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Abstract
This study describes the development of simple, rapid and sensitive liquid chromatography tan-

dem mass spectrometry method for the simultaneous analysis of doxorubicin and its major

metabolite, doxorubicinol, in mouse plasma, urine and tissues. The calibration curves were linear

over the range 5–250 ng/mL for doxorubicin and 1.25–25 ng/mL for doxorubicinol in plasma and

tumor, over the range 25–500 ng/mL for doxorubicin and 1.25–25 ng/mL for doxorubicinol in

liver and kidney, and over the range 25–1000 ng/mL for doxorubicin and doxorubicinol in urine.

The study was validated, using quality control samples prepared in all different matrices, for accu-

racy, precision, linearity, selectivity, lower limit of quantification and recovery in accordance with

the US Food & Drug Administration guidelines. The method was successfully applied in determin-

ing the pharmaco‐distribution of doxorubicin and doxorubicinol after intravenously administra-

tion in tumor‐bearing mice of drug, free or nano‐formulated in ferritin nanoparticles or in

liposomes. Obtained results demonstrate an effective different distribution and doxorubicin pro-

tection against metabolism linked to nano‐formulation. This method, thanks to its validation in

plasma and urine, could be a powerful tool for pharmaceutical research and therapeutic drug

monitoring, which is a clinical approach currently used in the optimization of oncologic

treatments.
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1 | INTRODUCTION

Doxorubicin (DOX), an anthracycline glycoside antibiotic, is an excep-

tionally good antineoplastic agent and is widely used in the treatment

of various cancers, including lung, ovarian and breast cancer and malig-

nant lymphoma (Duggan & Keating, 2011Q2 ). However, long‐term clinical

use is limited due to the development of a progressive dose‐dependent

cardiomyopathy that irreversibly evolves toward congestive heart fail-

ure (Ho, Fan, Jou, Wu, & Sun, 2012). The current thinking is that DOX

is toxic per se but gains further cardiotoxicity after one‐electron reduc-

tion with reactive oxygen species overproduction or two‐electron

reduction with conversion to a secondary alcohol metabolite

doxorubicinol (DOXol). It became clear that is essential to quantify this

toxic metabolite of DOX in as much biomatrices as possible to study its

distribution in the organism after drug administration to understand

better the side effect mechanisms linked to DOX treatment. Further-

more, the antitumor activity of the drug was noticeably enhanced

when it was nano‐formulated. Indeed, DOX has been found to be more

effective in mice when loaded in nano‐drug delivery systems such as

polymeric nanoparticles, liposomes and bionanoparticles. Moreover

nano‐formulation protects DOX from undesired metabolism reducing

the formation of toxic derivatives as DOXol (Lianga et al., 2014; Park

et al., 2009). Actually, it is well‐known that nano‐formulation improves

drug bioavailability, delivery and accumulation to the tumor site. At the

Abbreviations used: CS, calibration standard; %CV, percentage coefficient of

variance; DAU, daunorubicin hydrochloride; DOX, doxorubicin; DOXol,

doxorubicinol; HQC, high quality control; LLE, liquid–liquid extraction; LOD,

limits of detection; LOQ, limits of quantification; LQC, low quality control;

MQC, medium quality control; QC, quality control; %RSE, percentage relative

standard error.
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same time, the tumor targeting of the drug implies the reduction of

organ‐sensitive toxicity because of the better tissue biodistribution.

Moreover, slow drug release from a storage structure help to enhance

the therapeutic index and reduce side effects (Rao et al., 2015).

Although the mechanisms by which targeted drugs are more efficient

is becoming increasingly clear, only few details about less toxicity asso-

ciated to nanoparticle‐loaded DOX than the free drug are available.

Information about the biodistribution of DOX delivered by nanoparti-

cles and, in particular, that of its cardiotoxic metabolite DOXol should

lead to a better understanding of the mechanisms related to reduced

nano‐formulated drug toxicity. Various analytical methods in which

detection limits, adequate to analyze plasma or serum from patients

receiving conventional chemotherapeutic treatments, have been

reported. The reported methods have mostly used HPLC coupled with

fluorescence (Zhou & Chowbay, 2002Q3 ), electrochemical (Ricciarello

et al., 1998) and chemiluminescence detection (Ahmed et al., 2009).

