
Interacting Generalized Friedman’s Urn Systems

Giacomo Aletti, Andrea Ghiglietti∗
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Abstract

We consider systems of interacting Generalized Friedman’s Urns (GFUs) having

irreducible mean replacement matrices. The interaction is modeled through the

probability to sample the colors from each urn, that is defined as convex combi-

nation of the urn proportions in the system. From the weights of these combina-

tions we individuate subsystems of urns evolving with different behaviors. We

provide a complete description of the asymptotic properties of urn proportions

in each subsystem by establishing limiting proportions, convergence rates and

Central Limit Theorems. The main proofs are based on a detailed eigenanalysis

and stochastic approximation techniques.
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1. Introduction

The stochastic evolution of systems composed by elements which interact

among each other has always been of great interest in several areas of applica-

tion, e.g. in medicine a tumor growth is the evolution of a system of interacting

cells [35], in socio-economics and life sciences a collective phenomenon reflects5

the result of the interactions among the individuals [27], in physics the con-

centration of certain molecules within cells varies over time due to interactions
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between different cells [31]. In the last decade several models have been pro-

posed in which the elements of the system are represented by urns containing

balls of different colors, in which the urn proportions reflect the status of the el-10

ements, and the evolution of the system is established by studying the dynamics

at discrete times of this collection of dependent urn processes. The main reason

of this popularity is concerned with the urn dynamics, which is (i) suitable to

describe random phenomena in different scientific fields (see e.g. [21]), (ii) flex-

ible to cover a wide range of possible asymptotic behaviors, (iii) intuitive and15

easy to be implemented in several fields of application.

The dynamics of a single urn typically consists in a sequential repetition of a

sampling phase, when a ball is sampled from the urn, and a replacement phase,

when a certain quantity of balls is replaced in the urn. The basic model is the

Pólya’s urn proposed in [16]: from an urn containing balls of two colors, balls20

are sequentially sampled and then replaced in the urn with a new ball of the

same color. This updating scheme is then iterated generating a sequence of urn

proportions whose almost sure limit is random and Beta distributed. Starting

from this simple model, several interesting variations have been suggested by

considering different distributions in the sampling phase, e.g. [19, 20], or in the25

replacement phase, e.g. [3, 18, 30]. In a general K-colors urn model, the color

sampled at time n is usually represented by a vector Xn such that Xi,n = 1

when the sampled color is i ∈ {1, . . .,K}, Xi,n = 0 otherwise; the quantities

of balls replaced in the urn at time n are typically defined by a matrix Dn

such that Dki,n indicates the number of balls of color k replaced in the urn30

when the color i is sampled. Considering {Dn;n ≥ 1} as an i.i.d. sequence, a

crucial element to characterize the asymptotic behavior of the urn is the mean

replacement matrix H := E[Dn], typically called generating matrix.

The class of urn models considered in this paper is commonly denoted by

Generalized Friedman’s Urn (GFU). The GFU model was introduced in [18] and35

its extensions and their asymptotic behavior have been studied in several works,

see e.g. [4, 5, 6, 33]. The GFU considered in this paper is characterized by a

non-negative irreducible generating matrix H with average constant balance,
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i.e. the columns of H sum up at the same constant,
∑K

k=1Hki = c > 0 for

any i ∈ {1, . . .,K}, which implies that its maximum eigenvalues λmax(H) = c40

has multiplicity one. The irreducibility of H distinguishes the GFU from the

Randomly Reinforced Urn (RRU) model, which includes the classical Pòlya’s

Urn, whose replacement matrix is diagonal: when the color i is sampled, the

GFU replaces in the urn more colors following the distribution of the ith column

of Dn while the RRU only adds balls of colors i; hence, the probability to45

sample color i at next step is reinforced in the RRU, while it may increase or

decrease according to the current urn composition in the GFU. The asymptotic

behavior is in general very different: in a GFU the urn proportion converges

to a deterministic equilibrium identified by H (see e.g. [4, 5, 6, 33]), while in a

RRU the limit is random and its distribution depends on the initial composition50

(see e.g. [1, 2, 15]).

The model proposed in this paper is a collection ofN ≥ 1 GFUs that interact

among each other during the sampling phase: the probability to sample a color

i from an urn j is a convex combination of the urn proportions of the entire

system. Hence, a crucial role to describe the system dynamics is played by55

the interacting matrix W made by the weights of those combinations. Since

the asymptotic properties of the single GFUs are typically determined by the

corresponding generating matrices {Hj; 1 ≤ j ≤ N} and since the interaction

among them is ruled by W , the system dynamics has been studied by defining

a new object Q that merges the information contained in {Hj; 1 ≤ j ≤ N} and60

W . From the analysis of the eigen-structure of Q, we are able to establish the

convergence and the second-order asymptotic behavior of the urn proportions

in the entire system. Hence, this paper extends the theory on GFU models in

the sense that, in the special case of no interaction, i.e. W = I, the results

presented for the system reduce to the well-known results for a single GFU.65

Several interacting urn models have been proposed in the last decade, espe-

cially for RRU models. An early work is represented by [29] that considered a

collection of two-colors RRU in which the replacements depend on the colors

sampled in the rest of the system and hence the sequence {Dn;n ≥ 1} is not
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i.i.d. Consequently, the interaction in [29] is modeled through the definition of70

Dn, instead ofXn as in our model. A completly different updating rule has been

used in the two-color urn model proposed in [26], in which sampling color 1 in

the urn j increases the composition of color 1 in the urn j, while sampling color

2 increases the composition of color 2 in the neighbor urns i 6= j and the urn

j comes back to the initial composition. Asymptotic properties for this system75

have been obtained in [26] where there is no convergence of the urn proportions.

Other models in which the interaction enters in the replacement matrices are

for instance [8, 10, 11].

Recently there have been more works concerning urn systems in which the

interaction is modeled through the sampling probabilities as in our model. They80

differ from this paper since all of them consider RRUs and the interaction is

only modeled as mean-field interaction tuned by a parameter α ∈ (0, 1), i.e. the

urns interact among each other only through the average composition in the

entire system. As a consequence, their asymptotic results lead to the synchro-

nization property in which all the urn proportions of the system converge to85

the same random limit. In particular, in [24, 25] the asymptotic behavior of the

urn system has been studied for a model that defines the sampling probabilities

through the exponential of the urn compositions. In [12, 13] the sampling prob-

abilities are defined directly using the urn compositions and, in addition, the

synchronization property has been proved; moreover, different convergence rates90

and second-order asymptotic distributions for the urn proportion have been es-

tablished for different values of the tuning parameter α. Since we consider GFU

models the asymptotic results established in this paper are totally different from

those proved in [12, 13], e.g. our limiting proportions are not random and they

do not depend on the initial compositions.95

It is also significant to highlight that this work allows a general structure

for the urn interaction, which reduces to the mean-field interaction only for a

particular choice of the interacting matrix W . Moreover, from the analysis of

the structure of W we are able to individuate subsystems of urns evolving with

different behaviors (see Subsection 2.4): (i) the leading systems, whose dynamics100
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are independent of the rest of the system and (ii) the following systems, whose

dynamics “follow” the evolution of other urns of the system; in the special case

of irreducible interacting matrix, which includes the mean-field interaction con-

sidered in [12, 13], there is a unique leading system and no following systems.

These two classes of systems have been studied separately (leaders in Section 4105

and followers in Section 5), in order to provide an exhaustive description of the

asymptotic behavior in any part of the system. In fact, since different systems

may converge at different rates, a unique central limit theorem would not be

able to characterize the convergence of any urn proportion. Hence, through a

careful analysis on the eigen-structure of Q realized in Subsection 5.2, we indi-110

viduate the components of the urn processes in the system that actually “lead”

or influence the following systems, so that we can establish the right convergence

rate and a non-degenerate asymptotic distribution for any subsystem.

A pivotal technique in the proofs consists in revisiting the dynamics of the

urn proportions of the system in the stochastic approximation (SA) framework,115

as suggested for the composition of a single GFU in [23]. To this end, the dy-

namics of the urn compositions of the same subsystems have been reformulated

into a recursive stochastic algorithm (see Section 3). Then, the dynamics of the

urn proportions have been properly modified to embed the processes of the urn

proportions into the whole suitable space R
K (see Subsection 4.1 and 5.1).120

The main results of the paper starts at Section 4. The first part of the paper

is a necessary formulation of the problem in its general form, together with

all the assumptions and notations that may appear tough at a first reading.

We provide a guiding Example 3.1, that is recovered in the Example 4.1 and125

Example 5.1, to help the reader to appreciate the main results, although not in

all their depth.

More precisely, the structure of the paper is the following. In Section 2 we

present model and main assumptions concerning the interacting GFU system.

Specifically, in Subsection 2.1 we describe how the composition of the colors in130

each urn of the system evolves at any time n ≥ 1. Then, in Subsection 2.2 the
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main assumptions required to establish the results of the paper are presented.

Subsection 2.3 contains a preliminary result. Subsection 2.4 is dedicated to

analyze the structure of the interacting matrix and hence to define the leading

and the following subsystems that compose the entire system.135

Section 3 is concerned with the dynamics of the interacting GFU system

expressed in the stochastic approximation framework. In particular, in Subsec-

tion 3.1 we introduce the notation that combines the composition of the urns in

the same subsystem. Then, in Subsection 3.2 the dynamics of the urn propor-

tions in any subsystem is reformulated into a recursive stochastic algorithm.140

Section 4 and Section 5 contain the main results of the paper. In particular,

Section 4 is concerned with the asymptotic behavior of the leading systems:

the convergence of the urn proportions is established in Subsection 4.2 and the

corresponding CLT is presented in Subsection 4.3. Then, Section 5 is focused on

the asymptotic behavior of the following systems: in Subsection 5.3 we present145

the result on the convergence of the urn proportions, while in Subsection 5.4 we

establish the relative CLT.

Section 6 contains a brief discussion on further possible extensions of the

interacting GFU model. The proofs of all the results presented in the paper are

contained in Section 7. Finally, in Appendix we report basic results of stochastic150

approximation that have been used in the main proofs.

2. Model Setting and main Assumptions

Consider a collection ofN ≥ 1 urns containing balls ofK ≥ 1 different colors.

