0155 and goodness-of-fit = 0.7598. For the 690 data with F 2
�

3�(F 2) the agreement index R(F) was 0.0066. The largest

features in the residual density (��) map were, in e Å�3,

+0.12/�0.14 near Si, +0.11/�0.13 near Al, +0.12/�0.12 near

Mg, and +0.12/�0.16 near O. The Cruickshank estimate

(Cruickshank, 1949) of the e.s.d. in �� is 0.058 e Å�3. A full

report on the least-squares refinement process is given in xxS4

and S5 in the supporting information.

For comparison purposes, a harmonic ED model (herein-

after HAR) was also developed. It does not include Gram–

Charlier cumulants, but it is fully comparable with the ANH

one as it relies on the same set of the other 69 parameters. The

HAR model refined to R(F) = 0.0091, R(F2) = 0.0086, wR(F2)

= 0.0169 and goodness-of-fit = 0.8123. More details are

available in the supporting information (Model A of Table S4).

Two multipole models which explicitly take into account

static disorder of Mg were also refined against Fo. They both

include neither Gram–Charlier coefficient nor ED multipoles

with l � 1, and are labelled using the Wyckoff code of the

displaced positions of the ion. Thus, model DIS48f describes

Mg as displaced along the [001] axis from its 24c crystal-

lographic site at [0,1/4,1/8] (using 26 parameters), whereas

model DIS96h includes 28 parameters with the same displa-

cements suggested by Nakatsuka et al. (2011) (Tables S10–

S11). For comparison purposes a 24c monopole only aniso-

tropic refinement, with a total of 27 refined parameters, was

also performed (see Tables S12).
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1 Tricontadipoles are set to 0 by symmetry for the Al ion, which sits on a 16a
site with (: �33 :) symmetry.



2.5. Theoretical calculations

Fully periodic single-point DFT calculations at the 30 K

experimental geometry have been performed with the

CRYSTAL14 program (Dovesi et al., 2014), employing the

same B3LYP functional as Dovesi et al. (Erba et al., 2014a,b;

Maschio et al., 2013) for garnets in conjunction with the pob-

TZVP basis set by Peintinger et al. (2013). Full details of the

calculations are available in xS6 of the supporting information.

The crystal structure was also optimized at fixed lattice para-

meters, exploiting full Ia�33d symmetry. The coordinates of the

cations being fixed, the only change in geometry was a 0.01 Å-

large shift of the independent oxygen atom. A full vibrational

analysis of the normal modes was also performed on the

optimized structure. No negative eigenvalues of the nuclear

Hessian matrix at the � point were detected, confirming that

the lattice does not suffer from structural instabilities. Theo-

retical ADPs at T = 30 K were also estimated from the normal

mode analysis through a Debye–Waller (DW) harmonic lattice

dynamical approach (Erba et al., 2013). It was thus possible to

directly compare quantum dynamic structure factor ampli-

tudes, FDSF, with the experimental ones, Fo (see x3.1.1). B3LYP

estimates for ADPs at the � point were also confirmed by a

PBE calculation with a higher sampling density in the reci-

procal space [keyword SHRINK/4 4 in the CRYSTAL input

stream; see Dovesi et al. (2014), Erba et al. (2013)]. However,

the PBE model implies a worse agreement with the experi-

ment than the B3LYP one, as it would predict a larger shift

(0.03 Å) of O from its best multipole-based estimate.

Static structure factors, FSSF, were also obtained at the

experimental X-ray geometry. They were employed in the

VALRAY2000 code (Stewart et al., 2000) to derive a multi-

pole-projected charge density distribution of pyrope, �MSSF,

fully comparable with the experimental density. Full details on

this multipole model can be found in xS6. Final agreement

factors were as low as R(F) = 0.0026, R(F 2) = 0.0023, and

wR(F 2) = 0.0043, with a goodness-of-fit of 0.1341. The residual

density maps around the three cations can be considered as

completely featureless at the cation positions, showing no

residuals greater than 0.035 e Å�3 in absolute value. Some-

what larger residues (+0.051/–0.053 e Å�3) were observed at

0.784 and 0.507 Å, respectively, from the O atom. A list of the

final values for all the refined parameters is reported in

Table S6.

3. Results and discussion

3.1. Quality assessment of the procedure

3.1.1. Dataset. Due to the large dimensions of the specimen

(1 ’ 450 mm, see x2.1 above), together with the presence of

strong absorbers (� = 1.218 mm�1 for Mo K� radiation), great

care was taken to deal with absorption and extinction effects.

Actually, even a slight deviation of the crystal from a perfectly

spherical shape might produce large relative errors on the

corresponding corrections.  -scans collected at 17.6 (3) K

showed that no significant shape-dependent anisotropy affects

the measured intensities, apart from some sharp spikes due to

Renninger reflections (Renninger, 1937).

Individual measures affected by multiple reflections were

accurately removed from the current dataset before merging

(see x2.3). As a representative example, the azimuthal scan

plot of reflection (022) at 17.6 (3) K is reported in Fig. 2. After

removal of patent biases due to multiple reflections, no

significant  -dependent oscillations are appreciable from the

average intensity, hIi= 1.40 (2)	 105 in arbitrary units (Fig. 2b)

Thus, a perfect spherical shape was assumed to be reasonably

accurate. A (sin �/�)-dependent empirical correction for

absorption was carried out according to International Tables

for Crystallography (1959, Vol. II, pp. 302–305). The final set

of data showed a very good internal agreement among

equivalent reflections (Rint = 0.0134).

Secondary extinction was also explicitly taken into account

throughout the VALRAY refinement procedure. An isotropic

model for a Type I crystal with a Lorentzian distribution of

mosaicity was applied to correct observed structure-factor

amplitudes of low-angle intense reflections. The extinction

parameter refined to 0.245 (6), that is 2450 rad�1, which

corresponds to an average mosaic spread of 2700 of arc. Most

extinction-affected reflections are the allowed (h00) at low

Bragg angle, i.e. in particular (400) and (800). The maximum

extinction was shown by reflection (400) with a reduction of

intensity of 14.6% [VALRAY YEXT = 0.854]. Only three other

reflections showed a reduction

greater than 5%, whereea 12 more

had YEXT between 0.95 and 0.98.

The grounding of the crystal

(Pavese et al., 1995) and the

previous data collection at T =

100 K by Armbruster et al. (1992)

might have increased the mosaicity

and hence reduced the extinction.

Once the extinction coefficient is

taken into account, the agreement

between measured structure-factor

amplitudes and DFT-predicted

dynamic ones, FDSF (Erba et al.,

2013; x2.5) is excellent (Fig. 3), with

a maximum overall deviation from
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Figure 2
(a) Azimuthal  -scan of the (022) reflection of pyrope at T = 17.6 (3) K. Error bars correspond to two
estimated standard deviations. Spikes are due to the Renninger effect. (b) Same as (a), after removal of
contaminant multiple reflections. The broken lines serve as a guide to the eye.



the ideal y = x straight line of roughly 1.2 (1)%. Small

deviations from linearity affecting reflections of intermediate

intensity (’ 20 	 103) are attributable to the slight difference

in the estimated position of O atoms in the two models (see

x2.5) and to the inability of the quantum calculation to

reproduce effects due to deviations from the ideal perfect

lattice model, such as disorder and anharmonicity (see x3.3.2).

