
Vol. 7, No. 2, Special Issue OOPS Track at SAC 2007, February 2008

AOPåHiddenMetrics:
Separation, Extensibility and Adaptability in
SW Measurement

Walter Cazzola
DICo - Department of Informatics and Communication,
Università degli Studi di Milano
cazzola@dico.unimi.it

Alessandro Marchetto
Fondazione Bruno Kessler - IRST
marchetto@fbk.eu

Traditional approaches to dynamic system analysis and metrics measurement are based
on system code (both source, intermediate and executable code) instrumentation or
need ad hoc support by the run-time environment. In these contexts, the measurement
process is tricky, invasive and the results could be affected by the process itself making
the data not germane.
Moreover, the tool based on these approaches are difficult to customize, extend and
often use since their properties are rooted at specific system details (e.g., special tools
such as bytecode analyzers or virtual machine goodies such as the debugger interface)
and require high efforts, skills and knowledges to be adapted.
Notwithstanding its importance, software measurement is clearly a nonfunctional con-
cern and should not impact on the software development and efficiency. Aspect-
oriented programming provides the mechanisms to deal with this kind of concern and
to overcome the software measurement limitations.
In this paper, we present a different approach to dynamic software measurements based
on aspect-oriented programming and the corresponding support framework named
AOPåHiddenMetrics. The proposed approach makes the measurement process highly
customizable and easy to use reducing its invasiveness and the dependency from the
code knowledge.

Keywords: Software Metrics, AOP, Separation of Concerns.

1 INTRODUCTION

Aspect-oriented programming (AOP) [9,8] is a powerful technique to better modu-
larize object-oriented programs by introducing crosscutting concerns in a safe and
noninvasive way. Each aspect-oriented approach is characterized by a join point
model (JPM) consisting of the join points, a mechanism for identifying the join
points (pointcuts) and a mechanism for raising effects at the join points (advice).

Cite this article as follows: Walter Cazzola and Alessandro Marchetto: AOPåHiddenMetrics:
Separation, Extensibility and Adaptability in SW Measurement, in Journal of Object Tech-
nology, vol. 7, no. 2, Special Issue OOPS Track at SAC 2007, February 2008, pp. 53–68
http://www.jot.fm/issues/issues_2008_2/article3

mailto:cazzola@dico.unimi.it
mailto:marchetto@fbk.eu
http://www.jot.fm/issues/issues_2008_02/article3/

AOPåHiddenMetrics: SEPARATION, EXTENSIBILITY AND ADAPTABILITY IN SW MEASUREMENT

The advice is woven at the selected join points, i.e., the weaving process looks at the
application bytecode for the points described by a pointcut and instruments those
points with the advice code.

The aspect-oriented mechanisms better address functionality that orthogonally
crosscut the whole implementation of the application. The measurement process is a
typical crosscutting concern whose implementation tangles the code of many objects
in the system. Software metrics and their measurement are logically self-contained
and easy to be modularized and kept separated from the application code but their
measurement strictly depends on what they are calculating and it is intimately
bound to the application code.

The aspect-oriented programming provides the mechanisms for reducing the in-
vasiveness necessary to measure the software, and therefore for widening the software
measurement applicability. In our view, the metrics can be realized by aspects and
the weaving process will instrument an application with the software measurement
code. This approach does not require either the application code or the knowledge
of its implementation. The software measurement process can be easily plugged into
and unplugged from the application code.

In this paper we are going to present our AOPåHiddenMetrics framework based
on this idea to support the dynamic software measurement in a noninvasive way.
Furthermore, we will show how to use it and how to extend it to support new assets
and metrics.

The rest of the paper is organized as follows: in section 2 we give an overview
of the AOPåHiddenMetrics framework; in particular, we will present the supported
metrics, the framework model and implementation. Section 3 shows the framework
at work. Section 4 discusses the benefits/drawbacks of the approach and examines
some related work and, finally, in section 5 we draw up some ideas for future works
and conclusions.