At any time n ≥ 0 and for any urn j ∈ {1, . . ., N}, let Y j
k,n > 0 be the real

number denoting the amount balls of color k ∈ {1, . . .,K}, let T j
n :=

∑K
k=1 Y

j
k,n155

be the total number of balls and let Zj
k,n := Y j

k,n/T
j
n be the proportion of color

k.

2.1. Model

We now describe precisely how the system evolves at any time n ≥ 1. Denote

by Fn−1 the σ-algebra generated by the urn compositions of the entire system

6



up to time (n− 1), i.e.

Fn−1 := σ
(
Xj

k,t, Y
j
k,t, 1 ≤ j ≤ N, 1 ≤ k ≤ K, 1 ≤ t ≤ n− 1

)
.

The dynamics of the system is described by two main phases: sampling and

replacement.160

Sampling phase: for each urn j ∈ {1, . . ., N}, a ball is virtually sampled and

its color is represented as follows: Xj
i,n = 1 indicates that the sampled ball is of

color i, Xj
i,n = 0 otherwise. We denote by Z̃j

i,n−1 the probability to sample a

ball of color i in the urn j at time n, i.e.

Z̃j
i,n−1 := E

[
Xj

i,n | Fn−1

]
.

Given the sampling probabilities {Z̃j
i,n−1, 1 ≤ j ≤ N, 1 ≤ i ≤ K}, the colors

are sampled independently in all the urns of the system and hence, for any

i ∈ {1, . . .,K}, X1
i,n, . . ., X

N
i,n are independent conditionally on Fn−1. We define

the sampling probabilities as convex combinations of the urn proportions of

the system. Formally, for any urn j ∈ {1, . . ., N} we introduce the weights

{wjh; 1 ≤ h ≤ N} such that 0 ≤ wjh ≤ 1 and
∑N

h=1 wjh = 1. Thus, the

probability to sample the color i in the urn j is defined as follows

Z̃j
i,n−1 :=

N∑

h=1

wjhZ
h
i,n−1. (1)

Replacement phase: after that a ball of color i has been sampled from the

urn j, we replace Dj
ki,n balls of color k ∈ {1, . . .,K} in the urn j. For any urn j165

we assume that {Dj
n;n ≥ 1} is a sequence of i.i.d. non-negative random matri-

ces, where Dj
n := [Dj

ki,n]ki. We will refer to Dj
n as replacement matrix and to

Hj := E[Dj
n] as generating matrix. Notice that Hj are time-independent since

{Dj
n;n ≥ 1} are identically distributed (see Subsection 6 for possible extensions).

Moreover, we assume that at any time n the replacement matrix for the urn j,170

i.e. Dj
n, is independent of the sampled colors, i.e. {Xj

i,n; 1 ≤ j ≤ N, 1 ≤ i ≤ K},
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and independent of the replacement matrices of the other urns of the system,

i.e. Dj0
n with j0 6= j.

In conclusion, the composition of the color k ∈ {1, . . .,K} in the urn j ∈
{1, . . ., N} evolves at time n ≥ 1 as follows:

Y j
k,n = Y j

k,n−1 +

K∑

i=1

Dj
ki,nX

j
i,n. (2)

2.2. Main Assumptions175

We now present the main conditions required to establish the results of the

paper. The first assumption is concerned with bounds for the moments of the

replacement distributions. Specifically, we require the following condition:

(A1) there exists δ > 0 and a constant 0 < Cδ < ∞ such that, for any j ∈
{1, . . ., N} and any k, i ∈ {1, . . .,K}, E[(Dj

ki,n)
2+δ] < Cδ.180

Note that Cδ does not depend on n since {Dj
n;n ≥ 1} are identically distributed.

The second assumption is the average constant balance of the urns in the

system and it is imposed by the following condition on the generating matrices

H1, . . ., HN :

(A2) for any j ∈ {1, . . ., N} and i ∈ {1, . . .,K}, there exists a constant 0 < cj <185

∞ such that
∑K

k=1H
j
ki = cj .

Note that (A2) guarantees that the average number of balls replaced in any urn

is constant, regardless its composition. Assumption (A2) is essential to obtain

the asymptotic configuration of the system, i.e. the limiting urn proportions.

The second-order asymptotic properties of the interacting urn system, namely190

the rate of convergence and the limiting distributions, are obtained by assuming

a stricter assumption than (A2). This condition is expressed as follows:

(A’2) for any j ∈ {1, . . ., N}, i ∈ {1, . . .,K}, P
( ∑K

k=1D
j
ki,n = cj

)
= 1, i.e.

each urn is updated with a constant total amount of balls.
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Naturally, (A’2) implies (A1) with Cδ = (maxj{cj})2+δ.195

Notice that, by defining Ŷ j
k,n = (cj)−1Y j

k,n and D̂j
ki,n = (cj)−1Dj

ki,n for all

n ≥ 1, the urn dynamics in (2) can be expressed in the following equivalent

form:

Ŷ j
k,n = Ŷ j

k,n−1+

K∑

i=1

D̂j
ki,n·X

j
i,n, Ẑj

k,n−1 =
Ŷ j
k,n−1∑K

k=1 Ŷ
j
k,n−1

=
Y j
k,n−1∑K

k=1 Y
j
k,n−1

= Zj
k,n−1.

Therefore, from now on we will denote by Y j
k,n and Dj

ki,n the normalized quan-

tities Ŷ j
k,n and D̂j

ki,n and hence (A2) and (A’2) are replaced by the following

conditions:

(A2) for any j ∈ {1, . . ., N} and i ∈ {1, . . .,K}, ∑K
k=1H

j
ki = 1.

(A’2) for any j ∈ {1, . . ., N} and i ∈ {1, . . .,K}, P
( ∑K

k=1D
j
ki,n = 1

)
= 1.200

In this case, (A’2) implies (A1) with Cδ = 1.

Finally, we consider Generalized Friedman’s Urns (GFUs) with irreducible

generating matrices, as expressed in the following condition:

(A3) for any j ∈ {1, . . ., N}, Hj is irreducible.

This assumption will guarantee deterministic asymptotic configurations for the205

urn proportions in the system.

Remark 2.1. Extensions to non-homogeneous generating matrices {Hn;n ≥ 0}
are possible, as discussed in Section 6. In that case, assumption (A2) should be

referred to the limiting matrix Hj := a.s.− limn→∞Hj
n.

2.3. A preliminary result210

The assumptions (A2) and (A’2) on the constant balance are essential to

obtain the following result on the total number of balls in the urns of the system:

Theorem 2.1. Let T j
n =

∑K
k=1 Y

j
k,n be the total number of balls contained in

the urn j at time n. Then, under assumptions (A1) and (A2), {T j
n − n;n ≥ 1}

is an L2 martingale and, for any α < 1/2,

nα

(
T j
n

n
− 1

)
a.s./L2

−→ 0. (3)
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Moreover, under assumption (A’2), T j
n = T j

0 + n a.s. and hence (3) holds for

any α < 1.

2.4. The interacting matrix215

The interaction among the urns of the system is modeled through the sam-

pling probabilities Z̃j
i,n−1, that are defined in (1) as convex combinations of the

urn proportions of the system. Formally, we denote by W the N × N matrix

composed by the weights {wjh, 1 ≤ j, h ≤ N} of such linear combinations and we

refer to it as interacting matrix. We now consider a particular decomposition220

of W that individuates subsystems of urns evolving with different behaviors.

The same decomposition is typically applied to the transition matrices in the

context of discrete time-homogeneous Markov chains (see [28]) to characterize

the state space. For this reason, we first present the decomposition of W in this

framework, and then we identify the subsystems of urns as the communicating225

classes of the state space.

Consider a discrete time-homogeneousMarkov chain with state space {1, . . ., N}
and transition matrix W , i.e. the element wjh now represents the probability

of a Markov chain to move from state j to state h in one step. It is well-

known (see [28]) that the communication relationship (i ∼ j if there exist

m,n ≥ 0 such that [Wm]ij > 0 and [Wn]ji > 0) induces a partition of the

state space into communicating classes (some of them are necessarily closed and

recurrent, with possibly some transient classes). The maximum eigenvalue is

λ = 1 and its multiplicity reflects the number of recurrent classes. Accordingly,

let us denote by L the set of labels that identify the communicating classes,

nL ≥ 1 the multiplicity of λmax(W ) = 1, and define the integers nF ≥ 0 and

1 ≤ rL1 < . . . < rLnL < rF1 < . . . < rFnF = N such that W can be decomposed
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as follows (see [28, Example 1.2.2] for the analogous upper triangular case):

W :=


 WL 0

WFL WF


 ,

WL :=

(
WL1 0 ... 0
0 WL2 ... ...
... ... ... 0
0 0 ... WLnL

)

WFL :=

(
WF1L1 ... WFnL

L1

... ... ...
WFnF

L1 ... WFnF
LnL

)
, WF :=

(
WF1 0 ... 0

WF2F1 WF2 ... 0
... ... ... ...

WFnF
F1 WFnF

F2 ... WFnF

)
.

(4)

where:

(1) for any l ∈ L,W l is an sl×sl irreducible matrix, where we let sl := rl−rl−

and l− indicates the element in L that precedes l (by convention L−
1 ≡ ∅

and F−
1 ≡ LnL

);230

(2) L := LL ∪ LF , LL := {L1, . . ., LnL} and LF := {F 1, . . ., FnF } are sets of

labels that identify, respectively, recurrent and transient communicating

classes in the state space (LF = ∅ when nF = 0);

(3) for any l1 ∈ LF , there is at least an l2 ∈ L, l1 6= l2, such that W l1l2 6= 0;

hence, λmax(W
l) = 1 if l ∈ LL and λmax(W

l) < 1 if l ∈ LF .235

Naturally, when nF = 0 the elements in WFL and WF do not exist and we

consider rLnL = N . This occurs when all the classes are closed and recurrent and

hence the state space can be partitioned into irreducible and disjoint subspaces.