However, the strong linear correlation supports the high

quality of the present dataset.

3.1.2. Multipole model. The data-to-

parameter ratio in the final ANH model (see

x2.4) is 8.4, which is relatively low when

compared with modern crystallographic

studies with synchrotron X-rays (Chris-

tensen et al., 2010; Kastbjerg et al., 2013;

Jørgensen et al., 2014; Mondal et al., 2016).

We therefore applied the free-R test

(Brünger, 1992) to check the reliability of

the least-squares model against overfitting.

More in detail, we performed from scratch a

least-squares refinement on 710 unique

reflections (‘training set’), after having

randomly excluded 78 data (10%) from the

original set of 788 observations to form a

‘cross-validation set’. We then computed the

Rfree agreement factor on the cross-valida-

tion set alone, using the same ED and

thermal motion parameters developed on

the training set, and corresponding to those

of the ANH model. The whole procedure

was repeated five times, each time changing

the random set of reflections in the cross-

validation group. The free R(F) factor varies between 0.0091

and 0.0139, providing an average estimate of 0.0118 (8), which

is just 0.003 higher than the average R(F) factor for the

training set [0.0084 (1)]. This rules out significant overfitting

issues with a reasonable confidence. Furthermore, the relative

average Fo/Fc agreement as a function of sin �/� for the ANH

model is very good (Fig. 4), with largest deviations not

exceeding 1.5%.

3.2. Geometry and Debye–Waller factors

Pyrope, Mg3Al2(SiO4)3, formula weight 403.12 g mol�1,

crystallizes in the cubic system [a = 11.4405 (3) Å at 30 K and

a = 11.4622 (7) Å at 292 K, calculated density 3.576 g cm�3 at

30 K], space group Ia�33d (No. 230), with Z = 8 and F(000) =

1600 e. Our experimental estimate of the unit cell edge at 30 K

is virtually identical to that measured by Bosenick & Geiger

(1997) in a powder X-ray diffraction study of synthetic pyrope

at T = 20 K. Our value is also the same, within experimental
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Figure 4
Ratio between the sums of observed and calculated structure-factor
amplitudes as a function of sin �/� (Å�1). The graph was computed with
the DRKplot (Stash, 2007).

Table 1
Relevant interionic distances (Å) and angles (�) in pyrope at T = 30 K.

Estimated standard deviations in parentheses. The numbers in square brackets indicate the
frequency of occurrence.

SiO4 tetrahedron Si—O 1.6354 (4) [4]
O—O 2.4998 (5) [2] 2.7519 (5) [4]
O—Si—O 99.69 (2) [2] 114.57 (2) [4]

Al O6 octahedron Al—O 1.8848 (3) [6]
O—O 2.6118 (5) [6] 2.7182 (5) [6]
O—Al—O 87.71 (2) [6] 92.29 (2) [6] 180.0 (1) [3]

MgO8 dodecahedron Mg—O 2.1960 (4) [4] 2.3326 (4) [4]
O—O 2.4998 (5) [2] 2.6118 (5) [4] 2.6980 (5) [4]

2.7690 (5) [2] 3.3034 (5) [4] 3.6869 (5) [2]
O—Mg—O 69.70 (1) [2] 70.37 (1) [4] 72.82 (1) [2]

73.07 (1) [4] 93.63 (1) [4] 109.50 (1) [2]
114.17 (1) [2] 124.32 (1) [4] 160.50 (1) [2]
164.07 (1) [2]

Cation–cation separations† Al—Mg 3.1977 (1) [6]
Mg—Si 2.8601 (1) [2] 3.5029 (1) [4]
Al—Si 3.1977 (1) [6]

Cation–oxygen–cation angles‡ Si—O—Al 130.44 (2)
Mg—O—Mg 101.30 (1)
Mg—O—Si 95.46 (2) 123.00 (2)
Mg—O—Al 98.05 (2) 102.92 (2)

† All distances < 3.6 Å are reported. ‡ Only cations directly bonded to a given oxygen atom are considered.

Figure 3
Comparison of symmetry-independent squared amplitudes of dynamic
structure factors, as predicted through the normal modes analysis of the
DFT B3LYP-optimized geometry of pyrope, F 2

DSF, with the corre-
sponding set of 788 measured ones, F2

o . The red line is the linear least-
squares fitting to which statistical parameters in the box refer, while the
black line indicates the quadrant bisector, y = x, which would occur in the
case of an ideally perfect agreement. Vertical bars correspond to the �1
experimental estimated standard deviation.



error, as that determined by neutron diffraction at the same

temperature of 30 K, on a natural sample with 92% Mg, 5%

Fe, and 3% Ca at the Mg site (Artioli et al., 1997). There are

only four atoms in the asymmetric unit, namely one atom per

atomic species of the formula unit. The Al, Mg and Si atoms

lie, respectively, in the 16a, 24c, and 24d positions of Ia�33d, of

point symmetries �33, 2.22 and �44, respectively. In our treatment,

the fractional coordinates of these atoms were assigned as 0, 0,

0 (Al); 0, 1/4, 1/8 (Mg); and 0, 1/4, 3/8 (Si).

The oxygen atom, in position 96h, has the unrestricted

coordinates x, y, z to be determined and refined. Table 1 shows

the relevant coordination geometries of Si, Al and Mg as

determined by the present XRD study at 30 K, whereas

Table 2 compares coordinates and harmonic thermal para-

meters from the present study with those reported in past

X-ray and neutron studies.

Our best estimate for the oxygen position is identical to that

of Pavese et al. (1995) within three estimated standard

deviations of the present study. Both estimates are comparable

with the neutron diffraction one from Artioli et al. (1997)

(Table 2), with a maximum deviation of

4–5 neutron e.s.d.’s for the x coordinate

of the anion. As expected, such discre-

pancies are far more significant if

weighted by the lower X-ray e.s.d.’s.

However, the maximum X-ray/neutron

displacement of oxygen is as low as

0.006 Å, even lower than that produced

by the lattice relaxation at the DFT

level (see Table 2 and x2.5 above). The

origin of such differences might be thus

traced back to the different nature of

the two samples (synthetic versus

natural), and in particular to the signif-

icant substitution of larger cations at the

Mg site in the neutron case.

The Debye–Waller parameters esti-

mated in this work, with lattice anhar-

monicity included (see x3.3.2), are

qualitatively comparable to the neutron

diffraction results, though somewhat

smaller (Table 2). Interestingly, the

largest differences concern Si and O

atoms, whose cumulant expansion of the

atomic probability density functions

(p.d.f.’s) up to the fourth order in the

neutron case, was here truncated at the

third order (x3.3.2). This is a general

result: adding higher-order cumulants

implies that higher least-squares esti-

mates of the Debye–Waller parameters

are obtained as well (compare the first

two columns in Table 2). Similar, and

even larger, increases of thermal para-

meters and their e.s.d.’s in the fourth-

cumulant refinement had been reported

by Thornley and coworkers in a neutron

diffraction of the thermal motion at 77 K in cubic nickel iodine

boracite, where correlation coefficients ’ 0.9 were observed

between Uii and Diiii. Accordingly, the Uij by Pavese et al.

