MODULAR p-ADIC L-FUNCTIONS ATTACHED TO REAL QUADRATIC FIELDS

AND ARITHMETIC APPLICATIONS

MATTHEW GREENBERG, MARCO ADAMO SEVESO, AND SHAHAB SHAHABI

ABSTRACT. Let f € Siy+2(T0(Np)) be a normalized N-new eigenform with p { N and such that a2 # pFo+1
and ordp (ap) < ko + 1. By Coleman’s theory, there is a p-adic family F of eigenforms whose weight ko + 2
specialization is f. Let K be a real quadratic field and let ¢ be an unramified character of Gal(K/K).
Under mild hypotheses on the discriminant of K and the factorization of N, we construct a p-adic L-
function Ly 4 interpolating the central critical values of the Rankin L-functions associated to the base
change to K of the specializations of F' in classical weight, twisted by ¥. When the character v is quadratic,
Ly i,y factors into a product of two Mazur-Kitagawa p-adic L-functions. If, in addition, F has p-new
specialization in weight ko + 2, then under natural parity hypotheses we may relate derivatives of each of
the Mazur-Kitagawa factors of L/ 4 at ko to Bloch-Kato logarithms of Heegner cycles. On the other
hand the derivatives of our p-adic L-functions encodes the position of the so called Darmon cycles. As an
application we prove rationality results about them, generalizing theorems of Bertolini-Darmon, Seveso, and
Shahabi.
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1. INTRODUCTION

1.1. Summary. Let p be a prime, let N be a squarefree integer with p 1 N, and let E/Q be an elliptic
curve of conductor p/N. Let K be a real quadratic field and let ex be the corresponding quadratic character.
Under the Stark-Heegner hypothesis

(1) ex(p)=—-1 and ex(f)=+1 forall/|N,

Darmon [12] presented a construction of a Stark-Heegner point Px € E(K,) which, he conjectured, actually
belongs to F(K) and governs the arithmetic of E over K in much the same way as a classical Heegner point
governs the arithmetic of elliptic curves over imaginary quadratic fields. Even though largely conjectural,
Darmon’s construction provided the beginnings of a coherent approach for studying rational points and
associated objects (Selmer classes, classical and p-adic L-functions, etc.) outside of usual framework of
complex multiplication theory. In recent joint work [32] with Rotger, the second author gave a far-reaching
generalization of Darmon’s original construction and conjectures, replacing elliptic curves by higher weight
modular forms, Mordell-Weil groups with Bloch-Kato Selmer groups, and the Stark-Heegner hypothesis (1)
with a natural condition on signs in functional equations of L-functions. The goal of this paper is to provide
strong theoretical evidence for the conjectures of [32], thus generalizing results of [5], by proving that the
conjectures of loc. cit. are compatible with analogous theorems from CM-theory in situations where they
overlap, as first discovered in [5]. We deduce such compatibilities using a class of weight variable p-adic
L-functions that we construct in Part 2 of this paper. In Part 3, we recall the conjectures of [32], relate them
to the p-adic L-functions of Part 1, and prove our main results.

1.2. Setting. Fix an algebraic closure Q of Q, an odd prime number p, and embeddings
(2) 0o : Q — C, ap:@—>@p.
Let N be a positive integer with p 1 N, let E be a p-adic field, and let Q be an affinoid disk in the weight
space X defined over the p-adic field E. A Coleman Q-family of cuspidal eigenforms of tame level T'o(N) is
a formal g-expansion
F(q) = > anq" € O(Q)[[q]],
n>1

such that for all

keQa:={ne2Z:n>0}NQ,

there is a normalized eigenform Fj, € Si42(To(Np), Q) satisfying

Fulg) = 3 an(k)g"
n>1
Since a, (k) is rigid analytic, the function ord, a,(k) may be assumed to be constant, up to shrinking in an
open affinoid neighbourhood of any k € ). We assume this condition satisfied, and call this quantity the
slope of F.

Restricting to a case of particular interest, we assume that Fj is N-new for all k € Q. It follows that,
for each k € €, the form Fj is a p-stabilized newform, i.e., either F} is p-new, or there is a newform
F! € 8j15(To(N)) such that
E+1

P __Fi ).

3) Fila) = F(0) = o5 F
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If Fy, is p-new, we set Flgo = F}j,. There is at most one kg € € at which Fj, is p-new: Fj is p-new exactly
when a, (ko) = +pF0/2 That this equation can hold for at most one ko € Q¢ follows from the constancy of
the slope of F. We set
Qf{om ={k € Qq : F}, is p-old}.
Our first goal in this paper is to study the p-adic variation of the central critical L-values associated to
the newforms F, ,5 as k varies over Q¢ . By a theorem of Shimura [43, Theorem 1], there are nonzero Shimura
periods u™ (k) € C such that for every quadratic Dirichlet character ¥,

@ L*(Flx,j) = ((J_giz;ﬁﬁi(g/?) t

(Ff,x.5) € QFY), 1<j<k+1,

where 7(x) is the Gauss sum associated to x, ¢ () its conductor, Q(F,ﬁ) is the field generated by the Fourier
coefficients of F ,g, and the sign of the Shimura period is chosen so that

() (=171 = x(-1).

The quantity L*(F,ii ,X,J) is called the algebraic part of the special value. Scaled appropriately by p-adic

periods and Euler-like factors, these algebraic parts can be p-adically interpolated:

Theorem 1.1. There exist nonzero p-adic periods )\i(k) € FE for k € Qg such that for every quadratic
Dirichlet character x there is a p-adic analytic function Ly, on 2 X Z, satisfying

1— M L*(Fy, X, 7) if Fy, is p-new,
Lpé(k‘,j) _ ( ay (k) )
AT (k) j—1 k—j+1
(1 - x(:)g:) ) (1 - X(p;p(k) . ) L*(Ff,x.j) if Fy is p-old.

whenever 1 < j < k+1 and the parity condition (5) holds.

Remark 1.2. For each k € Q, there is a unique normalization of Ly, such that )\i(k) = 1. When F has a
p-new specialization at ko we normalize Ly , such that A\* (ko) = 1.

The function Lg , is called the 2-variable p-adic L-function associated to the Coleman family F and the
character x. It’s construction is due to Mazur (unpublished notes) and Kitagawa [24] when the family F has
slope zero, and to Stevens (see [3], [29] and [30]) in the general case. Considering the restriction

(6) Lp (k) = Ly (k, k/2 + 1), keq,

of Ly to the critical line k = 2j — 2 we see that

) L*(Fy,x,k/24+1) if Fy is p-new,
" )

<1 ~ x(p)p*?
a, (k)
It is possible that Lg (k) is identically zero: Let wy i be the eigenvalue of the Atkin-Lehner involution Wy

2
) L*(Ff x,k/2+1) if F, is p-old.

acting on F,g The completed L-function
A(Ff, X, ) = (2m)°T(s) L(F}, x; 5)
satisfies the functional equation
AFf, X0 8) = (DM (= N)wn ()P N) 2 H 7 A(F, x k2 = 5),
implying
AFE X /2 +1) = (D)2 (= N)wn 1 A(FE, x, k/2 4 1).
It can be shown that for k, k' € Qq,

WNR = (_1)(k+k’)/2

3
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Therefore,

wy = (—1)k/#H1

WN.k

is independent of k£ and the sign in the functional equation of A(F,g,x, s)is x(—Nwy. If x(—N)wy = —1,
then L(F,g7 X, k/2+1) =0 for all k and L, is identically zero by (7). It is therefore natural, studying Lg y,
to work under the assumption

(8) X(=N)wy = +1.

Even though we exclude the possibility of (7) forcing Lr , to be identically zero, it is still possible that
the interpolation formula imposes an isolated zero on L ,, namely, when the Euler-like factor

(222

a,(k)
vanishes. Suppose there is a weight kg € ()¢ such that
ay (ko)
(9) X(p) = ]fko/Q = ~Wp,ko-

(There is at most one such kg by the constancy of the slope of F.) By the above discussion together with our
assumption that x is quadratic, this can happen only when Fj, is p-new. When this does happen, though,
the quantity Lg | (ko/2 + 1) is related to Heegner cycles. This result, which is proved in [4] and generalized
to our setting in [38], is recalled in Theorem 1.4 below. We introduce the terminology necessary to state this
relationship precisely.

We need to assume the existence of an auxiliary factorization N = M@ with M and @ coprime and
Q@ squarefree and with an odd number of primes factors. For such a decomposition to exist, we need the
existence of a prime ¢ || N, in which case we may take Q = ¢. Let Bg), be the unique indefinite quaternion
algebra of discriminant QQp and write Sk, 42 (I‘OQP (M)) for the space of weight kg + 2-modular forms on Bg,
of level T¢P(M). (See §3.1 for the notation.)

Let My, (resp. Mgop) be the Chow motive associated to the space Sk, 12(T'o(Np)) (resp. Sg,4+2(TIP(M)))
and let V/(Np) (resp. V@P(M)) be its p-adic étale realization, viewed as a continuous, Q,-adic representation
of Gg. By the Jacquet-Langlands correspondence, the Eichler Shimura relations and the Brauer-Nesbitt
principle (see for example [22, Lemma 5.9]) there is an identification, both Hecke and Galois equivariant, of
V(Np)@rmew ~ VE@P(M). Tt induces an identification V (Np)*eV ~ VE@P(M)"®V between the associated new
parts. We fix such an identification once and for all and simply write V for either of these two identified
representations.

The new subspace Sk,+2(To(Np))"®™ has a natural Q-structure, preserved by the Hecke operators, arising
from g-expansion. Write Sk,+2(I'o(Np), Qp)"" for the Qp-space obtained by base change and let T&W be
the Qp-algebra of Si,42(To(Np),Q,)"°" generated by all the Hecke operators. By Fontaine’s theory, we
may associate to (the restriction to a decomposition group at p of) V a filtered Frobenius module with a
monodromy operator

D = Dst (V)
which is a Tg”™-monodromy module defined over Q,, by results of [9]. Then D is a free module over Tg," of

rank two. Let £ be the Fontaine-Mazur L-invariant of D (as defined in [26]) and let ()"
the following theorem.

mean Q)-dual in

Theorem 1.3. There is an isomorphism of T&iw—monodmmy modules defined over Qp

D —= Sko+2(To(Np), Qp)" Y @ Sky12(To(Np), Q)"
under which the only non-trivial step in the filtration, namely F7D forj =1,..., ko—1, maps isomorphically
onto
{(=Lz,z) : € Sk,12(To(Np),Qp)" "}

Set m = ko/2+ 1. If E is a finite extension of Qy, then the Bloch-Kato exponential gives an isomorphism
D®FE
F"(D®E)

4
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where
HL(E,V(m)) =ker (H'(E,V(m)) — H'(E,V(m) ® By)) .