In the case of W irreducible, there is only one closed and recurrent class and

hence nL = 1 and r1 = N .240

In the framework of urn systems, W indicates the interacting matrix and

hence the element wjh represents how the color sampled from the urn j is in-

fluenced by the composition of the urn h. Hence, the probability of the Markov

process to move from j to h in the state space can be interpreted as the influ-

ence that h has on j in the urn system. As a consequence, recurrent classes245

may be seen as subsystems of urns which are not influenced by the rest of the

system; analogously, transient classes may represent subsystems of urns which

are influenced by other urns of the system. Hence, from an interacting matrix

W expressed as in (4), we can decompose the urn system in:
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(i) leading systems {Sl, l ∈ LL}, Sl := {rl− + 1 < j ≤ rl}, that evolve250

independently with respect to the rest of the system;

(ii) if nF ≥ 0, following systems {Sl, l ∈ LF }, Sl := {rl− + 1 < j ≤
rl}, that evolve depending on the proportions of the urns in the leaders

SL1 , . . ., SLnL and their upper followers SF1 , . . ., Sl− .

As we will see in the following sections, the asymptotic behaviors of the leading255

systems and the following systems are quite different. For completeness of the

paper, we will present the results for both the types of systems, assuming that

nF ≥ 1.

Remark 2.2. Extensions to random and time-dependent interacting matrices

{Wn;n ≥ 0} are possible, as discussed in Section 6. In that case, the structure260

presented in (4) is concerned with the limiting matrix W := a.s.− limn→∞Wn.

3. The interacting urn system in the stochastic approximation frame-

work

A crucial technique to characterize the asymptotic behavior of the interacting

urn system consists in revisiting its dynamics into the stochastic approximation

(SA) framework. A similar approach has been adopted in [23] to establish the

asymptotic behavior of a single urn. However, since here we deal with systems of

urns, we need to extend the dynamics (2) to jointly study the urns that interact

among each other. To this end, we first introduce in Subsection 3.1 a compact

notation that combines the composition of the urns in the same subsystem

Sl, l ∈ L. Then, in Subsection 3.2 we embed each subsystem dynamics into

the classical SA form: given a filtered probability space (Ω,A, (Fn)n≥0,P), we

consider the following recursive procedure

∀n ≥ 1, θn = θn−1 −
1

n
f(θn−1) +

1

n
(∆Mn +Rn) , (5)

where f : R
d → R

d is a locally Lipschitz continuous function, θn an Fn-

measurable finite random vector and, for every n ≥ 1, ∆Mn is an Fn−1-265
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martingale increment and Rn is an Fn-adapted remainder term. In our frame-

work, the process θn satisfying (5) will represent the proportions of the colors

of the urns in the same subsystem. In the next sections we apply the “ODE”

and the “SDE” methods for SA reported in Theorem A.1 and in Theorem A.2

(see Appendix), that establish first and second-order asymptotic results for θn.270

Specifically, Theorem A.1 states that, under suitable hypotheses on ∆Mn and

Rn, the set Θ∞ of the limiting values of θn as n → +∞ is a.s. a compact con-

nected set, stable by the flow of ODEf ≡ θ̇ = −f(θ); moreover, if θ∗ ∈ Θ∞ is

a uniformly stable equilibrium on Θ∞ of ODEf , then θn
a.s.−→ θ∗. In addition,

under further assumptions on ∆Mn and Rn, Theorem A.2 establishes the CLT275

for θn in which the convergence rate and the asymptotic distribution depend on

the eigen-structure of the Jacobian matrix of f(θ) evaluated at the equilibrium

point θ∗.

3.1. Notation

The quantities related to the urn j ∈ {1, . . ., N} at time n are random280

variables denoted by:

(1) Y j
n = (Y j

1,n, . . ., Y
j
K,n)

′ ∈ R
K
+ ,

(2) Zj
n = (Zj

1,n, . . ., Z
j
K,n)

′ ∈ SK , where SK indicates the K-simplex,

(3) Z̃j
n = (Z̃j

1,n, . . ., Z̃
j
K,n)

′ ∈ SK ,

(4) Xj
n = (Xj

1,n, . . ., X
j
K,n)

′ ∈ SK ∩ {0, 1}K,285

while the corresponding terms of the system Sl, l ∈ L, given by the sl urns

labeled by {rl− + 1, . . ., rl}, are denoted by:

(1) Yl
n := (Y rl

−

+1
n , . . ., Y rl

n )′ ∈ R
slK
+ ,

(2) Zl
n := (Zrl

−

+1
n , . . ., Zrl

n )′ ∈ SslK , where SslK indicates the Cartesian prod-

uct of sl K-simpleces where Zrl
−

+1
n , . . ., Zrl

n are defined,290

(3) Z̃l
n := (Z̃rl

−

+1
n , . . ., Z̃rl

n )′ ∈ SslK ,
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(4) Xl
n := (Xrl

−

+1
n , . . ., Xrl

n )′ ∈ SslK ∩ {0, 1}slK ,

(5) Tl
n := (T rl

−

+1
n 1K , . . ., T

rl

n 1K)′ ∈ R
slK
+ , where 1K indicates the K-vector

of all ones.

The replacement matrix for the system Sl is defined by a non-negative block295

diagonal matrix Dl
n of dimensions slK × slK, where the sl blocks are the re-

placement matrices of the urns {rl− + 1, . . ., rl} in Sl, i.e. Drl
−

+1
n , . . ., Drl

n .

Analogously, the generating matrix for Sl is defined by a block diagonal matrix

Hl of the same dimensions, where the sl blocks are Hrl
−

+1, . . ., Hrl

n . The in-

teraction within the system Sl is modeled by the slK × slK matrix Wl with300

values in [0, 1] defined as follows: starting from W l in (4), each weight wjh is

replaced by the corresponding diagonal matrix wjhIK , where here IK indicates

the K × K-identity matrix. Analogously, the interaction between a following

system Sl1 , l1 ∈ LF , and another system Sl2 , l2 ∈ {L1, . . ., l
−
1 }, is modeled by

the matrix Wl1l2 , obtained by replacing each weight wjh ofW l1l2 in (4) with the305

corresponding diagonal matrix wjhIK . Finally, we will denote by I the identity

matrix composed by more matrices IK .

Example 3.1. Consider a system of N = 2 urns containing balls of K = 2

colors. Let the generating matrices H1, H2 and the interacting matrix W be as

follows:

H1 :=


3/4 1/2

1/4 1/2


 , H2 :=


7/8 7/8

1/8 1/8


 , W :=


 α 1− α

1− β β


 ,

(6)

where α and β are given constants in [0, 1].

In the case of no interaction α = β = 1, from the classical theory on single

GFUs (see [4, 5, 6, 33]), we have that310

(1) Z1
n = (Z1

1,n, Z
1
2,n)

′ converges a.s. to (2/3, 1/3)′, i.e. the right eigenvector

of H1 associated to λ = 1; moreover the convergence rate is
√
n, since the

second eigenvalue of H1 is 0.25.
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(2) Z2
n = (Z2

1,n, Z
2
2,n)

′ converges a.s. to (1/2, 1/2)′, i.e. the right eigenvector

of H2 associated to λ = 1; moreover the convergence rate is n0.25, since315

the second eigenvalue of H2 is 0.75.

When both α < 1 and β < 1, W is irreducible. Using the notation introduced

in Subsection 2.4 and Subsection 3.1, in this case the two urns belong to the same

leading subsystem SL1 = {1, 2}. We have sL1 = 2, W = WL = WL1 , and the

joint quantities read as follows: Z1
n := (Z1

1,n, Z
1
2,n, Z

2
1,n, Z

2
2,n)

′ ∈ S2,2,

H :=




3
4

1
2 0 0

1
4

1
2 0 0

0 0 7
8

1
8

0 0 1
8

7
8



, W :=




α 0 1− α 0

0 α 0 1− α

1− β 0 β 0

0 1− β 0 β



.

We will discuss the asymptotic properties of this system in Example 4.1.

When α = 1 and β < 1, the first urn forms a leading system, while the

second one exhibits the behavior of a following system (see Example 5.1).

3.2. The system dynamics in the SA form320

For any system Sl, l ∈ L, the dynamics in (2) can be written, using the

notation of Subsection 3.1, as follows:

Yl
n = Yl

n−1 + Dl
nX

l
n. (7)

We now express (7) in the SA form (5), where the process {θn;n ≥ 1} is rep-

resented by the urn proportions of the system Sl, i.e. {Zl
n;n ≥ 1}. Since

Yl
n = diag(Tl

n)Z
l
n for any n ≥ 1, from (7) we have

diag(Tl
n)Z

l
n = diag(Tl

n−1)Z
l
n−1 + Dl

nX
l
n,

that is equivalent to

diag(Tl
n)(Z

l
n − Zl

n−1) = −diag(Tl
n −Tl

n−1)Z
l
n−1 + Dl

nX
l
n. (8)

Now, notice that, for any n ≥ 1,

(1) E[diag(Tl
n −Tl

n−1)|Fn−1] = I by Theorem 2.1;

15



(2) E[Dl
nX

l
n|Fn−1] = E[Dl

n|Fn−1]E[Xl
n|Fn−1] = HlZ̃l

n−1, since Dl
n and

Xl
n are independent conditionally on Fn−1.

Hence, defining the martingale increment

∆Ml
n := Dl

nX
l
n −HlZ̃l

n−1 − (diag(Tl
n −Tl

n−1)− I)Zl
n−1, (9)

we can express (8) as follows:

diag(Tl
n)(Z

l
n − Zl

n−1) = −Zl
n−1 + HlZ̃l

n−1 + ∆Ml
n. (10)

Now, multiplying by diag(Tl
n)

−1 and defining the remainder term

Rl
n :=

(
n · diag(Tl

n)
−1 − I

) (
−Zl

n−1 + HlZ̃l
n−1 + ∆Ml

n

)
, (11)

we can write (10) as follows:

Zl
n − Zl

n−1 = − 1

n
(Zl

n−1 − HlZ̃l
n−1) +

1

n

(
∆Ml

n + Rl
n

)
. (12)

The term (Zl
n−1 − HlZ̃l

n−1) in (12) should represent the function f in (5) in325

the SA form. However, although in a leader Sl, l ∈ LL, we have that Z̃l
n−1

only depends on Zl
n−1, in a follower Sl, l ∈ LF , the term Z̃l

n−1 is in general a

function of the composition of all the urns of the system, i.e. ZL1
n−1, . . .,Z

l
n−1.

Hence, the dynamics of a leading system can be expressed as in (12), while the

dynamics of a following system needs to be incorporated with other systems330

to be fully described. For this reason, the asymptotic behavior of these two

types of systems are studied separately: the leading systems in Section 4 and

the following systems in Section 5.