(1995) show a better agreement with our fully harmonic DFT

predictions for atomic ADPs, but at the same time their esti-

mates are significantly lower than the neutron ones at the

same temperature (Table 2). Actually, these authors included

in their final least-squares model third-order cumulants only

on Mg, which turned out to be very small. Thus, their

description of the atomic p.d.f.’s is necessarily closer to the

fully harmonic one.

3.3. The charge density model

3.3.1. Residual density features. Fig. 5 shows the experi-

mental residual Fourier features, ��EXP, in the (100) plane

around each metal ion in pyrope for (a) the independent atom

model (IAM), as a suitable spherical-atom reference; (b) the

HAR multipole model, without higher-order cumulants (x2.4);

(c) the fully anharmonic ANH one (x2.4). As expected, the
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Table 2
Comparison of atomic fractional coordinates and Debye–Waller parameters (Å2, multiplied by 102),
as estimated from this work and other studies.

For each atom, the reference coordinates are given, together with the corresponding site point symmetry
and Wyckoff labels.

XRD ANH,
30 K†

XRD HAR,
30 K‡

LCGTF, B3LYP
[PBE]§

XRD,
30 K}

Neutrons,
30 (1) K††

XRD,
96.7 K‡‡

Si [0, 1/4, 3/8], .4. , 24d
U11 0.180 (2) 0.173 (2) 0.14 [0.15] 0.172 (1) 0.28 (2) 0.270 (1)
U22 0.180 (2) 0.173 (2) 0.14 [0.15] 0.172 (1) 0.28 (2) 0.270 (1)
U33 0.153 (2) 0.147 (2) 0.12 [0.12] 0.150 (2) 0.30 (3) 0.231 (3)

Al [0, 0, 0], .�33. , 16a
Uii 0.217 (4) 0.194 (2) 0.16 [0.16] 0.188 (1) 0.28 (2) 0.292 (1)
Uij 0.001 (3) 0.0000 (9) 0.0 [0.0] –0.002 (1) 0.002 (3) 0.003 (2)

Mg [0, 1/4, 1/8], 2.22, 24c
U11 0.485 (7) 0.434 (3) 0.38 [0.34] 0.418 (2) 0.46 (2) 0.36 (5)§§
U22 0.485 (7) 0.434 (3) 0.38 [0.34] 0.418 (2) 0.46 (2)
U33 0.298 (8) 0.269 (3) 0.22 [0.22] 0.261 (3) 0.30 (3)
U12 0.096 (5) 0.077 (2) 0.07 [0.05] 0.075 (3) 0.04 (2)

O [x; y; z], 1, 96h
x 0.03282 (3) 0.03291 (1) 0.03204 [0.03181] 0.032907 (8) 0.03331 (9) �0.03290 (4)
y 0.05077 (3) 0.05069 (1) 0.05123 [0.05285] 0.050688 (8) 0.05076 (9) 0.05061 (4)
z 0.65326 (3) 0.65334 (1) 0.65305 [0.65293] 0.653311 (8) 0.65310 (10) 0.65333 (4)
U11 0.321 (4) 0.316 (4) 0.26 [0.26] 0.290 (3) 0.39 (2) 0.366 (3)
U22 0.375 (4) 0.370 (4) 0.31 [0.30] 0.354 (2) 0.39 (2) 0.432 (3)
U33 0.261 (4) 0.254 (4) 0.20 [0.21] 0.238 (2) 0.35 (2) 0.352 (3)
U12 0.040 (2) 0.042 (2) 0.03 [0.03] 0.036 (2) 0.02 (1) �0.048 (2)
U13

�0.057 (2) �0.057 (2) �0.05 [–0.05] �0.064 (2) �0.01 (1) 0.070 (2)
U23 0.009 (2) 0.007 (2) 0.0 [0.0] 0.005 (2) 0.00 (1) 0.019 (2)

† This work. Estimated from the ANH multipole refinement against Fos. ‡ This work. Estimated from the HAR
multipole refinement against Fos (as ANH, with no cumulants). § This work. Linear combination of Gaussian-type
function (LCGTF) results, with B3LYP vibration modes at the � point. Analogue results for non-hybrid PBE vibration
modes at eight points in the first Brillouin zone are reported in square brackets. } Pavese et al. (1995), XRD estimates
from the same single-crystal employed here. Fourth-order Gram–Charlier coefficients were explicitly refined. †† Ar-
Artioli et al. (1997), neutron diffraction estimates from a natural pyrope single crystal. Gram–Charlier coefficients were
explicitly refined up to the fourth order. ‡‡ Nakatsuka et al. (2011), XRD estimates from another synthetic pyrope
single crystal. §§ In their final model, including static disorder on the Mg site, Nakatsuka et al. (2011) refined just an
isotropic displacement parameter, Uiso. Also an Ueq = 0.539 (1) 	 10�2 Å2 estimate was given by these authors in their
Table 2 from a harmonic refinement.



IAM features are dominated by ED holes due to the higher

oxidation states of cations with respect to their neutral

counterparts, but some structured residual features in the

valence shell, due to anisotropic interactions in their first

coordination shell, are already evident. The inclusion of

multipole and Gram–Charlier parameters in the least-squares

procedure significantly reduces the intensity of residual

features, including those along chemical bonds. Actually, no

residues larger than +0.12/�0.16 e Å�3 are appreciable in the

ANH model. The most relevant structured feature consists of

a pair of ED maxima close to Mg (site 24c), +0.12 e Å�3 in

magnitude and � 0.58 Å apart from the ion, along the [001]

direction (Fig. 5). However, they are both associated with very

close negative peaks, �0.12 e Å�3 deep, along the same

direction. It is hard to attribute some kind of structural effect

to such positive features of ��, as they are not neatly distin-

guishable from Fourier fluctuations in the close neighbour-

hood of the Mg2+ ion. These data seriously pose into question

the occurrence of static disorder related to Mg2+ displacement.

We believe that a possible explanation for such small resi-

dual Fourier features might be related to the treatment of the

thermal motion. A resolution of sin �/� > 1.8 Å–1, much higher

than that available to in-home facilities, would add a full

description of the anharmonic contributions to the Mg p.d.f.

(see x3.3.2). From a purely statistical viewpoint, it is worth

noting that explicit inclusion of anharmonicity significantly

improves the quality of the fitting. Actually, the Hamilton F-

test (Hamilton, 1965) was satisfied to a level of significance �
of 0.005 when the HAR model was compared with the ANH

one under the null hypothesis of a purely harmonic motion.

Both recently and in the past, analogue statistical tools were

employed to assess the relevance of anharmonic effects in

crystals (Christensen et al., 2013;

Sørensen et al., 2003; Thornley et

al., 1976).