Moreover, apart from some published LC–MS/MS‐based methods

with validated quantifications of DOX and/or DOXol in some biologi-

cal matrices (Sottani, Poggi, Melchiorre, Montagna, & Minoia, 2013),

human plasma (Ibsen et al., 2013), tumors from mice (Liu, Yang, Liu,

& Jiang, 2008), rat plasma (Lachâtrea et al., 2000), human serum, less

attention was paid so far for analysis of DOX and its 13‐hydroxy

metabolite in mouse tissue samples suitable to study the tissue distri-

bution profile of nanoparticle‐delivered DOX (Arnold, Slack, &

Straubinger, 2004; Cao & Bae, 2012Q4 ; Park et al., 2006). In the present

study, a simple, fast and inexpensive HPLC method with MS–MS

detection has been developed and validated for quantification of

DOX and DOXol in mice biomatrices to obtain a powerful tool for drug

distribution evaluation in pharmaceutical research. The method was

applied to investigate in BALB/c tumor‐bearing mice the bioavailability

and biodistribution of DOX, differently formulated, and its reduced

metabolite, DOXol. We aimed to study the contribution of different

kinds of nano‐formulation to improve DOX bioavailability and

biodistribution in a murine in vivo tumor model. Moreover, the method

can also be applied in therapeutic drug monitoring, a clinical approach

used in the optimization of oncologic treatments.

2 | MATERIALS AND METHODS

2.1 | Materials

DOX hydrochloride and the internal standard daunorubicin hydrochlo-

ride (DAU) were purchased from Sigma (St. Louis, MO, USA). DOXol

trifluoroacetate salt was obtained from AlsaChim (Bioparc, Illkirch,

France). The HPLC grade solvents were purchased from Sigma.

2.2 | Control plasma, urine and mouse tissues
collection

Control human plasma and urine samples used for purification and

extraction studies and for validation experiments were obtained from

healthy volunteers. Blood was collected into a vial containing K+‐

EDTA, which was immediately centrifuged. Aliquots of 15mL of

pooled plasma were stored at −80°C. Human urine, obtained from

volunteer colleagues, was collected after a circadian cycle and aliquots

of 15mL of pooled urine were stored at −80°C.

Kidney and liver tissues used for purification and extraction

studies and for validation experiments were obtained from healthy

BALB/c mice.

The tumor tissue samples used in this study have been obtained

from an orthotopic model of murine breast cancer. The tumors were

generated by injecting in to the mammary fat pad of 8‐week‐old

BALB/c females 1 × 105 4 T1‐Luc cells (Bioware‐Ultra 4 T1‐Luc2 cell

line; PerkinElmer Q5). 4 T1‐Luc is a murine cell line stably transfected with

luciferase, which generates a very aggressive breast cancer. The

tumors were allowed to grow for 10 days, at which time they reached

a size of approximately 0.8 cm3. Mice were killed and organs were

explanted, weighted, transferred in a polypropylene plastic Eppendorf

tubes, immediately frozen by liquid nitrogen immersion and stored at

−80°C. Before extraction, whole organs were homogenized in water

(10% w/v) with potter Q6(Glas‐Col homogenizer) and divided in aliquots

of 200 μL.

2.3 | Preparation of standard solutions, calibration
standards and quality control samples

Stock solutions of DOX and DOXol were separately prepared in meth-

anol at a concentration of 1mg/mL from powder. Even DAU (internal

standard) stock solution was prepared in methanol from powder at

concentration of 1mg/mL. Three working solutions containing the

mixture of DOX and DOXol at concentrations of 10 μg/mL, 1 μg/mL

and 100 ng/mL, were prepared in methanol mixing and diluting first

stock solutions at 1mg/mL. Similarly, the DAU working solution was

prepared in methanol at a concentration of 100 ng/mL by diluting

the first stock solution. Aliquots of first stock solutions and second

stock solutions were stored at −80°C while the aliquot in use was

stored at −20°C.

Calibration standard (CS) samples were prepared in plasma, liver,

kidney and tumor tissue homogenates (0.2mL of homogenate 10%

w/v in water) by adding different volumes of the second stock solu-

tions of mixed DOX and DOXol to reach final concentrations of 1.25,

2.5, 5, 10, 25, 50, 100, 250 and 500 ng/mL. Each solution was spiked

with DAU internal standard solution (DAU 1 μg/mL, and 100 ng/mL

final concentration). CS for DOX and DOXol quantification in urine

samples were prepared in 0.1mL of human urine by adding different

volumes of the second stock solutions of mixed DOX and DOXol to

reach final concentrations of 25, 50, 100, 250, 500, 750 and

1000 ng/mL. Each solution was spiked with DAU as previously

described for other biomatrices.

Quality control (QC) samples were prepared in plasma, liver, kid-

ney and tumor tissue homogenates (0.2mL of homogenate 10% w/v

in water). Each sample was spiked with different volumes of the sec-

ond stock solutions of mixed DOX and DOXol at low (LQC), medium

(MQC) and high (HQC) concentration levels (5, 25 and 100 ng/mL for

DOX and 1.25, 5 and 25 ng/mL for DOXol) and with the second stock

solution of DAU. QC samples for validation in urine (0.1mL) were pre-

pared spiking different volumes of second stock solutions of mixed

DOX and DOXol at LQC, MQC and HQC concentration levels (50,

250 and 750 ng/mL) and a second stock solution of DAU.
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Pooled plasma or urine used for validation experiments were

prepared combining 30 different samples derived from healthy

volunteers.