Theorem 1.3 gives an isomorphism
DeFE  ~ new,V
W — Sko+2(Lo(Np), E)* ™Y,

where now () means E-dual. Composing this map with exp

log : Hy (B, V(m)) — Ske+2(To(Np), )™

, we obtain a isomorphism

On the global side, we have the p-adic étale Abel-Jacobi map
cli= g/ > CHY PP MY @ L) — HY(L,V)

for any number field L C Q, where the Chow groups are taken with rational coefficients. Here, the i-Chow
group of a motive M := (X,p,m), where X is a smooth scheme, p is an idempotent and m is an integer,
is defined to be CH* (M) := Hom (1, M (i)); if m = 0, this is simply the p-component of the Chow group
CH®(X). The subscript 0 denotes the subgroup of cycles that are homologically equivalent to zero. It is
known that the image of cl is contained in the in the semistable Bloch-Kato Selmer group Selst (L, V). (See
(6.5) for its definition.) Let p be the prime of L C Q over p determined by the embedding o, : Q < Q, and
let L, be the p-adic completion. Then we may consider the composite logcl

CHY* Y (MEP © L) — Sely (L, V(m)) — HL(Ly, V(m)) — Sgos2(To(Np), Ly)P e,

where (-)" means Ly-dual.

Whenever Lr , vanishes at ko to order at least two, L, (ko) does not depend on the family F through Fj,
(see Remark 5.9). This double vanishing occurs when (8) and (9) hold, by results of [4] generalized in [38] to
our setting. If [F},] is the companion (also called Galois conjugacy) class of Fy,, the [Fj,]-isotypic component
Skot2(To(Np), (Cp)[FkO], which is the sum of all o (F}, )-isotypic components for all o € Gg, descends to Q,
(and, indeed, to Q). In other words, there is a space of modular forms Sk,+2(I'o(Np), Qp)(F,,) whose base
change to C,, is Sky+2(Lo(Np), Cp)(ry,) (see [32, §4.3]). We note that (8) and (9) are really conditions on
[F, ], because wy,wp ko = wp,r,, € Q and x takes its values in {£1} C Q. In particular, it makes sense to
consider the subspace

Sko+2(Lo(NP), Qp) YT Ny=wn x(p)=—wp © Skot2(To(Np), Q)"

spanned by new forms on which (8) and (9) hold. Similarly, we may consider the Q,-adic representa-

tion Vy(—N)—wy x(p)=—w, (T€SP. V[Fk ]) of Gg cut out by the conditions (8) and (9) (resp. attached to
0

Fy, € Sko+2(F0(Np)aCP)E?V_VN):“,N,X(])):_%

x and let QF be its p-adic completion. Then Fj, — L, (ko) may be viewed as a Cp-valued function on

Skot2(To(Np), CP);‘?V—VN)sz,X(p)z—wp that we denote L7 (ko). Indeed, it restricts on Sk,12(I'o(Np), Q;‘);?V_VN)

to a Qy-valued function

). Let QX be the quadratic extension cut out by the character

=wn,x(p)=—wp

[’;2 (ko) Sko‘i‘?(FO(Np) QX))(( N)=wn,x(p)=—wp - Q?J(

and similarly for its restriction to the [Fy,]-component Sy,i2(T'o(Np), Qy)(r,,)- Let ()% denote the x-
component. Projecting onto the new subspaces where (8) and (9) hold (resp. the [F},]-component), we may

consider the composite logcl () |SnewN)—wN ey (resp. logel (+) |S[Fk E

CHg" (M © Q)X — Selat (@, Vi y)cao mm—sop () — QK VI N i )=y ()
— Sk0+2(FO(Np) Qp )new v)_wN,X(p):fw;ﬂ
CH’So/2+1(MgOP ® QX — Selt(QX, Vig,, 1(m)) — H(QY, Vi, 1(m)) — Sko+2(To(Np), Qn)o()[kao]'

Let TYY vy g x(p)=—w, P€ the semisimple rational Hecke algebra of Sk0+2(FO(Np));e(YN):wN,X(p)i—wp and

let ’]I‘[ Fio ] its projection onto the [Fi,]-component for any Fj,, € Sk,+2(To(Np), G )y Ny —wn x(p)=—w, - Note
0 5 P
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that Mg, Tim,) = Q(Fk,) for any Fy, € [Fj,], where Ap, is the eigenpacket of Fj,. In particular,
OO0AR, = A for any o € Gg.
ko = Ao(Fiy) 0

The following theorem is proved in [4], in the special case kg = 0, when one restricts to the subspace
of Sko+2(To(Np), (@p);‘?V_VN):WMX(p):_wP spanned by modular forms with rational Fourier coefficients. It is
proved in the general case in [38].

Theorem 1.4. Suppose that there is a prime q with q || N and choose a factorization N = MQ as above.
Then the following facts hold.

. ko/2+1 new,
(1) There is a cycle y* =y, € CHOO/ * (Mgop ® QX)X and t = t97 € Tx(—l\xf):ww,x(p):—wp such that

L (ko) =t -log” cl (y) 12 o oy
(2) If0#cl (yX)[FkO] € Selt(QX, ViR, 1(m)), then
Selst(QY, Vig, 1 (m)* = Tp, ) © Qp - (yX)[FkO] ~ T[Fkg] ® Qp,

where cl (yX)[FkO} is the [Fy,]-component of cl (yX).
(3) Suppose kg =0. Then 0 # cl (yX)[FkO] if and only if L' (Fy,, x, ko/2 + 1) # 0.
(4) Iftr,, = AR, (t) € Q(Fi,), then for any quadratic Dirichlet character € such that

e(N)=x(N), e(p) = —x(p) and L (Fk,, € ko/2+1) #0,
the congruence
try, = L (Figs€,ko/2 +1) in Q(Fi,)* /Q (Fi) ™.
holds.

Proof. We simply remark that an inspection to the proof of [38, Theorem 6.1] shows that the theorem is
true with our slightly more general condition (4). We also note that the case kg = 0 appears in detail
in [4] only for modular forms with rational Fourier coefficients; however a generalization of this result to
Sk0+2(I‘0(Np),Qp);?YN):wMX(p):_% is possible, thanks to [4, Introduction, Remark 5]. See [20] for more
details. 0

1.3. Main results I: interpolation and arithmetic applications. Let K € Q be a real quadratic field
whose discriminant dg is prime to Np. We make the following convenient but unnatural assumption, which
can likely be removed with more effort:

Assumption 1.5. If a prime ¢ divides N and is inert in K, then ordy(N) = 1.

We introduce some notation concerning the field K. We write N = N*D as the product of the primes
N7 that are split in K and those primes D that are inert. Let p be the prime ideal of K above p determined
by op. If p splits in K, let p’ be the other prime of K above p. The embedding o also picks out a real
embedding of K which we will also denote by 0. Let Hg (resp. H;g) be the Hilbert class field (resp. narrow
Hilbert class field) of K. The extension Hj/H has degree one or two. If the degree is two, let s denote
the nontrivial element of Gal(H};/H). If Hf = Hg, let s denote the identity element of Gal(H}:/Hp).

Let

¢ Gal(HE /K) — Q°
be a character. In this paper, we prove interpolation results in the spirit of Theorems 1.1 and 1.4 for central
critical Rankin L-values L(F,g /K¢, k/2 + 1). Prototypes of these results have been proved by several
authors [4, 5, 38, 41]. The goal of this paper is to unify the methods of these papers into a cohomological
framework, simultaneously simplifying the treatment and generalizing the results. After stating our results,
we will point out the precise overlap between these and the results of [4, 5, 38, 41].

Let ex be the Dirichlet character associated to K. If k # ko is in €, then the completed twisted
L-functions of F,g over K satisfies the functional equation

AFY K, k+2—s) = ex (~N)A(FE /K, 1), ).
6



Thus, the central critical values L(Flg/K7 ¥, k) vanish for all k € Qq, k # ko, when ex(—N) = —1. Thus, to
avoid interpolating the zero function for reasons of signs, we work under the assumption that ex(—N) = +1.
From here, our analysis falls into two cases as €x(p) = +1 or ex(p) = —1. Note that in the latter case,
ex(—Np) =—1and L(Fy,/K,v,k/2+ 1) = 0. In either case, we have

%L(FQ/KWM +1) € Q, Ff),

The sign of the Shimura period is (—1)%/2¢(s). Our main interpolation result is the following:

(11) L*(F! /K, k/2 +1) :=

Theorem 1.6. There is a unique rigid analytic function Ly i 4 € O(SY) such that for all k € Q’C’l"’ld,

k 2
c (1 - ap]Zmz) LY (F{/K 0, k/2+ 1) fex(p) =1,
Lryx.w (k)

A (k)2

2
<1 B w<p>pk/2) (1 ()t

ap(k) ay (k)
Moreover, if ex(p) = —1 (resp. ex(p) = +1) and Fy, is p-new (resp. Fy, is new at p and ¥(p) = a, (ko) /p*/?,
then Ly, vanishes at ko to order at least two.

2
) L*(F} /K, 4, k/2+ 1) if ex(p) = +1.

Remark 1.7. Theorem 1.6 is expected to hold for all ring class characters with conductor prime to dg Np. The
proof, however, relies on a special value formula of [31] that is proved only in the special case of unramified
characters.