2 AOPåHiddenMetrics

The AOPåHiddenMetrics framework is an adaptable tool to support noninvasive and
modular software measurements. It is basically oriented to dynamic measurements
neglecting more static and traditional metrics. Adaptability and noninvasiveness
are achieved by exploiting the aspect-oriented technology; this renders quite easy
to extend the framework by supporting new metrics (more details in the rest of the
section).

A Glance at the Supported Metrics

The AOPåHiddenMetrics framework focuses its efforts on analyzing the assets of
a Java applications during its execution, hereafter system under analysis (SUA).

54 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 2

2 AOPåHiddenMetrics

The framework supports many different measures on several software assets. The
supported metric suite merges some existing metrics, in particular, it is inspired
by [1,2,11] and [13]. To provide a uniform exposition, we refer to classes and aspects
as modules and to methods and advice as operations. The considered software assets
are:

Coupling. The coupling represents the connection degree between two or more
software components at run-time. The considered metrics are: coupling on
module call (CMC), coupling on field access (CFA), response for a module
(RFM).

Cohesion. The cohesion represents the degree to which software elements within a
module are related each other (at run-time) and work together. The considered
metrics are: field use (FU), and lack of cohesion of operations (LCOO).

Memory Usage. In this category, we consider only the memory usage (MU) met-
ric; it computes the minimum and the maximum quantity of memory allocated
by a module during its execution.

Concurrency. The CONCUR metric measures how much concurrent is a program.
In Java, threads are the concurrency unit, so, CONCUR will measure how
many threads have been activated during the SUA execution.

Code execution. The EXEC metric measures how many times a portion of code
is executed and it accesses to each component of the SUA.

Code coverage. Code coverage (CC) and Dead code (DC) metrics analyze the
differences between the static and running SUA code. For instance, the dead
code metric measures the declared code that is not reachable by executing the
SUA.

These metrics are from [1, 2, 11] and [13]; for sake of brevity we do not further
explain them. The metric suite should not be considered exhaustive nor fixed since
our goal is to support software measurement process through an easy to adapt and
extend tool.

Framework Rationale

The AOPåHiddenMetrics framework exploits AspectJ [8] to render the measurement
process noninvasive, pluggable and unpluggable and to provide a tool to easily en-
hance the supported metric suite and measured assets. The metrics are implemented
as aspects that will be woven to the SUA on demand. These aspects encapsulate the
code necessary to measure the SUA and describe how the integration will take place;
the weaving process will bind the process measurement code to the SUA code and
the metric will be computed during the SUA execution. To measure an application,
the user has to:

VOL 7, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 55

AOPåHiddenMetrics: SEPARATION, EXTENSIBILITY AND ADAPTABILITY IN SW MEASUREMENT

• define a set of SUA executions and code the related test cases (e.g., through
the JUnit1 framework);

• choose the metrics and weave the corresponding aspects to the SUA bytecode
(and test cases);

• execute the test cases and wait for the aspect to collect the measures.

The key idea behind the AOPåHiddenMetrics model consists in encapsulating
the computation of a metric in an aspect and weaving it to the SUA bytecode. In
this way, the software measurement process is independent of the SUA as long as the
aspect is not tailored on the SUA code. Moreover, the whole measurement process
can be plugged and unplugged without any specific knowledge of the SUA code or
its availability.

In general, the computation of a metric is characterized by what must be counted,
e.g., the number of method calls. This information identifies which points (in the
AOP parlance join points) must be taken in consideration during the measurement
and drives the definition of a set of pointcuts to select those join points. The
advice will collect the data related to the measurement process. As an example, the
CMC (coupling on module call) metric takes in consideration all the interactions
of a module with another through its operations. In this case, the pointcuts must
select all the calls to operations belonging to another module and the corresponding
advice will count these calls. The aspects implementing the previously described
metric suite are bundled with the AOPåHiddenMetrics framework as a case study.
This suite can be easily extended with new metrics by adding the aspects to measure
them.

In particular, the AOPåHiddenMetrics framework does not analyze the SUA
bytecode but “patches” (through the weaving process) it with the code to compute
the metric during the SUA execution. The weaving process allows the user to
enable/disable the measurement process on the SUA. Furthermore, the measurement
process can be easily customized by coding ad hoc test cases that selectively run the
SUA. For instance, to calculate a metric on a specific set of packages rather than on
the entire SUA we have only to tune the pointcuts on these packages.