All CS and QC samplesQ7 were extracted as described below and

immediately injected or stored at −80°C until the injection.

Liquid–liquid extraction (LLE) methods commonly used for drug

extractions from human plasma or tissue have been assessed. LLE

were performed in 15mL glass tubes. Different aqueous solutions

in combination with different organic phases have been tested.

Aqueous solutions were sodium borate solution (pH 9), acetate

buffer (pH 5), KOH 1M and H2SO4 1mM whereas the organic solu-

tions were acetonitrile/methyl alcohol 70: 30, chloroform/isopropyl

alcohol 50: 50, hexane/ethyl acetate 50: 50, hexane/ethyl acetate

90: 10, chloroform/heptane/isopropyl alcohol 50: 33: 17, dichloro-

methane/isopropyl alcohol 80: 20 and chloroform/acetone 50: 50.

In addition, homogenization of solid tissues directly in acetonitrile/

methyl alcohol 70: 30 has been tested. Comparing all the extrac-

tion methods that were tested, the combination of H2SO4 and

chloroform/isopropyl alcohol, as the organic phase, gave better

extraction yields. Consequently, CS and real samples were

extracted in the following way: 50 μL of plasma, or 25 μL of urine

or 200 μL of tissue homogenates (10% in water w/v), spiked with

DAU, diluted to 1mL with H2SO4 1mM and extracted with chloro-

form/isopropyl alcohol 50: 50. After organic phase evaporation, the

residual was dissolved in 50 μL of the initial mobile phase (water/

acetonitrile, 95: 5 v/v) and 20 μL were injected in to the HPLC

for analysis.

2.4 | HPLC–MS/MS analysis

The LC system was composed by a Dionex Ultimate 3000 Rapid Sep-

aration LC system (DionexThermo Fischer, Rodano Milanese, Italy).

Mass analyses were performed on a ABSciex 4000 Q‐trap LC–MS/

MS system (AB Sciex, Foster City, CA, USA). Ionization of analytes

was performed using electrospray ionization in a positive mode; the

ion source temperature was 550°C, ion spray voltage was 5500 V

and declustering potential was 62 V for DOX, DOXol and DAU. Direct

infusion and flow injection analysis of DOX, DOXol and DAU made it

possible to optimize the MS parameters for fragmentation in a multiple

reaction monitoring mode.

Separation of the analytes was carried out on a Phenomenex

Gemini C18 column (150mm× 2mm ID 3) at a flow rate of

0.350mL/min. Mobile phase A was ammonium formate 10mM, daily

prepared by means of a Milli‐Q Synthesis A10 System (Millipore,

Billerica, MA, USA), containing 0.1% v/v formic acid and mobile phase

B was acetonitrile. Several gradients of mobile phase A and B have

been tested for the chromatographic separation and the following

gradient has been selected: 0.0–1.0min 5% B; 1.0–3.0min to 90% B;

3.0–5.0min to 95% B; 5.0–6.0min 95% B; 6.0–6.1min to 5% B; and

6.1–8.5min 5% B. The retention times obtained in a total run of

8.5min, comprising re‐equilibration at 5% B, are listed in TableT1 1. A

representative HPLC–MS/MS analysis of a mouse plasma sample is

reported in FigureF1 1. Quantifications were performed using Multiquant

1.2.1 software by AB Sciex.

2.5 | Validation

The analytical method was validated to meet the acceptance criteria of

the US Food & Drug Administration guidelines Q8(US Department of

Health and Human Services, Food and Drug Administration, Center

for Drug Evaluation and Research, CDER, 2001). Important parameters

such as linearity, accuracy, precision, sensitivity (limits of detection

[LODs] and limits of quantification [LOQs]), specificity, recovery, sta-

bility and influence of matrix effects were determined using plasma,

urine and tissue samples.

2.6 | Selectivity, carry‐over and sensitivity

To exclude any interference or false positive response derived from

extractive procedure, reagents or disposable, blank water was

extracted according to the method Q9and analyzed in triplicate.

The carry‐over was evaluated by analyzing a solvent sample

(water/acetonitrile 95: 5 v/v) just after the highest CS. The signal–

noise ratio of the eventual DOX or DOXol peak in the solvent sample

was <2.5.

Sensitivity of the method was expressed by LOD and LOQ calcu-

lated on calibration curves prepared in plasma, urine, liver, kidney and

tumor tissue. LOD and LOQ are expressed respectively as 3.3 and 10

times the ratio between the standard deviation of the response and

the slope of the calibration curve (equations 1 and 2). The LOD and

LOQ values calculated for all biomatrices are reported in Table T22.