One observes an intesting phenomenon when 1 is a genus character of K, i.e., a quadratic character of
Gal(H};/K). The genus character 1 corresponds to a factorization dx = d, d, of dx into two fundamental
discriminants, corresponding to the fields K; and K, say, and a pair of Dirichlet characters

Xi: (Z)dr,Z)" — {£1}

satisfying x;x, = €x and x;(Norm(q)) = ¥(q) for all degree-one primes of K. In addition, one can also
easily establish the following factorization formula for central critical values:

(12) L*(F}/ K, 0, k/2+1) = L*(F! xy, k/2 4+ DL (F xo, /24 1), k€ Qa.
Combining this factorization formula with (7) and Theorem 1.6, we obtain:
Corollary 1.8. The following factorization holds on €:

Lr/kp = LFx, - LF oy,

Combining Theorem 1.4 with Corollary 1.8 yields interesting arithmetic consequences. Suppose that Fj,
is p-new and that e (p) = —1 (resp. ex (p) = 1). Under our Assumption 1.5 and ex(—N) = 1, the complex
L-functions L (Fy,, x;, s) have opposite signs (resp. the same sign) at s = ko/2 + 1, i = 1,2, equal to
(13) ()" ko Xi (<PN) = WX (=) @ik s ()

Note that, under our running Assumption 1.5 and ex (—N) =ex (N) =1,
wnX; (—N) = wy1p (con) = wyep (cont),

where n (resp. nt) is a prime of K above N (resp. N7T), and oo is the class of complex conjugation in
G, k- In particular, wyx; (—N) does not depend on i = 1,2, and (8) holds for x;. It follows from (13)
that, in this case,

sign L (Fk,, Xx;,s) = —1 is negative <= (9) holds for ;.
Let H}é be the quadratic extension of K cut out by the character ¢, and let H }ﬁ’p and ()w have the same
meaning as above with L = H}é Suppose that W is a G« g-module; since Indgi (1) = x1 ® Xg, we have
K

WY = WXi @ WXz, where the left hand side is viewed as a G v /K—module, while the right hand side is
K
7



viewed as a GH}p(/Q—module. This remark applies to W = CHISO/QH(MSOP ® H}Z;) and W = Selst(H}?,V’)
for any Q,-adic representation of G, and gives

CH*/ 2 (M @ HY)¥ = CHe* P (MPP @ Q) @ CH*HH (MEP @ Q¥e)e,
(14) Selet (Hy, V') = Sele (QX1, V/)X1 @ Sely (QX2, V)X,

In case ex (p) = —1, we may order (x;,Xo) in such a way that the sign of L (Fy,,x,s) is —1. The
conjectures of Bloch and Beilinson predict that the corresponding Bloch-Kato Selmer groups have positive
dimension. We expect them to be partially explained by Theorem 1.4, as it is shown in the subsequent
Corollary 1.9. Indeed we see that conditions (8) and (9) on x; are compatible with the above sign condition
on L (Fy, X1, ). The factorization formula of Corollary 1.8, joint with (8) and (9) on x;, implies that Lg /x4
vanishes at ko to order at least two. Similarly as above, L, JK (ko) does not depend on the lift F of Fy, to
an eigenfamily F (see Remark 5.9). In this case, Fi, = Ly, (ko) gives rise to a function

L (ko) + Sko2(Co(ND), Hig )% N xp)=wy — Hiep

and we may consider the analogous maps logcl (+) |S;ev(v and logcl (+) |S[Fk | for L = H}Z; and
1 0

coefficients in HY .. We write £/ ko) for the restriction of £ (ko) to Sip. 1 = Skyr2(To(Np), HS ) ip. 1.
K,p [Frol,w ¥ [Fo] 0 K,p/ [Fro]

—N)=wp,x1(p)=—wp

Corollary 1.9. Suppose that there is a prime q with q || N and choose a factorization N = MQ as above. Let
K be such that ex(p) = —1 and ex (—N) = +1. Let ¥ be a genus character of K associated to the Dirichlet
characters (X1, X3), ordered in such a way that the sign of L (Fiy, X1,k0/2 + 1) is negative. Suppose further
that wyx,; (—N) =1 for one (or equivalently both) i € {1,2}. Then the following facts hold.

(1) There is a cycle
yY =yg, € CHE P HMEP @ Qu)v ¢ CH*HH(MEP @ HY,)
and a t = tfip € T;f'(”ﬁv):wmxl(p)szp such that
Ll (ko) =t -log”cl (y*) | spew
(2) If0 #£cl (yw)[FkO] € Selst(HIw(, ViF,,1(m)),

Selst((@xlvvr[FkO](m))Xl = T[Fko] & Qp -cl (yw)[FkO] =~ T[Fko] ® Qp;

—N)=wpy x1(p)=—wp

where cl (y‘/’)[Fk | is the [Fy,]-component of cl (y¥). If, further, we assume L (Fy,, X2, ko/2+ 1) # 0
0
(equivalently, if L' (Fy, /K, 1, ko/2+ 1) 0),

Selot(Hy, Vip, (m))¥ = Selo(QX1, Vi, 1(m))Xt = Tip, ) @ Q- cl (yw)[pko] =~ Tip, 1 © Qp-
(3) Suppose kg = 0. Then 0 # cl (y¢)[FkU] if and only if L' (Fy, /K, ¢, ko/24+ 1) # 0.
(4) If L(Fy,, Xa:k0/24+ 1) £ 0 (e.g., if L' (Fi, /K, 9, ko/2+ 1) #0), there is
g¥ € CHF2 My, @ @)X € CHEP T (M, © HY)
such that

[Fkg]7x

Ll (ko) = 2cl (gﬂ’)kaU]

and such that, if 0 # cl (g“’)[ € Selst(H}é, V[Fko](m)),

Fko]
Selat(Hig, Vi, (m))¥ = Sela (@, Vip, (M) = Tir, ) @ Qp - el (7)1, | = T} © Q-
If, in addition, kg = 0, then 0 # cl (§¢)[F ] if and only if L' (Fy, /K, ¢, ko/2+ 1) # 0.
ko
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Proof. We may work with the [F},]-component for all Fj,, € Sk,+2(To(Np), Cp) Ny —wn oy (p)=—w, - Thanks

to (10), Hslt(H%p,V[Fko](m)) C Hg(E,Vig,,(m)) for any finite extension E/H}?p. In particular, the va-

lidity of parts (1) and (4) of the corollary are unaffected by viewing L} (ko) and quk ] (ko) as E-valued
ol

functionals. Assuming that E contains the field generated by the Fourier coefficients of all f € [Fy,] (via 0,),
Sk0+2(F0(Np),E)[FkO] decomposes as the direct sum of its A-components on which T[Fko]»p = T[Fko] ® Qp

acts through A, for all A € Homg,alg (T[Fko] E) There is no loss of generality in assuming that A is

D>
obtained by means of the identification )\Fko : T[Fko] ~ Q(Fy,) followed by o,, and then passing to the

completion. In this case, the A-component of El[/Fko]w (ko) is q_:/‘/K,w (ko). It follows from Corollary 1.8,
Theorem 1.1 and Theorem 1.4 applied to x;, that there exist y¥ = yX1 € CHS”/QH(M%) ® Qx1)X1 and
ty € TN o s ()=, SUCh that, setting ¢y, m = A (ty, ),
X 2
¥/ i (ko) = Lg (ko) - L x, (ko) =ty 0p (2L (Fry, X2, ko/2 + 1)) - log cl (¥)" (Fi,) -

Since the quantity tp, = o, ! (tX17Fk(]> 2L*(Fly, X2, ko/2 + 1) € Q(Fg,) satisfies tU(FkO) = U(tp,m) for
all ¢ € Gg, there is bry,] € T[Fko] inducing tU(Fk ) whenever A = o, 0 )\U(Fk ) where )\U(Fk ) T[Fko] ~
0 0 0
Q (o (F,)) is the homomorphism determined by the eigenpacket )\U( Fry) of o (F,). Claim (1) follows. If
0

L(Fy, /K, X9, ko/24+ 1) # 0, then y, satisfies the assumptions on e appearing in Theorem 1.4 (4). Tt follows
that 5, /2€Q (FkO)XQ. Since the Hecke action on the A\-component is through A = o), 0 Ap, , our claimed

equation in (4) follows setting 7% := , [tFy, /2y¥, where , [tF,, /2 is any lift of 4 /tp, /2 € Q (Fi,)™ to a Hecke
operator acting on the Chow groups. The second part of (4) follows from (2), (3), the definition of 7% and

the fact that L' (Fi,/K,v¥,ko/2 + 1) # 0 if and only if L' (Fk,, x1,k0/2 + 1) when L (Fg,, Xo, ko/2 + 1) # 0.
The first assertion of (2) follows from Theorem 1.4 (2). The second assertion follows from the implication

L(Fyo /K, X2, k0/2+1) # 0 = Sel(Q*2, Vi, 1 (m))X2 = 0,
proved in [23, Theorem 14.2 (2)], and (14). Part (3) is a restatement of Theorem 1.4 (3). O

We now assume ex (p) = 1. If L (Fy,, X;, s) for i = 1,2 have negative sign, L' (Fy, /K, %, ko/2 + 1) = 0 and
we expect to have larger rank, again to be partially explained by Theorem 1.4, joint with the factorization
(14), which is the cohomological version of the factorization of the complex L-functions. We already remarked
that condition (8) on x; does not depend on i = 1,2; as we assume i (p) = 1, we see that the same is true
for (9) relative to x;. In particular, (8) and (9) that are required for the application of Theorem 1.4 are

simultaneously satisfied and Sk, +2(To(Np), H}’g p)f?—zv):w X, (p)=—w, does not depend on i =1,2. It then

follows from Corollary 1.8 that Ly, , vanishes at kg to order at least two. Similarly as above, E;fl/) .4 (Fo)
does not depend on the lift F of Fj, to an eigenfamily F (see Remark 5.9) and we may consider

4 new,
ﬁgp) (ko) : Sk0+2(FO(Np),H?p)x(_l\\;):wmx(m:_% — H} .

