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Abstract

We compare experimental spectra of radiative and semileptonic B decays with the predictions of a model
based on soft-gluon resummation to next-to-next-to-leading order and on a ghost-less time-like coupling.
We find a good agreement with photon spectra in the radiative decay and with hadron mass distributions
in the semileptonic one: the extracted values for αS(mZ) are in agreement with the current PDG average
within at most two standard deviations. The agreement is instead less good for the electron spectra measured
by BaBar and Belle in semileptonic decays for small electron energies (� 2.2 GeV): our spectrum is harder.
We also show that, in general, the inclusion of next-to-next-to-leading order effects is crucial for bringing
the model closer to the data and that the non-power expansion introduced in the framework of analytic
coupling studies does not accurately describe soft-gluon effects.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The aim of this work is to analyze measured B decay spectra with a model based on (i) soft
gluon resummation to next-to-next-to-leading order and (ii) an effective QCD coupling having
no Landau pole [1]. This coupling is constructed by means of an extrapolation at low energy of
the high-energy behavior of the standard coupling. More technically, an analyticity principle is
used.
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B decay spectra are substantially affected by long-distance effects, the most important ones
being the soft interactions occurring in the fragmentation of the B meson into the b quark. The
B meson—a colorless composite particle—emits the spectator quark and radiates soft gluons,

(1)B → b + sp + g1 + g2 + · · · + gn,

to convert into the colored b quark which later decays because of weak interactions,

(2)b → s + γ

or

(3)b → u + l + ν.

Perturbation theory can describe the fragmentation of a b quark into a b quark with a fraction
of the original energy–momentum as an effect of multiple gluon radiation, but it clearly cannot
describe that part of the fragmentation involving the spectator quark. Physical intuition suggests
that initial bound-state effects are substantial for

(4)m2
X ≈ mBΛQCD ≈ 2 GeV2,

which is experimentally interesting: that is the well-known Fermi motion of the b quark in the B

meson (mX is the final invariant hadron mass). This non-perturbative effect—which classically
can be pictured as a small vibration of the b quark in the B meson because of the interactions
with the spectator—has been formalized in an effective field theory by means of the well-known
shape function or structure function of the heavy flavors [2]. Many models have been constructed
to describe Fermi-motion as a genuinely non-perturbative effect involving the hadron structure
[3]; perturbative corrections are included, if desired, later on and play in any case a minor role.
In this work we adopt a different philosophy: in essence, we assume that the fragmentation of
the lowest-lying beauty meson into the beauty quark and the spectator quark can be described
as a radiation process off the b with a proper coupling. Even though dynamics of light degrees
of freedom in the B meson is complicated, we assume that the related effects on semi-inclusive
spectra are simple. More precisely, we assume that bound-state effects can be incorporated into an
effective QCD coupling, which is inserted in the standard soft-gluon resummation formulas. We
extrapolate therefore the perturbative QCD formulas to a non-perturbative region by assuming
that the relevant non-perturbative effects can be relegated into an effective coupling. Since the
perturbative formulas involve truncated expansions in the QCD coupling, it is clear that our
approach is meaningful as long as the effective coupling remains appreciably smaller than one
in all the relevant integration range. From Fig. 2 we see that our effective coupling is ≈ 0.5 for a
typical soft scale k⊥ ≈ 0.5 GeV (corresponding to xγ = 2Eγ /mB ≈ 0.9 in radiative B decays),
i.e. it is reasonably smaller than one.

Since the whole fragmentation process is described in a perturbative framework, we do not
distinguish between the mass of the B meson and the pole mass of the b quark, i.e. we consis-
tently set mb = mB . We also assume that this effective coupling is universal, i.e. that it can be
used to describe different processes, and that it can be constructed on the basis of analyticity ar-
guments. These are additional assumptions with respect to the basic one, which could eventually
be relaxed.

Let us remark that the resummed perturbative expansion for semi-inclusive quantities is in-
complete even at the formal level. For inclusive quantities characterized by a hard scale Q, the
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cross-section can be written in a consistent way as an expansion in the coupling at the scale Q,

(5)σincl(Q) =
∞∑

n=0

cnα
n
S

(
Q2),

where the cn’s are numerical coefficients of order one: no prescription is needed. Semi-inclusive
processes are instead multi-scale processes, characterized by fluctuations with transverse mo-
menta up to Q; the physical origin is very clear: a jet with a relatively large invariant mass mX

(ΛQCD � mX � Q) can contain very soft partons, with transverse momenta of the order of the
hadronic scale. Unlike case (5), one has to face perturbative contributions of the form

(6)

Q2∫
≈0

dk2⊥
k2⊥

αS

(
k2⊥

)
,

where an ill-defined integration over the Landau pole is made, even for large Q � ΛQCD. A pre-
scription for the low-energy behavior of the coupling is therefore needed in any case. Even if
quark confinement did not exist and partons instead of hadrons were the asymptotic states, a
prescription would anyway be necessary to compute resummed cross-sections.

It is clear that our approach has intrinsic and obvious limitations. The mass of the proton,
for example, cannot clearly be computed by means of perturbative formulas with an effective
coupling inserted in them: a genuinely non-perturbative technique is mandatory in this case, such
as lattice QCD. Our point is that, with an effective coupling, we want to describe Fermi motion
only, i.e. a specific non-perturbative effect, not all non-perturbative effects. We do not aim for
example at describing the K∗ peak which appears in the radiative hadron mass distribution (see
Fig. 3), or, equivalently, the π and ρ peaks which appear in the semileptonic one (see Figs. 7
and 8). These peaks, occurring for

(7)m2
X ≈ Λ2

QCD,

are related to final-state hadronization, i.e. to the recombination of partons into hadrons. This
effect has a different nature with respect to Fermi motion and occurs at a different scale (cf.
Eq. (4) with Eq. (7)). With our model, we just want to describe a broad peak in the hadron mass
distribution occurring in region (4). A possible difference between the photon spectra of, let us
say, B → Xsγ and Λb → Xsγ decays, could not be described or naturally incorporated in our
model, which is a kind of “spectator model for spectra”.

The validity of our approach cannot be judged a priori, but only a posteriori, by comparing its
predictions with experimental data. One may ask which is the advantage of our approach com-
pared to the standard one of postulating directly shapes for the non-perturbative components of
the spectra and convolving them with the perturbative ones in the minimal prescription [4]. The
answer is that we want to take advantage of the universality properties of QCD radiation, which
are reflected in resummation formulas. In the standard approach, one has to postulate ad-hoc
and un-related shapes for the non-perturbative components entering different observables, such
as heavy flavor decay spectra, heavy flavor fragmentation, e+e− shape variables, etc. If univer-
sal aspects of QCD dynamics—as measured in different processes—do exist, such aspects are
not easily uncovered with the standard approach. On the other hand, with our method, such an
investigation looks rather natural: to describe different processes, we use different perturbative
formulas—quite often the same formulas but with different coefficients—with the same effec-
tive coupling by assumption and we look at the data [5]. Our philosophy involves a “one step”
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approach: we deal simultaneously with perturbative and non-perturbative effects. The standard
method is instead a “two-step” approach: one resums the perturbative long-distance effects in a
minimal way—picking up just the infrared logarithms—and then introduces a physically moti-
vated non-perturbative model.

Another advantage of our approach is that it allows for a simple extraction of the value of
the standard QCD coupling at a reference scale, f.i. αS(mZ), by comparing its predictions with
measured B decay spectra. That is because the model uses ordinary perturbative formulas with a
prescription for the coupling in the low-energy tail, and therefore there is not any double-counting
problem in merging together short-distance and long-distance effects. A peculiarity of our model
is that it has no free parameters, apart of course the true QCD ones, i.e. the hadronic scale ΛQCD

and the quark masses mq ’s. It is therefore “rigid”, in the sense that there is not a natural way to
tune it to fit the data.

The plan of the paper is as follows.
In Section 2 we summarize the main features of the ghost-less QCD coupling, which is basi-

cally an extrapolation of the ordinary QCD coupling down to small momentum scales according
to an analyticity principle which removes the Landau pole.

In Section 3 we construct the effective coupling controlling the evolution of gluon cascades,
which are intrinsically time-like processes. The absorptive effects related to the decay of the
time-like gluons are included in this effective coupling to all orders in perturbation theory.

Section 4 is the main one and describes the model based on soft gluon resummation in NNLO
and on the effective coupling constructed in the previous section. A discussion of the relevance
of the next-to-next-to-leading-order effects in our model is also presented. We also comment on
the non-power expansion introduced in analytic coupling studies.

In Section 5 we apply the model to describe B → Xsγ decays. We compare its predictions
with the invariant hadron mass distribution measured by BaBar and with the inclusive photon
spectrum measured by CLEO, BaBar and Belle. Since these spectra are independent from each
other, we obtain for each of them a value of αS(mZ) which optimizes the agreement with the
data.