4. Leading Systems

In this section we present the main asymptotic results concerning the leading

systems Sl, l ∈ LL. We recall that these systems are characterized by irreducible

interacting matrices W l such that λmax(W
l) = 1 (see (4) in Subsection 2.4).

For this reason, their dynamics is independent of the rest of the system and

16



hence, by using Z̃l
n−1 = WlZl

n−1 in (12), we have

Zl
n − Zl

n−1 = − 1

n
hl(Zl

n−1) +
1

n

(
∆Ml

n + Rl
n

)
,

hl(x) := (I−Ql)x, Ql := HlWl

(13)

4.1. Extension of the urn dynamics to R
slK

335

Since hl is defined on R
slK , while the process {Zl

n;n ≥ 0} takes values

in the subset SslK , then applying theorems based on the SA directly to (13)

may lead to improper results for the process Zl
n. To address this issue, we

appropriately modify the dynamics (13) by replacing hl with a suitable function

f l
m := hl+mgl, wherem > 0 is an arbitrary constant and gl is a function defined340

in R
slK that satisfies the following properties:

(i) the derivative Dgl is positive semi-definite and its kernel is Span{(x− y) :
x, y ∈ SslK}: hence, gl does not modify the eigen-structure of Dhl(x) on
the subspace SslK , where the process Zl

n is defined, while it changes the

eigen-structure outside SslK , where it can be arbitrary redefined;345

(ii) gl(z) = 0 for any z ∈ SslK : hence, since f l
m(z) = hl(z) for any z ∈ SslK ,

the modified dynamics restricted to the subset SslK represents the same

dynamics as in (13).

Let us now provide an analytic expression of gl. First note that, since by defini-

tion of convex combination we always haveW l1sl = 1sl , the left eigenvectors of

W l (possibly generalized) are such that U ′
11sl = 1 and U ′

i1sl = 0 for all i 6= 1.

Denote by Sp(A) the set of the eigenvalues of a matrix A and note that, since

by (A2) we always have 1′
KH

j = 1′
K , then Sp(W l) ⊂ Sp(Ql) and the sl left

eigenvectors of Ql associated to any λi ∈ Sp(W l) ⊂ Sp(Ql), i ∈ {1, . . ., sl},
present the following structure: Ui := (Ui11K , . . ., Uisl1K)′. As a consequence,

for any z ∈ SslK , we have U′
1z = U ′

11sl = 1 and U′
iz = U ′

i1sl = 0 for all

i ∈ {2, . . ., sl}. Hence, denoting by V2 and U2 the matrices whose columns are

V2, . . .,Vsl and U2, . . .,Usl , respectively, we define the function gl as follows:

gl(x) := V1 (U
′
1x− 1) + V2U

′
2x, (14)
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and the dynamics of the process Zl
n in (13) can be replaced by the following:

Zl
n − Zl

n−1 = − 1

n
f l
m(Zl

n−1) +
1

n

(
∆Ml

n + Rl
n

)
,

f l
m(x) := (I−Ql)x + mV1 (U

′
1x− 1) + mV2U

′
2x.

(15)

4.2. First-order asymptotic results

We now present the main convergence result concerning the limiting propor-350

tion of the urns in the leading systems.

Theorem 4.1. Assume (A1), (A2) and (A3). Thus, for any leading system Sl,

l ∈ LL, we have that

Zl
n

a.s.−→ Zl
∞ := V1, (16)

where V1 indicates the right eigenvector associated to the simple eigenvalue

λ = 1 of the matrix Ql, with
∑

i V1i = 1.

Remark 4.1. Note that when the interacting matrix is the identity matrix, i.e.

W = I, nL = N and nF = 0, each urn represents a leading system and it355

evolves independently of the rest of the system. In this case, (16) expresses the

usual result for a single GFU, where the urn proportion converges to the right

eigenvector associated to the maximum eigenvalue of the generating matrix, see

e.g. [4, 5, 6, 33].

Remark 4.2. In Theorem 4.1, condition (A3) implies that the maximum eigen-360

value λ = 1 of Ql has multiplicity one, which guarantees V1 to be the unique

global attractor for the system Sl. Without assumption (A3), there could be

multiple attractors and hence the limiting proportions of the system would be a

random variable, as in [12, 13] where the RRU model is considered.

4.3. Second-order asymptotic results365

We now establish the rate of convergence and the asymptotic distribution

of the urn proportions in the leading systems Sl, l ∈ LL. Since to obtain these

results we need to apply the Central Limit Theorem of the SA (see Theorem A.2

in Appendix) to the dynamics (15), a crucial role is played by the spectrum of
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the Ksl ×Ksl-matrix of the first-order derivative of f l
m defined as follows: for

any x ∈ R
Ksl

Fl
m := Df l

m(x) = (I−Ql) + mV1U
′
1 + mV2U

′
2. (17)

Moreover, since the asymptotic variance depends on the second moments of

the replacement matrices, we denote by Cj(i) the covariance matrix of the ith

column of Dj
n, i.e. Cj(i) := Cov[Dj

·i,n], where Dj
·i,n := (Dj

1i,n, . . ., D
j
Ki,n)

′;

note that (A′2) ensures the existence of Cj(i). Hence, denoting by Hj(i) :=

E[Hj
·i(H

j
·i)

′] where Hj
·i := (Hj

1i, . . ., H
j
Ki)

′, we let

Gj :=

K∑

i=1

(
Cj(i) +Hj(i)

)
Z̃j
i,∞ − Zj

∞(Zj
∞)

′

, (18)

where Z̃j
i,∞ =

∑N
h=1 wjhZ

h
i,∞. Then, for any leading system Sl, l ∈ LL, we

denote by Gl the block diagonal matrix made by the sl blocks Grl
−

+1, . . ., Grl .

The following theorem shows the rate of convergence and the limiting dis-

tribution of the urn proportions in the leading systems.

Theorem 4.2. Assume (A′2) and (A3). For any leading system Sl, l ∈ LL, let370

λ∗l be the eigenvalue of Sp(Ql) \ Sp(W l) with highest real part. Thus, we have

that ℜe(λ∗l) ≡ 1−ℜe(Sp(Fl
m)) and

(a) if ℜe(λ∗l) < 1/2, then

√
n(Zl

n−Zl
∞)

d−→ N
(
0,Σl

)
, Σl := lim

m→∞

∫ ∞

0

eu(
I

2−F
l
m)Gleu(

I

2−F
l
m)′du.

(b) if ℜe(λ∗l) = 1/2, then

√
n

log(n)
(Zl

n − Zl
∞)

d−→ N
(
0,Σl

)
.

(c) if ℜe(λ∗l) > 1/2, then there exists a finite random variable ψl such that

n1−ℜe(λ∗l)(Zl
n − Zl

∞)
a.s.−→ ψl.

Remark 4.3. When the interacting matrix W is the identity matrix, each urn

represents a leading system and hence W l = 1 and Ql ≡ H l. In that case, λ∗
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is the eigenvalue of H l with second highest real part and hence Theorem 4.2375

expresses the usual Central Limit Theorem for a single GFU, see e.g. [4, 5, 6,

33].

Remark 4.4. The role of Ql in Theorem 4.2 shows that the convergence rate of

the urns in Sl does not depend only on their generating matrices {Hj, rl
−

+1 ≤
j ≤ rl} but also on their interaction expressed in W l. For instance, consider two380

single GFUs whose generating matrices H1 and H2 are such that the convergence

rates of the urn proportions Z1
n and Z2

n without interactions are different. Then,

an interaction between these urns with an irreducible W l would make Z1
n and

Z2
n converge at the same rate, which would depend on the choice of W l.

Example 4.1 (Continuation of Example 3.1). When we introduce an interac-

tion with an irreducible W , the limit of the urn proportions changes as estab-

lished in Theorem 4.1. For instance, if we considerW as in (6) with α = β = 0.8

we have that Zn = (Z1
1,n, Z

1
2,n, Z

2
1,n, Z

2
2,n)

′ converges a.s. to (0.66, 0.34, 0.56, 0.44)′,

which is the right eigenvector of

Q = HW =


 αH1 (1− α)H1

(1− β)H2 βH2


 =




3 α
4

α
2

3
4 (1−α) 1

2 (1−α)
α
4

α
2

1
4 (1−α) 1

2 (1−α)
7
8 (1−β) 1

8 (1−β) 7 β
8

β
8

1
8 (1−β) 7

8 (1−β) β
8

7 β
8


 ,

associated to λ = 1. Moreover, as explained in Remark 4.4, the interaction385

makes the two urns converge at the same rate, which depends on the interacting

matrix, as established in Theorem 4.2. In this case α = β = 0.8, since Sp(Q) =

{1, 0.62, 0.6, 0.18} and Sp(W ) = {1, 0.6}, we have λ∗ = 0.62 and hence the

convergence rate is n0.38. In addition, to underline the role of the interaction

in the convergence rate of the system, we note that390

(i) if α = (1− β) = 0.8, since Sp(Q) = {1, 0.35, 0, 0} and Sp(W ) = {1, 0} we

have λ∗ = 0.35 and hence the convergence rate is
√
n;

(ii) if α = β = 0.5, since Sp(Q) = {1, 0.5, 0, 0} and Sp(W ) = {1, 0} we have

λ∗ = 0.5 and hence the convergence rate is
√
n/ log(n);

(iii) if α = (1− β) = 0.2, since Sp(Q) = {1, 0.65, 0, 0} and Sp(W ) = {1, 0} we395

have λ∗ = 0.65 and hence the convergence rate is n0.35.
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5. Following Systems

In this section we establish asymptotic properties concerning the following

systems Sl, l ∈ LF . As we have already underlined, the dynamics of these

systems can be properly expressed in the SA form (5) only through a joint model

with the urns in the systems {SL1, . . ., Sl}. Thus, we need a further notation

to study collections of more systems. In particular, we will replace the label l

with (l) whenever an object is referred to the joint system S(l) := {SL1 , . . ., Sl}
instead of the single system Sl. For instance, the vector Y

(l)
n ∈ R

Krl indicates

(YL1
n , . . .,Yl

n)
′, andD

(l)
n indicates the block diagonal (Krl×Krl)-matrix, whose

blocks are made by DL1
n , . . .,Dl

n. Then, from (4) we can express the sampling

probabilities in the follower Sl as follows:

Z̃l
n−1 =

∑

i∈{L1,...l−}

WliZi
n−1 +WlZl

n−1.