3.3.2. Anharmonicity or
dynamic disorder: six of one, half
a dozen of the other. What is at

stake here is the interpretation of

the structured residual charge

density features described above

(x3.3.1). The latter have also been

detected in previous studies and

attributed to some kind of static

disorder (Nakatsuka et al., 2011,

2013). Gram–Charlier expansion of

atomic probability density func-

tions might provide an alternative

explanation for structured Fourier

peaks, as it is well known that static

disorder and anharmonicity

produce very similar effects in ��
maps (Scheins et al., 2010), even

though it has been recently

reported (Herbst-Irmer et al., 2013)

that a ‘shashlik-like’ alternation of

positive and negative ED residuals

might be specifically associated

with anharmonic behaviour. Infor-

mation on anharmonicity is mainly

brought by high-order reflections,

as shown by Kuhs (1992) by

differentiating the expression of

the generalized Debye–Waller

factor to find the Q limit where the

contributions of higher anharmonic

terms are maxima. However, the

Kuhs’ formula should be consid-

ered, as said by Kuhs himself

(Kuhs, 1992, p. 93) as ‘a rule of

thumb’ to decide to what extent the

data collection should be carried

out ‘for refining successfully terms
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Figure 5
Residual Fourier maps, ��EXP, against measured structure-factor amplitudes compared with structure
factors predicted from (i) the independent atom model, with spherical and neutral atoms (left column),
(ii) the fully harmonic HAR model (central column) and (iii) the final multipole model, with anharmonic
contributions explicitly considered (right column). All the maps are 3 	 3 Å wide within the (100) plane,
with Mg (first row), Si (second row) or Al (third row) at the centre of each plot. Contour levels are drawn
at steps of either 0.2 e Å�3 (IAM maps) or 0.05 e Å�3 (HAR and ANH maps), with full (dotted) lines
representing positive (negative) values. The dashed curve corresponds to the �� = 0 level. O atoms on
the left side of the Si maps are out of plane by� 1.1 Å, those on the right side by� 0.6 Å. In Al maps, the
O atoms are out of plane by � 1.8 Å.



of order n’ of the Gram–Charlier expansion. Indeed, anhar-

monic behaviour affects low-order reflections as well, though

to a minor extent, and, as a consequence, also the local

features of the deformation charge density (Kuhs, 1988).

Nevertheless, insufficient data resolution makes it much

difficult – and often impossible – to extract such information

from the observed structure-factor amplitudes. However, in

this respect, the data quality is also an important discrimi-

nator.

As for the present case, the available resolution of our

dataset is too low to fulfil Kuhs’ condition. This reflects in a

minority of high (> 0.707) least-squares correlation coeffi-

cients among positional and thermal parameters of the anion

(see below). Moreover, the oscillating Fourier features

detected close to the Mg 24c site (x3.3.1) are also likely related

to resolution issues. However, we are confident that the

quality of our dataset is high enough to detect, if present, any

significant effects affecting low-order diffraction intensities.

Multipole modelling was complemented with independent

infomation coming from periodic quantm calculations (see

below and x2.5). We also compared alternative multipole

models, where the disorder was explicitly taken into account

(see below and x2.4), to those based on a fully ordered model

of the crystal. This strategy is motivated by the fact that any

deviation from the expected site stoichiometry has an impact

on the real-space description of atomic scattering centres, and

specifically on monopole populations, thermal motion para-

meters and site occupation factors. Thus, if the hypothesis of

static disorder at the Mg site was correct, the quality of the

fitting should have been improved against any comparable

model of the ordered crystal.

There is also another consideration to be pointed out.

Disorder – both static and dynamic – invariably implies that a

double- (or multiple?)-well potential is present at the Mg 24c

site (Fig. 6).

Therefore, disorder is necessarily entangled with some kind

of anisotropy in the crystal field, which might be produced, for

example, by a symmetry breaking of the perfect Mg dodeca-

hedral cage. Whereas this symmetry breaking should be small

in the case of dynamic disorder, the existence of two or more

well defined minima, separated by intersite barriers high

enough to hamper Mg exchange among populated off-lattice

sites even at T >> 30 K (Fig. 6; Nakatsuka et al., 2011), would

imply a much larger distortion. We thus expect that static

disorder is accompanied by some other kind of defect-induced

lattice distortions (defect clustering? oxygen non-stoichio-

metry?), and indeed Nakatsuka et al. conclude that other ions

rather than Mg could be statically disordered in pyrope.

However, we do not see any evidence for that, neither on the

Mg atom nor on any of the other atoms in the asymmetric unit.

For example, any significant displacement of oxygen from its

crystallographic general position (96h) should have produced

a constellation of structured residual peaks in the Fo–Fc maps,

in conjunction with a negative residual at the nucleus, but this

is not the case (Fig. 5). The only relevant structured Fourier

feature we detected is an alternation of positive and negative

peaks across the Mg site (Fig. 5). Such peaks, which are

invariably smaller than 0.10–0.15 e Å�3, lie along one of the

[001], [010] and [100] directions, depending on the specific site

considered. Positive features lie� 0.58 Å apart from the ion in

a 48f site and could perhaps be associated with some kind of

static positional disorder. However, any attempt to explicitly

include 48f-disordered Mg in the multipole model, refining its

fractional coordinates and monopole electronic parameters

(model DIS48f, see x2.4 and Table S11), invariably implies that

the ion is brought back to its original, undisplaced 24c position

within a few (< 2) thousandths of Å. We would have expected

that the information on Mg static site disorder was present in

accurate X-ray structure-factor amplitudes measured up to a

maximum resolution of sin �/� = 1.14 Å�1 at T = 30 K. It could

be objected that the displacement of Mg from its crystal-

lographic 24c position is very small. Nakatsuka et al. (2011),

for example, found a maximum Mg displacement of 0.07 Å to

a general position 96h, even though they also note that many

higher-rank anharmonic coefficients deviate significantly from

zero at 96.7 K. These authors indeed conclude that ‘it is certain

that the probability density functions . . . of all atoms are

significantly deformed from ellipsoidal distributions even at a

low temperature’, but attribute such deformation to static

disorder rather than to anharmonic contribution to the

thermal motion. As a possible check of the reliability and

robustness of their displacive disorder model on Mg, we

applied the latter to our data through the DIS96h model (see

x2.4 and Table S10). We accordingly estimated a slightly lower

value (0.06 Å) for the Mg displacement. However, the refined

position lies within the envelope of the harmonic thermal

ellipsoid of Mg at the 50% probability level. Moreover, the

agreement of the 96h-disordered model (isotropic Mg) with

our complete set of 785 observed structure-factor amplitu-

des[wR(F 2) = 0.0283] is considerably worse than the

comparable monopole-only refinement (anisotropic Mg, Table

S12) corresponding to the 24c-ordered structure [wR(F 2) =
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Figure 6
Example to illustrate the difference among a purely harmonic (parabolic
green curve), an anharmonic (red curve) and a double-well (blue curve)
potential. Energy is given in atomic units as a function of the
displacement (in Å) of the Mg atom from its crystallographic position
along the [001] direction. Arbitrary functional forms were assumed,
namely E = E0�r2 + C (harmonic), a Morse form E =
E0[1 � exp(���r)]2 + C (anharmonic) and a quartic function E =
E0(C�r4

� �r2) (double-well).



0.0260]. Conversely, in the treatment of Nakatsuka et al.

(2011), based on 340 data (versus our set of 785 observed

reflections), the two corresponding agreements were the same.