The main challenge of encapsulating the computation of a metric in an aspect
consists of coding it not tailored on a given SUA but applicable to any SUA. For
instance, in [13], the authors try a similar approach but the aspects are built on the
chosen SUA hindering their reuse. We got a more general approach by capturing
the join points activated by the test cases instead of selecting them on the whole
application. In this way, the aspects do not depend on the SUA implementation
rather the dependency of the SUA is confined to the test case that is defined in
terms of the SUA methods by definition.

1http://www.junit.org.

56 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 2

http://www.junit.org

2 AOPåHiddenMetrics

Figure 1: AOPåHiddenMetrics Eclipse Screenshot

Therefore, our framework deals with the measurement process as it were a non-
functional crosscutting concern and the aspect-oriented techniques allow the modu-
larization of this concern and the noninvasive analysis of the SUA.

Software implementation

The AOPåHiddenMetrics framework is basically implemented by three components:

• a library of aspects and ancillary classes realizing the supported metrics;

• a viewer for the data collected by the woven metrics during the SUA execution;
and

• an Eclipse2 plug-in (Fig. 1) to ease the framework use.

The woven aspects calculate the corresponding metrics during the SUA execu-
tion and output the collected data as XML files. The viewer graphically shows the
data (thanks to XSLT transformations) to ease their analysis, understanding and

2http://www.eclipse.org.

VOL 7, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 57

http://www.eclipse.org

AOPåHiddenMetrics: SEPARATION, EXTENSIBILITY AND ADAPTABILITY IN SW MEASUREMENT

public aspect LCOO {
// jps excluded from the measurement process.

pointcut excluded_executions():
cflow(call(* java..*.*(..))) ||
cflow(call(* javax..*.*(..))) ||
withincode(AOPHiddenMetrics..*);

// jps on the method executions.
pointcut methods_executions():
(execution(* *..*.*(..)) ||
execution(static * *..*(..)) ||
adviceexecution()) && !excluded_executions();

// jps on the access to the fields.
pointcut access_to_fields():
(get(* *) || set(* *)) && !excluded_executions();

before(): access_to_fields() {
/* it inspects the thisJoinPointStaticPart and stores which field has been accessed

and by which method. */
}
Object around(): methods_executions() {
/* it inspects the thisJoinPointStaticPart and retrieves the used methods. */

}
}

Listing 1: the LCOO metric aspectualization.

interpretation. The Eclipse plug-in allows the user to select and unselect the metrics
to compute.

In the rest of this section, we will focus on the aspect library since the metrics
aspectualization is symptomatic of our approach and (we believe) more interesting.

In the library, each package supports a different metric and provides its aspec-
tualization, a set of ancillary classes to support the measurement process, the data
collecting and reporting and, finally, a skeleton class for the test cases. The skeleton
class must be extended when the user wishes to tailor the measurement process on a
specific SUA. In particular, to automate the SUA execution and measurement, the
user must adapt the skeleton class to invoke the starting method of the instrumented
SUA with the necessary inputs.

In [7], AOP is expressed in terms of quantification and obliviousness. The SUA
is not prepared to be analyzed by our tool, it is unaware of the metric presence and
work (obliviousness property). On the other side, the aspects are not tailored on
the SUA; they provide the basic mechanisms for measuring a generic SUA without
assumptions on the SUA behavior and structure but dynamically adapting to it
(quantification property). These concepts are essential for the AOPåHiddenMetrics

58 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 2

2 AOPåHiddenMetrics

public aspect CMC {
// jps excluded from the measurement process.

pointcut excluded_executions(): ...
pointcut methods_executions():
(call(static * *..*(..)) || execution(* *..*.*(..)) ||
call(* *..*.*(..)) || call(*..*.new(..)) ||
execution(*..*.new(..))) && !excluded_executions();

before(): methods_executions() {
Object caller = thisJoinPoint.getThis();
String cls = "";
if (caller == null)
cls = thisEnclosingJoinPointStaticPart.