Hence, from (12) we obtain

Zl
n − Zl

n−1 = − 1

n
hl(Z

(l−)
n−1,Z

l
n−1) +

1

n

(
∆Ml

n + Rl
n

)
,

hl(x1,x2) := −Ql(l−)x1 + (I−Ql)x2,

Ql(l−) :=
[
HlWlL1 . . . HlWl l−

]
, Ql := HlWl

(19)

Since hl is not only a function of Zl
n−1, the dynamics in (19) is not already

expressed in the SA form (5). To address this issue, we need to consider a joint

model for the global system S(l) = S(l−) ∪ Sl = SL1 ∪ . . . ∪ Sl as follows:

Z(l)
n − Z

(l)
n−1 = − 1

n
h(l)(Z

(l)
n−1) +

1

n

(
∆M(l)

n + R(l)
n

)
,

h(l)(x) :=
(
I−Q(l)

)
x,

(20)

where Q(l) can be recursively defined as follows:

Q(l) :=


Q(l−) 0

Ql(l−) Ql


 , Q(LnL

) :=




QL1 . . . 0

. . . . . . . . .

0 . . . QLnL ,


 , (21)

where by convention F−
1 = LnL

.

21



5.1. Extension of the urn dynamics to R
rlK

We now apply to following systems similar considerations made for SA of400

the leading systems in Section 4.1. Note again that h(l) in (20) is defined in

R
rlK , while the process {Z(l)

n ;n ≥ 0} lies in the subspace SrlK . The application

of the theorems based on the SA needs an extension of h(l), which takes into

account the SA structure.

For this reason, we replace h(l) in (19) with a suitable function f
(l)
m :=

h(l)+mg(l) such thatm > 0 is an arbitrary constant and g(l) is a function defined

as in (14), where in this case {Ui; 1 ≤ i ≤ rl} and {Vi; 1 ≤ i ≤ rl}, indicate,
respectively, the left and right eigenvectors ofQ(l) (possibly generalized). Hence,

the dynamics of the process Z
(l)
n (19) is replaced by the following:

Z(l)
n − Z

(l)
n−1 = − 1

n
f (l)
m (Z

(l)
n−1) +

1

n

(
∆M(l)

n + R(l)
n

)
,

f (l)
m (x) :=

(
I−Q(l)

)
x + mV1 (U

′
1x− 1) + mV2U

′
2x.

(22)

Note that in the joint system S(l) the eigenvalue λ = 1 of Q(l) may not have405

multiplicity one; in that case, V1 is univocally identified as the right eigenvector

of Q(l) associated to λ = 1 such that, letting Ui := (Ui11K , . . ., Uirl1K)′ and

U ′
iW

(l) = λiU
′
i for any i ∈ {1, . . ., rl}, we have U′

1V1 = U ′
11rl = 1 and U′

iV1 =

U ′
i1rl = 0 when i 6= 1.

5.2. Removal of unnecessary components410

The following system Sl may not depend on all the components of S(l−)

and hence the convergence in Sl may be faster than the rate in S(l−). When

this occurs, the asymptotic distribution obtained for the urn proportions in S(l)

restricted to the urns in Sl is degenerate. To address this issue and characterize

the asymptotic behavior in the following system Sl, we need to reduce the

dimensionality of Z
(l)
n by deleting those components which do not influence the

dynamics of Zl
n. Since the interaction between Sl and the systems in S(l−) is

expressed by Ql(l−), we exclude the components of Z
(l−)
n defined on the null

space of Ql(l−). Formally, consider the following decomposition:

Sp(Q(l)) = Sp(Ql) ∪ Sp(Q(l−)) = AIN ∪ AOUT ,
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where

AOUT :=
{
λ ∈ Sp(Q(l−)) : ∃v{Q(l−)v = λv} ∩ {Ql(l−)v = 0}

}

AIN := Sp(Ql) ∪
(
Sp(Q(l−)) \ AOUT

)
.

Then, the eigenspace of Q(l) associated to λ ∈ AOUT will be removed from the

dynamics in (22). To do this, let us denote by:

(1) UIN and VIN the matrices whose columns are the left and right eigen-

vectors of Q(l), respectively, associated to eigenvalues in AIN ;

(2) UOUT and VOUT the matrices whose columns are the left and right eigen-415

vectors of Q(l), respectively, associated to eigenvalues in AOUT ;

Since we do not want to modify the process Z
(l)
n on Sl, i.e. Zl

n, we now construct

two conjugate basis in Im(UIN ) and Im(VIN ) that are invariant on Sl. Note

that, since Sp(Ql) ⊂ AIN , there exists a non-singular matrix P such that the

following decompositions hold:

B := VINP =


B̂ 0

0 I


 , C := P−1U′

IN =


Ĉ 0

0 I


 .

Since Ĉ′B̂ = I and B̂Ĉ′ = VINUIN
′, Ĉ and B̂ represent conjugate basis in

Im(UIN ) and Im(VIN ), respectively. Thus, for any x = (x(l−),xl)′ ∈ R
Krl ,

we have the following decomposition:

x = VINUIN
′x + VOUTUOUT

′x = B̂x̂ + VOUTxOUT, (23)

where

x̂ := Ĉ′x =


C′x(l−)

xl


 , xOUT := UOUT

′x.

In particular, we consider the process {Ẑ(l)
n , n ≥ 1} defined as follows:

Ẑ(l)
n := Ĉ′Z(l)

n =


C′Z

(l−)
n

Zl
n


 ; (24)

23



now, multiplying by Ĉ′ to (22) and applying the decomposition (23) in (22),

since Ĉ′
V2U

′
2VOUT = 0, U′

1VOUT = 0 and Ĉ′VOUT = 0, we have that

Ẑ(l)
n − Ẑ

(l)
n−1 = − 1

n
f̂ (l)
m (Ẑ

(l)
n−1) +

1

n
Ĉ′
(
∆M(l)

n + R(l)
n

)
,

f̂ (l)
m (x̂) :=

(
I− Ĉ′Q(l)B̂

)
x̂ + mV̂1

(
Û′

1x̂− 1
)

+ mV̂2Û
′
2x̂,

(25)

where Û′
1 := U′

1B̂, Û2 := U
′
2B̂, V̂1 := Ĉ′V1 and V̂2 := Ĉ′

V2 represent the left

and right eigenvectors of Ĉ′Q(l)B̂ associated to λ ∈ Sp(W (l))\AOUT . Since f̂
(l)
m

is a function of Ẑ
(l)
n , the dynamics in (25) is now expressed in the SA form (5).

Remark 5.1. The interacting matrix W lonely is not enough to individuate the420

components of the system that actually influence a following system, but it is

necessary to study the eigen-structure of Q(l), that joins the information of W

and of the generating matrices {Hj, 1 ≤ j ≤ rl} of the urns in S(l). This may

be surprising since W is the only element that defines the interaction among the

urns in the system. Nevertheless, when Hj is singular, different values of Z̃j
n425

may give the same average replacements, HjZ̃j
n, which is equivalent as having

singularities in W , where different values of {Zi
n; 1 ≤ i ≤ rl} may give the same

Z̃j
k,n, and hence same HjZ̃j

n. For instance, if all the columns of Hj were equal

to a given vector vj, the urn j would be updated on average by vj regardless

the value of Z̃j
n−1 and hence the urns in S(l−) would not play any role in the430

dynamics of the urn j for any choice of W .

5.3. First-order asymptotic results

We now present the convergence result concerning the limiting proportion of

the urns in the following systems. The asymptotic behavior of Z
(l)
n is obtained

recursively from Z
(l−)
∞ := a.s.− limn→∞ Z

(l−)
n .435

Theorem 5.1. Assume (A1), (A2) and (A3). Thus, for any l ∈ LF , we have

that

Ẑ(l)
n

a.s.−→ Ẑ(l)
∞ := V̂1;

hence, from (24), in the following system Sl we have that

Zl
n

a.s.−→ Zl
∞ :=

(
I−Ql

)−1
Ql(l−)Z(l−)

∞ .
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5.4. Second-order asymptotic results

We now present the results concerning the rate of convergence and the

asymptotic distribution of the urn proportions in the following systems. To

this end, let us introduce the Ksl ×Ksl-matrix of the first-order derivative of

f̂ l
m:

F̂(l)
m := Ĉ′F(l)

m B̂

= (I− Ĉ′Q(l)B̂) + mV̂1Û
′
1 + mV̂2Û

′
2.

(26)

Moreover, the asymptotic variance will be based on the quantity Ĝ(l) := Ĉ′G(l)B̂,

where G(l) is the block diagonal matrix made by G1, . . ., Grl (see (18)).

The following theorem shows the rate of convergence and the limiting dis-

tribution of the urn proportions in the following systems.440

Theorem 5.2. Assume (A′2) and (A3). For any following system Sl, l ∈ LF ,

let λ∗l be the eigenvalue of Sp(Q(l)) \ (Sp(W (l))∪AOUT ) with highest real part.

Thus, we have that ℜe(λ∗l) ≡ 1−ℜe(Sp(F̂(l)
m )) and

(a) if ℜe(λ∗l) < 1/2, then

√
n(Ẑ(l)

n −Ẑ(l)
∞ )

d−→ N
(
0, Σ̂(l)

)
, Σ̂(l) := lim

m→∞

∫ ∞

0

eu(
I

2−F̂
(l)
m )Ĝ(l)eu(

I

2−F̂
(l)
m )′du.

(b) if ℜe(λ∗l) = 1/2, then

√
n

log(n)
(Ẑ(l)

n − Ẑ(l)
∞ )

d−→ N
(
0,Σ(l)

)
.

(c) if ℜe(λ∗l) > 1/2, then there exists a finite random variable ψ(l) such that

n1−ℜe(λ∗l)(Ẑ(l)
n − Ẑ(l)

∞ )
a.s.−→ ψ(l).