Corollary 1.10. Suppose that there is a prime q with q || N and choose a factorization N = M@ as
above. Let K be such that ex(p) = +1 and ex(—N) = +1. Let ¥ be a genus character of K associated
to the Dirichlet characters (xq, x2) and suppose that the sign of L (F,, X;, ko/2 + 1) is negative for one (or
equivalently both) i € {1,2} and that wyx; (—N) =1 for one (or equivalently both) i € {1,2}

(1) There exist cycles
v = yb,: € CH TN MEP @ @)% < CHE#H (My, @ HY)

and there exist t; = tz%’z_ e T 1=1,2, such that

Xi (~N)=wn x; () =—wp
2
log cl (y%’)

‘STLE’LU
x1(—=N)=wpn.x1(pP)=—wp

2
Ei;) (ko) = 6tits - logcl (yf;) new
53— M= ox1 () =—wp
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(2) If 0 # cl (y;.ﬂ)[F e Sely(HY, Vi, 1(m)),

ko

Sel (@, Vir ()% = T ©Qp el ()~ T 2Q,

[Fk()]

where cl (ygp)[ is the [Fy,]-component of cl (yf’) If0 # cl (yf’) - fori=1,2
ko

ko

2
P v _ . (U . P ~
L N ) =T 9@ A (), 0T 900 (1), = (71 50)

(3) Suppose kg = 0. Then 0 # cl (yf) - if and only if L' (Fy,, x;, ko/2+ 1) # 0. Furthermore, they

are both non-trivial if and only if L" IEOFkO/K,w, ko/2+41) #0.
(4) If ti,r,, == ARy, (ti) € Q(F,), then for any quadratic Dirichlet character e such that
e(N)=x; (N), e(p) = —x; (p) and L (Fy,,€,ko/2+1) #0,
the congruence
tirey = L (Fiy, €. ko/2 +1) in Q(Fr,)" /Q (Fi,)*”
holds.

Proof. As in the proof of Corollary 1.9, we fix Fj, and a sufficiently large p-adic field E. It follows from
Corollary 1.8 and Theorem 1.4 applied to y;, that there exist y¥ = yXi € CH’SO/?H(MSOP ® QXi)Xi and

new, X : —
t; € Txi(—N):wN-,xi(p):—wp such that, setting t; r, = Ary, (t:),

2 2
ﬁng,w(k’O) = 6L, (ko) - Lg , (ko) = 6t1,5, t2,F,, - logcl (yip) (£, ) log el (y;;;) (Fio) -
The claim is now a restatement of Theorem 1.4. O

Remarks 1.11.

(1) When ko = 0, the image of the cycles appearing in Theorem 1.4, Corollary 1.9 and Corollary 1.10
factors through the appropriate Mordell-Weil group A (L) ® Q (see [20] for more details). After
extending coefficients to Qp, their local restrictions factor through A (L,) ® Q, and the Bloch-Kato
logarithm is compatible, up to the Kummer map, with the usual p-adic logarithm. Hence, in this
case, our p-adic L-functions really control elements coming from

A(L)®Q— A(Ly) ® Qp.

(2) When ek (p) = —1 and D = 1, Theorem 1.6, Corollary 1.8 and Corollary 1.9 were proved in [4],
when kg = 0 for modular forms with rational Fourier coefficients, and in [38] for arbitrary even
ko > 0. When ek (p) =1 and D = 1, Theorem 1.6, Corollary 1.8 and Corollary 1.10 were proved in
[41], when kg = 0 for modular forms with rational Fourier coefficients. The novelty of our methods,
which allows us to work simultaneously in the case where D may be different from 1 and kg may be
greater than 0, resides in two resources. The use of purely cohomological methods and, respectively,
the use of Ash and Stevens results on slope decompositions.

1.4. Main results II: the connection with Darmon cycles. Suppose that p is inert in K, so that K,
is the unramified quadratic extension of Q,. Consider the Dp-new quotient V (pN)PP1e¥ of V(pN). When
L= H}Z}, op induces H}@ — K and the restriction map takes the form
resy : Selsw (H, V(pN)PP (m) — HY (K, V(pN)PP (m)).
With 1 as above, the conjectures of Beilinson and Bloch, in conjunction with the conjectures of Bloch-Kato
(see [8, Conjecture 5.15]), predict that
dim, | Sel(Hy, Vip, 1 (m))Y = ords_y, 241 L(Fo /K, 1), 5).

In particular, if L(Fy,/K,1,s) has sign —1, as ensured by Assumption 1.5 and the conditions ex(—N) =1
and ex(p) = —1, then one expects Selst(H}é,V(pN)Dp‘new(m)) to be nonzero. In this situation, methods
10



have been devised to construct local classes in HL (K, V(pN)PP1%(m)) that are conjectured to lie in the
image of Selg,(H, V (pN)PP1e% (m)) under res,, (see [12], [18] and [32]). Since their construction is based on
techniques of Darmon, we follow [32] in calling these elements of HY (K, V (pN)PP¥(m)) Darmon classes.
In §6.4, we give evidence that the Darmon classes are indeed images of global Galois cohomology classes in
Selst(H}@, V (pN)PP1e%(1m)), up to restricting to the new part, in the case where v is a genus character of
K. Thanks to the Atkin-Lehner theory, there is no loss of generality in our restriction to the new part (see
for example [40, §6.2], where the proof of the Teitelbaum conjecture is reduced its proof for the new part).
As the proof will show, these global cohomology classes come from an appropriate rational Chow group. In
some sense, this fact presents a slight strengthening of the conjectures formulated in [32], where only the
more abstract Sely group is involved. In particular, when ky = 0, the above Remark 1.11 applies and, as
noticed after Theorem 6.11, we really get the rationality result at the level of Mordell-Weil groups.

This generalizes work of Bertolini and Darmon [5] under the hypotheses kg = 0, D = 1, and Q(f) = Q,
and of Seveso [38] in the case D = 1. Results of a similar nature have been obtained simultaneously and
independently by Longo and Vigni under the hypotheses kg = 0 and Q(f) = Q (see [25]).

1.5. Construction of p-adic L-functions. Modular symbols are the main tool used in the construction
of cyclotomic p-adic L-functions associated to modular forms [27]. In unpublished work, Stevens developed
a theory of p-adic families of modular symbols that he applied to the construction of cyclotomic 2-variable
p-adic L-functions. We describe some aspects of Stevens’ theory since analogous ideas will be employed
below.

Remark 1.12. Stevens’ techniques can be readily adapted to define p-adic families of automorphic forms on
definite quaternion algebras. These families, together with Chenevier’s p-adic Jacquet-Langlands correspon-
dence for definite quaternion algebras, can be used to construct 2-variable anticyclotomic p-adic L-functions.
This is carried out in [4, 38].

Let Y be the Q,-manifold Z xZ,(see [34, §9]) and let D(Y") be the space of E-locally analytic distributions
on Y (as in [34, §11]). The diagonal action of Z,5 on Y endows D(Y') with the structure of a D(Z,)-Fréchet
module. By the theorem of Amice and Vélu, the convolution algebra D(Z) is isomorphic to O(X), the
coordinate ring of the weight space X. If  is a subspace of X,

D(Y)q == O(Q)Box)D(Y)

is a Fréchet O(2)-module. We define the space Symbr (n,,) P(Y)a := Homr,(np) (Div’ PH(Q), D(Y)q) to be
the space of Q-families of modular symbols. The family of norms defining the Fréchet O(2)-module structure
on D(Y)q are T'g(Np)-invariant. Since Div® P'(Q) is a finitely generated I'g(Np)-module, Symbr, (v P(Y)a
becomes an O(2)-Fréchet module as well. A key fact is that the operator U, acts completely continuously
on this space. Therefore, Coleman’s theory of slope decompositions applies. It follows that there is an open
affinoid © neighbourhood of kg in X and a Hecke-eigenvector ¥ € Symbr (n,) D(Y)a whose weight ko + 2
specialization ¢ := Wy, € Symbp (y,) Vi, has the same system of Hecke eigenvalues as f. The eigenvector
¥ is the cohomological version of the Coleman family F.

The p-adic families which we need to consider in this paper are Hecke eigenvectors ® in H' (T, D(Y)q)
whose weight ko + 2 specializations ¢ := ®j, have the same system of Hecke eigenvalues as f. Here, I'g
is a group of quaternionic units — see §2. The technical difficulty which arises in this situation is that
HY(Ty,D(Y)gq) seems not to have a natural Fréchet module structure, making Coleman’s theory of slope
decompositions inapplicable. This difficulty has been resolved by Ash and Stevens in [1]. By applying
Coleman’s theory on the level of cochains with respect to a resolution consisting of finitely generated I'g-
modules, they prove that the cohomology groups of 'y possess canonical slope decompositions. This is the
key step which allows for the construction of p-adic deformations of cohomology classes. Based on the very
general machinery developed in [1], these issues are discussed in more detail in [19].

With an eigenvector ® € H'(I'g, D(Y)q) in hand, we construct p-adic L-functions Lq/x 4 using a combi-
nation of the methods of [4, 5, 38, 41] and group-cohomological techniques of the sort employed in [15, 18].
Note, however, that we have subscripted these p-adic L-functions with a ® instead of with an F. In order to
justify changing this subscript, we must show that the specializations of ® in classical weights correspond to
those of F under the Jacquet-Langlands correspondence. This result, interesting in its own right, is proved
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in [19]. With this compatibility in hand, the interpolation property of Lg/x 4 = Lo/ (see the end of §5.1

d;mu
for the definition of v) is deduced in §5.1 and §5.2 from Popa’s formula relating the central critical values
L(F,g7 X, k/2 + 1) to integrals of certain real-analytic cycles on Shimura curves.

Part 1. Real-analytic cycles on Shimura curves and special values of L-functions
2. QUATERNIONS
2.1. Splittings and orders. We recall the following assumption on the real quadratic field K. Let
D=]J:¢|N, ex(t) = -1).

By Assumption 1.5 and our running hypothesis that ex(—N) = 41, D has an even number of prime factors.
Therefore, there is a unique indefinite quaternion Q-algebra B of discriminant D. Let * : B — B be the
involution and let nrd : B* — Q* denote the reduced norm: nrd(z) = zz*. When B = M3(Q), we have

I G B R
By construction, K is a splitting field of B, i.e., there is an isomorphism
(15) t:B®gy K — Mjy(K).
If D =1, we choose ¢ to be the canonical isomorphism
t: M2(Q) ®g K — Ma(K).

Let p denote the prime ideal of Ok corresponding to the valuation on K induced by the embedding o, of
(2). If ex(p) = 1, we write p’ for the other prime ideal of Ok above p. Write ¢, for the composite

M;(Qp) ifex(p) = +1,
My (Qp2) if ex(p) = —1.