LOD ¼ 3:3 ×
SDav slope
Av slope

(1)

LOQ ¼ 10×
SDav slope
Av slope

(2)

2.7 | Linearity, precision and accuracy

The linearity response of analytes was assessed on the five different

biomatrices over their respective calibration range from three batches

of analytical runs. Different calibration ranges for DOX and DOXol and

for different biomatrices have been chosen in relation to

TABLE 1 Multiple reaction monitoring transitions (m/z values), CE
(eV) and RT (min) used to identify and quantify analytes

Compound Mass Precursor Product CE RT

Doxorubicin 543.52 544.2 397.5a 19 4.49

361.5a 24

355.5 24

130.0 38

Doxorubicinol 545.54 546.2 399.5a 21 4.43

363.5a 35

130.0 30

Daunorubicin
hydrochloride

527.52 528.2 363.5a 21 4.54

321.5 21

CE, collision energy; RT, retention times.
aProduct ions used for quantification.
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concentrations expected in real samples. CS were prepared in plasma,

urine and tissues and extracted in triplicate as described. Twenty

microliters of eluates were injected and analyzed. A linear model was

used to describe the relationship between analyte concentration and

instrument response (analyte peak area/internal standard peak area)

and determination and variation coefficients (r2 and CV) were calcu-

lated (TableT3 3).

Precision and accuracy were determined by QC analyses at LQC,

MQC and HQC concentrations over three batch runs. For each QC,

analysis was performed in six replicates on each day. Precision was cal-

culated using equation 3 and is denoted by percentage coefficient of

variance (%CV). Accuracy was calculated using equation 4, where nom-

inal means theoretical amounts, and is denoted by a percentage rela-

tive standard error (%RSE). The accuracy and precision were required

to be within ±15% RSE of the nominal concentration and ≤15% CV

(Table T44).

%CV ¼ SD
Mean

� �
×100 (3)

%RSE ¼ Mean−nonomin al
nonomin al

� �
×100 (4)

2.8 | Recovery and matrix effect

To evaluate absolute recovery two sets of samples were prepared in

plasma, urine and tissue samples. The pre‐extraction spiked QC

FIGURE 1 Q17HPLC‐MS/MS spectra of a real sample of mouse plasma: chromatographic separation and MS/MS analysis of DOX, DOXol and DAU.
DAU, daunorubicin hydrochloride; DOX, doxorubicin; DOXol, doxorubicinol; MRM, multiple reaction monitoring (mode)

TABLE 2 Limit of the assay: LOD (expressed in ng/mL) and LOQ (expressed in ng/mL). Recovery expressed as percentage and matrix effect
expressed as percentage of ion suppression

DOX DOXol

Matrix effect Recovery Matrix effect Recovery

LOD LOQ LQC HQC LQC MQC HQC LOD LOQ LQC HQC LQC MQC HQC

Plasma 0.04 0.15 3 8 75 96 65 0.24 0.82 12 25 59 68 64

Liver 0.12 0.42 37 21 60 93 88 0.30 1.02 13 30 47 66 72

Kidney 0.43 1.48 25 38 73 86 90 0.32 1.05 32 28 66 73 85

Tumor 0.52 1.73 37 23 58 63 70 0.35 1.17 19 26 63 62 78

Urine 0.025 0.08 1 3 82 68 83 0.09 0.32 12 10 70 72 82

DOX, doxorubicin; DOXol, doxorubicinol; HQC, high quality control; LOD, limit of detection; LOQ, limit of quantification; LQC, low quality control; MQC,
medium quality control.
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samples (test samples) were prepared as described at low (DOX 5 ng/

mL; DOXol 1.25 ng/mL), medium (DOX 25 ng/mL; DOXol 5 ng/mL)

and high (DOX 100 ng/mL; DOXol 25 ng/mL) concentration levels for

all matrices except for urine where low, medium and high concentra-

tions were 50, 250 and 750 ng/mL for both DOX and DOXol. For

the post‐extraction spiked samples (reference samples), aliquots of

blank matrices (plasma/urine/liver/kidney/tumor tissue) were proc-

essed using the extraction method to yield post‐extraction superna-

tant. Pooled aliquots of post‐extraction supernatant were then

spiked using DOX and DOXol stock solutions to yield post‐extraction

samples containing DOX and DOXol at 5–25 and 100 ng/mL and

1.25–5 and 25 ng/mL respectively Q10(50, 250 and 750 ng/mL for both

DOX and DOXol for urine). All samples were analyzed sixfold and ana-

lyte recovery was determined at each concentration level using the

equation 5 where the ratio of the analyte peak areas of the test and

reference samples were expressed as a percentage recovery (%RE).

The average %RE was determined and the calculated precision (CV)

did not exceed 15%.