Remark 5.2. Note that, since from (24) Ẑ
(l)
n = (C′Z

(l−)
n ,Zl

n)
′, Theorem 5.2

explicitly states the limiting distribution and the asymptotic covariance struc-445

ture of the urn proportions in any following system Zl
n, l ∈ LF . In addition,

Theorem 5.2 also determines the correlations between Zl
n and the components

of the urn proportions in the other systems Sl, l ∈ {L1, . . ., l
−}, that actually

influence the dynamics of Zl
n.
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Remark 5.3. We highlight that condition (A3), i.e. irreducibility of the gener-450

ating matrices Hj, may be relaxed in Theorem 5.1 and Theorem 5.2, by requiring

(A3) only for the urns in the leading systems. In fact, we can note from the

proof that (A3) is not needed for the urns that belong to the following systems.

Example 5.1 (Continuation of Example 3.1 and Example 4.1). Set W as

in (6) with α = 1 and β < 1, and hence

Q = HW =


 H1 0

(1− β)H2 βH2


 .

Urn 1 forms a leading system and urn 2 is a following system. As a consequence,

the asymptotic behavior of urn 1 does not depend on urn 2. We have that455

Z1
n = (Z1

1,n, Z
1
2,n)

′ converges a.s. to Z1
∞ = (2/3, 1/3)′, and the convergence rate

is
√
n, see Example 3.1.

Concerning urn 2, its limiting proportion depends also on urn 1 as established

in Theorem 5.1, where in this case:

Q1 = H1, Q12 = (1− β)H2, Q2 = βH2. (27)

For instance, if β = 0.5 we have that Z2
n = (Z2

1,n, Z
2
2,n)

′ converges a.s. to

(I − Q2)−1Q12Z1
∞ = (0.6, 0.4)′. Moreover, the convergence rate of urn 2 is

determined by the interaction as established in Theorem 5.2. With β = 0.5,460

since Sp(Q) = {1, 0.5, 0.375, 0.25}, Sp(W ) = {1, 0.5} and AOUT = ∅, we have

λ∗ = 0.375 and hence the convergence rate is
√
n. In addition, to underline the

role of the interaction in the convergence rate of the following system, we note

that

(i) if β = 0.2, since Sp(Q) = {1, 0.25, 0.2, 0.15}, Sp(W ) = {1, 0.2} and465

AOUT = ∅, we have λ∗ = 0.25 and hence the convergence rate is
√
n;

(ii) if β = 0.8, since Sp(Q) = {1, 0.8, 0.6, 0.25} and Sp(W ) = {1, 0.8} and

AOUT = ∅, we have λ∗ = 0.6 and hence the convergence rate is n0.4.

If we compare these results with the convergence rate of urn 2 without interaction

(n0.25, see Example 3.1), we can observe that, in this example, the interaction470

makes the following system converge faster.
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6. Further extensions

In this section, we discuss some possible extensions of the interacting urn

model presented in this paper.

6.1. Random and time-dependent interacting matrix475

Although we consider a constant interacting matrixW , the results of this pa-

per may be extended to a system characterized by a random sequence of interact-

ing matrices {Wn;n ≥ 0}, i.e. Wn = [wjh,n] ∈ Fn and Z̃j
i,n =

∑N
h=1 wjh,nZ

h
i,n

for any i ∈ {1, . . .,K}. In that case, it is essential to assume the existence of a

deterministic matrix W such that Wn
a.s.−→ W , which individuates the leading480

and the following systems, as in Subsection 2.4.

The dynamics with random and time-dependent interacting matrices could

be also expressed in the SA form (5), by including the difference (Wn − W )

in the remainder term (11). Naturally, the asymptotic behavior of the urn

proportions would depend on the limiting interacting matrixW and on the rate485

of convergence of the sequence {Wn;n ≥ 0}. Specifically, the convergence of the
urn proportions could be obtained with the only assumption Wn

a.s.−→ W , while

extensions for the second-order results presented in this paper would require

nE[‖Wn −W‖2] → 0 (cfr. [23, Assumption (A5)]).

6.2. Non-homogeneous generating matrices490

The independence and identically distribution of the replacement matrices is

an assumption that could be relaxed by assuming that the sequence of generating

matrices {Hj
n;n ≥ 0}, Hj

n−1 := E[Dj
n|Fn−1], converges to some deterministic

matrix Hj. Thus, the urn dynamics could be expressed in the SA form (5),

by including the difference (Hj
n − Hj) in the remainder term (11), and the495

asymptotic behavior would depend on Hj and on the rate of convergence of Hj
n.

Specifically, the second-order results would require an additional assumption as

nE[‖Hj
n −Hj‖2] → 0 (cfr. [23, Assumption (A5)]).

27



7. Proofs

This section contains the proofs of all the results presented in the paper.500

Initially, in Subsection 7.1 we prove Theorem 2.1 concerning the behavior of

the total number of balls in the urns of the system. Then, in Subsection 7.2 we

present the proofs of the results on the leading systems described in Section 4.

Finally, Subsection 7.3 contains the proofs of the results of Section 5 concerning

the following systems.505

The proofs of Subsection 7.2 and 7.3 on the asymptotic behavior of the

subsystems of urns are based on basic results of stochastic approximation, which

have been reported in Appendix as Theorem A.1 and Theorem A.2.

7.1. Proof of Theorem 2.1

The proof of Theorem 2.1 requires the following auxiliary result on the mar-510

tingale convergence:

Lemma 7.1. Let {Sn;n ≥ 1}, Sn :=
∑n

i=1 ∆Si, be a zero-mean martingale

with respect to a filtration {Fn;n ≥ 1} and let {bn;n ≥ 1} be a non-decreasing

sequence of positive numbers such that

∞∑

i=1

b−2
i E[(∆Si)

2|Fi−1] < ∞, a.s. (28)

Then, b−1
n Sn

a.s.−→ 0.

Proof. Let us define the zero-mean martingale S̃n :=
∑n

i=1 ∆S̃i, with ∆S̃i :=

b−1
i ∆Si. Equation (28) states that

∑n
i=1 E[(∆S̃i)

2|Fi−1] < ∞ and hence S̃n

converges a.s. since its bracket 〈S̃〉∞ <∞ a.s. (see [34, Theorem 12.13]). Thus,515

the result follows by using Kronacker’s Lemma (see [32, Lemma IV.3.2]).

Proof of Theorem 2.1. By using Lemma 7.1 with bn := n1−α and Sn := T j
n −n,

the proof follows by showing that T j
n−n is a martingale whose increments have

bounded second moments. Now, since

T j
n − T j

n−1 =

K∑

k=1

(Y j
k,n − Y j

k,n−1) =

K∑

k=1

K∑

i=1

(Dj
ki,nX

j
i,n),

the result follows by establishing that
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(a) supn≥1 E

[(∑K
k=1

∑K
i=1D

j
ki,nX

j
i,n

)2 ∣∣Fn−1

]
<∞;

(b)
∑K

k=1

∑K
i=1 E

[
Dj

ki,nX
j
i,n|Fn−1

]
= 1.

For part (a), by using |Xj
i,n| ≤ 1 and (A1), we have that

sup
n≥1

E



(

K∑

k=1

K∑

i=1

(Dj
n,kiX

j
i,n)

)2 ∣∣Fn−1


 ≤ K2 sup

n≥1
max

j∈{1,...,N}
max

i,k∈{1,...,K}
E
[
(Dj

ki,n)
2
]
< ∞,

where the last passage follows by noticing that by Jensen’s inequality and (A1)

E
[
(Dj

ki,n)
2
] 1

2 ≤ E
[
(Dj

ki,n)
2+δ
] 1

2+δ

< C
1

2+δ

δ . (29)

For part (b), since
∑K

k=1H
j
ki = 1 by (A2) and since Dj

ki,n and Xj
i,n are inde-

pendent conditionally on Fn−1, we obtain

K∑

k=1

K∑

i=1

E
[
Dj

ki,nX
j
i,n |Fn−1

]
=

K∑

k=1

K∑

i=1

Hj
kiZ̃

j
i,n−1 =

K∑

i=1

Z̃j
i,n−1

K∑

k=1

Hj
ki =

K∑

i=1

Z̃j
i,n−1.

Finally, by the definition of Z̃j
i,n−1 in (1), we have

K∑

i=1

Z̃j
i,n−1 =

K∑

i=1

N∑

h=1

wjhZ
h
i,n−1 =

N∑

h=1

wjh

K∑

i=1

Zh
i,n−1 =

N∑

h=1

wjh = 1,

which concludes the proof of (3) for α < 1/2 under assumption (A2).520

Concerning the proof of (3) under assumption (A’2), note that

T j
n − T j

n−1 =

K∑

k=1

K∑

i=1

(Dj
n,kiX

j
i,n) =

K∑

i=1

Xj
i,n = 1;

hence, T j
n = T j

0 + n a.s. and, for any α < 1,

nα

(
T j
n

n
− 1

)
=

T j
0

n1−α

a.s./L2

−→ 0.

7.2. Proofs on the leading systems

Proof of Theorem 4.1. Fix l ∈ LL and consider the leading system Sl = {rl− +

1 ≤ j ≤ rl} with interacting matrix W l. Since the dynamic of the urn propor-

tions Zl
n in Sl has been expressed in (15) in the SA form (5), we can establish

the convergence result stated in Theorem 4.1 by applying Theorem A.1 in Ap-525

pendix. To this end, we will show that the assumptions of Theorem A.1 are

satisfied by the process {Zl
n;n ≥ 1} of the system Sl:
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(1) the function f l
m defined in (15) is a linear transformation and hence locally

Lipschitz.

(2) from (9), we have that supn≥1 E
[∥∥∆Ml

n

∥∥2 |Fn−1

]
< ∞ is satisfied by530

establishing

(2a) supn≥1 E
[∥∥Dl

nX
l
n

∥∥2 |Fn−1

]
<∞;

(2b) supn≥1 E
[∥∥diag(Tl

n −Tl
n−1)Z

l
n−1

∥∥2 |Fn−1

]
<∞.

Concerning (2a), since Xj
i,n ∈ {0, 1} a.s., we have that

∥∥Dl
nX

l
n

∥∥2 ≤
∑

j∈Sl

K∑

k=1

K∑

i=1

(
Dj

ki,n

)2
, a.s.