(Here, Q2 denotes the quadratic, unramified extension of Q,.) In either case, the image of B is contained
in M5(Q,), and ¢, induces an isomorphism

tp : B®g Qp — M2(Qp).

Ro(I) = {(‘; Z) GMQ(A):CEI}.

RP(m) = {z € B: 1(z) € Ro(m)}.
The embedding ¢, induces an isomorphism

tp : RE(m) ® Z, — Ro(p ¥ (™7Z,).

B — MQ(K) — MQ(KP) = {

For an ideal I of a ring A, let

If m is an ideal of O, we set

Set
[P (m) = ker (nrd : RY (m)* — {£1}).
Let
Nt = N/D.

Since €x(¢) = +1 for all £ | N*, we may choose an ideal n* of Ok of norm N*t. Of particular interest
are the rings R and Ry. They are Eichler orders in B of levels NT and N*p, respectively. We will use the
following shorthand:
(16) R=Ry(n"),  Ro=Rg(n*p), T=Ifm"), To=I7[@n"p).

The order Ry contains a unique bilateral ideal of norm p, and this ideal is principal. Let w, € Ry be a
generator. It is characterized by the properties that

(17) wd(wy) =p. o) = (o 5) (mod )

12



2.2. Embeddings and orientations. Let O C K be an order in K, of conductor prime to mD and the
discriminant of K. We say that an embedding

j:K—B
is an optimal embedding of O of level M if j—! (Ré) (m)) = O, where M is a positive generator of m N Z,
and let £(O, RP(M)) be the set of such oriented embeddings. A necessary and sufficient condition for such
embeddings to exist is that the primes dividing M are split in K (together with our running assumption on
the primes dividing D). We assume that this is the case. Note that, replacing m with an ideal m | M such
that O/m ~ O/m, the order RY (M) := RY(m) = R (m) is unchanged, thus justifying our notation for the
set of optimal embeddings.
We say that j € £(O, RP(M)) is m-oriented if the diagram

(18) O — 2 RP (m) —> Ro(m)

|

O/m

commutes, where the vertical arrow is the map (‘C’ Z) — a and the diagonal arrow is the natural projection.
For a prime [ | D, let B; be the l-adic completion of B, and fix once and for all an identification B;/mp, =
Fj2, where mp, is the unique maximal bilateral ideal of the unique maximal order Op, of B;. Note that
Homg, a1g (O,Fj2) = {5?} is the set with two elements. Any j € £(O, RY(M)) induces 0, (j) : O — Fp
by means of the identification B;/mp, = Fpz. If 0 = (616’)”17 with g; € {£1} is a choice of homomorphisms
one for every | | D, we say that j € (O, RY(M)) is v-oriented if d; (j) = 0; for every [, where d; := & is
the l-component of . Let £™ (O, RY(M)) be the subset of such optimal md-oriented embeddings. Clearly,
RE(M)* acts on E™ (O, RY(M)) by conjugation on the target.

Let CIT (O) be the narrow ideal class group of O. There is a faithful, transitive action of CIT (0)
on TP (M)N\E™ (O, RP(M)). Let b be an ideal of O relatively prime to Dm and the conductor of O.
Then REP(m)j(b) is an invertible left ideal of an indefinite quaternion order, and thus is principal, say
REP(m)j(b) = RP (m)b. By the norm theorem, RY (m) contains elements of norm —1, so we may assume that
nrd(b) > 0. Since j(0)j(b)RE (m) C j(b)RP (m), the image j(O) is contained in the left order of j(b)RY (m).
But this left order is just bRY (m)b~, so we conclude that j(O) C b= RE (m)b. Therefore, we may define

(161-9): 0 — Rom), (o] 3)(e) = i)™
One may show that [b] - j € E™ (O, RP (M)) and that the class of [b] - j in TD(M)\E™ (O, RY (M)) depends
only on [b].

For a prime [ | M D, let w; € RY (M) be an element of norm [; it normalizes T (M) := TP (m) =T (w’).

In particular, it induces by conjugation a well defined action on T'¥ (M)\E(O, RY(M)). If t | MD is a

squarefree integer, we may uniquely write m = tt., where t and t, are coprime, tNZ =tZ, and D = D, D, .,
where D, and D, . are coprime and D, = gecd(D,t). Define w, := Hl|t w; and let W; be the action

induced by w; on T'Y (M)\E(O, RP (M)). Set W, (m) := tt., where t is the conjugate of t by the non-trivial
automorphism 7 of K/Q, and W; (d) = ((5;)”& » (00)yp, C), where 0, := 9,0 7. Let w € RY (M) be an

element of reduced norm —1. Again, w normalizes '}’ (M) and we let T, be the corresponding operator on
'Y (M)-equivalence classes. The element 7 induces an action by the rule 7 (j) = j := jo7. We let W be
the group generated by the involutions W; and T.

If j € E™ (O, RP(M)), there exists a unique extension j, of j such that the following diagram commutes:

(19) Ok ® Zy

i

R (m) — Ro(p™(™Z,)
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When Ry(m) = Ro(n™) (resp. Ro(nTp)) we write £*(O, R) (resp. £*(O, Ry)) for the set of such embed-
dings, where * may be empty or md.

In §3 we will need to consider a slightly different type of embeddings. Suppose that p is inert and set
O:=0[1/p], R:=R[1/p] = Ry[1/p] and T := R},

where }NBIX is the subgroup of norm one elements in R*. We define the set of optimal embeddings of O of
level M, that we write £(O, R), by the requirement j~'(R) = O, while the subset of optimal nTd-oriented
embeddings is defined in exactly the same way.

We recall how to define an orientation at p. Let 7 be the Bruhat-Tits tree attached to GL2(Q,), whose
set of vertices we denote by V. Set L, := ZZQ, and v, := [L.] € V and write VT (resp. V) for the set of
those v € V that lie at an even (resp. odd) distance from v,. We let GL2(Q,) act from the left on V by
viewing the elements of Q2 as column vectors. If j € 5(6, E), the group K* acts on V by means of j, := jj,
with a unique fixed point v; € V. Let 5"+°(O, E) be the set of optimal n™d-oriented embeddings such that
v; € VE. Again there is a faithful, transitive action of C17 (O) on \&L 1720, R), as well as involutions W,
for every squarefree integer ¢ | pNT D, an involution T, and an action of 7, all defined in the same way as
above. We define signs Wy (£) = F if p | t and Wy (£) = £ otherwise.

We record in the following lemma some basic facts about embeddings and orientations, whose proof we
leave to the reader.

Lemma 2.1.

(1) The CI™ (O)-actions commute with the W-actions. We have Wy - [j] = Wy - [j], Too - [j] = Teo - [1]
and [b] - 5 = [b] - j. The involution Wy induces bijections
W, = TE(MN\E™(O,RF (M) = TF (MNEW (O, R (M),

Wi o D\er(0,R) - Tt Y0, ),

T preserves orientation and T induces bijections

T o T§(MNE™(0,RY (M) — Ig (M)\EWM2™)(0, RP (M),

r o DO, R) - ey (0, R).
(2) For every [j] € T (M)\E(O, RP (M) there is a unique o € CI* (O) such that Warp[j] = oy 1]
and opy).(; = o672 In particular the image o of o) in CI™ (O) /CIT (0)? is a well defined

element. If O = O, then o = oomd in CIT(0)/CIT (0)?, where 0o is the class of complex
conjugation in C1T (O) and 0 is the unique squarefree ideal of O dividing D. Hence, for a genus
character ¢ attached to the Dirichlet characters (x4, X2), the value

v (o1)) = ¥ (comd) = x; (~MD)
does not depend on [j].

(3) Suppose that p splits (resp. is inert) in K. Then the natural inclusion induces a bijection, commuting
with all the actions described above,

To\E™ (O, Ry) 3 T\E™ (O, R) (resp. T\E™ °(O,R) 5 €Y °(O, R)).

Suppose p splits in K and that j € £(Ok, Ro). It follows from (18) that

(20) i facrin@=() 1) moanf.

The set on the right is a left R-ideal of norm p, generated by P, say. Since R contains elements of norm —1,
we may assume that nrd P = p. Finally, it’s worth noting that the ideal Rj(p) does not depend on j so long
as the image of j is contained in Ry.
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Again assume that p splits in K and that j € £(Ok, Ry). Let P; be a generator of Ryj(p’) as a left
Rp-ideal. (Unlike Rj(p), the ideal Rgj(p’) does depend on j.) By reasoning similar to that of the last
paragraph,

Roj(p') = RoP; C {a € Ry : p(a) = <E§ ’5) }

Although the set on the right is a left Rp-ideal, it is not invertible as its localization at p is not principal.
Thus, RoFP; is an invertible subideal of this set. Since the orientation of j implies RoP; # Rowp, it follows
that there is an integer ¢;, unique modulo p, such that

(21) Ro(pZyp)jp(p') = Ro(pZyp) <(1) té) .

2.3. Rational representations of B*.

2.3.1. The split case. Consider the matrix algebra B := My(E) over a field E and let

(22) B ={a € B: trd(a) = 0}.
Define a left action of B* on BY by
(23) a-b=aba*

This action induces a map
~:B* — GL(B°) =~ GL3(E),
the so-called symmetric-square lift. Explicitly,

0 b a? 2ac 2
(c d> =|ab ad+bc cd
b2 2bd d?

The matrices

0 1 0 0 -1 0
X—<O 0), Y—(_1 0), and z_<0 1)
form a basis of BY. Thus,
Sym" B° = E[X,Y, Z],,
where E[X,Y,Z], is the space of degree r homogeneous polynomials in X, Y, and Z. GLj3(F) acts on
E[X,Y, Z] by linear change of variable:
(Ao P)(X,Y,Z) = P((X,Y, Z)A).
A routine computation shows the actions of BX and GL3(E) on Sym” BY and E[X,Y, Z], are compatible
with respect to the symmetric-square lift:
a-P=aoP, P e Sym" B = E[X,Y, Z],.

