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ABSTRACT

Oneof the greatest challenges thatmodernmolecular
biology is facing is the understanding of the complex
mechanisms regulating gene expression. A funda-
mental step in this process requires the characteriza-
tion of regulatory motifs playing key roles in the
regulation of gene expression at transcriptional and
post-transcriptional levels. Inparticular, transcription
is modulated by the interaction of transcription fac-
tors with their corresponding binding sites. Weeder
Web is aweb interface toWeeder, an algorithm for the
automatic discovery of conserved motifs in a set of
related regulatory DNA sequences. The motifs found
are in turn likely to be instances of binding sites for
some transcription factor. Other than providing
access to the program, the interface has been
designed so to make usage of the program itself as
simple as possible, and to require very little prior
knowledge about the length and the conservation of
the motifs to be found. In fact, the interface automa-
tically starts different runs of the program, each
one with different parameters, and provides the
user with an overall summary of the results as well
as some ‘advice’ on which motifs look more interest-
ing according to their statistical significance and
some simple considerations. The web interface is
available at the address www.pesolelab.it by follow-
ing the ‘Tools’ link.

INTRODUCTION

Understanding the complex mechanisms governing basic bio-
logical processes requires the characterization of regulatory
motifs modulating gene expression at transcriptional and post-
transcriptional levels. In particular extent, chronology and
cell-specificity of transcription are modulated by the interac-
tion of transcription factors (TFs) with their corresponding

binding sites (TFBSs) (1), mostly located nearby the tran-
scription start site (TSS) of the gene (i.e. proximal promoter
region) or far away (i.e. enhancers, silencers, etc.). The ever
growing amount of genomic data (complemented by other
sources of information such as full-length cDNA sequencing
projects that permit the precise mapping of the TSS on the
genome sequence) and expression data derived from micro-
array and other experiments open new opportunities to
researchers.

The fact that transcription factor binding sites are generally
short (<12–14 bp long) and degenerate oligonucleotides makes
their computational discovery and large-scale annotation sig-
nificantly hard—hence the need for efficient and reliable meth-
ods for detecting novel motifs significantly over-represented in
the regulatory regions of sets of genes sharing common prop-
erties (e.g. similar expression profile, biological function, pro-
duct cellular localization), which in turn could correspond to
binding sites for common TFs regulating the genes.

We present here a web server that provides access to a
previously developed enumerative pattern discovery method
(2) that is able to carry out an (almost) exhaustive search of
significantly conserved degenerate oligonucleotide patterns
with remarkable computational efficiency.

METHODS

Nearly all the computational methods for the discovery of
novel motifs in a set of sequences of co-regulated genes are
based on two steps. First, one or more groups of oligonucleo-
tides similar enough to each other (i.e. differing in some
nucleotide substitutions) are detected in the sequences. Sec-
ond, their presence is evaluated from a statistical point of view;
that is, algorithms estimate how likely each group would be to
appear in a set of sequences either picked at random from the
same organism (thus very unlikely to be coregulated) or built
randomly with the same nucleotide composition as the input
sequences (thus very likely to present a different oligo com-
position). The best groups of oligos found are in turn likely to
be instances of binding sites for some TF [see (3,4) for reviews
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on different methods applied to the problem, as well as pro-
grams and interfaces implementing them].

For the first step, two main approaches have been proposed
so far: consensus-based (or pattern-driven) and profile-based
(or alignment-driven) methods. In the former case, the differ-
ent oligonucleotides recognized by a given TF are described
by their consensus, representing, for each position, the nucleo-
tide that appears most frequently in the binding sites. All
oligos that differ from the consensus in no more than a
given number of positions (usually depending on the oligo
length) can in turn be supposed to be recognized by the
same TF. The debate on which ‘philosophy’ is more suitable
for representing and capturing TFBSs is nearly as old as the
problem itself (5–7). However, comparative tests (8) have
shown that the two approaches seem to be complementary,
with no definite prevalence of either one. Some instances are
correctly solved by representing motifs with their consensus,
some others by using alignment profiles, and some by both (or
neither). Thus, given a set of sequences, the best way to pro-
ceed is perhaps to try different methods based on wholly
different principles, such as the one presented here and tradi-
tional alignment-driven methods such as Consensus (9),
MEME (10) and the Gibbs sampler (11), and to compare
the results obtained.