Thus, (2a) follows by assumption (A1), since

sup
n≥1

E
[∥∥Dl

nX
l
n

∥∥2 |Fn−1

]
≤
∑

j∈Sl

K∑

k=1

K∑

i=1

sup
n≥1

E

[(
Dj

ki,n

)2]
≤ slK2C

2
2+δ

δ ,

whereE[(Dj
ki,n)

2] ≤ C
2

2+δ

δ follows by (29). Concerning (2b), since
∑K

i=1(Z
j
i,n)

2 ≤
1, we have

∥∥diag(Tl
n −Tl

n−1)Z
l
n−1

∥∥2 ≤
∑

j∈Sl

(T j
n − T j

n−1)
2, a.s. (30)

where we recall that

T j
n − T j

n−1 =

K∑

k=1

(Y j
k,n − Y j

k,n−1) =

K∑

k=1

K∑

i=1

(Dj
ki,nX

j
i,n). (31)

Hence, combining (30) and (31), since Xj
i,n ∈ {0, 1} and

∑K
i=1X

j
i,n = 1

a.s., we obtain that

∥∥diag(Tl
n −Tl

n−1)Z
l
n−1

∥∥2 ≤
∑

j∈Sl

(
K∑

k=1

K∑

i=1

(Dj
ki,nX

j
i,n)

)2

≤
∑

j∈Sl

K∑

i=1

(
K∑

k=1

Dj
ki,n

)2

, a.s.
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Finally, using the relation (
∑K

k=1 a
2
k) ≤ K2(

∑K
k=1 a

2
k), (2b) follows by

assumption (A1), since

sup
n≥1

E
[∥∥diag(Tl

n −Tl
n−1)Z

l
n−1

∥∥2 |Fn−1

]

≤ sup
n≥1

∑

j∈Sl

K∑

i=1

K2
K∑

k=1

E

[(
Dj

ki,n

)2]
≤ slK4C

2
2+δ

δ ,

where E[(Dj
ki,n)

2] ≤ C
2

2+δ

δ follows by (29).

(3) from (11), we show ‖Rl
n‖

a.s.−→ 0 by establishing that, for any (2 + δ)−1 <535

α < 2−1,

(3a) nα
∥∥n · diag(Tl

n)
−1 − I

∥∥ a.s.−→ 0,

(3b) n−α
∥∥∥Zl

n−1 −HlZ̃l
n−1

∥∥∥ a.s.−→ 0,

(3c) n−α
∥∥∆Ml

n

∥∥ a.s.−→ 0,

where we recall that δ > 0 is defined in Assumption (A1) (see Subsec-

tion 2.2). Since (3a) follows straightforwardly by Theorem 2.1, consider

(3b). For any ǫ > 0, using Markov’s inequality we obtain

P
(∥∥∥Zl

n−1 −HlZ̃l
n−1

∥∥∥ > ǫnα
)

≤ (ǫnα)−(2+δ)E

[∥∥∥Zl
n−1 −HlZ̃l

n−1

∥∥∥
(2+δ)

]
.

Hence, (3b) follows by Borel-Cantelli Lemma since α · (2 + δ) > 1 and

sup
n≥0

E

[∥∥∥Zl
n−1 −HlZ̃l

n−1

∥∥∥
(2+δ)

]
≤
∑

j∈Sl

2(2+δ) < ∞.

Concerning (3c), we can apply again Markov’s inequality and the same

arguments of part (3b) since by assumption (A1) we have that

sup
n≥0

E

[∥∥∥Dl
nX

l
n −HlZ̃l

n−1

∥∥∥
(2+δ)

]
≤ sup

n≥0

∑

j∈Sl

K∑

k=1

K∑

i=1

E
[
(Dl

ki,n)
(2+δ)

]
< ∞.

Thus, by applying Theorem A.1 to the dynamics in (15), we have that the

limiting values of Zl
n are included in the set

{
x ∈ R

Ksl : f l
m(x) = 0

}
.
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Now, denote by V3 and U3 the matrices whose columns are, respectively, the

right and left eigenvectors of Ql (possibly generalized) associated to the eigen-

values λ ∈ Sp(Ql) \ Sp(W l). Hence, we have the following decomposition

Ql = V1U
′
1 + V2J2U

′
2 + V3J3U

′
3, (32)

where J2 and J3 represent the corresponding jordan blocks. Since the eigen-

vectors of Ql represent a basis of RKsl , for any x ∈ R
Ksl there exists a ∈ R,

b ∈ R
sl−1 and c ∈ R

sl(K−1) such that

x = V1a + V2b + V3c. (33)

Hence, by using (32) and (33), we obtain

hl(x) = V2(I− J2)b + V3(I− J3)c,

gl(x) = V1(a− 1) + V2b,

and then, since f l
m(x) = hl(x) +mgl(x), it gives us

f l
m(x) = mV1(a− 1) + V2((1 +m)I− J2)b + V3(I− J3)c. (34)

From the irreducibility of Hj assumed in (A3), for all λ ∈ Sp(Ql) \ Sp(W l)540

we have λ < 1 and hence (I − J3) is positive definite. Therefore, since m > 0,

from (34) we have that f l
m(x) = 0 if and only if a = 1 and b = c = 0, i.e.

x = V1.

It remains to prove that V1 is a global attractor in R
Ksl . To this end, we

will show that the Jacobian matrix Df l
m(x) is positive definite for any x ∈ R

Ksl .

We recall that, from (17) we have

Fl
m = Df l

m(x) = mV1U
′
1 + V2((1 +m)I− J2)U

′
2 + V3(I− J3)U

′
3. (35)

Hence, since m > 0 and (I − J3) is positive definite by assumption (A3), we

have that Fl
m is positive definite for any m > 0. This concludes the proof.545

Proof of Theorem 4.2. The proof consists in showing that the assumptions of

the CLT for processes in the SA form (Theorem A.2 in Appendix) are satisfied
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by the dynamics in (22) of the urn proportions Zl
n in the leading system Sl.

First, we show that condition {ℜe(Sp(Df(θ∗))) > 1/2} in Theorem A.2 is550

equivalent to {ℜe(λ∗l) < 1/2}. Note that the function f of the SA form (5) is

represented in our case by f l
m defined in (15). Similarly, the term θ∗ in Appendix

indicates the deterministic limiting proportion Zl
∞, while Dh(θ∗) is represented

by Fl
m defined in (17).

Now, consider the eigen-structure ofQl and note that Fl
m has been expressed

in (35) as follows:

Fl
m = mV1U

′
1 + V2((1 +m)I− J2)U

′
2 + V3(I− J3)U

′
3,

Hence, it is easy to see that the eigenvectors of Fl
m and Ql are the same, since555

(1) Fl
mV1 = mV1,

(2) Fl
mV2 = V2((1 +m)I− J2),

(3) Fl
mV3 = V3(I− J3).

Thus

Sp(Fl
m) = {m}∪

{
(1 +m)− λ, λ ∈ Sp(W l) \ {1}

}
∪
{
1− λ, λ ∈ Sp(Ql) \ Sp(W l)

}
.

By setting m > 0 arbitrary large, we obtain that

{ℜe(Sp(Df(θ∗))) > 1/2} ≡ {ℜe(λ∗l) < 1/2}.

Condition (A.1) of Theorem A.2 follows from analogous arguments of point (2)

in the proof of Theorem 4.1. In fact, since

sup
n≥1

E[‖∆Ml
n‖2+δ|Fn−1] ≤ K2+δ

N∑

j=1

K∑

i=1

K∑

k=1

sup
n≥1

E[(Dj
ki,n)

2+δ] ≤ NK4+δ.

For what concerns condition (A.2), we will show in a moment that for any l ∈ LL

E[∆Ml
n(∆Ml

n)
′ |Fn−1]

a.s.−→ Gl, E[∆Ml1
n (∆Ml2

n )
′

] = 0 ∀l1 6= l2.
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To this end, we first show that, for any urn j ∈ Sl, E[∆M j
n(∆M

j
n)

′|Fn−1]
a.s.−→

Gj . Note that

E[∆M j
n(∆M

j
n)

′ |Fn−1] = E[(Dj
nX

j
n)(D

j
nX

j
n)

′ |Fn−1] − (HjZ̃j
n−1)(H

j Z̃j
n−1)

′

,

and the first term of the right-hand side can be written as

E[(Dj
nX

j
n)(D

j
nX

j
n)

′ |Fn−1] =

K∑

i=1

E[Dj
·i,n(D

j
·i,n)

′ |Fn−1]P(Xj
i,n = 1|Fn−1)

=
K∑

i=1

(Cj(i) +Hj(i))Z̃j
i,n.

When n increases to infinity, from (18) we obtain

E[∆M j
n(∆M

j
n)

′ |Fn−1]
a.s.−→

K∑

i=1

(Cj(i) +Hj(i))Z̃j
i,∞ − Zj

∞(Zj
∞)

′

= Gj .

We recall that for any j1 6= j2, D
j1
n X

j1
n and Dj2

n X
j2
n are independent condi-

tionally on Fn−1. As a consequence, E[∆M j1
n (∆M j2

n )
′ |Fn−1] = 0 and hence560

E[∆Ml1
n (∆Ml2

n )
′

] = 0 for any l1 6= l2.

It remains to check that the remainder sequence {Rl
n;n ≥ 1} satisfies (A.3)

for any ǫ > 0, i.e.

E
[
n‖Rl

n‖21{‖Zl
n−Zl

∞
‖≤ǫ}

]
−→ 0. (36)

Equation (36) can be obtained by combining (11) and part (3b) in the proof

of Theorem 4.1, once we have observed that assumption (A’2) in Theorem 2.1

implies that

E
[
n
∥∥n · diag(Tl

n)
−1 − I

∥∥2
]
−→ 0.

Since the assumptions are all satisfied, we can apply Theorem A.2 to any

leading system Sl, l ∈ LL, so obtaining the CLT of Theorem 4.2, with asymp-

totic variance

Σl
m :=

∫ ∞

0

eu(
I

2−F
l
m)Gleu(

I

2−F
l
m)′du.

Finally, we need to fix m > 0 to obtain the correct asymptotic variance Σl for

(Zl
n − Zl

∞) in Span{(x − y) : x, y ∈ SslK}. Since by construction the kernel
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of U′
i, i ∈ {rl− + 1, rl}, is exactly Span{(x − y) : x, y ∈ SslK}, we impose565

that U′
iΣ

l
mUi = 0 so obtaining that Σl = limm→∞ Σl

m. This concludes the

proof.