For a representation V and an integer m, let V(m) be the representation whose underlying space is V,
but with the twisted action defined by the rule - v := Nr(a)™awv, where Nr is the reduced norm. We also
write E for the trivial representation with undelying vector space the base field E. With these notations we
may consider the trace form on B, regarded as a B*-representation by (23), as a B> -equivariant morphism
of representations

(—,—):B®g B — E(2), (o, 8) = trd(aB8*) = Tr(af”),
where Tr denotes the usual trace of a matrix. The trace form induces an orthogonal decomposition
B=E(1) LB

where E(1) is identified with the space generated by the identity matrix and the restriction of this pairing to
B° is nondegenerate. The dual basis of {X,Y, Z} with respect to this pairing is {Lx, Ly, Lz} = {Y, X, f%Z}.
The trace form induces pairings (-, -),, on Sym” B° defined by

(24) <a1 T 5O‘T7ﬂ17 o 'Br>7“ = Z <a1750(1)> e <an7ﬂo—(n)>'

€S,
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Using the evaluations
(25) (X, X)=Y,V)=(X,2)=(,2)=0,(X,Y)=1,and (Z,Z) = — 2
one deduces that

(=2)kiljlkl, ifi=j',j =4 and k =k,

itjit+k=i+5+kK=r
0, otherwise. i+ J )

(X'YIZk XUV 7Y, = {

In particular, we see that the pairing (-,-), on Sym” B° is nondegenerate.
Define the hyperbolic Laplacian (or Casimir operator)

o 0 0?
0X oYy 9z2%
That A is B*-equivariant follows from standard properties of Casimir operators, or from a direct calculation.

The hyperbolic Laplacian admits a coordinate free description, that we will exploit in an essential way in
the nonsplit case — see §2.3.2.

AE[X7KZ]T—>E[X7YY’Z}T72(2) by AP =

Lemma 2.2. Viewing A as a map from Sym” B° into Sym" 2 B°(2), we have
(26) AP)= > Aasag)ar---8-- a5 ar,
1<i<j<r
where P = oy - -, € Sym” B°.
Proof. Since {X,Y, Z} is a basis of BY, we may assume P has the form
P=X---X.Y--.Y-Z---Z a+b+c=r.
—_—_— —— ——

a b c

By (25), the right hand side of (26) equals

—_——— —— — 2 —_——— —— —
a—1 b—1 c a b c—2
0 0 0?
_ a—1y/b—1r7c o aybrpe=2 _ [ Y ~
= abX Y1z — (e — )XY Z (axay aZQ)P. O

Define
A*:E[X,Y,Z],_2(2) — E[X,Y,Z], by A*Q=(Z%-4XY)Q.

Lemma 2.3. A* is adjoint to A, i.e.,
<AP5Q>T—2 = <P7A*Q>r
Proof. Just compute both sides with P = X'YJZ* and Q = X Y9 Z¥ . O
Set
H, = ker (A : E[X,Y, 7], — E[X,Y,Z]T,z@)).
We call H,. the space of hyperbolic harmonic polynomials.

Proposition 2.4. We have the following B* -invariant orthogonal decompositions:

Som” B & He LH,2(2) L+ L Ho(r—2) L E(r), if 7 is even,
Y T M L H0(2) Lo L Ha(r—3) L Ha(r — 1), ifr is odd.

This decomposition is natural with respect to change of base field.

Proof. By Lemma 2.3,
Sym” B® = H, L A*((Sym" 2 B°)(2)).
By dimension counting, A*((Sym” ™2 B8°)(2)) = (Sym”" 2 B%)(2). The desired decomposition now follows by
induction. The naturality is obvious. O
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We wish to connect the spaces H, with more standard models of B*-representations. For a row vector
v=(x,y) € E?, we set
v = < y ) .
—x
If A € B, then

(27) (vA)* = A*v*.
Let P. = P.(E) = E[z,y]., equipped with the left action of GLy(E) defined by

(AP)(z,y) = P((z,y)A) = Plax + cy,bx + dy), A= (z Z) .

It is well-known that P, = Sym” E? is an irreducible representation of B*. Define
P_:B'— P, by Pa(z,y)= (z y) Az y)*
Thus, if A = (‘; fa) then
Pu(z,y) = ba? — 2azy — cy.
It is clear from this formula that A — P4 is a bijection. If follows from (27) that A — P4 is in fact an
isomorphism of left B* = GL2(E)-modules.
Define
7:Sym"B° = Sym" Py, = Py, by w(PL®---®P) =P ---P,.
This map is B*-equivariant. Since 7 is evidently nonzero and has irreducible codomain, it’s surjective.

Proposition 2.5. The map 7 restricts to an isomorphism of H, onto Pa,.

Proof. 1t is easy to see that H, and P, both have dimension 2r + 1. Therefore, we need only establish
the surjectivity of 7|y,.. By the irreducibility of P, it suffices to show that 7|%, is nonzero. One verifies
directly that X" € ker A = H,.. On the other hand, Px(z,y) = —22, so m(X") = (—1)"2?" # 0. O

2.3.2. The nonsplit case. We now revert to the notation of §2.1. Define B, the left action of B* on B, and
the trace form on Sym” B? as in (22), (23), and (24), respectively. Define

A :Sym" B — (Sym" 2 B%)(2)

as in (26). It is B*-equivariant and respects the trace forms on the domain and codomain. Let HZ be the
kernel of A. It is easy to check that A is natural with respect to change of base field. The following results
follow easily from this fact, together with the results of §2.3.1 — just choose a splitting field of B.
Proposition 2.6. We have the following B* -invariant orthogonal decompositions:
Svm” B & HE LHE ,(2) L. LHE(r—2) L E(r), if  is even,
m =
Y Ho LHP ,(2) L LHB(r—3) LHB(r—1), ifr is odd.

HE is an irreducible representation of B*.

Let j : K — B be a Q-algebra embedding. We obtain an induced map
ju : Sym” K® — Sym” BY,
where KY is the set of trace-zero elements of K. Let § € Ok be such that 5% = dg and 0 (d) > 0. Let
pr: Sym” B® — HP

be the orthogonal projection arising from the decomposition of Proposition 2.6. We make the following key
definition:

(28) Qf ==prj.o" e H].
Since j splits B, it induces an identification
HE 09 K = Py, (K).
In what follows, we can unambiguously identify Q7 with its image in P, (K). Our notation is justified by the

facts that, in P,(K) (and over any other splitting field), Q} = (Q;)". It is easily checked that the polynomial
17



Q7 may be characterized, up to sign, by the property of being a generator for the one dimensional subspace
of P5.(K) on which B acts via nrd" such that (@}, Q}) = (—2)"7!dk; the choice 0 (d) > 0 fixes the sign.
This characterization descend to Q.

3. SHIMURA CURVES
3.1. Modular forms and Hecke operators. Let 1o, to be the composite
loo 1 B = My(K) 2= My(R).

Via Lo, we may view the groups I'Y(m) as a subgroups of SLa(IR). As such, they act on the complex upper
half-plane . The quotients

Xy (m)(C) :==Tg (m)\b
are Riemann surfaces, compact if and only if D > 1. As the notation suggests, there are algebraic Shimura
curves XF (m) defined over Q whose loci of complex points are identified with T'¥(m)\h. Let k > 0 be an
integer and let S,?+2(m) be the space of cusp forms for 'Y (m) of weight k + 2. When D = 1, we will drop
the superscript D and write Sg12(M), where

M = nrd(m).

The space S,ﬂ_g (m) is endowed with an action of a commutative algebra of Hecke operators which we now
describe. Define the semigroup

SP(m {a € RP(m) : nrda # 0 and, for all v { Doo, M | ¢,(a) and (a,(a), M) = 1}.

Note that 'Y’ (m) is the subgroup of invertible elements of S (M) with positive reduced norm. Let £ > 0
be a prime with ¢ D. By the Strong Approximation Theorem, we may find an element A of S (M) such
that nrd A = £. The quotient TP (m)\I'D (m)AL'Y (m) is finite and we may choose representatives \; € S (M)

such that
m)ALP (m ]_[ P (m

For an element g € SP,,(m), define
9lTe = fleras,

where

(glkr20)(7) = (nrd ) (er 4+ d) " F g1 (@)7), @ €BY,  twla) = (i Z) :

A standard argument shows that g|7} is independent of the choices made above and is an element of 57, ,(m).
Thus, Ty is a well-defined endomorphism of 57, ,(m). We define

T(SP 5(m)) = C[{T} : £ > 0 prime and ¢ { D}] C Endc S, 5(m)

The spaces S ,?+2(m) admit rational structures. Since X{’(m) admits a canonical model over Q and we
assume k to be even, we may identify S, ,(m) with

HO (X (1), (ip my o) *27%) @0 C = HO(XG ()(C), (U p ) ) * 2.

by associating to g € Sf, ,(m) the k-fold differential form g(7)(2mi dr)®k+2)/2 1f F is any number field,

we define S, ,(m)r to be the image of H(X{ (m)r (QkD(m)/F) (k+2)/2) in SP. ,(m). If D =1, then the

g-expansion principle states that Siio(M)p is simply the subspace of Siio(M) consisting of forms whose
Fourier coefficients belong to F'. We have:

(29) Siva(m)p @F C = 5P, 5(m)

The Jacquet-Langlands correspondence identifies the systems of Hecke-eigenvalues occuring in S’,?+2(m)
with those occuring in spaces of classical cusp forms:
18



Theorem 3.1 (Jacquet-Langlands correspondence). There is an isomorphism
B Spa(DM)Pe0 —s SP, ()

that intertwines the action of T(Sk+2(DM)P"®) with that of T(SP,,(m)).
3.2. Eichler-Shimura cohomology groups. For a ring R, let Py(R) denote the subgroup of R[X,Y]
consisting of homogeneous polynomials of degree k. The group GL2(R) acts on Py (R) from the left by the
rule

(v-P)(X,Y)=P(aX +cY,bX + dY).
Let Vi,(R) be the R-linear dual of Py(R). Fix a base-point 7 € h. For a modular form g € S, ,(m), define
cg,r : Tg (m) = Vi (C) by

Yoo T
QP = [T g PeRO©.
A standard computation shows that ¢4 ; is a 1-cocycle:

Co.r(1172) = Co.r (V1) |72 + €9, (V2)-
Its cohomology class
¢y € H'(IE (m), Vi(C))
does not depend on 7. If D = 1, the class ¢y actually belongs to the parabolic subspace H}.,,(T'o(M), Vi(C)).