getSignature().getDeclaringTypeName();
else cls = caller.getClass().getName();
String mthCls = thisJoinPointStaticPart.

getSignature().getDeclaringTypeName();
if (!mthCls.equals(cls)) {
String[] mthName = getMethodName(thisJoinPoint);
_fun_data.add_data(cls, mthName, 1);

}
}
public String[] getMethodName(JoinPoint matched) {
/* it reflectively extracts information on the method from «matched» and returns

them. */
}
}

Listing 2: the CMC metric aspectualization.

framework; the gained independence of the metrics from the SUA implementation
renders our framework general-purpose and usable in different contexts without
extra efforts.

Let us consider the LCOO metric and its aspectualization (Listing 1). To com-
pute this metric, we have to know:

1. which methods belong to a class, and

2. which attributes they access.

Therefore, we need two pointcuts: access_to_fields(), and methods_execu-
tions(). The former selects all the accesses to the attributes and the latter all
the called methods. The advice associated with the pointcuts respectively computes
the number of methods accessing a field and the total number of methods.

Generally speaking, the AspectJ pointcuts allow us to analyze a Java software
without knowing it because are based on given and generic join points as method
calls or field accesses and rarely the metric aspectualization has to be tailored on a

VOL 7, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 59

AOPåHiddenMetrics: SEPARATION, EXTENSIBILITY AND ADAPTABILITY IN SW MEASUREMENT

specific join points such as a call to a method of a given name. This specific behavior
only occurs when we want to measure a specific execution trace but, in this case,
the dependency is confined to the test case realizing that execution trace.

The advice parts are in charge of processing the information at the join points
and computing the metrics. To this aim, the advice can exploit reflection (through
the special reference variable: thisJoinPoint) to extract the data (e.g., the target
object and its type, the called method, the caller object, and so on) necessary to
compute the metric at the matched join point maintaining the independence of the
SUA. Listing 2 shows the aspect for the abovementioned CMC metric putting the
emphasis on the advice.

3 AOPåHiddenMetrics AT WORK

Before going on, we recall that the AOPåHiddenMetrics does not introduce new
metrics but it only supports the measurement process. In this section we will show
how our framework works and prove that it produces sound results and how it can
be extended.

Adding New Metrics

There are two main steps to support new metrics: metric definition and aspect
building. The metric definition consists of defining (i) the entities to measure (e.g.,
operations, fields); and (ii) how they are aggregated (e.g., in classes, in aspects).

In the aspect building step, we have to write an aspect that encapsulates the
measurement process for the new metric defined in the first step. Thus, we have to:

1. define a set of pointcuts to select/exclude some execution points (i.e., join
points) as required by the measurement process;

2. write the advice to analyze the selected joint points and collect the data about
the metric; and

3. write a set of ancillary classes to support the measurement, e.g., to temporary
store data.

In this first example, we extend our framework to support the dynamic response for
a module (d-RFM) metric; a variant of the well-known RFM metric that calculates
the coupling between modules in terms of the number of different operations directly
invoked from an invoked operation. Following our stepwise algorithm we have:

1. to define the metric characteristics

i. to count how many operations are used by a module that are defined in
another;

60 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 2

3 AOPåHiddenMetrics AT WORK

ii. to aggregate the used operations by module to compute the coupling be-
tween modules.

2. to build the corresponding aspect

i. the pointcut (dRFMcall()) must select the execution of all the operations
(methods, constructors or advice) invoked from an operation included
library calls

pointcut dRFMcall():
cflow(execution(* *..*.*(..))) &&

(adviceexecution() ||
execution(* *..*.*(..)) ||
execution(*.new(..))

) && !within(AOPHiddenMetrics..*);

ii. in the advice associated with the dRFMcall() pointcut must collect the
data about callee and caller modules; it uses thisJoinPoint to extract
these data from the join point. Since the code is quite similar to that in
listing 2 for sake of brevity we do not describe it any further.

iii. the intermediate results need to be stored and an Hashtable can do the
work.