7.3. Proofs on the following systems

Proof of Theorem 5.1. Consider the joint system S(l) = ∪i∈{L1,...l}S
i, for l ∈

LF , composed by the leading systems SL1, . . .SLnL and the following systems

SF1 , . . .Sl, where we recall Sl := {rl− + 1 ≤ j ≤ rl}. As explained in Section 5,

we focus on the reduced process Ẑ
(l)
n := Ĉ′Z

(l)
n , whose dynamics is expressed

in (25) as follows:

Ẑ(l)
n − Ẑ

(l)
n−1 = − 1

n
f̂ (l)
m (Ẑ

(l)
n−1) +

1

n
Ĉ′
(
∆M(l)

n + R(l)
n

)
,

f̂ (l)
m (x̂) :=

(
I− Ĉ′Q(l)B̂

)
x̂ + mV̂1

(
Û′

1x̂− 1
)

+ mV̂2Û
′
2x̂,

(37)

where the function f in the SA form (5) is here represented by f̂
(l)
m that takes

values in Span{VIN}.570

Analogously to the proof of Theorem 4.1 for the leading systems, one can

show that all the assumptions of Theorem A.1 are satisfied by the dynamics

in (37) and hence the limiting values of Ẑ
(l)
n are represented by those x ∈

Span{VIN} such that f̂
(l)
m (x) = 0. We use analogous decompositions of those

in (32) and in (33) for Ĉ′Q(l)B̂ and x ∈ Span{VIN} respectively, obtaining

f̂ l
m(x) = mV̂1(a− 1) + V̂2((1 +m)I− Ĵ2)b + V̂3(I− Ĵ3)c, (38)

where Ĵ2 := Ĉ′J2B̂ and Ĵ3 := Ĉ′J3B̂. By assumption (A3), Hj are irreducible.

Thus, λ < 1 for all λ ∈ AIN \ Sp(W (l)) and hence (I − Ĵ3) is positive definite.

Therefore, since m > 0, from (38) we have that f̂ l
m(x) = 0 if and only if a = 1

and b = c = 0, i.e. x = V̂1.

By definition of Q(l) (see (21)), we have that

Ĉ′Q(l)B̂ =


C′Q(l−)B 0

Ql(l−)B Ql


 ,
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and hence we can express V̂1 = (V̂
(l−)
1 , V̂l

1)
′ as follows:

V̂1 =


 V̂

(l−)
1

(I−Ql)−1Ql(l−)BV̂
(l−)
1


 =


 C′V

(l−)
1

(I−Ql)−1Ql(l−)BC′V
(l−)
1


 .

Now, since V
(l−)
1 ∈ Im(VIN ), we have

BC′V
(l−)
1 = VINU′

INV
(l−)
1 = V

(l−)
1 .

Finally, since from (26) F̂
(l)
m = Ĉ′F

(l)
m B̂, we have that Sp(F̂

(l)
m ) ⊂ Sp(F

(l)
m )575

and hence F̂
(l)
m is positive definite for any m > 0. As a consequence, V̂1 is a

global attractor in Span{VIN} and this concludes the proof.

Remark 7.1. We highlight that, when (A3) does not hold, the matrix (I −
J3) in (38) may not be positive definite and hence the solution V̂1 would not

be unique. However, since in the following systems Sl, l ∈ LF , we have580

λmax(W
l) < 1 and this implies λmax(Q

l) < 1, the irreducibility assumption

of Hj required in (A3) is not necessary for the following systems, but it is only

essential in the leading systems in which λmax(W
l) = 1.

Proof of Theorem 5.2. Consider the joint system S(l) = ∪i∈{L1,...l}S
i, for l ∈

LF , composed by the leading systems SL1, . . .SLnL and the following systems

SF1 , . . .Sl, where we recall Sl := {rl− + 1 ≤ j ≤ rl}. As explained in Section 5,

we focus on the reduced process Ẑ
(l)
n := Ĉ′Z

(l)
n , whose dynamics is expressed

in (25) as follows:

Ẑ(l)
n − Ẑ

(l)
n−1 = − 1

n
f̂ (l)
m (Ẑ

(l)
n−1) +

1

n
Ĉ′
(
∆M(l)

n + R(l)
n

)
,

f̂ (l)
m (x̂) :=

(
I− Ĉ′Q(l)B̂

)
x̂ + mV̂1

(
Û′

1x̂− 1
)

+ mV̂2Û
′
2x̂,

where the function f in the SA form in (5) is here represented by f̂
(l)
m . The

proof will be realized by showing that the assumptions of the Theorem A.2 in585

Appendix are satisfied by the process Ẑ
(l)
n , with θ∗ replaced by the deterministic

limiting proportion Ẑ
(l)
∞ , and Df(θ∗) represented by F̂

(l)
m defined in (26).

To do this, we first show that condition {ℜe(Sp(Df(θ∗))) > 1/2} in Theo-

rem A.2 is equivalent to {ℜe(λ∗l) < 1/2}. To this end, analogously to the proof

of Theorem 4.2 for the leading systems, note that590
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(1) F̂
(l)
m V̂1 = mV̂1,

(2) F̂
(l)
m V̂2 = V̂2((1 +m)I− J2),

(3) F̂
(l)
m V̂3 = V̂3(I− J3).

Hence, the eigenvectors of F̂
(l)
m and Ĉ′Q(l)B̂ are the same and then

Sp(F̂(l)
m ) = {m} ∪

{
(1 +m)− λ, λ ∈ Sp(W (l)) \ ({1} ∪ AOUT )

}

∪
{
1− λ, λ ∈ Sp(Q(l)) \ (Sp(W (l)) ∪AOUT )

}
,

which implies {ℜe(Sp(Df(θ∗))) > 1/2} ≡ {ℜe(λ∗l) < 1/2}.
Then, by using analogous arguments of the proof of Theorem 4.2 for the

leading systems, it can be easily shown that

E[Ĉ′∆M(l)
n (∆M(l)

n )
′

Ĉ|Fn−1]
a.s.−→ Ĝ(l), E[Ĉ′∆M(l1)

n (∆M(l2)
n )

′

Ĉ] = 0 ∀l1 6= l2,

and for any ǫ > 0

E

[
n‖Ĉ′R(l)

n ‖21
{
∥

∥

∥
Ẑ

(l)
n −Ẑ

(l)
∞

∥

∥

∥
≤ǫ}

]
−→ 0.

We can then apply Theorem A.2 to obtain the CLT with asymptotic variance

Σ̂(l) := lim
m→∞

∫ ∞

0

eu(
I

2−F̂
(l)
m )Ĝ(l)eu(

I

2−F̂
(l)
m )′du.

This concludes the proof.595
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A. Basic tools of Stochastic Approximation600

We report the recursive procedure defined in (5) on a filtered probability

space (Ω,A, (Fn)n≥0,P), namely

∀n ≥ 1, θn = θn−1 −
1

n
f(θn−1) +

1

n
(∆Mn +Rn) , (5)

where f : R
d → R

d is a locally Lipschitz continuous function, θn an Fn-

measurable finite random vector and, for every n ≥ 1, ∆Mn is an Fn−1-

martingale increment and Rn is an Fn-adapted remainder term.

Theorem A.1 (A.s. convergence with ODE method, see e.g. [7, 9, 14, 17, 22]).

Assume that f is locally Lipschitz, that

Rn
a.s.−→ 0 and sup

n≥1
E
[
‖∆Mn‖2 | Fn−1

]
< +∞ a.s.

Then, the set Θ∞ of its limiting values as n→ +∞ is a.s. a compact connected

set, stable by the flow of

ODEf ≡ θ̇ = −f(θ).

Furthermore, if θ∗ ∈ Θ∞ is a uniformly stable equilibrium on Θ∞ of ODEf ,

then

θn
a.s.−→ θ∗.

Comments. By uniformly stable we mean that

sup
θ∈Θ∞

|θ(θ0, t)− θ∗| −→ 0 as t→ +∞,

where θ(θ0, t)θ0∈Θ∞,t∈R+ is the flow of ODEf on Θ∞.

We say that the function f is ǫ-differentiable, ǫ > 0, at θ∗ if

f(θ) = f(θ∗) +Df(θ∗)(θ − θ∗) + o(‖θ − θ∗‖1+ǫ
) as θ → θ∗.

Theorem A.2 (Rate of convergence see [14, Theorem 3.III.14 p.131], for CLT

see also e.g. [9, 22]). Let θ∗ be an equilibrium point of {f = 0}. Assume that the
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function f is differentiable at θ∗ and all the eigenvalues of Df(θ∗) have positive

real parts. Assume that for some δ > 0,

sup
n≥1

E
[
‖∆Mn‖2+δ | Fn−1

]
< +∞ a.s., (A.1)

and

E [∆Mn∆M
′
n | Fn−1]

a.s.−→
n→+∞

Γ, (A.2)

where Γ∈ S+(d,R) (deterministic symmetric positive matrix) and for an ǫ > 0,

nE
[
‖Rn‖2 1{‖θn−1−θ∗‖≤ǫ}

]
−→

n→+∞
0. (A.3)

(a) If ℜe(λmin) >
1
2 , where λmin denotes the eigenvalue of Df(θ∗) with lowest

real part, the above a.s. convergence is ruled on the set Df{θn → θ∗} by the

following Central Limit Theorem

√
n (θn − θ∗)

L−→
n→∞

N (0,Σ) with Σ :=

∫ +∞

0

e(Id/2−Df(θ∗))uΓe(Id/2−Df(θ∗))
′

udu.

(b) If ℜe(λmin) =
1
2 , then

√
n

logn
(θn − θ∗)

L−→
n→∞

N (0,Σ) as n→ +∞.

(c) If ℜe(λmin) ∈ (0, 12 ), then nℜe(λmin) (θn − θ∗) a.s. converges as n → +∞605

towards a finite random variable.
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[7] M. Benäım, Dynamics of stochastic approximation algorithms, in:
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[10] J. Chen, C. Lucas, A generalized Pólya’s urn with graph based interactions:640

convergence at linearity, Electron. Commun. Probab. 19 (2014) no. 67, 13.

URL http://dx.doi.org/10.1214/ECP.v19-3094

40

http://dx.doi.org/10.1016/S0304-4149(98)00094-5
http://dx.doi.org/10.1214/105051604000000774
http://dx.doi.org/10.1007/BFb0096509
http://dx.doi.org/10.1002/rsa.20523
http://dx.doi.org/10.1007/978-3-642-75894-2
http://dx.doi.org/10.1214/ECP.v19-3094
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