The key idea of consensus-based methods is to enumerate
all the oligos of (or up to) a given length, in order to determine
which ones appear, with possible substitutions, in a significant
fraction of the input sequences, and finally to rank them
according to statistical measures of significance. At first
sight, this approach seems to suffer from different drawbacks.
First of all, if the length of the motifs sought ism, then there are
4m candidate oligos to enumerate, with an exponential growth
of the execution time according to the motif length. Then,
many additional parameters are usually required by these algo-
rithms, such as the length of the motif itself, the number of
mutations allowed for its occurrences and a minimum number
q of sequences the motif has to appear in (this parameter is
usually called quorum). Moreover, a suitable significance
measure, able to discriminate real TF binding sites from unin-
teresting motifs, has to be introduced, since often there are
hundreds of candidate motifs satisfying the input parameters.
All these factors have led to the impression that consensus-
based methods are too slow (given the high number of candi-
dates) and too difficult to use, since many different parameter
combinations have to be tried.

However, as demonstrated in (2,12), the exhaustive search
formotifs can be significantly accelerated if the input sequences
are preprocessed and organized in a suitable indexing structure,
such as a suffix tree (13), especially when their lengths fall
within theusual rangeofTFBSs.Werefer the reader to reference
(2) for further details on how the exhaustive search is
implemented in the Weeder algorithm. Instead, in the imple-
mentationof the interfacepresentedherewefocusedontheother
points just mentioned. The first task is to determine auto-
matically which values of all the parameters needed by the
algorithm are suitable for TFBSs, in order to reduce to the
minimum possible the user input and any prior knowledge
about the motifs to be found, as well as to make the program
as simple to use as alignment-based algorithms. Then, we also
proposeasignificancemeasureespeciallyfine-tuned forTFBSs,
which is used to rank the results and to find the best motifs.

User input

The Weeder Web interface (an example is shown in the online
Supplementary Material) requires users to input their email
address, and one or more sequences in FASTA format either
by cutting and pasting the sequences or by uploading a file.
Sequences can be in uppercase or lowercase letters, and can
contain ambiguous IUPAC symbols. A checkbox is available
in order to specify if the complementary strand of the input
sequences has also to be examined by the program. Then, users
must provide values of a few intuitive parameters. The first one
specifies only whether the motif has to appear in all the input
sequences or in some of them (analogous to the ‘zoops’ mode
of alignment-based methods). The user can also select a mode
in which the input is processed as a single sequence, looking
for repeated oligonucleotides regardless of their distribution
throughout the sequences. The second parameter needed,
describing the type of analysis desired (quick, normal or thor-
ough), simply influences the time required to obtain the
results: clearly, the shorter the time, the less accurate is the
analysis performed. Also, users must specify which organism
their sequences come from, by selecting it from a list. This
choice is fundamental for the computation of the significance
of the results (see Supplementary Material), since this is based
on organism-specific expected values. If the organism is not
included in the list provided, users can contact the page admin-
istrators. The list of available organisms will be constantly
updated and enlarged. Since the computation time in some
cases might exceed an hour, the results are sent by email. The
results are accessible also on a dedicated web page, whose
address is communicated in the email as well. The web page
will also provide a link to the original input sequences pro-
vided by the user.

In addition, if the user wants to set manually all or some of
the input parameters (motif length, quorum, error and so on),
an extended input form is available, which can be reached by
following a link from the main page. Also, this page permits
the user to submit nucleotide sequences other than upstream
regulatory regions (for which the default parameter values
for TFBSs might not be appropriate). At the present time, it
includes human 50 and 30 mRNA untranslated regions. Further
types of nucleotide sequences will be included in the future to
broaden the applicability of the method to signals other than
TFBSs.

Program runs

Once the ‘Submit’ button is clicked, if all the fields are filled in
correctly the web interface automatically starts a series of runs
of the Weeder algorithm, looking for motifs of lengths 6 and 8
(if launched in quick mode), or from length 6 up to 12 (in
normal mode and thorough mode). The number of sequences a
motif has to appear in is determined according to the user’s
choice (if ‘some’ is selected, the threshold is set to half of the
sequences). The number of mutations allowed is one for motifs
of length 6, two for length 8, three for length 10 and four for
length 12. The ‘thorough’ mode performs an additional scan
for motifs of length 8 with three mutations and length 10 with
four mutations, and lowers the quorum choice to one-third of
the input sequences. Clearly, the last parameter setting is use-
ful when no significant motif is reported by quick and normal
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analyses. Experiments performed by us and by other groups
[see e.g. (14,15)] have shown that these values are suitable for
capturing a large class of TFBSs, even in the case of corrupted
datasets including several sequences not containing instances
of the motif.