RE ¼ Peak area of test sample
Peak area of reference sample

� �
×100 (5)

The presence of suppression or enhancement of the analytical sig-

nal was investigated using the post‐extraction spike method. Three

samples of pooled plasma, urines, liver, kidney and tumor tissue and

blank water were extracted following the proposed method. The stan-

dards were added to 50 μL of eluate at two concentration levels LQC

and HQC (5–250 ng/mL for different matrices and 25–750 ng/mL for

urine for DOX, and 1.25–25 ng/mL for different matrices and

25–750 ng/mL for urine for DOXol). Mean peak areas of standards

spiked in eluate from water (Aw) and from biomatrices (Ap) obtained

for each concentration were used for calculations (equation 6) and

results are reported as the ion suppression percentage (Table 2).

Matrix effect% ¼ 1−
Ap

Aw

� �
×100 (6)

2.9 | Sample stability

Stock solutions stability was established by quantification of samples

from dilution of two stock solutions stored at −80°C for 1month and

at room temperature for 6 h. Long‐term storage freeze/thaw and

bench‐top stabilities were determined at LQC and HQC. Long‐term

storage stability in processed biomatrix was tested up to 40 days upon

storage at −80°C. Bench‐top stability was evaluated from samples kept

at room temperature for 15 h before extraction. Freeze/thaw stability

was tested over five cycles of freezing and thawing.

2.10 | Application to real samples

Tumor‐bearing BALB/c mice were anesthetized and injected into the

lateral tail vein with DOX, free or encapsulated in ferritin nanoparticles

(HFer‐DOX) or in liposomes (CAELYX) (1.24mg kg−1; n = 24 mice/

group). One, 2, 24 and 48 h after injection mice were killed (n = 6 miceT
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per group) and plasma, liver, kidneys and urine were collected. Organs

were collected, weighted, homogenized in waterQ11 (10% w/v) with potterQ12

(Glas‐Col homogenizer), as described above. Mice were used in accor-

dance with an experimental protocol subjected to the direct approval

of the Italian Ministry of Health. Aliquots of samples were extracted,

analyzed, and DOX and DOXol quantified to investigate the

biodistribution of DOX and DOXol, associated to the three different

formulations. Results obtained are reported in FiguresF2 2F3F4 –4.

2.11 | Statistics

If not otherwise specified, quantitative analyses were performed in

triplicate. Calibration curves are expressed as mean ± SD. For applica-

tion to real samples, six mice per group were analyzed and each matrix

was extracted and analyzed in triplicate. Reported data are expressed

as the mean of all analyses performed per group ± SD.

3 | RESULTS AND DISCUSSION

The reflection that the reduction of DOX to DOXol involves the addi-

tion of only two mass units emphasizes the need for adequate

methods for their quantification. There are several analytical methods,

including HPLC‐MS/MSmethods, available for DOX and DOXol deter-

mination (Ahmed et al., 2009; Ibsen et al., 2013; Lachâtrea et al., 2000;

Liu et al., 2008; Ricciarello et al., 1998; Sottani et al., 2013; Zhou &

Chowbay, 2002). However, most of them have disadvantages, such

as long analytical run time (16min; Sottani et al., 2013) or (21min;

Ibsen et al., 2013), or complex and expensive extraction procedures,

solid phase extraction procedure on expensive OASIS HBLQ13 (Ibsen

et al., 2013; Lachâtrea et al., 2000; Liu et al., 2008; Sottani et al.,

2013). Moreover, the majority of published methods are focused on

quantifications of DOX and some of its metabolites in plasma matrix

using at least 100 μL of the sample (Lachâtrea et al., 2000; Liu et al.,

2008; Sottani et al., 2013), but unfortunately these quantities are too

large for the application in pharmacological studies on mouse models.

To date, less attention was paid to the analysis of DOX and its

metabolite DOXol in mouse tissue samples (Arnold et al., 2004; Cao

& Bae, 2012; Park et al., 2006). In this study, we developed and vali-

dated an LC‐MS/MS method for simultaneous determination of DOX

and DOXol in small amounts of plasma, urine, liver, kidneys and tumor

tissue suitable to study the distribution profile of these molecules in

the organism after DOX administration. This method will be a powerful

tool for drug distribution evaluation in pharmaceutical research to

understand better the side effect mechanisms linked to DOX

administration.

We selected DAU as internal standard for quantification because

it is an analog of DOX with chemical and structural characteristics suit-

able for this purpose. The use of DAU as the internal standard for DOX

and DOXol quantification, indeed, is well documented in the literature

(Maudens, Stove, & Lambert, 2011). Moreover the choice of DAU, less

expensive and readily commercially available, instead of the deute-

rium‐labeled DOX makes the method cheap and easily applicable, suit-

able for pharmacological research but also attractive for drug

monitoring. The validation fully performed in the five biomatrices

probably helps to overcome possible problems linked to the choice

of the internal standard.

The present method, with high sensitivity and specificity, proposes

a simple, fast and cheap LLE applicable to a large number of

biomatrices. Indeed, the method has been validated on five different

biomatrices such as plasma, urine and three different kind of tissues

comprising liver, kidneys and tumor tissue, which is more difficult to

homogenize and extract due to its fibrous characteristic. Moreover,

DOX and DOXol quantification in samples from mice treated with free

DOX, CAELYX or HFer‐DOX, have been used as a preliminary study to

investigate their biodistribution profiles to evaluate the differences

associated to the nano‐formulations, demonstrated the applicability

of the method to real samples (Figures 2 and 3).