For sure, there is a general agreement (Pavese et al., 1995,

1998; Nakatsuka et al., 2011, 2013) on the fact that the charge

density of Mg is diffused across a somewhat larger volume

than Al and Si. On the basis of the aforementioned arguments,

one might conclude that Mg disorder, if any, could be dynamic

in nature. Such a model would indeed account for the highly

anisotropic density features around the position 24c and might

explain the observed structured Fourier residuals. It is possible

that soft phonon modes, together with the significant amount

of void space available to Mg, allow instantaneous symmetry

breaking of the perfect 24c symmetry. Transient off-site

potential energy minima could thus be created, which have a

significant probability of being populated. This would result in

large vibrations of Mg atoms around their crystallographic

positions. As a possible check of this hypothesis, we performed

a full vibrational analysis of the pob-TZVP B3LYP normal

modes in the Ia�33d phase (x2.5 and Table S9). Mg is

actually involved in various three-degenerate F low-

frequency modes (124–140 cm�1) which imply large

(> 0.85 Å) relative stretching displacements with

respect to its surrounding O atoms. Large-amplitude

bending modes of Mg—O—Mg, Al—O—Mg and

Si—O—Mg atom triplets are also present up to

290 cm�1. Accordingly, both hybrid B3LYP and

non-hybrid PBE functionals predict the harmonic

displacement amplitudes of Mg to be even larger

than those of O [Ueq(Mg)’ 1.3 Ueq(O)] at T = 30 K.

Interestingly, this is in reasonable agreement with

neutron diffraction estimates [Ueq(Mg) ’ 1.1

Ueq(O)] (but with anharmonicity included) at the

same T.

This provides evidence toward a dynamic, rather

than static, coupling mechanism among structure

and lattice phonons. However, dynamic disorder

implies by itself anharmonic atomic displacements,

as the multi-well potential energy surface is, by

definition, no longer parabolic in nature (Fig. 6).

Fig. 7 shows the joint probability density functions

for the first coordination shells of the three cations

in pyrope, while numerical estimates of refined high-

order Gram–Charlier terms are given in Table 3,

where outcomes from previous studies are also

compared. In general, the effect of the anharmonic

terms on the atomic p.d.f.’s is rather small (Fig. 7).

Some local deviations from perfect ellipsoid shapes

are nevertheless appreciable for oxygen and alumi-

nium, whereas the motion of magnesium appears to

be dominated by its very large harmonic ADPs.

Inspection of Table S5 shows that 13 out of the 21

correlation coefficients > 0.80 involve parameters of

the O atom, with six of them regarding the expected

high correlation between coordinates and either

dipole coefficients or third-order cumulants. Just five

coefficients are higher than 0.9, the largest one

(0.94) concerning the correlation between the outer mono-

poles of Si and Mg. It is well known that high correlation

between least-squares parameters increases the corresponding

e.s.d.’s. In spite of their large estimated errors, however,
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Table 3
Comparison of adimensional third- and fourth-order Gram–Charlier coefficients
(multiplied by 104), as estimated from this work and other studies.

For each atom, the reference coordinates are given, together with the corresponding site
point symmetry and Wyckoff labels. Symmetry constraints are shown in the first column.

XRD ANH,
30 K†

Neutrons,
30 (1) K‡§

XRD,
96.7 K}

XRD,
RT††

Si [0, 1/4, 3/8], .4. , 24d
C112 = (�C223) 0.013 (2) < 2� // 0.001 (2)
C123 �0.019 (4) // // �0.005 (5)

Al [0, 0, 0], .�33. , 16a
D1111 (= D2222 = D3333) 0.0007 (1) < 2� � �0.00006 (1) 0.00002 (6)
D1112 (= D1333 = D2223) 0.0003 (2) < 2� // �0.0001 (1)
D1122 (= D1133 = D2233) 0.0007 (2) < 2� � �0.00006 (2) 0.0002 (2)
D1113 (= D1222 = D2333) 0.0001 (2) // // 0.0002 (1)
D1123 (= D1223 = D1233) 0.0000 (3) < 2� // 0.0002 (2)

Mg [0, 1/4, 1/8], 2.22, 24c
C113 (= �C223) �0.014 (3) �0.2 (2) Not included �0.0002 (1)
D1111 (= D2222) 0.0013 (2) // �0.0003 (2)
D1112 (= D1222) 0.0015 (4) < 2� 0.0000 (4)
D1122 0.0040 (6) < 2� �0.0003 (2)
D1133 (= D2233) 0.0014 (4) �0.3 (2) 0.0002 (5)
D1233 0.0009 (7) < 2� �0.0001 (1)
D3333 0.0008 (3) // �0.0002 (1)

O [x; y; z], 1, 96h
C111 �0.013 (4) 0.6(4) // 0.001 (2)
C112 0.013 (5) < 2� // 0.004 (3)
C122 �0.002 (5) < 2� // �0.003 (3)
C113 �0.016 (5) < 2� // �0.007 (3)
C123 0.001 (6) < 2� 0.004 (< 1) –0.002 (5)
C133 �0.014 (5) < 2� // 0.002 (3)
C222 0.004 (4) 1.3 (4) // 0.000 (2)
C223 �0.012 (5) < 2� 0.000 (< 1) –0.005(3)
C233 0.018 (5) < 2� // 0.001 (3)
C333 �0.006 (4) �0.4 (4) // 0.001 (3)

† This work: multipole model against experimental Fos, with anharmonicity included. ‡ Artioli et al.
(1997), neutron diffraction estimates from a natural pyrope single crystal. Gram–Charlier coefficients
were explicitly refined up to the fourth order. § ‘< 2�’ labels Gram–Charlier coefficients that were
deemed too low to be reported. Entries marked by ‘//’ were not reported. } Nakatsuka et al. (2011),
XRD estimates on a synthetic pyrope sample. No anharmonicity was included on Mg in their final
model. †† Sawada (1993), XRD estimates on a synthetic pyrope sample.

Figure 7
Plot of joint probability density functions for Mg (a), Si (b) and Al (c) in
pyrope at T = 30.0 (3) K, as computed through the program JANA2006
(Petricek et al., 2014) from the ANH multipole model, which includes
anharmonic Gram–Charlier terms. For each picture, the corresponding
crystallographic reference system is also given.



several final values of the third- and fourth-order GC coeffi-

cients are statistically very significant, being higher than three

e.s.d.’s. This is observed for all the three Cijk terms of the Si and

Mg atoms, for two Diiii coefficients of Al, for four out of six

Dijkl parameters of Mg, and for three of the 10 Cijks of the O

atom (Table 3). Therefore, the overall picture is that of

substantial anharmonic motion

affecting all the components of the

crystal, but especially the Mg ion.