In Section 6 we apply the model to the charmless semileptonic decays B → Xulν. We com-
pare our predictions with the invariant hadron mass distribution measured by BaBar and Belle
and with the charged lepton energy spectrum measured by CLEO, BaBar and Belle. We extract
values of αS(mZ) as discussed above.

Finally, in Section 7 we draw our conclusions concerning the agreement of the model with the
data. We also consider natural developments and improvements.

There is also an appendix collecting formulas for the radiative decay and an appendix with
tables of values of the QCD form factor in our model for a set of values of αS(mZ).

2. Ghost-less coupling

Let us begin considering QCD regularized with an ultra-violet cut-off Λ0 and with a bare cou-
pling α0. The correlation function1 representing the quark-gluon interaction has a perturbative
expansion of the form:

1 To be accurate, we consider the qq̄g correlation function amputated of all legs and written in terms of the renormal-
ized fields.
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Γqq̄g

(
p2

1 = p2
2 = p2

3 = q2)
= α0 + β0α

2
0 log

Λ2
0

−q2 − iε
+ α2

0c + β2
0α3

0 log2 Λ2
0

−q2 − iε
+ · · ·

(8)= α0

1 − β0α0 logΛ2
0/(−q2 − iε)

+ · · · ,

where for simplicity’s sake we have considered the symmetric point p2
1 = p2

2 = p2
3. In the last

member we have resummed the well-known geometrical series of the leading logarithms. β0 =
(11 − 2/3nf )/(4π) is the first-coefficient of the β-function, nf is the number of active flavors
and c is a real constant whose explicit expression is not relevant here. This Green function can
be used to define the renormalized QCD coupling [6]:

(9)Γqq̄g

(
p2

1 = p2
2 = p2

3 = q2) 	 α0

1 − β0α0 logΛ2
0/(−q2 − iε)

≡ α
(−q2).

To have a real coupling, one generally assumes a space-like configuration of the momenta,

(10)q2 < 0

and to avoid explicit minus signs in the renormalization conditions, one defines, like in Deep–
Inelastic-Scattering (DIS)2:

(12)Q2 ≡ −q2.

We then obtain the usual expression for the renormalized QCD coupling in leading order (LO):

(13)αlo
(
Q2) = α0

1 − β0α0 logΛ2
0/Q

2
= 1

β0 logQ2/Λ2
QCD

,

where on the last member we have introduced the QCD scale

(14)Λ2
QCD ≡ Λ2

0 exp

[
− 1

β0α0

]
.

For notational simplicity, let us write Λ in place of ΛQCD from now on. The function on the r.h.s.
of Eq. (13) has:

1. a cut for Q2 < 03, related to the decay of a time-like gluon into secondary partons,

(15)g∗ → gg, qq̄, . . . .

This singularity has therefore a clear physical meaning;
2. a simple pole for Q2 = Λ2, which does not have any physical meaning [7]. This singularity

is often called “Landau ghost” because of its original appearance in QED in the interacting
electron propagator [8]. It implies a formal divergence of the coupling and a breakdown of
the perturbative scheme.

2 Note that Q2 > 0 in the space-like region while Q2 < 0 in the time-like one and the ε-prescription for Q2 is opposite

to that for q2:

(11)Q2 ≡ Q2 − iε.

3 As usual, the logarithm function is cut along the negative semi-axis, so that: log(−1 ± iε) = ±iπ .
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Fig. 1. Integration contour Γ used to construct the ghost-less coupling.

It has been suggested to replace the usual expression for the coupling in Eq. (13) with a “ghost-
less” or “analytic” coupling ᾱ having the following properties [1]:

1. it has the same discontinuity along the cut as the standard coupling:

(16)Disc ᾱ = Discα (time-like region);
2. it is analytic elsewhere in the complex plane.

Let us now consider the function

(17)f (s) ≡ ᾱ(−s)

s + Q2
,

where Q2 is a complex number not lying on the negative axis including the origin. By assump-
tion, f (s) is analytic in the complex s-plane cut along the positive axis s � 0, except for a simple
pole in

(18)s = −Q2.

We apply the residue theorem to f (s) integrated along a closed contour Γ avoiding the “physi-
cal” cut for s � 0, containing a circle of infinitesimal radius around the origin cε (ε → 0), a circle
at infinity cr (r → ∞), a line above the cut (s → s + iε) and a line below the cut (s → s − iε):
see Fig. 1. Being the pole (18) the only singularity inside the contour, we obtain the following
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expression for the analytic coupling4:

ᾱ
(
Q2) = 1

2πi

∮
Γ

ᾱ(−s)

s + Q2
ds

= 1

2πi

∮
cε

ᾱ(−s)

s + Q2
ds + 1

2πi

∮
cr

ᾱ(−s)

s + Q2
ds

(19)+ 1

2πi

∞∫
0

ᾱ(−s − iε)

s + iε + Q2
ds + 1

2πi

0∫
∞

ᾱ(−s + iε)

s − iε + Q2
ds.

We assume that the contributions of cε and of cr vanish. Since s + Q2 �= 0 for s � 0,

lim
ε→0+

[
ᾱ(−s − iε)

s + iε + Q2
− ᾱ(−s + iε)

s − iε + Q2

]
= 1

s + Q2
lim

ε→0+
[
ᾱ(−s − iε) − ᾱ(−s + iε)

]
(20)= 1

s + Q2
Discs ᾱ(−s),

where the discontinuity of a function F(s) is defined in general as:

(21)Discs F (s) ≡ lim
ε→0+

[
F(s + iε) − F(s − iε)

]
.

Taking into account that for s � 0 (see Eq. (16))

(22)Discs ᾱ(−s) = Discs α(−s),

we obtain the following integral representation for the ghost–less coupling in terms of the stan-
dard one:

(23)ᾱ
(
Q2) = 1

2πi

∞∫
0

ds

s + Q2
Discs α(−s).

Eq. (23) is just a dispersion relation which, for clarity’s sake, has been fully derived from first
principles. By inserting on the last member the expression for the standard coupling at lowest
order as given by Eq. (13), we obtain:

(24)ᾱlo
(
Q2) = lim

ε→0+
1

2πiβ0

∞∫
0

ds

s + Q2

[
1

log(−s/Λ2 − iε)
− 1

log(−s/Λ2 + iε)

]
.

The integral above is elementary. It can also be computed with the residue theorem by consid-
ering the contour Γ above. The circle of infinitesimal radius around the origin and the circle at
infinity give vanishing contributions to the integral. There are two simple poles in s = −Q2 and
in s = −Λ2, so that:

(25)ᾱlo
(
Q2) = 1

β0

[
1

logQ2/Λ2
− Λ2

Q2 − Λ2

]
.

Let us make a few remarks:

4 Note that, had we taken Q2 � 0, the pole (18) would have been located on the cut and the integral of f (s) over Γ

would have been zero.
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1. comparing the r.h.s. of Eqs. (13) and (25), we see that the “analyticization” procedure had
the effect of subtracting the infrared pole in Q2 = Λ2 by means of a power-suppressed term,
in a minimal way;

2. the analytic coupling has a constant limit at zero momentum transfer:

(26)lim
Q2→0

ᾱlo
(
Q2) = 1

β0
≈ O(1);

3. the term added to the standard coupling,

(27)− 1

β0

Λ2

Q2 − Λ2
,

does not modify the high-energy behavior because it decays as an inverse power of the hard
scale, i.e. infinitely faster than any inverse power of the logarithm of Q2. In more formal
terms, the added term (27) is exponentially small in the coupling, and therefore is always
missed in an asymptotic expansion for Q2 → ∞:

(28)
Λ2

Q2 − Λ2
= 1

e1/[β0αlo(Q
2)] − 1

≈ e−1/[β0αlo(Q
2)];

4. since the power correction has no discontinuity in the time-like region Q2 < 0,

(29)Disc
Λ2

Q2 − Λ2
= 0 for Q2 < 0,

it trivially follows that the analytic coupling has the same discontinuity as the standard one,
as originally requested.

Let us now discuss the extension to next-to-leading order (NLO). The NLO correction to the
standard coupling

(30)δα
(
Q2) = −β1

β3
0

log

(
log

Q2

Λ2

)
1

log2 Q2/Λ2
,

where β1 is the second-order coefficient of the β-function in the normalization assumed in [9],
involves:

1. the factor 1/ log2 Q2/Λ2, having a cut for Q2 < 0, related to the decay of the time-like gluon
into on-shell partons (see Eq. (15)), and a double pole for Q2 = Λ2;

2. the factor log(logQ2/Λ2), having a cut for Q2 < 0 related to the “internal” logarithm and
another cut for 0 < Q2 < Λ2 related to the “external” logarithm.