3.1 | Extraction procedure and analytic conditions

LLE was examined using different organic solvents such as dichloro-

methane, ethyl acetate, chloroform, hexane and isopropyl alcohol with

different acidic and basic aqueous solutions.

TABLE 4 Intra‐ and interday precision (%CV) and accuracy (%RSE) of DOX and DOXol

(%CV) intraday (%CV) interday (%RSE) intraday (%RSE) inter‐day

LQC MQC HQC LQC MQC HQC LQC MQC HQC LQC MQC HQC

DOX

Plasma 2.5 3.8 5.6 4.2 6.3 5.7 5.1 6.6 6.2 9.5 10.1 9.7

Liver 3.6 4.6 5.3 5.3 4.5 8.8 10.6 6.0 5.6 9.6 11.3 8.9

Kidney 4.1 5.4 3.9 5.7 6.6 7.3 4.5 8.3 9.9 12.2 9.5 9.5

Tumor 7.2 5.2 4.1 3.9 5.4 8.6 10.2 9.6 7.7 12.9 9.3 8.2

Urine 3.3 4.7 4.5 5.9 6.7 5.5 6.9 5.4 4.7 8.6 7.1 5.9

DOXol

Plasma 3.5 5.2 2.7 3.2 5.5 8.0 7.2 6.1 9.6 9.1 9.7 5.9

Liver 4.3 2.6 5.1 8.9 3.7 5.6 4.5 9.0 5.6 10.2 6.6 10.6

Kidney 4.2 4.3 5.9 7.0 6.4 8.1 5.3 4.8 8.6 11.9 7.3 6.2

Tumor 3.6 4.5 4.8 7.6 5.9 4.2 12.7 10.9 4.9 14.7 13.8 8.3

Urine 4.5 3.8 6.1 3.2 4.6 9.3 6.9 3.8 10.2 8.8 7.1 4.6

CV, coefficient of variance; DOX, doxorubicin; DOXol, doxorubicinol; HQC, high quality control; LQC, low quality control; MQC, medium quality control;
RSE, relative standard error.
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The protocol where the acidic dilution of the sample (H2SO4 1mM

in water) was combined with chloroform/isopropyl alcohol (50: 50 v/v)

was found to provide very good extraction yields of the two

compounds (i.e. DOX and DOXol) displaying a clean chromatogram.

Furthermore, the same LLE method can be applied to a large number

of different biomatrices as plasma and urine and different tissues such

as liver, kidney and tumor with good results in terms of recovery and

chromatogram quality. Direct extraction with organic solvent, indeed,

gave worst chromatograms leading to less sensibility. At the same time,

the pre‐dilution with sodium borate solution or acetate or KOH gave a

substantial decrease in recovery. Moreover, the selected extraction is

fast and cheap allowing easy management of a large number of

samples, as generally happens in therapeutic drug monitoring.

3.2 | HPLC‐MS/MS analysis

The development of the HPLC‐MS/MS method started with optimiza-

tion ofMS ionization and fragmentation of both the analytes and internal

standard (DOX, DOXol and DAU; each 100 ng/mL) via infusion into the

electrospray source in positive and negative ionization mode. A positive

ionization mode exhibited a better response than that in negative mode.

The protonated precursor ionsm/z 544.2 [M+H]+, 546.2 [M+H]+

and 528.2 [M +H]+ generated product ions m/z 397.5, 361.5, 355.5

and 130.0, 399.5, 363.5 and 130.0, 363.5 and 321.5, by collision‐

induced dissociation for DOX, DOXol and DAU, respectively (Table 1).

Using multiple reaction monitoring analyses collision energy was

varied from 0 to 60 eV and adjusted for DOX, DOXol and DAU to

maximize product ion formation of transitions selected for quantifica-

tion (m/z 397.5 and 361.5 for DOX, 399.5 and 363.5 for DOXol, and

363.5 for DAU). Figure 1 reported MS/MS spectra of analytes along

with the chromatographic separation of DOX DOXol and DAU in a

mouse plasma sample. The obtained chromatographic separation

was satisfactory between DOX, DOXol and DAU using a short run

time Q14and the use of an MS/MS technique on a triple quadrupole,

with an m/z interval of 0.5 on the first quadrupole, which meant it

was possible to overcome the possible loss in accuracy due to the

selection of the product ion m/z 363.5 for quantification of both

DOXol and DAU. Therefore, various mobile phase compositions with

a different pH value, column and flow rate were tried. Reverse phase

HPLC column exhibited best sensitivity, efficiency and peak shape

with a gradient of acetonitrile and ammonium formate 10mM (0.1%

formic acid) as mobile phases, at a flow rate of 0.35mL/min. The

FIGURE 3 DOX and DOXol accumulation at 4 T1‐L tumor in mice at
different time points after administration of 1.24mg/kg of free DOX
(black), CAELYX (white) and HFer‐DOX (gray). Female BALB/c mice
orthotopically implanted with 4 T1‐L murine mammary carcinoma cells
were injected 6 days after implantation (time 0) with DOX or HFn‐
DOX. DOX levels in tumors have been determined 1, 2, 24 and 48 h
after intravenous injection following acidified isopropanol extraction
from tumor homogenates. Aliquots from six mice per each time point