Previous studies give rather contra-

dictory results or conclusions when they

come to the anharmonic contribution to

thermal motion (Table 3). The two

studies on natural samples (one using

neutron diffraction at T = 30 K; Artioli

et al., 1997; the other one using X-ray

diffraction at room temperature;

Sawada, 1993) agree in stating that

anharmonicity must be included into

the least-squares refinement models, but

the numerical values reported for the

same GC coefficients differ by orders of

magnitude, those at 30 K being much

greater than those at 296 K. The

anomalous behaviour of several high-

order coefficients of the O atom at

T = 30 K has been underlined by the

authors of the multi-temperature

neutron study (Artioli et al., 1997), who

noted that ‘they are invariably negligible

within errors in the room-temperature

range, whereas they seem to be non-zero

at low temperature’. On the other hand,

differences up to two orders of magni-

tude are also seen between the neutron

results and those from the previous

X-ray work (Pavese et al., 1995) at the

same 30 K temperature, the latter

investigation having confined the

modeling of anharmonic dynamical

behavior only to the Mg atom (in a

synthetic sample). For example, the

value of the C113 coefficient of this

cation was found equal to �1.4 (3) 	

10�6 from the refinement of the X-ray

data, but equal to 2 (2) 	 10�5 in the

neutron case. The corresponding

anharmonic term at 296 K was given by

Sawada (1993) as �0.6 (4) 	 10�7. As

stated by Larsen, Stewart and cowor-

kers (Sørensen et al., 2003) a few years

ago in a charge-density study of tetra-

fluoroterephthalonitrile, where GC

coefficients have been derived at the

same temperature of 122.4 K from both

X-ray and neutron data, ‘a proper

treatment of anharmonic motion

requires data of high resolution and accuracy’. In view of this

statement, it is possible that the neutron results for pyrope

suffer from insufficient resolution of the data [(sin �/�)max =

0.79 Å�1]. In conclusion, from the current dataset we cannot

disentangle possible residual dynamic disorder (associated

with a multiple-well form of the potential) from a pure
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Table 4
Properties of the charge density at the (3,�1) BCPs of pyrope.

First row: values of �EXP ; second row: values of �MSSF, third row: values of �THEO. Electron density �BCP in
e Å�3; its Hessian eigenvalues (�1, �2 and �3) and the corresponding Laplacian (r2�BCP) in e Å�5; bond
ellipticity " = �1/�2 � 1. Distances between atoms and between atoms and BCPs in Å. Energy densities G,
V, and H in kJ mol�1 per atomic unit volume. Bond degree BDBCP parameter in hartree e�1. Estimated
standard deviations in parentheses refer to the last quoted digit.

X—Y interaction Si—O Al—O Mg—O1 Mg—O2 O1—O3 O2—O3
Multiplicity 96 96 96 96 48 48
X—Y distance 1.6354 (3) 1.8848 (3) 2.1960 (4) 2.3326 (4) 2.6980 (5) 2.7690 (5)

X–BCP 0.692 0.798 0.969 1.039 1.349 1.384
0.693 0.805 0.951 1.002 1.349 1.388
0.677 0.791 0.932 0.986 1.349 1.384

BCP–Y 0.943 1.086 1.228 1.294 1.349 1.384
0.944 1.079 1.247 1.330 1.349 1.388
0.959 1.094 1.265 1.346 1.349 1.384

�bcp 0.89 (1) 0.49 (1) 0.27 (1) 0.21 (1) 0.161 (9) 0.147 (7)
0.809 (3) 0.400 (3) 0.186 (3) 0.141 (3) 0.142 (3) 0.131 (2)
0.956 0.446 0.200 0.132 0.137 0.114

r
2�BCP 17.0 (1) 8.26 (8) 3.08 (6) 1.77 (5) 1.69 (2) 1.54 (2)

19.30 (3) 9.09 (2) 3.944 (9) 2.429 (8) 1.557 (4) 1.439 (4)
19.287 9.332 4.244 2.701 1.799 1.568

�1 �3.96 (7) �1.61 (4) �0.72 (2) �0.46 (2) �0.291 (4) �0.158 (5)
�4.02 (1) �1.675 (8) �0.646 (4) �0.371 (4) �0.271 (1) �0.150 (2)
�6.031 �2.618 �0.943 �0.541 �0.412 �0.293

�2 3.90 (7) �1.61 (4) �0.61(2) �0.40 (1) �0.08 (2) �0.10 (1)
�3.96 (1) �1.666 (8) �0.543 (4) �0.325 (3) �0.225 (3) �0.150 (1)
�5.971 �2.577 �0.901 �0.489 �0.296 �0.250

�3 24.9 (2) 11.5 (1) 4.41 (6) 2.63 (6) 2.06 (1) 1.80 (1)
27.28 (3) 12.43 (2) 5.13 (1) 3.13 (1) 2.053 (4) 1.739 (3)
31.290 14.527 6.088 3.730 2.507 2.111

" 0.02 (2) 0.00 (3) 0.19 (5) 0.17 (6) 2.5 (8) 0. 6 (2)
0.014 (5) 0.005 (7) 0.19 (1) 0.14 (2) 0.21 (2) 0.00 (2)
0.010 0.016 0.047 0.107 0.391 0.170

G(r)BCP 566.28 245.25 91.21 55.35 45.59 40.77
570.17 232.98 90.57 56.05 40.36 36.70
640.43 250.89 98.46 59.75 44.05 36.86

V(r)BCP �669.57 �265.54 �98.53 �62.49 �45.16 �39.60
�614.69 �218.39 �73.73 �45.95 �38.32 �34.21
�755.57 �247.62 �81.33 �45.93 �39.11 �31.00

H(r)BCP �103.28 �20.29 �7.32 �7.14 0.44 1.17
�44.52 14.59 16.854 10.10 2.04 2.49
�115.14 3.27 17.13 13.82 4.94 5.85

BDBCP �0.298 �0.106 �0.070 �0.087 0.007 0.020
�0.141 0.094 0.233 0.184 0.037 0.049
�0.310 0.019 0.220 0.269 0.093 0.132

[|V(r)|/G(r)]BCP 1.18 1.08 1.08 1.13 0.99 0.97
1.08 0.94 0.81 0.82 0.95 0.93
1.18 0.99 0.83 0.77 0.89 0.84



anharmonic motion (where just a non-parabolic minimum is

present). What we can say is that we do not see any incon-

trovertible evidence of static disorder at the Mg position from

the current X-ray dataset.

3.4. Topology of q(r)

3.4.1. Point topological descriptors. Topological descrip-

tors of the charge density and its related scalar fields, as

provided by Bader’s quantum theory of atoms in molecules

(QTAIM; Bader, 1990), grant access to the quantitative

analysis of bonding features in solids (Gatti et al., 2016; Saleh

et al., 2014; Lo Presti et al., 2014; Saleh et al., 2013; Martins et

al., 2016; Macetti et al., 2016; Sovago et al., 2016; Khan et al.,

2016; Krawczuk & Macchi, 2014; Hathwar et al., 2011). We

have previously documented (Lo Presti et al., 2005; Lo Presti

& Destro, 2008), in the case of the transition metal sulfide

FeCr2S4, the usefulness of an exhaustive experimental and

theoretical study of the total electron density and its Lapla-

cian. The same approach has been adopted here and applied

on experimental, �EXP, theoretical multipole-projected, �MSSF,

and primary theoretical, �THEO, electron densities.

In all the three total electron density distributions a total of

six unique (3,�1) CPs (critical points), also called bond critical

points (BCPs), was found (Table 4), to be compared with the

16 symmetry-independent interatomic separations of Table 1.