The singularities for Q2 = Λ2 and for 0 < Q2 < Λ2 are unphysical because they refer to the
space-like region, where the virtual gluon cannot decay into physical parton states. “Analyticiza-
tion” can be made as in lowest order: one requires that the analytic correction term has the same
discontinuity for Q2 < 0 as the standard one but it is regular elsewhere in the complex plane:

(31)δᾱ
(
Q2) = 1

2πi

∞∫
0

ds

s + Q2
Discs δα(−s).
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The integral above—unlike the lowest-order case—is not elementary but it can easily be made
numerically. The following remarks are in order:

• the value of the analytic coupling at zero momentum transfer is not modified in higher order
because:

(32)lim
Q2→0

δᾱ
(
Q2) = 0;

• it can be shown that δᾱ(Q2) has the same logarithmic terms as δα(Q2) [10], i.e. that the
difference resides in power-suppressed terms, as we have explicitly found for the leading
order.

The NLO coupling is defined as: ᾱnl = ᾱlo +δᾱ. Within our accuracy, the next-to-next-to-leading
order (NNLO) corrections to the coupling are also needed:

(33)δα′(Q2) = β2
1

β5
0

[
log2

(
log

Q2

Λ2

)
− log

(
log

Q2

Λ2

)
+ β0β2 − β2

1

β2
1

]
1

log3 Q2/Λ2
,

where β2 is the third-order coefficient of the β-function. One finds similar singularities as in
the NLO case, which are removed again according to principle of “minimal analyticity” already
used:

(34)δᾱ′(Q2) = 1

2πi

∞∫
0

ds

s + Q2
Discs δα′(−s).

The NNLO analytic coupling reads (see Fig. 2):

(35)ᾱ = ᾱlo + δᾱ + δᾱ′.

Fig. 2. QCD couplings in NNLO for a fixed number of active flavors nf = 3 and Λ
(3)
QCD = 0.7 GeV. Dashed line (green

in the web version): standard coupling α(Q2); dotted line (blue in the web version): ghost–less or analytic coupling
ᾱ(Q2); continuous line (red in the web version): cascade or time-like coupling α̃(k2⊥).
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Let us remark that an expansion in powers of the analytic coupling ᾱ is an asymptotic
expansion—as in the standard case—because the logarithmic structure of ᾱ is the same as that
of α. As Fig. 2 clearly shows, the standard coupling and the ghost-less one are barely distinguish-
able at large scales [1].

3. Effective coupling for gluon cascade

As well known from perturbation theory, the emission of a gluon in a process is accompanied
by an additional factor α in the cross-section, where α is the tree-level QCD coupling. In higher
orders, one has to consider:

1. multiple emissions off the primary color charges—the heavy and the light quark in B decays;
2. secondary emissions off the radiated gluons.

Primary multiple emissions produce the exponentiation of the one-gluon distribution while sec-
ondary emissions produce the decay of the radiated gluons into secondary partons—see Eq. (15).
In the case of form factors, which are inclusive with respect to gluon decays, these higher-order
terms have the main effect of replacing the tree-level coupling with an effective coupling evalu-
ated at the transverse momentum of the primary emitted gluon [11]:

(36)α → α̃
(
k2⊥

)
,

where

(37)α̃
(
k2⊥

) ≡ i

2π

k2⊥∫
0

ds Discs

α(−s)

s
.

The coupling α̃(k2⊥) is characteristic of the QCD cascade and it is given by the integral of the
discontinuity of the (interacting) gluon propagator over virtualities s cut-off by the primary gluon
transverse momentum. Let us remark that the cascade (or effective or time-like) coupling always
refers to time-like kinematics.

The prescription at the root of our model is simply to replace the standard coupling on the
r.h.s. of Eq. (37) with the ghost–less coupling constructed in the previous section:

(38)α̃
(
k2⊥

) = i

2π

k2⊥∫
0

ds Discs

ᾱ(−s)

s
.

If we neglect the −iπ terms in the integral over the discontinuity—i.e. the absorptive effects—
the cascade coupling exactly reduces to the ghost-less one:

(39)α̃
(
k2⊥

) → ᾱ
(
k2⊥

)
.

To render our model as accurate as possible, we include such absorptive effects and perform the
integral on the r.h.s. of Eq. (38) exactly. By inserting the analytic coupling at LO in the integrand
on the r.h.s. of Eq. (38), we obtain for the effective coupling:

(40)α̃lo
(
k2⊥

) = 1
[

log

(
log

k2⊥
2

+ iπ

)
− log

(
log

k2⊥
2

− iπ

)]
.

2πiβ0 Λ Λ
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At NLO, one has to add the contribution:

(41)δα̃
(
k2⊥

) = β1

2πiβ3
0

[
log(logk2⊥/Λ2 + iπ) + 1

logk2⊥/Λ2 + iπ
− log(logk2⊥/Λ2 − iπ) + 1

logk2⊥/Λ2 − iπ

]
.

The NNLO corrections read:

δα̃′(k2⊥
) = − β2

1

4πiβ5
0

[
log2(logk2⊥/Λ2 + iπ)

(logk2⊥/Λ2 + iπ)2
− log2(logk2⊥/Λ2 − iπ)

(logk2⊥/Λ2 − iπ)2

]
(42)+ β2

1 − β0β2

4πiβ5
0

[
1

(logk2⊥/Λ2 + iπ)2
− 1

(logk2⊥/Λ2 − iπ)2

]
.

The time-like coupling in NNLO is simply the sum of the above terms:

(43)α̃
(
k2⊥

) = α̃lo
(
k2⊥

) + δα̃
(
k2⊥

) + δα̃′(k2⊥
)
.

Let us make a few remarks:

1. the cascade coupling is very close to the ghost-less one for very small scales, let us say less
than 1 GeV (see Fig. 2). That is partly a consequence of the fact that both couplings have the
same limit at zero momentum, 1/β0, and is partly accidental [1]. The cascade coupling is
instead smaller than the standard coupling or the ghost-less one in the perturbative region, at
large scales, because it has an additional negative third-order contribution ≈ −1/ log3 Q2—
see next point;

2. the time-like coupling α̃ has an expansion in powers of the standard MS coupling α of the
form:

(44)α̃ = α − (πβ0)
2

3
α3 − 5

6

β1

β0
(πβ0)

2α4 + O
(
α5).

The relation above can be considered as an ordinary change of scheme for the coupling
starting at third order;

3. the β̃ function for the time-like coupling, defined by the relation

(45)
dα̃

d logk2⊥
= β̃(α̃) = −β̃0α̃

2 − β̃1α̃
3 − β̃2α̃

4 − · · · ,

has a negative third-order coefficient,5

(46)β̃2 = β2 − 1

3
(πβ0)

2β0 < 0,

in agreement with the fact that the coupling saturates at small scales;
4. an expansion in powers of α̃(k2⊥) is not an asymptotic expansion for k2⊥ → ∞ because α̃

even at LO contains infinitely many inverse powers of logk2⊥.

The decoupling relations for the time-like coupling differ from the ones for the standard MS
coupling and read:

(47)α̃nf
= α̃nf −1 −

(
11

72π2
− 17

54
+ nf

54

)
α̃3

nf −1,

5 The first two coefficients are, as well known, invariant under a change of scheme: β̃0 = β0, β̃1 = β1.
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where α̃nf
is the time-like coupling with nf active flavors and α̃nf −1 with nf − 1. The above

relation has to be imposed at a scale μ such that m̄(μ) = μ, where m̄(μ) is the MS running mass
of the decoupling quark.

Let us end this section summarizing the basic steps taken in the construction of the effective
coupling for the gluon cascade of our model:

1. subtraction of the Landau pole from the ordinary QCD coupling;
2. inclusion of the absorptive effects related to the decay of time-like gluons in the coupling

controlling jet evolution.

3.1. Coupling in the DMW model

Let us now evaluate the quantity

(48)α0 ≡ 1

μI

μI∫
0

dk⊥ α̃
(
k2⊥

)
parameterizing the leading non-perturbative effects in the Dokshitzer–Marchesini–Webber
(DMW) model [5]. With μI = 2 GeV we obtain in our model α0 = 0.40 for α(mZ) = 0.12
and α0 = 0.44 for α(mZ) = 0.125. In general, we find that α0 is roughly linear in α(mZ). A fit
to e+e− shape variables data using next-to-leading resummed formulas gives α0 	 0.45.6

4. Threshold resummation with effective coupling

In this section we describe a model for threshold resummation in semi-inclusive beauty decays
based on the effective coupling considered in the previous section. Basically, we replace in the
resummation exponent the standard coupling with the effective one.

4.1. N -space

In order to factorize multiple soft-gluon kinematic constraints, a transformation to N -space is
required:

(49)σN(α) =
1∫

0

(1 − t)N−1σ(t;α)dt,

where

(50)σ(t;α) = δ(t) − CF α

π

(
log t

t

)
+

− 7CF α

4π

(
1

t

)
+

+ O
(
α2),

is the differential QCD form factor in the notation of [9]. CF = (N2
C − 1)/(2NC) = 4/3 with

NC = 3 the number of colors and the plus distributions are defined as usual as:

(51)P(t)+ ≡ P(t) − δ(t)

1∫
0

P(t ′) dt ′.