In this second example, we are going to support the measurement of a new asset:
exceptions. In particular, we add the support for the EXCP metric that measures
frequencies and types of the exceptions raised during the execution of a given system
scenario. To this regard, information about the exception handlers and the raised
exception need to be recorded when an exception is trapped.

1. to define the metric characteristics

i. to compute frequencies and types of raised exceptions;

ii. to aggregate the raised exceptions by module;

2. to build the corresponding aspect

i. the pointcut EXCPtrap() must capture all the raised exceptions

pointcut EXCPtrap(Exception e) :
args(e) && handler(Exception+) &&

!within(AOPHiddenMetrics..*);

the related data are grasped through the args primitive pointcut

ii. the advice associated with the EXCPtrap() pointcut extracts the data
related to the trapped exception.

VOL 7, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 61

AOPåHiddenMetrics: SEPARATION, EXTENSIBILITY AND ADAPTABILITY IN SW MEASUREMENT

before(Exception e) : EXCPtrap(e) {
StackTraceElement[] st = e.getStackTrace();
Vector v = new Vector();
String classOfExc = st[0].getClassName();
v.add(classOfExc); // type of the raised exception «e»
v.add(st[0].getMethodName()); // who has raised the exception «e»
v.add(st[0].getLineNumber()); // where the exception «e» occurred
if (!_data.ex_contains(classOfExc))

_data.set_ex(classOfExc,v);
}

iii. the computed results are stored in the predefined storage unit (storeData).

Measuring the SUA

To show the framework at work, we have measured the JDepend3 application. JDe-
pend is a tool that computes several metrics on Java applications through static
analysis. It is composed of more than 3000 lines of code implementing about 50
classes subdivided into 4 packages.

To measure JDepend, we have generated a test case class by specializing the
abstract test cases class as follows.

import AOPHiddenMetrics.metrics.nClasses.TestCase;
import jdepend.textui.*;

/* This class is a sample class that extends the TestCase class
to apply it with a specific case study. */

public class Test extends TestCase {
public void execution(String[] args) {
try {
String[] input = { "./epayment" };
JDepend.main(input);

} catch(Exception e){e.printStackTrace();}
}

public static void main(String[] args) {
Test t = new Test();
t.run(args);

}
}

The code for the test case is also in the main canvas of the Eclipse screenshot
(Fig. 1). Note that JDepend can display its reports through several different devices
(e.g., plain text file, XML files, or on a graphical GUI). The test case we have written

3http://clarkware.com/software/JDepend.html.

62 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 2

http://clarkware.com/software/JDepend.html

3 AOPåHiddenMetrics AT WORK

Figure 2: AOPåHiddenMetrics on the jDepend tool.

forces JDepend to produce its report as a plain text file, this means that only the
code related to this device will be measured and not the whole application. This
choice is to emphasize that the AOPåHiddenMetrics framework is quite different
from the other ones such as JDepend and AOPMetrics since it performs dynamic
analysis. Thence, the calculated measures are strictly related to the application
execution trace we choose in the test case. For instance, we know that the JDepend
tool is composed of 50 classes but considering our test case the AOPåHiddenMetrics
framework considers only 14 classes as shown in Fig. 2. This is due to the fact that
several classes are not used by JDepend to report the computed measures as text
file, — e.g., all the classes related to the graphic interface. Therefore, to perform an
analysis of the whole tool we have to write a test case that covers all the possible
execution traces (when possible).

Once the test cases have been written and the metrics to measure have been cho-
sen, the AOPåHiddenMetrics framework weaves the aspects for the chosen metrics
on the SUA and on the test cases and finally executes the test cases. During the

VOL 7, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 63

AOPåHiddenMetrics: SEPARATION, EXTENSIBILITY AND ADAPTABILITY IN SW MEASUREMENT

execution the woven code computes the metrics and stores the results into XML files
that can be shown through our viewer. For instance, Figure 2 shows a screenshot
of the browser reporting the data collected measuring the JDepend application, in
particular it is displaying the results for the directly response for a module (d-RFM)
metric.