(If V is a right I'o(M)-module, we define I'g(M), to be the stabilizer in I'g(M) of a representative ¢ of a
T'o(M)-equivalence class of cusps and then

Hpr(To(M), V) = ker (Hl(Fo(M)aV) = D Hl(Fo(M)c,V)> )

cusps ¢

The cohomology groups H'(I'f(m), Vi (C)), D # 1, and H],.(To(M),Vi(C)), are called Eichler-Shimura
cohomology groups.

The Eichler-Shimura cohomology groups also admit actions of Hecke operators. Anticipating our needs
later in this paper, we describe this in more generality than is necessary for the current discussion. Let V/
be a right S (M)-module. Let ¢ and X be as in §3.1 and let v € To(M). As \;y € TP (m)ALL (m), there is
an index 77 and an element ~; € I'Y(m) such that

/\7;’}/ = ’}/i)\iv.
For 1-cocycle ¢ on T'P(m) with values in V, we define n : TP (m) — V by

n(y) = ZE(%)W

A standard computation shows that 7 is a 1-cocycle whose cohomology class depends only on that of &.
Thus, we obtain an endomorphism

Ty : HY (TP (m), V) — H'(T) (m), V).
These cohomology groups also admit an action of a “Hecke operator at infinity”. Let w be an element of
RE (M) of norm —1. As w normalizes '} (m) and t? € TP (m), it induces an involution

T : H'(T§ (m), V) — H'(IF (m), V).

When D = 1, T, preserves the parabolic subspace. If H C HY(T'}(m),V) is any subspace which is stable
under Ts., we define H* for the eigenspace of Ti acting on H for the eigenvalue 1. The operators Thao
and T, commute. Therefore, T, preserves the eigenspaces H (T (m), V)*.
Let
ES* : 57 5(To(M)) — H'(Tg (m), Vi (C))*

be the composition of the map g — ¢, with the projection

HY TP (m), Vi, (C)) — HY TP (m), Vi(C)E, ¢ %(ci | To).
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We may descend to an arbitrary Q-algebra R and consider the cohomology groups H'(I'P(m), V,?(R)),
and V.B(R) := HEV(R). Over any splitting Q-algebra R, an identification B ®g R ~ Maz(R) induces
VB(R) ~ Vi(R), and the cohomology groups can be identified as in the case R = C. Since S (M) acts on
VEB(R), on HYTH(m),V,;P(R)) and on its eigenspaces HY(I'Y (m), V;B(R))*, they all admit actions of the
Hecke operators Ty for £4 M D, Uy, Wy for ¢|M and W, for ¢|D. Let

T(H' (T (m), Vi’ (R))) C Endg H'(Tg (m), HY (R))
be the R-subalgebra generated by these Hecke operators. Define Hecke algebras T(H (TP (m), HEV(R))*)

similarly.

Theorem 3.2 (Eichler-Shimura isomorphism). The map EST intertwines the actions of T(SP o (m)) with
that of T(H*(TE (m), Vi (C))*). When D # 1, this map is an isomorphism. When D = 1, it maps Syy2(M)
isomorphically onto H, (Do(M), Vi (C))*.

par

We may compare the rational structure arising from algebraic de Rham cohomology with the one coming
from Betti cohomology by choosing a Hecke equivariant Q-isomorphism SP, ,(m)q ~ H*(I'Y (m), V,2(Q))*,
uniquely determined up to a Hecke equivariant Q-automorphism. Together with the Jacquet-Langlands
correspondence, this gives rise to periods that we are going to describe. For simplicity, we restrict our
consideration to a normalized new eigenform g € Sy, 42(DM)"*Y. By multiplicity-one, Theorem 3.1 and (29),

dim@(g)(51?+2(m)<@(g))g =1

Let gP be a basis of this space. (If D = 1, we take g® = g.) Since it arises from the rational structure on
XP(m), we say that g is arithmetically normalized. By Theorem 3.2,

dimggy H'(Tg (m), Vi (Q(9)))y = dime H'(T (m), Vi, (C))y = 1.
Letting ¢ (g”) be a basis of H'(T'D (m), V;2(Q(g)))*9, there is a nonzero scalar u*(g) € C such that
(30) u*(g")0" (97) = ES*(¢").
We will use the shorthand
o =6 (F0), ot =0 (FDP) (ke Qa).
By (3) and the Jacquet-Langlands correspondence, gbf is p-old for k # kg and
(31) ¢ = resh, ot — a, (k)" (resh, )W,

3.3. Homology classes and values of L-functions. Fix a § € Ok with 6% = dg and 0x(0) > 0. For
j€&(Ok,R) and k € Q, let Q§/2 € My /2(Q) be the element that, up to HE/Z ®q K = Py(K), corresponds
to the g—th power of

(32) Qj(z,y) = cx* + (d — a)vy — by* € Py(K), where (Z Z) =1(5(9)).

One may verify that if « € B*, then

(33) a-Q; = (nrda)Quja-1-

It follows that if u is a generator of O such that oo (u) > 1 (a fundamental unit of K, when O = Of),
then

J(u) - Q; = Qj.
Set

We may define the weight-k cycle
(34) Cix = j(u) @ Q"% € Z1 (T, Ho(Q)).

Lemma 3.3.
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(1) The homology class
coresF [Cjr] € Hi(T, Hi/2(Q))
depends only on the T'-conjugacy class of j.
(2) If a € BX, then
a-Cjr= (nrda)k/QCajafl,k.
(This is an identity of elements of Z1(a™'Ta, Hy,/2(Q)).)
Proof. The first statement is clear. The second follows from the definition of the action and equation (33). O

Motivated by statement (1) of the above lemma, we introduce the shorthand
(35) Cljlk = coresgj [Cj k]

Take O = Ok for the remainder of this section. For a character v : Cl} — @X , define the -twisted
cycle

Chin= > $(0)Copn € Hi(D, Hipa(Q))).

ceCly

The behaviour of the homology classes under C[?] , under To, will play an important role. Let s € Cl;r(
correspond to the generator of Gal(Ht/H).

Lemma 3.4. The homology class Cfﬁ] . belongs to the eigenspace of Hy(T', Va(K(7))) on which T acts with
eigenvalue (—1)%/21(s).

Consider the natural pairing
() + Hy(Tg (m), 1o (Q4) x H(I'G (m), V7 (Q(g))) — Q(¥, 9).

Theorem 3.5 ([31, Theorem 5.41]). If k # ko is in Qg then there is a non-zero element n(k) = No(rt) €
Q(F,g) depending only on Fti and B such that

(G5l G Ol ) = bl (k) LY (FE /K 0,k /2 + 1),

The following remark is a direct application of the existence of the rational structures H,., and the fact
that Q% € H.(Q).
Remark 3.6. By the rationality of H;/2(Q) and the fact that Q?ﬂ € Hi/2(Q), we have
0'(7717’5) = WU(F,g)
for all o € Gq.

Part 2. p-adic L-functions
4. FAMILIES OF COHOMOLOGY CLASSES

Just like modular forms can vary in p-adic families, so too can their corresponding group cohomology
classes. We develop aspects of this theory following [2]. As in the introduction, we let Y be the Q,-manifold
7y x Ly (see [34, 89]), let A(Y') be the space of E-locally analytic functions on Y (see [34, §9]) and let D(Y)
be its strong dual, the space of E-locally analytic distributions on Y (see [34, §11]). The space Y admits a
right action of the semigroup

Zo(p):{((; Z)€M2( p)iad—bc#0,p|c, p’fa}
given by
a b
(z,9) <c d) = (azx + cy, bz + dy)

and a left action of Z) given by

t(x,y) = (tz, ty).



Note that this action of Z) on Y agrees with that of the diagonally embedded Z C ¥o(p):

t 0
bz, y) = (2,9) (0 t) :
Thus, A(Y) is a (Xo(p), Z,; )-bimodule and D(Y') is a (Z,’, Xo(p))-bimodule.
Let X be the p-adic weight space. It is a rigid analytic Q,-variety such that, for all p-adic fields F,
X(F) = Homes(Z,, , ™).

If k € X(F) and t € Z), we will often write t"* in place of x(t). Let O = Ox be the structure sheaf of X'

There is a natural embedding of Z into X' (F) given by
ke (z— zF).

The weight space X is the union of p — 1 affinoid subvarieties X;, i € Z/(p — 1)Z, that can be indexed such
that an integer k is in &;(Q,) if and only if K =14 (mod p — 1). Since Q is a disk, we must have

(36) QC X,
Consider the Fourier transform
(37) SD(E;) — O, i) = [ s

Theorem 4.1 (Amice, Velu). The Fourier transform p— [ is an isomorphism.

Let 2 be an affinoid subvariety of X. We may view O(2) as a D(Z,)-module via the Fourier transform.
We set
D(Y)a = O(Q)@p(zx)D(W).

Note that D(Y)x = D(Y). The same notation D(-)o makes sense for every Q,-manifold in Q7 which is
stable under the Z)-action described above. The space D(Y )q inherits the right o (p)-action from D(Y")
making it an (O(Q), Xo(p))-bimodule. Since ¥y (p) contains S (nTp), the cohomology group

Wq := HY(To,D(Y)q)

is a left O(Q) module, and admits a right action of the Hecke operators T for £+ N, Uy, W, for £|pN+ and
W, for £|D. We write T(Wq) for the O(Q)-subalgebra of Endp o) Wq generated by these operators.

The utility of the space D(Y)q lies in the fact that it admits ¥ (p)-equivariant homomormorphisms to
the classical weight module Vj,(E) for every k € . For integers k > 0, define

pp - DY) — Vi(E), pmmm:mm=ﬁpmme> (P € Py(E)).

Letting O(Q2) act on Vi (F) via the evaluation-at-k homomorphism O(Q?) — E, we obtain an analogous map
Pr - D(Y)Q — Vk(E), k€ Q.