6 G. Salam: private communication.
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The form factor has an exponential form in N -space:

(52)σN(α) = eGN(α),

where the exponent of the form factor reads:

(53)

GN(α) =
1∫

0

dy

y

[
(1 − y)N−1 − 1

]{ Q2y∫
Q2y2

dk2⊥
k2⊥

Ã
[
α̃
(
k2⊥

)] + B̃
[
α̃
(
Q2y

)] + D̃
[
α̃
(
Q2y2)]},

with Q = wmB being the hard scale and w ≡ 2EX/mB . The functions Ã(α̃), B̃(α̃) and D̃(α̃)

have expansions in powers of the effective coupling:

(54)Ã(α̃) =
∞∑

n=1

Ãnα̃
n = Ã1α̃ + Ã2α̃

2 + Ã3α̃
3 + · · · ;

(55)B̃(α̃) =
∞∑

n=1

B̃nα̃
n = B̃1α̃ + B̃2α̃

2 + · · · ;

(56)D̃(α̃) =
∞∑

n=1

D̃nα̃
n = D̃1α̃ + D̃2α̃

2 + · · · .

The resummation constants for the cascade coupling are obtained from the standard ones (usually
in the MS scheme) by imposing equalities such as:

(57)Ã(α̃) = A(α),

where

(58)A(α) =
∞∑

n=1

Anα
n = A1α + A2α

2 + A3α
3 + · · ·

is the standard double-logarithmic function.7 Expressing the cascade coupling in terms of the
standard one, according to Eq. (44), we obtain8:

(59)Ã1 = A1;
(60)Ã2 = A2;
(61)Ã3 = A3 + (πβ0)

2

3
A1;

(62)Ã4 = A4 + 2

3
(πβ0)

2A2 + 5

6

β1

β0
(πβ0)

2A1.

The first two coefficients A1 and A2 are the same for both couplings α and α̃, while the third-
order one A3 is modified going to the time-like coupling by a contribution proportional to the

7 A compilation of the resummation constants in our normalization, with references to the original papers, can be found
in [9].

8 Analogous relations hold for the B̃i ’s and the D̃i ’s.
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first-order coefficient. For nf = 3, Ã3 ≈ 1 is larger than A3 ≈ 0.3 by a factor 3, but it is still
acceptably small.

We have found that the inclusion of the NNLO terms involving Ã3, B2 and D2—in particular
Ã3—is crucial for a good description of the experimental data. The NLO spectra are indeed
peaked at too low hadron invariant masses and a sizable and positive value for Ã3 suppresses the
elastic region and shifts the spectra to higher mX’s. The model could be improved by including
NNNLO terms, which require the knowledge of the coefficients A4, B3 and D3; at present, only
B3 is analytically known [12].

Our model has been constructed by means of a power expansion in a single (effective) cou-
pling α̃, i.e. higher orders are proportional to α̃n. In [1] and in [13] a non-power expansion had
been proposed involving a different coupling for any n, which has interesting theoretical proper-
ties. In second order (n = 2), for example, one has the coupling

(63)α̃2
(
k2⊥

) = 1

β2
0 (π2 + log2 k2⊥/Λ2)

in place of α̃(k2⊥)2, with α̃(k2⊥) given by Eq. (40). We have found that the non-power expansion
does not offer a good description of the measured spectra. That is because

(64)α̃2
(
k2⊥

) → 0 while α̃
(
k2⊥

)2 → 1

β2
0

≈ O(1) for k2⊥ → 0.

That implies that second-order effects are suppressed in the soft region with the non-power ex-
pansion compared to the power expansion case. In general, the non-power expansion renders the
higher-order effects very small [1]. But, as discussed above, in beauty decays, sizable third-order
effects are needed to take the theoretical curves close to the data, disfavoring the non-power
expansion.

In order to include as many corrections as possible—higher order logN terms, 1/N con-
tributions, etc.—in agreement with the philosophy described in the introduction, we make the
integration over y in GN exactly, in numerical way. This is possible because the time-like cou-
pling α̃(k2⊥), unlike the standard one, does not have the Landau singularity and is regular for any
k2⊥ � 0.

4.2. Inverse transform

The form factor in momentum space is obtained by inverse transform:

(65)σ(t;α) =
C+i∞∫

C−i∞

dN

2πi
(1 − t)−NσN(α),

where the constant C is chosen so that the integration contour in the N -plane lies to the right
of all the singularities of σN(α). In order to correctly implement multi-parton kinematics, the
inverse transform from N -space back to x-space is also made exactly in numerical way. Let us
note that no prescription—such as the minimal prescription in the standard formalism [4]—is
needed in our model because σN(α) is analytic for ReN > 0.
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5. Radiative decay

The event fraction or partially-integrated rate for the radiative B decay

(66)B → Xs + γ

can be written as [14,15]:

(67)
1

Γ
(0)
r

t∫
0

dΓr

dt ′
dt ′ = Kr(α)Σ(t;α) + Dr(t;α)

where

(68)t ≡ m2
X

m2
B

is a dimensionless variable,

(69)Σ(t;α) =
t∫

0

σ(t ′;α)dt ′ = 1 − CF α

2π
log2 t − 7CF α

4π
log t + O

(
α2)

is the partially-integrated form factor and

(70)Γ (0)
r = αem

π

G2
F |VtbV

�
ts |2m3

bm̄
2
b

32π3
C2

7

is the lowest-order inclusive width. mb ≈ 5 GeV is the beauty pole mass while m̄b is the MS
mass evaluated in μ = mb . Their relation reads:

(71)m̄b =
[

1 − α(mb)CF

π
+ O

(
α2)]mb 	 0.9mb.

Kr(α) is a short-distance coefficient function specific for this process and having an expansion
in powers of α:

(72)Kr(α) = 1 + αK(1)
r + α2K(2)

r + O
(
α3).

The explicit expression of the first-order term reads:

(73)K(1)
r = 1

2π

8∑
i=1

Ci

C7
Re ri ,

where the Ci ’s are short-distance coefficient functions entering the effective b → sγ Hamil-
tonian, Hb→sγ , whose numerical values are given in the appendix, and the ri ’s are complex
constants. Dr(t;α) is a process-dependent remainder function, which is included to correctly
describe also the high jet mass region t ≈ O(1). In our leading-twist analysis, this function can
be computed in perturbation theory and starts in first order:

(74)Dr(t;α) = αD(1)
r (t) + α2D(2)

r (t) + O
(
α3),

with

(75)D(1)
r (t) = 1

π

1,8∑ CiCj

C2
7

f
(1)
ij (t).
i�j
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The fij (t)’s are functions whose explicit expressions are given in the appendix.
Since the total width Γr is infrared divergent beyond tree level, because of soft photon effects

occurring in the spectrum for t → 1, it is convenient to define an event fraction normalized to the
partial rate

(76)Γr(δ) ≡
δ∫

0

dΓr

dt ′
dt ′,

where δ < 1 is a parameter. That is also convenient for experimental reasons: due to large back-
grounds, the presently accessible range of hadron masses is at the most 0 < t < 0.3 (see later).
The event fraction normalized to Γr(δ) reads:

(77)Rδ(t) = 1

Γr(δ)

t∫
0

dΓr

dt ′
dt ′.

For δ → 1, Rδ(t) tends to the standard event fraction Rr(t). The normalization condition is:

(78)Rδ(δ) = 1.

The differential spectrum is obtained by differentiation:

(79)
dΓr

dt
= Γr(δ)

dRδ

dt
.

A resummed expression of the following form holds:

(80)Rδ(t;α) = Cδ(α)Σδ(t;α) + Dδ(t;α),

where we have defined the form factor

(81)Σδ(t;α) ≡ Σ(t;α)

Σ(δ;α)
,

which is normalized as

(82)Σδ(δ;α) = 1.

The normalization condition (78) gives:

(83)Cδ(α) + Dδ(δ;α) = 1.

The expansions of the coefficient function and the remainder function read:

(84)Cδ(α) = 1 + αC
(1)
δ + α2C

(2)
δ + O

(
α3);

(85)Dδ(t;α) = αD
(1)
δ (t) + α2D

(2)
δ (t) + O

(
α3),

with

(86)C
(1)
δ = − D

(1)
r (δ)

Σ(δ;α)
, D

(1)
δ (t) = D

(1)
r (t)

Σ(δ;α)
.

Note that we only expand Dr(t;α) in powers of α and not Σ(δ;α), because, for sufficient small
δ, one can have α log2 δ ≈ O(1), implying need for resummation to any order in α. For δ = 0.26,
one obtains C

(1)
δ 	 −0.48, i.e. a O(10%) correction to the tree-level coefficient function (Σ(t =

0.26;α) = 1.10).
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Fig. 3. B → Xsγ invariant hadron mass distribution from BaBar compared to our model for αS(mZ) = 0.123. The
theory and the data are normalized to one in the experimentally accessible region.