4 DISCUSSION AND RELATED WORK

Conventional approaches to software measurements are based on code/bytecode
instrumentation or supported by specific JVM enhancement, e.g., JVMTI. In this
section, we will discuss advantages and drawbacks of the aspect-oriented solution
with respect to the traditional approaches and glance at some related work.

In [11], Mitchell et al. show how to adapt two common object-oriented metrics
(coupling and cohesion) to be applied at run-time. To collect the results of the
measurement process, the authors explore the use of a modified JVM and the JVM
Debug Interface (JVMDI) to run the SUA. In [12], the authors explore the use of
BCEL [3] to instrument the bytecode of the SUA. This last approach requires the
modification of the application bytecode to dynamically acquire the data and adds
overhead to the software execution but provides a more object-level accuracy rather
than the JVMs instrumentation. Similar approaches have been followed in [4] and [1].

On the other hand, [13] adopts the aspect-oriented technology to profile the
software execution and to increase the program comprehension of a given fragment
of Java code. In particular, AOP is used to trace the methods execution for a
single code fragment (e.g., for a specific class), to define all the calls to a given
code fragment, and to define if the same fragment is really used by another Java
code fragment. In [6], Figueiredo et al. present a set of metrics capturing several
object- and aspect-oriented artifacts (properties as separation of concerns, coupling,
cohesion, and size). They introduce an aspect-oriented tool to measure these metrics
but they focus on static measurements. AOPMetrics [14] is a tool that calculates
a set of object- and aspect-oriented metrics for Java applications. This tool uses
the AspectJ compiler to compile the entire SUA source code and then computes the
metrics on the application’s syntax tree.

The AOPåHiddenMetrics framework that we have presented in this paper is quite
different from all of these tools/approaches. It focuses on the computation of a set
of dynamic metrics related to some software assets. The framework dynamically
collects data from the SUA execution and computes the metrics on them. In this way,
the user can analyze different execution traces and behaviors of the same SUA. In
other words, differently from the traditional approaches based on the static analysis
of the application source code, the AOPåHiddenMetrics framework can measure the
same software artifact on different execution contexts.

The AOPåHiddenMetrics framework (similarly to [13]) uses AOP to perform its
dynamic analysis and define a noninvasive approach to measure software systems.

64 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 2

4 DISCUSSION AND RELATED WORK

The use of an aspect to analyze software executions renders the approach more
powerful and flexible than the traditional approaches (such as [11,4,1]) since it lets us
perform a very object-level accuracy analysis such as the bytecode instrumentation
but working at a higher-level of abstraction. Moreover, the AOPåHiddenMetrics
framework can be easily extended to support the measurement of new metrics by
adding new aspects and applying them to the SUA.

With respect to the approach described in [13], our framework can analyze the
whole Java application based on the user-defined executions and independently of
its structure and behavior. Moreover, it is a complete framework that profiles the
software executions, analyzes these executions to compute the metric-data, stores
this data in files and defines some views of these data to help the user to understand
and analyze them.

To compare classical and aspect-oriented approaches we consider three assets:

• the accuracy of the performed analysis;

• the developer effort, i.e., the effort required to a developer to implement a
measurement-tool using a given approach; and

• the user effort, i.e., the effort required to a user to measure systems by using
the built tool.

Summarizing, through an aspect-oriented approach and code instrumentation we
analyze a SUA at object-level and calculate metrics related to several software at-
tributes. While, by using a JVM-based approach we may (also) extract information
about the JVM itself such as its state and the allocated memory. By using AOP
rather than code instrumentation it is difficult to calculate metrics related to lines
of code (e.g., statements, conditions) since we (usually) cannot define pointcuts at
this level but this comes from the limits of AspectJ [10, 15]. The aspect-oriented
approaches better fit the analysis of both aspect- and object-oriented SUA. Using
JVM-based approaches is difficult to focus on specific elements (e.g., objects) but
the whole system will be analyzed even if our analysis could be confined in a portion
of the SUA code or on a given trace execution since it is difficult or impossible to
disable the instrumentation on per object basis. On the contrary, an aspect-oriented
technique lets the user define pointcuts to confine its analysis to specific portions of
the SUA code.