The output

For each run, all the motifs satisfying the input constraints
(length, error and quorum) are scored according to a statistical
measure of significance (see Supplementary Material) that
takes into account the number of sequences a motif appears

Figure 1.An example of the output of the program. In this case, it reports the results of the runs on lengths 6 and 8 (quick mode), with the five top-scoring motifs of
each run. The motif reported as ‘interesting’ corresponds to the consensus of PDR3 binding sites in yeast, as described in the SCPD database (17), obtained by
analysing the same sequence set used in (14). The output lists the best occurrences of the motif in the input sequences, as well as the frequency matrices built by
aligning all the instances found (left) and the best instances only (right). The match percentage value in brackets defines how well each instance fits the matrix
description (see Supplementary Material).
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in, how much it is conserved and the overall number of its
occurrences in the input set. Then, the five most significant
motifs of each run are reported to the user. However, it is
sometimes difficult to judge which ones, among motifs of
different lengths obtained allowing different degrees of
approximation, could be more ‘interesting’ and worth further
investigation, especially (as in real case studies) when the
motif length is not known in advance. Clearly, if a motif
reported has a score significantly higher than the others it is
less likely to be the effect of random similarities. However, for
this task, we have included an additional post-processing
stage. The idea is best explained by an example. Suppose
that the consensus for the binding sites of a given TF is
A[C/G]GTAC, admitting with equal frequency either a C or
a G in the second position. If all went well in the program runs,
we might expect to find both ACGTAC and AGGTAC in the
list of the best motifs of length 6 with one mutation. And we
also expect this phenomenon to be quite frequent in real bind-
ing sites, since the different positions of the sites usually
exhibit different degrees of variability, and mutations seem
to appear more frequently at some positions than at others.
Thus, first of all the algorithm scans each list of best motifs of
length m with e mutations (the result of each single run) to see
whether in each one there are motifs that differ in no more than
e positions. These motifs could be two alternative consensuses
for the same set of binding sites, and the higher scoring one is
reported as ‘interesting’. Then, the results of different runs are
also compared to each other. If a short motif is found to be a
part of a longer one, then the latter might have a conserved
core, another feature often encountered in real instances. Also
in this case, the longer one is added to the ‘interesting’ motif
list. Several experiments that we have performed on real case
studies support the feasibility of these simple criteria.

Finally, all the ‘interesting’ motifs are again listed at the
bottom of the output file, under the heading ‘My Advice’. For
each of these, the interface also reports a frequency matrix
built by aligning all the instances of the motif found as well
as a list of its best occurrences, collected from the input
sequences by using the frequency matrix (see Supplementary
Material). Another frequency matrix, obtained by aligning
only the best occurrences of the motif, is also listed. Although
motifs are discovered by allowing a predefined number of mu-
tations e in their occurrences, the additional frequency
matrix scan makes it possible to pick new instances presenting
more than e mutations with respect to the motif consensus but
still fitting the motif profile well, and at the same time to single
out which instances are more likely to be real TFBSs. Also,
even if the motif has been detected in q of the input sequences,
the best instances might not be present in each of the q
sequences (or else the motif might be found to appear in
additional sequences). An example of the output file sent to
users is shown in Figure 1. Notice that the best motif of
length 6 differs significantly from the best 8mer. However,
the advice of the program is to pay attention to the latter (the
correct one), since there is another motif differing from it in a
single position among the highest scoring motifs of length 8.

DISCUSSION

The web interface to the Weeder program permits the analysis
of a set of regulatory sequences looking for conserved motifs

that in turn could represent instances of binding sites for some
common TF. The interface has been designed with the 2-fold
purpose of being as user-friendly as possible and of making the
interpretation of the results easier. All the actual parameters
that are needed by the Weeder algorithm are kept hidden and
automatically set to values suitable for the discovery of TFBSs
according to some intuitive indications provided by the user,
who can, however, change the default values by using an
extended input form. Some hints and comments on the results
obtained are also output.

In the future, the interface will be constantly updated and
enhanced with new features, including the graphical represen-
tation of the output and the possibility of applying the
algorithm to other types of nucleotide sequences. On the
algorithmic side, we plan to include the comparative analysis
of regulatory sequences of orthologous genes from different
species, and the possibility of detecting motifs composed of
two conserved parts interrupted by a non-conserved region, as
well as correlations among different motifs (i.e. combinations
of two or more elements showing a conserved order, strand
orientation and spacing). To this end, we have developed a
suitable algorithm (16) that will be included in a further ver-
sion of the server. Indeed, the search for complex regulatory
modules, greatly reducing false positive rates, would make
possible genome-wide promoter analyses. Finally, we are cur-
rently working on the integration of microarray expression
values with sequence data, which could represent another
big leap forward in promoter annotation and the discovery
of novel TF binding sites. Each update will be highlighted
and reported on the web page.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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