At each BCP the kinetic [G(r)BCP] and potential [V(r)BCP]

contributions to the local energy density H(r)BCP, according to

HðrÞBCP ¼ GðrÞBCP þ VðrÞBCP ð1Þ

were evaluated as functions of �(r)BCP and r2�(r)BCP,

following Abramov (1997) and applying the local form of the

virial theorem (Bader, 1990; Espinosa et al., 1998). Further-

more, the bond degree (BD) parameter (Espinosa et al., 2002;

Mariam & Musin, 2008), given by the ratio [H(r)/�(r)]BCP, was

calculated for each of the BCPs. All the mentioned properties

at these critical points are listed in Table 4, while Fig. 8 shows

the �r2�(r) distribution, as mapped in representative planes

around the three cations. Ring (or 3,+1) critical points, RCPs,

and cage (or 3,+3) critical points, CCPs, were also located in

the three charge-density distributions. They are reported in

Tables S7 and S8 of the supporting information, respectively.

Inspection of the latter two tables and Table 4 shows that the

two multipolar charge densities �EXP and �MSSF have the same

overall topology, while that of �THEO displays two significant

differences. Indeed, with the same number of RCPs and CCPs

(six and two, respectively), the two multipolar charge densities

differ only slightly in the location of such CPs, with a

maximum separation of 0.37 Å between two corresponding

RCPs and of 0.58 Å between the cage CPs observed at ca 2 Å

from atom Si, the other one being exactly coincident in loca-

tion.

Taking into account their multiplicities (Table 4), these

RCPs and CCPs constitute, together with the BCPs of Table 4,

a set of CPs that fully satisfies the Morse invariant relationship

(Morse & Cairns, 1969; Jones & March, 1985); thus indicating

a self-consistent topology. The primary theoretical density

�THEO shows instead one more CCP, not found in the

experimentally derived models, lying in a plane at z = 3/8, and

at distances of 1.764 Å from Si and 1.886 Å from O. Further-

more, out of the six RCPs found in this �, one is observed

where no corresponding CP appears in the multipolar charge

density distributions, at 1.808 Å from Mg, while the RCP

observed at z = 3/8 in both multipolar �s is here missing, or,

better, corresponds to the third CCP of �THEO. The distance

between these two points (i.e. the latter, third CCP of the

primary density and the RCP of �EXP) amounts to 0.279 Å.

Inspection of the curvatures �s of the two CPs suggests that �1

of �EXP, close to zero and negative, has changed into a small

but positive curvature in �THEO, and the change of sign

converts the RCP into a CCP. In spite of these differences,

�THEO is also topologically self-consistent, thanks to the

specific multiplicity of the two different critical points.

The features of the r2�(r) distribution shown in Fig. 8

mirror the point topological descriptors reported in Table 4,

but provide at the same time

deeper insights into the analogies

and differences of the coordination

geometries of various cations. In

general, the latter have valence

shells dominated by charge deple-

tion regions (CDRs). This is

expected in a crystal dominated by

ionic bonds (Lo Presti & Destro,

2008), where charge transfer is

conspicuous and ions bear charges

close to their formal oxidation state

(see also x3.4.2 below). The cations

indeed tend to lose their outermost

electrons, so the BCP is located in

the CDR of the anion, where �(r) is

rather flat and its Laplacian

possibly close to zero. From Fig. 8 it

is evident that the CDR around Si

(Fig. 8b) is significantly more

research papers

732 Riccardo Destro et al. � Anharmonic motions versus dynamic disorder Acta Cryst. (2017). B73, 722–736

Figure 8
Experimentally derived contour maps of �r2�(r) in representative planes (7 	 7 Å) around cations in
pyrope at T = 30 K. Contours are plotted at variable intervals in units of e Å�5. Solid lines show the
negative regions of the Laplacian (indicating charge concentration), dashed lines the positive regions
(indicating charge depletion). Full (open) circles (red: O; green: Mg; blue: Al; grey: Si) mark positions of
atoms lying within (more distant than) � 0.1 Å from the plane of the drawing. (a) Plane through Mg
(x; y; z), O (�x; y;� 1

2þ z) and O (�y; 1� z;�x); (b) view along the body diagonal [111] in the (111)
plane passing through Si (� 1

4þ y; 1
4þ x; 1

4� z), O (y;� 1
2þ z;�x) and O (3

4� z; 1
4þ y;� 1

4þ x); (c) plane
through Al (1

4þ y; 1
4� x;� 1

4þ z), O (1
4� y; 1

4� x; 1
4� z) and O (3

4� z; 1
4þ y;� 1

4þ x).



structured than those of Mg and Al [Figs. 8(a) and 8(c)], which

are almost spherically symmetric. More in detail, deep loca-

lized CDRs appear close to Si, in zones relatively far from

direct Si—O bonds [see Si atoms in Figs. 8(a), 8(b) and 8(c)].

These anisotropies in the r2�(r) distribution can be ascribed

to the fact that the bond regions of Si, though dominated by

charge depletion features, are anyway prone to attract charge

from other zones of the valence shell. In other words, despite

their evident ionic nature, Si—O interactions show a higher

degree of covalency than Mg—O and Al—O interactions. This

is in good agreement with the value of r2�BCP at the Si—O

critical point (Table 4), which is � 2–4 times larger than those

at the Mg—O and Al—O ones, being also associated with a

negative BD parameter (Table 4) We note also that Si has the

lowest positive charge with respect to its formal oxidation

state (� +2.9 versus +4; see x3.4.2).

A detailed comparison among the properties of the three

charge densities can be found in the supporting information

(xS7), where our topological quantities of pyrope are also

compared with those reported by Gibbs et al. (2008) in their

review on bonded interactions and the crystal chemistry of

minerals. We can safely conclude that �EXP(r) is fully consis-

tent with the theoretical one, at least once the multipole model

bias is taken into account (Lo Presti & Gatti, 2009).

3.4.2. Atomic volumes and charges. In Bader’s QTAIM an

atom in a material is defined by its nucleus plus an appropriate

portion of the total electron density, enclosed by a zero flux

surface of r�(r), which defines an atomic basin �. Several

properties can then be determined by integration over such a

region. Two quantities of particular interest for each atom of

pyrope are the atomic volume V� and the number of electrons

in the basin (Bosenick & Geiger, 1997; Flensburg & Madsen,

2000), and hence the electronic charge associated with them

(Table 5). Net charges were obtained by adding the nuclear

charge of each atom to the integrated atomic ��s. It is seen

that the summations of the atomic volumes for the unit cell

give values that are within � 0.03% with respect to the value

of the experimental unit-cell volume. The corresponding

summations of the electron populations give F(000) (i.e. the

total number of electrons in the unit cell) with a largest

deviation (in �EXP) of only 0.05%. These figures prove the

reliability of the integration procedure. The values of the

atomic ��s from the two multipolar charge densities are in

excellent agreement, the largest difference not exceeding

1.8% (at the Mg atom), to be compared with an asserted

(Flensburg & Madsen, 2000) estimated uncertainty for each

integrated quantity of ca 5%. This occurs in spite of a much

larger difference between the atomic volumes V� for the Mg

cation in the two �s, the value in V�EXP being larger than that

in V�MSSF by ca 24%. The largest difference between theo-

retical and experimental values for the atomic electron

population is seen at the Si atom, where �� is smaller in �THEO

than in �EXP by 3.3%, and the difference is even larger (ca

4%) if the value in the primary density is compared with that

in �MSSF.

All the four atomic volume (V�) values of �MSSF are

intermediate between those of the other two electron density

distributions, with the V� value of the Mg cation closer to the

value in �THEO (� ’ 5%) than to that in �EXP (� ’ 24%).