5.1. Phenomenology

In Fig. 3 we compare the invariant hadron mass distribution for the radiative decay, dΓr/dmX ,
obtained with our model with experimental data from the BaBar Collaboration [16]. The data
show a rather pronounced K∗ peak, which clearly cannot be accounted for in a perturbative QCD
framework.9 We have therefore discarded in the analysis the data points with mX < 1.1 GeV.10

We obtain a minimum χ2 = 12 for αS(mZ) = 0.1255 for 13 data points, i.e. for 12 degrees
of freedom (d.o.f.) because of the fixed normalization. Since we deal with the standard QCD
coupling, let us write αS from this section till the end of the paper. To improve the agreement
of the theory with the data and to estimate the error on αS(mZ), we have performed a Gaussian
smearing of �mX = 300 MeV of the data points and of the theoretical distribution, and we have
discarded the points with mX < 800 MeV. We obtain a minimum χ2 = 6.8 for αS(mZ) = 0.1205
for 15 d.o.f. By taking as an estimate of αS(mZ) the average of the above values and as an
estimate of the error their difference, we quote11:

(87)αS(mZ) = 0.123 ± 0.003 (mXs : BaBar).

9 To have a point-to-point description of the data, one has to include by hand the contribution of this resonance (without
modifying the total rate), by means of one or more free parameters.
10 mK∗ = 892 MeV and ΓK∗ = 51 MeV.
11 We have taken m̄b = 4.8 GeV, m̄c = 1.4 GeV and m̄s = 0.3 GeV in the decoupling relations. In general, changing

the MS masses in a reasonable range modifies the theoretical predictions in a negligible way. Increasing the MS masses is
roughly equivalent to a slight increase of αS(mZ). That is because, lowering the renormalization scale, the QCD coupling
rises faster for a smaller number of active flavors.
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Fig. 4. B → Xsγ photon spectrum from CLEO compared to our model. Dotted line (blue in the web version):
αS(mZ) = 0.118 and σγ = 100 MeV to model the Doppler effect (see text); continuous line (black): αS(mZ) = 0.117
and σγ = 150 MeV.

In Fig. 4 we compare the photon energy spectrum computed in the framework of our model
with data from the CLEO Collaboration [17]. In the B rest-frame,

(88)t = 1 − 2Eγ

mB

.

The photon energies are however measured in the Υ (4S) rest frame, in which the B mesons
have a small, non-relativistic motion. In order to model the Doppler effect, we have convoluted
the theoretical curve for Eγ —computed with a B meson at rest—with a normal distribution of
σγ = 150 MeV, as suggested by CLEO itself. Let us note that the Doppler effect is sufficient to
completely wash out the K∗ peak. We obtain a minimum χ2 = 3.8 for αS(mZ) = 0.117 for 7
d.o.f. Assuming complete independence of the experimental points, we allow the χ2 to raise by
one unit to estimate the error and we obtain:

(89)αS(mZ) = 0.117 ± 0.004 (Eγ : CLEO, σγ = 150 MeV).

To check the modeling above of the Doppler effect, we have used the following method. We
have converted the mXs distribution by BaBar above to a photon spectrum in the B rest-frame
and we have convoluted it with a normal distribution with a variable σγ , obtaining the points
(xi, y

′
i (σγ ), σ ′

i ). We have then minimized the quantity

(90)H(σγ ) ≡
∑

i

[yi − y′
i (σγ )]2

σ 2
i + σ ′2

i
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Fig. 5. B → Xsγ photon spectrum from BaBar compared to our model. Dotted line (blue in the web version):
αS(mZ) = 0.130 and σγ = 100 MeV; continuous line (black): αS(mZ) = 0.129 and σγ = 200 MeV.

with respect to σγ , where (xi, yi, σi) are the CLEO data.12 We have found a minimum of H(σγ )

for σγ 	 100 MeV, which gives similar results to the analysis with σγ = 150 MeV:

(91)αS(mZ) = 0.118 ± 0.003 (Eγ : CLEO, σγ = 100 MeV),

with χ2 = 3.4. As intuitively expected, reducing σγ produces a shaper spectrum.
In Fig. 5 we compare the predictions of our model with a spectrum from the BaBar Col-

laboration [18]. The BaBar spectrum is somewhat softer than the CLEO one—even though the
difference is within one standard deviation; we have interpreted this difference as a resolution ef-
fect and we have convoluted our theoretical curve with a normal distribution with a slightly larger
standard deviation, σγ = 200 MeV.13 We obtain a minimum χ2 = 5.1 for 9 d.o.f. Performing a
similar analysis as for the CLEO data, we obtain:

(92)αS(mZ) = 0.129 ± 0.005 (Eγ : BaBar, σγ = 200 MeV).

Following the minimization procedure above for the CLEO spectrum (see Eq. (90)), we obtain
also for the BaBar photon spectrum σγ 	 100 MeV, to give:

(93)αS(mZ) = 0.130 ± 0.008 (Eγ : BaBar, σγ = 100 MeV),

with χ2 = 8.0. Let us note that σγ and αS(mZ) are slightly anti-correlated because by increasing
αS(mZ) more radiation is emitted with a smearing effect similar to the one of increasing σγ .

The same analysis on the BaBar photon spectrum can be repeated for the Belle one [19] (see
Fig. 6). The minimization of H(σγ ) gives in this case σγ 	 200 MeV. We obtain a minimum of

12 Let us remark however that the two spectra entering Eq. (90) are independent on each other.
13 A more sophisticated analysis from the experimentalists, including the true resolution functions, is strongly encour-
aged!
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Fig. 6. B → Xsγ photon spectrum from Belle compared to our model for αS(mZ) = 0.130 and σγ = 200 MeV.

χ2 = 5.3 for 8 d.o.f., to give

(94)αS(mZ) = 0.130 ± 0.005 (Eγ : Belle, σγ = 200 MeV).

The over-all picture is that there is a good agreement of our model with the data in the region
mX > 1 GeV, below which single resonances such as K and K∗ are expected to have a sub-
stantial effect in the dynamics. The extracted values of αS(mZ) are in agreement with the world
average [30]

(95)αS(mZ) = 0.1176 ± 0.0020

at most within two standard deviations.

6. Semileptonic decay

Resummed expressions for the triple-differential distribution in the inclusive charmless semi-
leptonic B decays,

(96)B → Xu + l + ν,

as well as for many double and single distributions have been given in [9,14,20,21], so we do
not repeat them here.14 To compare with semileptonic data, we just supplement these resummed
expressions with the QCD form factor σ computed within our model.

14 A slightly different formalism, which uses light-cone variables and is equivalent to ours in leading twist, has been
developed in [22].



U. Aglietti et al. / Nuclear Physics B 768 (2007) 85–115 105
Fig. 7. Invariant hadron mass distribution in semileptonic decays from BaBar compared to our model for
αS(mZ) = 0.119.

6.1. Hadron mass distribution

In Fig. 7 we compare the invariant hadron mass distribution in the semileptonic decay (96)
in our model with data from the BaBar Collaboration [23]. We discard the point with mX <

400 MeV, which is dominated by the π peak, and the points with mX > 2.6 GeV, which give
basically no information on the signal.15 We obtain a minimum χ2 = 1.1 for 5 d.o.f. and, using
the method of the previous section, we obtain:

(97)αS(mZ) = 0.119 ± 0.003 (mXu: BaBar).

Since the ρ width is larger than that of the K∗, Γρ 	 150 MeV 	 3ΓK∗ , and the binning is rather
large (�mX = 400 MeV), we do not apply any smearing procedure in this case.

In Fig. 8 we present a similar plot with Belle data [24]. To extract αS(mZ), we discard the first
7 points, having mX < 0.8 GeV. We obtain a minimum χ2 = 5.3 with 7 d.o.f., to give αS(mZ) =
0.123 ± 0.006. Since the binning is smaller for Belle (�mX = 120 MeV) than for BaBar, the ρ

peak is pretty visible now. To reduce the resonance effect, we convolve our theoretical curve and
the experimental data with a normal distribution of σ = 300 MeV, as we have made with the
mXs spectrum in the previous section. By discarding the first four points, we obtain a minimum
χ2 = 0.41 for 10 d.o.f. to give αS(mZ) = 0.115 ± 0.004. Combining the above measures as we
have made for the mXs spectrum, we quote:

(98)αS(mZ) = 0.119 ± 0.004 (mXu: Belle).

15 Let us stress that for mX > 1.7 GeV experimental errors become very large because of the large background coming
from semileptonic b → c transitions which have mX � mD = 1.867 GeV.
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Fig. 8. Invariant hadron mass distribution in semileptonic decay from Belle compared to our model for αS(mZ) = 0.123.

Let us note that semileptonic distributions peak at smaller hadron masses than radiative ones
because they have a smaller average hadron energy [9]:

(99)〈EX〉sl 	 0.7〈EX〉rd.