concentration have been extracted in duplicate and analyzed by
HPLC/MS/MS. Reported values are means of six samples/group in
duplicate ± SE. DOX, doxorubicin; DOXol, doxorubicinol

FIGURE 2 Bioavailability of free DOX in comparison with liposomal
(CAELYX) and ferritin nano‐formulated DOX (HFer‐DOX) at different
time points. Female BALB/c mice orthotopically implanted with 4 T1‐L
murinemammary carcinoma cells were injected 6 days after implantation
(time 0) with free DOX (black), CAELYX (white) and HFer‐DOX (gray)
1.24mg/kg. DOX andDOXol levels in plasma have been determined 1, 2,
24 and 48h after intravenous injection following acidified isopropanol

extraction from tumor homogenates. Aliquots from six mice per each
time point concentration have been extracted in duplicate and analyzed
by HPLC/MS/MS. Reported values are means of six samples/group in
duplicate ± SE. DOX, doxorubicin; DOXol, doxorubicinol
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retention times of both the analytes (DOX 4.49min and DOXol

4.43min) and DAU (4.54min) were low enough to allow a short total

run time of 8.0min comprising clearing and reconditioning of the col-

umn with the initial mobile phase.

3.3 | Validation

The assay was fully validated following the acceptance criteria of the

US Food and Drug Administration guidelines to demonstrate the line-

arity, precision, accuracy, limits of the methods LOQ and LODQ15 , recov-

ery and sample stability by using the CS and QC samples prepared in all

five biomatrices.

3.4 | Selectivity, carry‐over and sensitivity

The selection of a specific precursor ion followed by the formation

and detection of a specific product ion makes quantitative MS highly

specific. All reagents and disposable materials used did not interfere

with the revelation and quantification of DOX and DOXol. Biological

matrices did not give false positive responses or co‐eluting compo-

nents. No carry‐over to analytes from one sample to another was

observed.

LOD and LOQ levels have been calculated for plasma, urine and

tissues as reported in the experimental part and are listed in Table 1.

The LOD range from 0.025 to 0.52 ng/mL for DOX and 0.09 to

0.35 ng/mL for DOXol, and the LOQ range from 0.08 to 1.73 ng/mL

for DOX and 0.32 to 1.17 ng/mL for DOXol. All the assay values were

found to be within the accepted variable limits (±15% RSE, ≤15% CV

and ±20% RSE, ≤20% CV) (Morin, Taillon, Furtado, & Garafolo,

2012). The differences between LOD and LOQ values reflect the dif-

ferent complexity of the five matrices. LOD and LOQ values indeed

increase with the complexity of matrices from urine to tumor tissue.

Despite these differences, the method display a good sensitivity in all

assessed matrices.

FIGURE 4 Biodistribution of DOX and DOXol upon single administration of 1.24mg/kg of free DOX (black), CAELYX (white) and HFer‐DOX
(gray). Tumor‐bearing mice (n = 24/group) were treated with HFn‐DOX or free DOX. Liver, kidneys and urine were collected at 1, 2, 24 and
48 h after injection. DOX and DOXol content in each sample were analyzed by HPLC/MS/MS. Reported values are means of six samples/group in
duplicate ± SE. DOX, doxorubicin; DOXol, doxorubicinol
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3.5 | Linearity, accuracy and precision

Linear calibration curves, built according to the formula y =mx + b,

were obtained by plotting the peak area ratio of internal standard ver-

sus concentrations of DOX and DOXol. Good linearity (r > 0.99) was

exhibited over concentration range of 5–250 ng/mL for DOX and

1.25–25 ng/mL for DOXol in plasma and tumor, 25–500 ng/mL for

DOX and 1.25–25 ng/mL for DOXol in kidney and liver, and of

25–1000 ng/mL for DOX and DOXol in urine (Table 3). These different

ranges were selected for the assessed biomatrices to have good cali-

bration curves, for the expected values, useful for DOX and DOXol

quantification in real samples from in vivo studies.

Accuracy and precision were assessed by analyzing QC on three

different days. Results can be summarized as follows: intraday preci-

sion ranges are 2.5–7.2% for DOX and 2.7–6.1% for DOXol, interday

3.9–8.8% for DOX and 3.2–9.3% for DOXol, intraday and interday

accuracy range 4.5–10.2% for DOX and 3.8–12.7% for DOXol and

5.9–12.9% for DOX and 4.6–14.7% for DOXol respectively (Table 4).