To implement measurement-tools using AOP appears to be easier than other ap-
proaches since it requires (only) a bit knowledge about the adopted aspect-oriented
language and because through AOP we “transparently” control our code instrumen-
tator. In other terms, we do not use specific tool (e.g., BCEL that works at bytecode
level) or special JVMs for producing instrumented version of systems to be analyzed.
On the contrary, through pointcuts and advice we easily control our instrumentation
that is automatically done during the weaving process. Furthermore, an AOP-based
measurement-tool is more flexible and easy to extend or customize (e.g., for analyz-
ing a specific set of classes) rather than other approaches that require more efforts

VOL 7, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 65

AOPåHiddenMetrics: SEPARATION, EXTENSIBILITY AND ADAPTABILITY IN SW MEASUREMENT

and skills to modify/adapt its instrumentator. For instance, in the case we would
like to qualify an existing measurement-tool to calculate a new metric. Using a JVMs
approach we need to modify and reconfigure the virtual machine to add this feature
and this is not an easy task. Through a JVMTI approach, we need to verify if the
provided events notification mechanism allows us to capture the needed information
and, in this case, we need to update the instrumentator. Otherwise, we cannot
implement the new metric. Using code instrumentation, we need to update the
instrumentator and then (also) the metrics-calculation module. These operations
may require high efforts, skills, and specific knowledge to be done since we need
to work at code level (e.g., on bytecode) with ad hoc tools. Using an AOP-based
approach we need to define the pointcuts of interest for the new measure and then
write their related advice to calculate the metric. Thus, the use of AOP simplify
implementation, development and maintenance of measurement-tools.

Finally, a measurement-tool based on AOP is easy to apply for analyzing and
measuring applications since user needs (only) to weave the applications bytecode
with the metric/aspects used to trace executions and calculate metrics. Thanks to
the weaving process user does not need to manage several versions of SUA (instru-
mented/not instrumented) and/or ad hoc developed JVMs as well as required by
other approaches.

5 CONCLUSIONS AND FUTURE WORKS

In this paper we document our tree-steps experience: (i) we study the state of the
art in terms of approaches used to perform dynamic analysis; (ii) we develop the
(first) AOP-based tool for measuring dynamic assets of systems; and (iii) we apply
it to Java applications (e.g., JDepend).

The AOPåHiddenMetrics framework analyzes the applications and collects data
by using a set of aspects (written in AspectJ) to perform a noninvasive software
measurement. To measure a given SUA the user must weave the chosen metrics to
the SUA bytecode. Then, through predefined test cases she/he executes the woven
SUA and automatically computes and collects the metrics data.

Our future work will focus on augmenting the set of metrics supported by the
AOPåHiddenMetrics framework. In particular, this extension will regard metrics
strictly related to aspect-oriented specific software assets such as pointcut measure-
ments, coupling between aspects, and so on (for example, see [4] and [5]). Further-
more, we are going to simplify the AOPåHiddenMetrics customization mechanism
by implementing a tool that drives the user during the customization process. Fi-
nally, to support our considerations, we are driving a comparative test that involves
several approaches to software measurement such as AOP, source and bytecode in-
strumentation, JVM-based.

66 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 2

5 CONCLUSIONS AND FUTURE WORKS

References

[1] E. Arisholm, L. C. Briand, and A. Føyen. Dynamic Coupling Measurement
for Object-Oriented Software. IEEE Trans. Softw. Eng., 30(8):491–506, Aug.
2004.

[2] M. Ceccato and P. Tonella. Measuring the Effects of Software Aspectization.
In Electronic Proceedings of the 1st Workshop on Aspect Reverse Engineering
(WARE 2004), Delft, The Netherlands, Nov. 2004.

[3] M. Dahm. Byte Code Engineering. In Java-Informations-Tage, pages 267–277,
1999.

[4] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic Metrics for
Java. In Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’03),
pages 149–168, Anaheim, California, USA, Oct. 2003. ACM Press.

[5] B. Dufour, C. Goard, L. Hendren, O. de Moor, G. Sittampalam, and C. Ver-
brugge. Measuring the Dynamic Behaviour of AspectJ Programs. In J. Vlis-
sides, editor, Proceedings of the 19th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’04), pages 150–169, Vancouver, BC, Canada, Oct. 2004. ACM Press.