For αS(mZ) = 0.123, we find for the peak positions in our model:

(100)mXu ≈ 1.3 GeV while mXs ≈ 1.7 GeV.

We end this section by noting that the extracted values of αS(mZ) from the above measure-
ments are in agreement with each other as well with the reference value within one standard
deviation.

6.2. Electron spectrum

The electron spectrum in the decay (96) is affected by a large background for

(101)Ee <
mB

2

(
1 − m2

D

m2
B

)
	 2.31 GeV

coming from the decays

(102)B → Xc + l + ν.

This background is larger than the signal by two orders of magnitude because |Vub|2/|Vcb|2 ∼
10−2. In order to avoid the large errors coming from its subtraction, we have normalized the
theory and the data to one in the region Ee > 2.31 GeV. Instead of the electron energy, we prefer
to use the variable

(103)x̄e ≡ 1 − 2Ee

mB

,



U. Aglietti et al. / Nuclear Physics B 768 (2007) 85–115 107
Fig. 9. Electron spectrum in semileptonic charmless B decay from CLEO compared to our model with αS(mZ) = 0.118.
The data and the theory are normalized to one in the charm background free region 0 < x̄e < 0.125.

which is equal to zero for the largest electron energy. The charm background occurs for x̄e >

0.125. To include the Doppler effect, we convolve our spectra with a normal distribution of
standard deviation σe = 100 MeV.

In Fig. 9 we compare the electron spectrum in our model16 with data from the CLEO Collab-
oration [25]. We obtain a minimum χ2 = 30 for 13 d.o.f. and with the analysis described above
we obtain:

(104)αS(mZ) = 0.117 ± 0.005 (Ee: CLEO).

The over-all agreement of the model with the data is acceptable in all the measured range of
electron energies. In the region affected by the charm background, experimental errors become
however very large.

In Fig. 10 we compare our prediction with the electron spectrum measured by the BaBar
Collaboration [26]. In the χ2 analysis we remove the 4 points with the smallest electron energies,
which are affected by the subtraction of the charm background. We obtain a minimum χ2 = 16
for 9 d.o.f. and we obtain

(105)αS(mZ) = 0.119 ± 0.005 (Ee: BaBar).

In Fig. 11 we compare our model with Belle data [27]. For the χ2 analysis we have discarded
the seven points with the largest x̄e, i.e. with smallest electron energies. We obtain a minimum
χ2 = 7 for 8 d.o.f. for αS(mZ) ≈ 0.135. Since the χ2 is a rather irregular function of αS(mZ) in
this case—without a well-shaped minimum—we are not able to estimate the error.

16 Let us note that the tree-level electron spectrum has a maximum for x̄e = 0, at the largest electron energy, where it
is flat. The shift of the maximum inside the kinematical domain, in x̄e ≈ 0.2, is a Sudakov effect. Because of infrared
divergencies, soft radiation is always emitted and the high energy electron recoils against a neutrino and a massive
up-quark jet, instead of a massless one.
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Fig. 10. Electron spectrum in semileptonic decay from BaBar compared to our model with αS(mZ) = 0.119. The data
and the theory are normalized to one in the charm background free region 0 < x̄e < 0.125.

Fig. 11. Electron spectrum in semileptonic decay from Belle compared to our model for αS(mZ) = 0.135. The data and
the theory are normalized to one in the charm background free region 0 < x̄e < 0.125.

Finally, in Fig. 12 we compare our model for αS(mZ) = 0.119 with a preliminary measure of
the electron spectrum of the BaBar Collaboration extending down to Ee = 1.1 GeV [28]. As it
is clearly seen, the theoretical spectrum is harder than the experimental one. We do not known
whether this discrepancy is related to a deficiency of our model or to an under-estimated charm
background.
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Fig. 12. Electron spectrum in semileptonic decay extending down to 1.1 GeV from BaBar (preliminary, error bars indicate
statistical errors only) compared to our model with αS(mZ) = 0.119. The data and the theory are normalized to one in
the charm background free region 0 < x̄e < 0.125.

We may summarize our analysis of the electron spectra by saying that the agreement theory-
data is less clear in this case. The agreement is acceptable in the charm background free region,
i.e. for 2.31 < Ee < 2.64 GeV; the errors in the measure of αS(mZ) are however larger than in
previous cases. There is not a good agreement with the preliminary BaBar spectrum for small
electron energies: our model predicts a broad maximum around Ee = 2.1 GeV, while the data
seem to peak at lower energies.

7. Conclusions

We have presented a model for the QCD form factor describing radiative and semileptonic B

decay spectra based on soft-gluon resummation to next-to-next-to-leading logarithmic accuracy
and on a power expansion in an ghost–less time-like coupling. The latter is free from infrared
singularities (Landau ghost) and resumes absorptive effects in gluon cascades to all orders.

The agreement with invariant hadron mass distributions in radiative and semi-leptonic decays
measured by CLEO, BaBar and Belle is in general a good one. The χ2/d.o.f. values are accept-
able and the extracted values of αS(mZ) are in agreement with the current PDG average within
two at most standard deviations.

The agreement with the electron spectra in semi-leptonic decays is in general not as good.
Even restricting the analysis to the end-point region free from the charm background (2.31–
2.64 GeV), χ2/d.o.f. values are larger and the extracted values of αS(mZ) are generally less
accurate than in previous cases. The preliminary BaBar measure of the electron spectrum down
to 1.1 GeV is not in good agreement with our model, which predicts a harder spectrum, with a
broad maximum around 2.1 GeV. We do not know whether the discrepancy is to be attributed to
a deficiency of our model or to an under-subtracted charm background. In the former case, one
could think of a non-perturbative component which is accidentally larger in the electron spectrum
than in other semi-leptonic or radiative spectra.
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In general, the model seems to work quite well, validating the idea that Fermi-motion ef-
fects can be described in a resummed pQCD framework with an effective QCD coupling, which
remains reasonably smaller than one in the relevant integration domain. Since the effective
coupling is constructed by means of an extrapolation at low energy of the standard coupling,
non-perturbative Fermi-motion effects are connected in a smooth way to the perturbative ones—
namely soft gluon radiation—in our model. More accurate data on any distribution sensitive to
soft-gluon effects are needed to put the model to a stringent test. Theoretical predictions could be
sharpened in the future by including second-order corrections to the coefficient functions and re-
mainder functions, as soon as they become available; that would allow to work within a complete
NNLO approximation.

We have found that the inclusion of the NNLO effects in our model is crucial for a good
description of the data; the model could be improved by including NNNLO terms. We have also
found that the non-power expansion proposed in [1,13] does not accurately describe soft-gluon
effects.

Let us end with a general comment. We find it remarkable that with such a simple model as
the one we have formulated, without any adjustable parameter, it is possible to extract reasonable
values of αS(mZ) from spectra with a hard scale of just a few GeV.
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Appendix A. Coefficient functions and remainder functions for the radiative decay

The coefficient functions Ci of the local operators Oi entering the effective Hamiltonian

(A.1)Hb→sγ =
8∑

i=1

CiOi

can be taken as:

(C1,C2,C3,C4,C5,C6,C7,C8)

(A.2)= (−0.480,1.023,−0.0045,−0.0640,0.0004,0.0009,−0.304,−0.148).

The analytic expressions of the Ci ’s as functions of mb,mt ,mW and αS(mZ) as well as of the
Oi ’s can be found in [29].17 The coefficients Ci for i = 3,4,5,6 are very small, implying that
the contributions of the related operators can be neglected.

The functions entering the leading-order remainder function D
(1)
r (t) read in our conventions:

(A.3)f11(t) = + 1

36
f22(t);

(A.4)f12(t) = −1

3
f22(t);

(A.5)f17(t) = −1

6
f27(t);

17 Unlike previous works ([14] and [15]), we always insert in the formulas the corrected C7 = C
(0)
7 + αS/(4π)C

(1)
7 .
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(A.6)f18(t) = −1

6
f28(t);

(A.7)

f22(t) = +16

27
k

{
t

(1−t)/k∫
0

dv (1 − kv)

∣∣∣∣G(v)

v
+ 1

2

∣∣∣∣2

+
1/k∫

(1−t)/k

dv (1 − kv)2
∣∣∣∣G(v)

v
+ 1

2

∣∣∣∣2
}

;

(A.8)f27(t) = −8

9
k2

{
t

(1−t)/k∫
0

dv Re

[
G(v) + v

2

]
+

1/k∫
(1−t)/k

dv (1 − kv)Re

[
G(v) + v

2

]}
;

(A.9)f28(t) = −1

3
f27(t);

(A.10)f77(t) = + t

9

[
30 + 3t − 2t2 − 3(4 − t) log t

];
(A.11)f78(t) = − 2

27

[
2π2 − 27t + 3t2 − t3 + 12t log t − 12 Li2(1 − t)

];

(A.12)

f88(t) = + 1

81

{
−2π2 + t

[
21 + (9 − 2t)t

] + 24 log(1 − t)

− 6 log
mb

ms

[
t (2 + t) + 4 log(1 − t)

] − 3t (2 + t) log t + 12 Li2(1 − t)

}
.