Results reported in Table 4 show that interday accuracy in tumor

tissue present highest values of %RSE that are within the accepted

limit of 15%.

3.6 | Recovery and matrix effect

The recovery has been evaluated by the post‐extraction method. The

mean extraction recovery ratios of DOX and DOXol of QCs are

between 58 and 96% and between 47 and 85% respectively.

(3.2 ≥CV ≤ 8.6).

Matrix effects are reported in Table 4 with recoveries and

expressed as the ion suppression percentage that ranges 1–38% for

DOX and 10–32% for DOXol (2.9 ≥CV ≤ 10.3). As LOD and LOQ even

recovery and matrix effect values reflect increasing complexity from

urine to tissues.Q16

3.7 | Sample stability

Stability of DOX and DOXol in biomatrices was evaluated under a vari-

ety of conditions to establish length of storage and sample processing.

DOX and DOXol exhibited no significant degradation under previously

described conditions. In particular, analytes are stable in biomatrices

for 15 h at room temperature, five freeze–thaw cycles and for 3 days

at room temperature (processed samples). Stock solutions are stable

at least for 1month at −80°C.

3.8 | Application of the method

This method has been applied to study the impact of nano‐formulation

on DOX and DOXol biodistribution. As nano‐formulated drugs, we

have selected CAELYX and HFer‐DOX. The first is a liposomal

DOX currently applied in clinical practice, while the last is a very

promising nano‐formulation of DOX, which until now was investi-

gated in pre‐clinical studies. While CAELYX mediates the DOX

tumor delivery taking advantage of the enhanced permeability and

retention effect, HFer‐DOX triggered a tumor‐targeted nuclear deliv-

ery of drug (Barenholz, 2012; Bellini et al., 2014; Zhang et al., 2015).

Tumor‐bearing BALB/c mice were treated with free DOX, CAELYX

or HFer‐DOX (1.24mg DOX kg−1). One, 2, 24 and 48 h after

intravenous injection into the tail vein, mice (n = 6/experimental

group) were killed and plasma, urine, tumor, liver and kidneys were

collected. DOX and DOXol were extracted from biological samples

and analyzed. Where necessary, plasma of CAELYX‐treated mice

and urine of HFer‐DOX‐treated mice were diluted with water

(HPLC purity grade) before extraction to obtain concentration

included in the linearity range. Liposomal nano‐formulation of DOX

(i.e. CAELYX) significantly improves drug bioavailability and circula-

tion time in comparison to free DOX and HFer‐DOX samples.

However, liposomal nano‐formulation fails in avoiding the DOX

transformation into DOXol, increasing also DOXol bioavailability

and circulation time, which may result in high drug toxicity (Figure 2).

Time‐dependent DOX and DOXol tumor accumulation reported in

Figure 3 clearly points out that DOX and HFer‐DOX come to tumor

quickly reaching the maximum value of drug content between 1 and

2 h after injection, while CAELYX arrives to cancer slowly, achieving

the peak value 24 h after nanoparticle administration. DOXol

accumulation sketchily follows that observed for the profile of

DOX, except for the significant contribution of ferritin nanocage/

nano‐formulation to enhance tumor accumulation of DOXol in

comparison to the free drug. In contrast to tumor samples, both

DOX and DOXol showed higher accumulation in off‐target organs

in DOX‐treated mice, suggesting a role of nano‐formulation in

reducing the capture of DOX and metabolites from liver and kidneys,

which may result in lower toxicity (Figure 4). Moreover, urine samples

strongly evidenced that the faster tumor accumulation and the short

circulation time observed in free DOX and HFer‐DOX samples are

coupled with a faster washout, which may affect the drug therapeutic

index (Figure 4).

4 | CONCLUSIONS

In conclusion, a selective, sensitive and rapid LC‐MS/MS method

was developed and validated to determine simultaneously the

concentration of DOX and its reduced metabolite DOXol in small

volumes of murine plasma, urine and tissue samples. An excellent

linearity (R2 > 0.99), good accuracy, precision and specificity meet-

ing acceptability criteria according to US Food and Drug Adminis-

tration guidelines have been demonstrated for the determination

of DOX and its 13‐hydroxy metabolite, using DAU as the internal

standard. Moreover, the simple, quick and cheap extraction proce-

dure, applicable to a large number of biomatrices, and the short

chromatographic run time, together with the requirements of very

low plasma, urine or tissue samples, render this method particularly

attractive for pharmacological research performed on murine animal

models. Finally, this method has been applied to measure the

biodistribution of DOX and DOXol in the mouse organism after

administration of nanoparticles carrying DOX as an antitumor

agent, demonstrating it as a powerful tool for pharmaceutical

research.
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