Conversely, those of the Si, Al and O atoms are closer to the

values in �EXP (with � ’ 9, 10 and 5%, respectively) than to

the estimates in the primary density (� ’ 39, 14 and 5%,

respectively). As already noted for the electron populations,

the largest difference between theoretical and experimental

V� values is shown by the Si atom, where the theoretical value

is ca 44% smaller than that in the experimental multipolar

electron density. Differences for the other three atoms are

anyhow also very large: 23% and 28% for Al and Mg,

respectively, and 10% for O. Differences in V� between

theoretical and experimental charge density distributions are

quite common (Lo Presti et al., 2008; Saleh et al., 2013), as the

atomic boundaries critically depend on the gradient field in

the internuclear regions, which in ionic compounds are char-

acterized by very low �(r) and are therefore sensitive to very

fine details of the least-squares and quantum models. On the

other hand, when the charge density is integrated over each

atomic basin, excellent agreement is found between theore-

tical and experimental �(r) distributions. This means that our
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Table 5
Integrated volume of atomic basin (V�), integrated atomic charge (��) and net charge (Q) for the four atomic species of pyrope.

Integration of the multipole charge densities �EXP and �MSSF performed through the VALRAY code (Stewart et al., 2000), where a conservative estimate of the
uncertainty in the integrated properties is ca 5%. Integration of �THEO performed by CRYSTAL14 (Dovesi et al., 2014).

V� (Å3) �� (e) Q (e)

Atom EXP MSSF THEO EXP MSSF THEO EXP MSSF THEO

Si 5.74 5.24 3.184 11.18 11.26 10.812 +2.82 +2.74 +3.188
Al 4.16 3.73 3.205 10.31 10.46 10.429 +2.69 +2.54 +2.571
Mg 6.98 5.29 5.031 10.38 10.19 10.222 +1.62 +1.81 +1.778
O 11.72 12.34 13.013 9.55 9.56 9.670 �1.55 �1.56 �1.670

P
V�† 1496.96 1497.04 1497.688P
��‡ 1599.20 1599.92 1600.00P
Q§ +0.10 +0.01 0.000

† Sum of the atomic volumes in the cell, to be compared with the unit-cell volume, 1497.4 Å3. ‡ Sum of the atomic charges in the cell, to be compared with the total number of
electrons in the cell, F(000) = 1600 e. § Sum of the net atomic charges in the pyrope formula unit (Mg3Al2Si3O12), which should be formally zero.



model for the charge density is fully consistent with atomic

populations derived quantum mechanically for an ideal, infi-

nite crystal without any kind of disorder.

4. Conclusions

Both recently and in the past, contrasting interpretations

(static disorder/anharmonic atomic displacements) have been

proposed to explain structured residual charge density

features close to the Mg 24c lattice site in the pyrope garnet.

The problem has no obvious solutions as, on the one hand,

static disorder and anharmonicity produce very similar effects

in �� maps and, on the other hand, somewhat incomplete

(X-ray) or low-resolution (neutron) diffraction data sets were

employed until now. In this work, we provide very accurate

and precise data, consisting of the whole set of 788 indepen-

dent reflections out to a maximum resolution of 0.44 Å,

collected at T = 30.0 (3) K. At variance with previous works,

neither intense low-order reflections nor weak high-order data

were discarded, and all the possible sources of systematic

errors were properly accounted for and corrected. Various

multipole electron density models were compared, including

either anharmonic terms on all the ions or various displacive

disorder models at the Mg site. Even though the volume of the

reciprocal space explored is still too low to fulfill Kuhs’

condition for a totally unbiased refinement of Gram–Charlier

coefficients, we are confident that the quality of our dataset is

high enough to detect, if present, any significant effects

affecting low-order diffraction intensities, which in turn might

depend on both disorder and anharmonicity. The only relevant

structured features we have detected in the Fourier maps are

two very low (’ 0.1–0.15 e Å�3) positive peaks 0.58 Å away

from Mg, along the [001] axis. Any attempt to explicitly

include this displacement into the multipole model invariably

resulted in the ion brought back to its original, undisplaced 24c

position within a few (< 2) thousandths of Å. The 96 h

displacive model proposed by Nakatsuka et al. (2011) is also

incompatible with our dataset, resulting in a worse Fo–Fc

agreement in conjunction with a small ion displacement

(0.06 Å), falling within the harmonic thermal ellipsoid

envelope at a 50% probability level.

A full vibrational analysis of the pob-TZVP B3LYP normal

modes in the Ia�33d phase has shown that Mg is involved in

several soft phonon modes, which imply large (> 0.85 Å)

relative stretching and bending displacements with respect to

its surrounding O atoms. In agreement with neutron estimates,

the harmonic displacement amplitudes of this ion are

predicted to be even larger than those of O [Ueq(Mg) ’ 1.3

Ueq(O)] at T = 30 K.

Our study conforms to the general agreement (Pavese et al.,

1995, 1998; Nakatsuka et al., 2011, 2013) on the fact that the

charge density of Mg is diffused across a somewhat larger

volume than Al and Si. Invoking the presence of some kind of

dynamic disorder might reconcile the intertwined views of

anharmonicity and disorder. Such a model would indeed

account for the highly anisotropic density features around the

position 24c reported in this and previous works, and might

explain the observed structured Fourier residuals very close to

the Mg ion. It is possible that soft phonon modes, together

with the significant amount of void space available to Mg,

allow instantaneous symmetry breaking of the perfect 24c

symmetry. Transient off-site potential energy minima could

thus be created, which have a significant probability of being

populated. Mg2+ ions essentially ‘rattle’ in a very large cavity,

resulting in large vibrations and, consequently, also in non-

negligible anharmonic contributions to thermal motion even

at very low T. Actually, dynamic disorder implies by itself

anharmonic atomic displacements, as the multi-well potential

energy surface is, by definition, no longer parabolic in nature.

For this reason, we believe that additional experiments are

required to definitely solve the issue, in particular X-ray

diffraction experiments, to be carried out at very high reso-

lution, possibly up to (sin �/�)max = 1.8–2.0 Å, by means of low-

wavelength synchrotron radiation. At the same time, inelastic

scattering measurements, mapping the phonon dispersion

curves at low T, would be extremely useful to detect any

further deviation from the purely harmonic behaviour. Such

experiments will help in disclosing whether the potential

energy surface bears two minima close to the Mg 24c site or

not. In the first case, our hypothesis of occurring dynamic

disorder would be fulfilled.

On the other hand, we expect that static disorder should be

entangled with some kind of stronger anisotropy in the crystal

field, as the existence of two or more well defined minima,

separated by intersite barriers high enough to hamper Mg

exchange among populated off-lattice sites even at T >> 30 K,

would imply a much larger distortion. However, we do not see

any evidence for that. Rather, residual Fourier maps, inte-

grated atomic charges, very good agreement between an ideal

�(r) model for a perfectly ordered crystal with the XRD-

derived charge density all imply that there is no incon-

trovertible evidence of static disorder at the Mg position.

5. Related literature

References cited in the supporting information include: Becke

(1993), Becker & Coppens (1974), Clementi & Roetti (1974),

and Lee et al. (1988).
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