We have defined:

(A.13)G(v) =
⎧⎨⎩−2arctan2

(√
v

4−v

)
, v < 4;

2 log2[√
v+√

v−4
2

] − 2πi log
[√

v+√
v−4

2

] − π2

2 , v � 4,

and

(A.14)k = m2
c

m2
b

.

Appendix B. QCD form factor

In this appendix we tabulate the values of the QCD form factor σ(u;w) in our model as a
function of the infrared variable

(B.1)u ≡
EX −

√
E2

X − m2
X

EX +
√

E2
X − m2

X

	 m2
X

4E2
X

(for mX � EX)

and of the total final hadron energy

(B.2)w ≡ 2EX

mB

for αS(mZ) = 0.115, 0.120 and 0.125. The hard scale in the process is

(B.3)Q = wmB.
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Table 1
σ(u;w): αS(mZ) = 0.115

u w = 0.10 w = 0.28 w = 0.46 w = 0.64 w = 0.82 w = 1.00

0.01 2.89 × 10−6 5.094 × 10−6 1.218 × 10−5 1.088 × 10−4 8.073 × 10−4 3.825 × 10−3

0.02 3.063 × 10−6 1.028 × 10−4 3.525 × 10−3 3.077 × 10−2 1.344 × 10−1 3.923 × 10−1

0.03 3.686 × 10−6 3.574 × 10−3 6.732 × 10−2 3.688 × 10−1 1.12 2.426

0.04 4.715 × 10−5 3.068 × 10−2 3.597 × 10−1 1.407 3.295 5.788

0.05 4.848 × 10−4 1.277 × 10−1 1.03 3.102 5.948 8.903

0.06 2.577 × 10−3 3.485 × 10−1 2.065 5.029 8.209 1.082 × 101

0.07 9.099 × 10−3 7.256 × 10−1 3.313 6.749 9.64 1.145 × 101

0.08 2.451 × 10−2 1.256 4.578 8.002 1.021 × 101 1.111 × 101

0.09 5.449 × 10−2 1.905 5.697 8.713 1.008 × 101 1.019 × 101

0.10 1.052 × 10−1 2.621 6.568 8.929 9.493 9.004

0.11 1.821 × 10−1 3.346 7.152 8.754 8.637 7.748

0.12 2.894 × 10−1 4.031 7.456 8.304 7.661 6.549

0.13 4.296 × 10−1 4.636 7.511 7.681 6.669 5.469

0.14 6.029 × 10−1 5.135 7.366 6.964 5.725 4.531

0.15 8.075 × 10−1 5.516 7.067 6.213 4.863 3.734

0.16 1.04 5.776 6.661 5.472 4.099 3.065

0.17 1.295 5.92 6.186 4.769 3.435 2.51

0.18 1.568 5.958 5.673 4.119 2.864 2.05

0.19 1.851 5.902 5.145 3.532 2.379 1.67

0.20 2.138 5.769 4.621 3.008 1.968 1.356

0.21 2.423 5.571 4.114 2.548 1.621 1.097

0.22 2.7 5.325 3.635 2.146 1.329 8.814 × 10−1

0.23 2.963 5.042 3.187 1.798 1.083 7.027 × 10−1

0.24 3.208 4.734 2.776 1.498 8.765 × 10−1 5.537 × 10−1

0.25 3.43 4.411 2.401 1.24 7.021 × 10−1 4.293 × 10−1

0.26 3.627 4.081 2.063 1.019 5.55 × 10−1 3.249 × 10−1

0.27 3.797 3.75 1.761 8.29 × 10−1 4.307 × 10−1 2.372 × 10−1

0.28 3.937 3.423 1.491 6.665 × 10−1 3.255 × 10−1 1.632 × 10−1

0.29 4.048 3.105 1.253 5.273 × 10−1 2.363 × 10−1 1.005 × 10−1

0.30 4.128 2.798 1.042 4.079 × 10−1 1.606 × 10−1 4.656 × 10−2

0.31 4.18 2.504 8.571 × 10−1 3.057 × 10−1 9.62 × 10−2 1.027 × 10−4

0.32 4.202 2.227 6.948 × 10−1 2.18 × 10−1 4.139 × 10−2 −3.977 × 10−2

0.33 4.197 1.965 5.528 × 10−1 1.427 × 10−1 −5.313 × 10−3 −7.377 × 10−2

0.34 4.166 1.722 4.29 × 10−1 7.814 × 10−2 −4.524 × 10−2 −1.026 × 10−1

0.35 4.112 1.496 3.211 × 10−1 2.272 × 10−2 −7.955 × 10−2 −1.27 × 10−1

0.36 4.035 1.287 2.274 × 10−1 −2.485 × 10−2 −1.093 × 10−1 −1.476 × 10−1

0.37 3.938 1.096 1.463 × 10−1 −6.568 × 10−2 −1.353 × 10−1 −1.649 × 10−1

0.38 3.824 9.216 × 10−1 7.613 × 10−2 −1.007 × 10−1 −1.578 × 10−1 −1.796 × 10−1

0.39 3.693 7.63 × 10−1 1.552 × 10−2 −1.307 × 10−1 −1.771 × 10−1 −1.918 × 10−1

0.40 3.55 6.195 × 10−1 −3.678 × 10−2 −1.564 × 10−1 −1.936 × 10−1 −2.021 × 10−1

0.50 1.791 −1.934 × 10−1 −2.85 × 10−1 −2.775 × 10−1 −2.596 × 10−1 −2.42 × 10−1

0.60 3.035 × 10−1 −3.989 × 10−1 −3.229 × 10−1 −2.851 × 10−1 −2.551 × 10−1 −2.346 × 10−1

0.70 −4.713 × 10−1 −4.072 × 10−1 −3.088 × 10−1 −2.615 × 10−1 −2.335 × 10−1 −2.15 × 10−1

0.80 −7.243 × 10−1 −3.596 × 10−1 −2.718 × 10−1 −2.311 × 10−1 −2.076 × 10−1 −1.92 × 10−1

0.90 −6.43 × 10−1 −2.953 × 10−1 −2.286 × 10−1 −1.975 × 10−1 −1.792 × 10−1 −1.653 × 10−1

0.98 −4.249 × 10−1 −2.458 × 10−1 −2.017 × 10−1 −1.803 × 10−1 −1.672 × 10−1 −1.58 × 10−1



U. Aglietti et al. / Nuclear Physics B 768 (2007) 85–115 113
Table 2
σ(u;w): αS(mZ) = 0.120

u w = 0.10 w = 0.28 w = 0.46 w = 0.64 w = 0.82 w = 1.00

0.01 2.575 × 10−6 4.491 × 10−6 6.691 × 10−6 2.153 × 10−5 1.321 × 10−4 6.542 × 10−4

0.02 2.748 × 10−6 2.286 × 10−5 7.371 × 10−4 7.231 × 10−3 3.539 × 10−2 1.147 × 10−1

0.03 2.992 × 10−6 8.639 × 10−4 1.881 × 10−2 1.185 × 10−1 4.081 × 10−1 9.901 × 10−1