[6] E. Figueiredo, A. Garcia, C. Sant’Anna, U. Kulesza, and C. Lucena. Assessing
Aspect-Oriented Artifacts: Towards a Tool-Supported Quantitative Method.
In F. Brito e Abreu, C. Calero, M. Lanza, G. Poels, and H. A. Sahraoui,
editors, Proceedings of the 9th ECOOP Workshop on Quantitative Approaches
in Object-Oriented Software Engineering (QAOOSE’05), Glasgow, Scotland,
July 2005.

[7] R. E. Filman and D. P. Friedman. Aspect-Oriented Programming is Quan-
tification and Obliviousness. In Proceedings of OOPSLA 2000 Workshop on
Advanced Separation of Concerns, Minneapolis, USA, Oct. 2000.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and B. Griswold. An
Overview of AspectJ. In J. L. Knudsen, editor, Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP’01), LNCS 2072, pages
327–353, Budapest, Hungary, June 2001. Springer-Verlag.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-Oriented Programming. In 11th European
Conference on Object Oriented Programming (ECOOP’97), Lecture Notes in
Computer Science 1241, pages 220–242, Helsinki, Finland, June 1997. Springer-
Verlag.

VOL 7, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 67

AOPåHiddenMetrics: SEPARATION, EXTENSIBILITY AND ADAPTABILITY IN SW MEASUREMENT

[10] C. Koppen and M. Störzer. PCDiff: Attacking the Fragile Pointcut Problem.
In Proceedings of the European Interactive Workshop on Aspects in Software
(EIWAS’04), Berlin, Germany, Sept. 2004.

[11] A. Mitchell and J. F. Power. Toward a Definition of Run-Time Object-Oriented
Metrics. In Proceedings of the 7th ECOOP Workshop on Quantitative Ap-
proaches in Object-Oriented Software Engineering (QAOOSE’03), Darmstadt,
Germany, July 2003.

[12] A. Mitchell and J. F. Power. Using Object-Level Run-time Metrics to Study
Coupling Between Objects. In Proceedings of the 2005 ACM Symposium on
Applied Computing (ACM SAC’05), pages 1456–1463, Santa Fe, New Mexico,
USA, Mar. 2005. ACM.

[13] D. Ng, D. R. Kaeli, S. Kojarski, and D. H. Lorenz. Program Comprehension
Using Aspects. In In Proceedings of the ICSE Workshop on Directions in Soft-
ware Engineering Environments (WoDiSEE’2004), Edinburgh, Scotland, May
2004.

[14] M. Stochmiałek. AOPMetrics. Master’s thesis, Wrocław University of Technol-
ogy, Poland, 2005.

[15] T. Tourwé, K. Gybels, and J. Brichau. On the Existence of the AOSD-Evolution
Paradox. In Proceedings of the Workshop on Software-engineering Properties of
Languages for Aspect Technologies (SPLAT’03), Boston, Massachusetts, Apr.
2003.

ABOUT THE AUTHORS

Walter Cazzola (Ph.D.) is currently an assistant professor at the
Department of Informatics and Communication (DICo) of the Uni-
versità degli Studi di Milano, Italy. His research interests include re-
flection, aspect-oriented programming, programming methodologies
and languages. He has written and has served as reviewer of several
technical papers about reflection and aspect-oriented programming.
He can be reached at cazzola@dico.unimi.it.

Alessandro Marchetto (Ph.D.) is currently an assistant re-
searcher at the Center for Scientific and Technological Research
(IRST) of the Bruno Kessler Foundation in Trento (www.fbk.eu/
irst). His primary research interests include quality, verification
and testing of Software Systems and, in particular, of Web-based
systems. He can be reached at marchetto@fbk.eu.

68 JOURNAL OF OBJECT TECHNOLOGY VOL 7, NO. 2

cazzola@dico.unimi.it
www.fbk.eu/irst
www.fbk.eu/irst
marchetto@fbk.eu