0.04 1.341 × 10−5 8.992 × 10−3 1.247 × 10−1 5.674 × 10−1 1.517 2.995

0.05 1.359 × 10−4 4.372 × 10−2 4.23 × 10−1 1.493 3.282 5.527

0.06 8.021 × 10−4 1.357 × 10−1 9.753 × 10−1 2.797 5.245 7.775

0.07 3.121 × 10−3 3.155 × 10−1 1.761 4.239 6.961 9.285

0.08 9.146 × 10−3 6.013 × 10−1 2.695 5.582 8.182 9.98

0.09 2.192 × 10−2 9.932 × 10−1 3.67 6.663 8.849 9.991

0.10 4.521 × 10−2 1.475 4.587 7.407 9.021 9.516

0.11 8.315 × 10−2 2.018 5.373 7.812 8.805 8.74

0.12 1.397 × 10−1 2.589 5.986 7.916 8.316 7.817

0.13 2.181 × 10−1 3.157 6.41 7.774 7.657 6.855

0.14 3.208 × 10−1 3.692 6.65 7.447 6.911 5.924

0.15 4.489 × 10−1 4.171 6.724 6.991 6.141 5.062

0.16 6.024 × 10−1 4.58 6.657 6.453 5.388 4.29

0.17 7.799 × 10−1 4.909 6.474 5.873 4.681 3.612

0.18 9.791 × 10−1 5.155 6.201 5.282 4.033 3.024

0.19 1.197 5.317 5.862 4.702 3.451 2.521

0.20 1.429 5.401 5.478 4.149 2.935 2.093

0.21 1.671 5.413 5.067 3.633 2.482 1.73

0.22 1.918 5.361 4.643 3.159 2.089 1.423

0.23 2.167 5.254 4.219 2.729 1.748 1.163

0.24 2.412 5.1 3.803 2.343 1.454 9.444 × 10−1

0.25 2.649 4.909 3.404 1.999 1.201 7.596 × 10−1

0.26 2.875 4.689 3.025 1.695 9.845 × 10−1 6.034 × 10−1

0.27 3.085 4.446 2.67 1.427 7.986 × 10−1 4.712 × 10−1

0.28 3.278 4.186 2.34 1.193 6.394 × 10−1 3.593 × 10−1

0.29 3.451 3.916 2.037 9.873 × 10−1 5.031 × 10−1 2.641 × 10−1

0.30 3.602 3.64 1.761 8.082 × 10−1 3.864 × 10−1 1.828 × 10−1

0.31 3.73 3.362 1.51 6.522 × 10−1 2.864 × 10−1 1.127 × 10−1

0.32 3.834 3.086 1.283 5.165 × 10−1 2.008 × 10−1 5.236 × 10−2

0.33 3.913 2.815 1.08 3.986 × 10−1 1.274 × 10−1 5.426 × 10−4

0.34 3.968 2.552 8.978 × 10−1 2.963 × 10−1 6.449 × 10−2 −4.377 × 10−2

0.35 3.999 2.298 7.355 × 10−1 2.076 × 10−1 1.037 × 10−2 −8.151 × 10−2

0.36 4.007 2.055 5.915 × 10−1 1.308 × 10−1 −3.641 × 10−2 −1.136 × 10−1

0.37 3.992 1.824 4.64 × 10−1 6.426 × 10−2 −7.71 × 10−2 −1.407 × 10−1

0.38 3.956 1.607 3.515 × 10−1 6.723 × 10−3 −1.125 × 10−1 −1.636 × 10−1

0.39 3.9 1.403 2.527 × 10−1 −4.299 × 10−2 −1.433 × 10−1 −1.83 × 10−1

0.40 3.826 1.212 1.659 × 10−1 −8.59 × 10−2 −1.697 × 10−1 −1.993 × 10−1

0.50 2.42 −9.317 × 10−3 −2.727 × 10−1 −2.938 × 10−1 −2.836 × 10−1 −2.655 × 10−1

0.60 7.765 × 10−1 −4.072 × 10−1 −3.595 × 10−1 −3.213 × 10−1 −2.858 × 10−1 −2.61 × 10−1

0.70 −3.087 × 10−1 −4.693 × 10−1 −3.545 × 10−1 −2.965 × 10−1 −2.617 × 10−1 −2.388 × 10−1

0.80 −7.857 × 10−1 −4.228 × 10−1 −3.12 × 10−1 −2.604 × 10−1 −2.312 × 10−1 −2.12 × 10−1

0.90 −7.863 × 10−1 −3.432 × 10−1 −2.588 × 10−1 −2.199 × 10−1 −1.975 × 10−1 −1.808 × 10−1

0.98 −5.003 × 10−1 −2.753 × 10−1 −2.213 × 10−1 −1.96 × 10−1 −1.805 × 10−1 −1.699 × 10−1
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Table 3
σ(u;w): αS(mZ) = 0.125

u w = 0.10 w = 0.28 w = 0.46 w = 0.64 w = 0.82 w = 1.00

0.01 2.309 × 10−6 4.039 × 10−6 5.47 × 10−6 8.764 × 10−6 2.845 × 10−5 1.247 × 10−4

0.02 2.46 × 10−6 8.166 × 10−6 1.706 × 10−4 1.785 × 10−3 9.505 × 10−3 3.339 × 10−2

0.03 2.641 × 10−6 2.309 × 10−4 5.49 × 10−3 3.839 × 10−2 1.458 × 10−1 3.871 × 10−1

0.04 5.702 × 10−6 2.809 × 10−3 4.39 × 10−2 2.243 × 10−1 6.666 × 10−1 1.448

0.05 4.474 × 10−5 1.562 × 10−2 1.727 × 10−1 6.899 × 10−1 1.695 3.153

0.06 2.796 × 10−4 5.422 × 10−2 4.501 × 10−1 1.47 3.092 5.072

0.07 1.174 × 10−3 1.387 × 10−1 9.02 × 10−1 2.485 4.589 6.778

0.08 3.689 × 10−3 2.875 × 10−1 1.512 3.596 5.938 8.023

0.09 9.412 × 10−3 5.117 × 10−1 2.231 4.665 6.988 8.735

0.10 2.055 × 10−2 8.124 × 10−1 2.996 5.587 7.678 8.96

0.11 3.98 × 10−2 1.181 3.745 6.303 8.017 8.791

0.12 7.011 × 10−2 1.603 4.429 6.79 8.05 8.34

0.13 1.144 × 10−1 2.057 5.012 7.056 7.838 7.71

0.14 1.752 × 10−1 2.524 5.473 7.121 7.447 6.985

0.15 2.547 × 10−1 2.982 5.805 7.019 6.935 6.228

0.16 3.542 × 10−1 3.415 6.01 6.781 6.354 5.482

0.17 4.742 × 10−1 3.809 6.098 6.443 5.743 4.777

0.18 6.145 × 10−1 4.152 6.082 6.034 5.133 4.127

0.19 7.741 × 10−1 4.439 5.975 5.582 4.544 3.54

0.20 9.512 × 10−1 4.666 5.794 5.108 3.99 3.017

0.21 1.143 4.832 5.554 4.63 3.477 2.558

0.22 1.348 4.939 5.268 4.161 3.011 2.156

0.23 1.561 4.99 4.95 3.71 2.591 1.808

0.24 1.781 4.989 4.611 3.285 2.216 1.507

0.25 2.002 4.942 4.26 2.889 1.883 1.247

0.26 2.223 4.855 3.907 2.525 1.59 1.024

0.27 2.438 4.731 3.558 2.192 1.333 8.328 × 10−1

0.28 2.647 4.577 3.217 1.891 1.108 6.686 × 10−1

0.29 2.844 4.399 2.89 1.619 9.118 × 10−1 5.278 × 10−1

0.30 3.029 4.199 2.579 1.376 7.41 × 10−1 4.067 × 10−1

0.31 3.199 3.984 2.286 1.159 5.926 × 10−1 3.022 × 10−1

0.32 3.352 3.757 2.012 9.665 × 10−1 4.639 × 10−1 2.117 × 10−1

0.33 3.486 3.522 1.758 7.956 × 10−1 3.523 × 10−1 1.334 × 10−1

0.34 3.601 3.282 1.523 6.446 × 10−1 2.557 × 10−1 6.584 × 10−2

0.35 3.696 3.04 1.308 5.114 × 10−1 1.719 × 10−1 7.763 × 10−3

0.36 3.769 2.8 1.112 3.943 × 10−1 9.927 × 10−2 −4.2 × 10−2

0.37 3.822 2.563 9.342 × 10−1 2.914 × 10−1 3.593 × 10−2 −8.451 × 10−2

0.38 3.855 2.331 7.732 × 10−1 2.013 × 10−1 −1.942 × 10−2 −1.207 × 10−1

0.39 3.866 2.106 6.284 × 10−1 1.224 × 10−1 −6.775 × 10−2 −1.515 × 10−1

0.40 3.858 1.89 4.984 × 10−1 5.351 × 10−2 −1.098 × 10−1 −1.775 × 10−1

0.50 2.917 2.99 × 10−1 −2.15 × 10−1 −2.945 × 10−1 −3.031 × 10−1 −2.883 × 10−1

0.60 1.277 −3.637 × 10−1 −3.894 × 10−1 −3.592 × 10−1 −3.194 × 10−1 −2.902 × 10−1

0.70 −6.465 × 10−2 −5.265 × 10−1 −4.05 × 10−1 −3.365 × 10−1 −2.936 × 10−1 −2.656 × 10−1

0.80 −7.947 × 10−1 −4.951 × 10−1 −3.589 × 10−1 −2.94 × 10−1 −2.578 × 10−1 −2.344 × 10−1

0.90 −9.333 × 10−1 −3.996 × 10−1 −2.936 × 10−1 −2.452 × 10−1 −2.179 × 10−1 −1.978 × 10−1

0.98 −5.886 × 10−1 −3.088 × 10−1 −2.428 × 10−1 −2.128 × 10−1 −1.947 × 10−1 −1.826 × 10−1
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In the radiative case one sets t = u and w = 1 while in the semileptonic case the form factor
as a function of w (0 < w < 1) is needed [9,20,21]. By using Tables 1, 2 and 3, the reader can
obtain the form factor for all the values of u and w by means of a straightforward interpolation,
avoiding the delicate numerical integrations related to the Mellin transform and to the inverse
Mellin transform. In agreement with physical intuition, by lowering the hard scale, the peak of
the form factor broadens and shifts to larger u’s because of the coupling growth.
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