(See also [19] for a more conceptual discussion.) Being ¥ (p)-equivariant (as is easily checked), these homo-
morphism induce Hecke-equivariant specialization maps

o s Wo — HY (T, Vi(E)), k€ Qa.
Just like the Eichler-Shimura cohomology groups, W, admits an involution T4, and a corresponding T(Wg,)-
module decomposition
Wq = WS & W
The specialization maps p;, respect the *-eigenspace decompositions.
Theorem 4.2 (Ash-Stevens). There exists a T(Wq)-eigenvector ®* € H* (T, D(Y))T such that
Py (@F) = 0,
Further, for every k € Qg — {ko} such that k > ko, there are scalars u*(k) € EX satisfying
O = p (0%) = pF (k) -
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Proof. The proof of this theorem, which is well known when D = 1, is given in [19] as an application of the
techniques and results of Ash and Stevens. O

It is indeed proved that ®* is a Uj,-eigenvector of bounded slope: ®* | U, = a,®* where a, € O(Q) is
such that ord, a, < ko + 1 (and may be taken to have constant slope, up to shrinking ). In particular, a,
has no zeros and is therefore invertible in O(2). Let

X=7-pZ, and  Z=pZL,x L}
We note that
0 -1
X=YUZ, Z:Y(p o)’ and quroyi,

where {7,} is a system of representatives for I'p\T.
Lemma 4.3.

(1) The mapping
1 AX) — Bl @iy A(Z), S =) me0" -z

is an isomorphism of left E[T']-modules.
(2) The mapping
S : Hompyr, (E[T], D(Z)) — D(X)

is an isomorphism of right E[['|-modules.
(3) S~ induces an isomorphism

7z + H'(,D(X)) — H' (T, D(2)).
Proposition 4.4 (Key calculation). The following diagmm commutes:

H"(T,D(X

/\

H"(Ty,D "(To,D "(To, D(Y)a)

W,
Remark 4.5. This is the only cohomological calculation we must perform on the level of cocycles.

Proof. This diagram is so natural that it actually commutes on the level of cochains for any resolution
computing the cohomology: Let Qo — Z — 0 be a resolution of Z by projective GL2(Q,)-modules and let
¢ € Homp(Q,, D(X)). Then:

(0% (&)W, HUp)( Zﬂz wy) ™) (wy, ' - )
= Z¢(qw;1wp>(bz<w;1wa ~h))
—Zq& (7, wp tz(w, )

= Z o(q)(vy, (h))
=0

= ¢(q) (v (h))
= p3 (9)(a) (). O
Since pj is the isomorphism of Shapiro’s lemma, we can make the following key definition:
(38) e =a,t(py) (W) € H'(T, D(X)a)*.
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Corollary 4.6. Let 7 be any element of SP (ntp) of reduced norm p. Then
F = a0, (@5,
Proof. Let v = w;lw, and observe that v € I'. The diagram

H"(I,D(X)q) ——— = H"(I, D(X)q)

X X
Pz l lp'wr

H"(Ty,D(Z)q) — H™ (7 Tm,D(Y7)q)

is obviously commutative, and the top arrow is actually the identity map since v € I'. Therefore
(0¥ )(@5F) = p3 (@FF) |y = a, ' ®[W,|y = a, ' &5 |r. O
Set
+, X (3t
P}, F = Pk (P ji)~

Proposition 4.7. If k € Q. — {ko}, then

k

'Y _

(39) (1 3 (k)2> @f = msFO @ki’ﬂ —a,(k) 1(resll:0 fIJki’u)|Wp.
p

In particular, @f is p-old for k € Q¢ — {ko}.

Proof. To avoid clutter, we drop the 4+ from the notation. We have:

resll:o (I)ﬁk = resgo P?(‘I’ﬁ) by definition of (bi
= 0k (03 (%)) + pi, (p3* (9F)) as X =Y UZ
= Pf(a;1<1’|Wp) + pi (®) by Proposition 4.4
= pi, (a, ' ®)[W,, + @y, as Wy o0 p) = pf oW,
(40) = a;l (k) @x|W)p + Py by definition of ®y.

Applying W, to (40), we obtain
(vest, @)W, = ay ! (k) Dy W2 + 1| W,
(41) =a, " (k) p"®y + Ok,
as W7 = p acts on H'(I'o, Vi(E)) by multiplication by pF. Combining (40) and (41) yields (39). O

Corollary 4.8 (cf. [5, Theorem 3.5]). Suppose k € Q¢ — {ko}. Then

+.4 p* + +,4
O =(1— k)"
o= (1 et
Proof. By Theorem 4.2 and Proposition 4.7, we have
O = rest, (1) — ay (k) ! (resr, (C1 @7 7) W,

where
k

p
C = (k) (1 — ) .
ay(k)?
But by (31), this equation is also satisfied by with C’1<I>,f’ﬁ replaced by qﬁf’ﬂ. But it is well known that the
map

(res, W, ores) : H'(I', Vi (E)) ® H'(T', Vi (E)) — H*(To, Vi (E))

is injective. Therefore, gb,f’ﬁ = C‘1<I>£. O
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Define D(X)Y by the exact sequence

X

(42) 0 — D(X)% — D(X)q =% Vi, (E) — 0.
The p-newness of f manifests itself as follows:
Lemma 4.9. There is a unique Hecke eigenvector in H*(T',D(X)) that maps to ®.
Proof. See [15, Lemma 9]. O

Thus, we may unambigously treat ®f as an element of H' (T, D(X )&,) whenever convenient.

5. p-ADIC L-FUNCTIONS: INTERPOLATION PROPERTIES

Since Q, splits B, we may identify g, (Qp) = Pp(Qp). Let j € E(O,R) and let 8, Q; € Pa(Z,), and u
be as in §3.3. Setting

Xj={(z,y) € Z3 : Q;(z,y) € Z;},

we may consider the closed O(Q2)-submodule Aq (X;) C O(Q)&.A (X;) of those functions © : Q (E)x X; — E
that are rigid analytic in the Q-variable, locally analytic in the Xj-variable and satisfy © (k,t(z,y)) =
t*© (K, (z,y)). Since k € Xy, , up to shrinking Q around kg, there is a unique s € Z, such that

= [,

where [-] and () are the projections of Z) onto j,_; and 1+ pZ,, respectively. Since kg is even, ko/2 is an
integer. Thus, we may define /2 € Q by /2 = [t]F0/2(t)s/2. Note that

O (k, (z,y)) = Q;(xz,y)""* € Aq (X;).

As explained in [19], the elements of D (X} ), naturally integrate elements of Ag (X;). Indeed there is an
O (2)-bilinear integration pairing, compatible with specialization to k € €2, which gives rise to a commutative
diagram

D(Xj)q Qo Aa(X;) — 0(Q)
(43) M + } ek Leg
D(X;), ©  A(X;) — E

where 7, := k®1 (viewing k as a homomorphism &k : O (2) — E) and e}, is the evaluation at k (so that
pz(j = vy 01y, for vy the restriction to homogeneous polynomials of degree k). Here Ay (X;) (resp. D (Xj),)
is defined in the same way as the space Aq (X;), just setting x = k in the definition (resp. viewing E as a
D(Z,; )-module via the Fourier transform followed by k : O (Q2) — E and setting D (Xj), = E@D(ZPX)D(XJ-)).
Since the pairing is I'j-invariant, it induces an O (2)-bilinear pairing

HY(T;,D(X))q) ®o(@) Hi(T;, A (X;)) = O(Q).
As we have j(u) - Q; =Q; and I'; ~ Z,
Cj =7, @r, & € Z1(T;, Aq (X;)),
and we may consider its class [C;] € H1(T';, Aq (X;)). We define
(44) L i) = (X, (@F4),[C5]) € 0.(9).
Our notation is justified by the following lemma.

Lemma 5.1. Lg+/k ;) only depends on the class [j] € T\E(O, R) of j.
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Proof. Note that, for all k& € Qq, e,(C;) = Cj,; and that, for every v € T, X.,; = X;77! and [Cy ;] =
v - [Ck ], so that (43) gives

Lok j (K) = <waf0§w‘1’i’ﬁ’ [Ckm]> = <Pfﬂ_10§jwq’i’ﬁﬁ : [C,w»}>
= (7 PX 1 55) [ [Crgl) = (™ (0%, @59 |1, Gyl )
= <,02(j (Pfx(:w—ln, (‘bi’ﬁh)) 7[Ck,j]> = <Pfjp§j@i’ﬂ, [Ck,j]> = Lot/ (k).

The claimed independence follows from the density of classical weights. O

Let ¢ be a character of C17(O) and define
(45) Lo/muti) = Y ¥(0)La/ko)
O'ECI;

The dependence on j of Lg /[ [;) is relatively minor:

Lo/kpsy) =00 Lok )

Therefore,

(46) Lo/rw = Lok 1La/ry=11)
is independent of j.
Remark 5.2. Suppose that £ vanishes to order at least n at ko, for £ = Lo/ [j], Lo k0,5 OF La/K,p-

Then qﬁ,fo — LM (ko) does not depend on the lift ® of <Z),f0 to an eigenfamily of bounded slope < h, for any
h <ko+1.

Proof. It W € H (T';,D(X;)q), set Ly, k1 := (¥,[C)]) and then define Ly ;] and Ly, by formulas
(45) and (46). By O (Q)-bilinearity of the integration pairing,

Low/xj) = 0Lk ) Lawyip ] = Luyip i) nd Low/kp = Lk p-

Let I, C O(£2) be the ideal of functions that vanish at ky. Then, by the control theorem proved in [19],

®* is well defined up to an element of Iy, H' (I'o, D(Y)q)=". The associated p§j (®+%) is well defined

up to an element of I, H' (I';, D(X;)q). Thus, it suffices to show that dl(cz)‘ca‘l’/K =0 for o € Ij;, and
¥ e H' (I, D(X;)q) if Ly,k vanishes to order at least n — 1 at ko, where

d’n
Ao 1= o

K:ko

2

and Low/x = Lav/K,[j]s Lav/Kp,[j] OF Law/Kkyp- For B = a or a”, we have

)N (P anmi) o)
‘Can‘I//K 72 (Z)B(n z)ﬁ‘;/K.
1=0

Evaluating at ko and using the fact that Ly, vanishes to order at least n — 1 we see that d,(;;)ﬁaq, /K =
B (ko) CEI?/)K (ko) and, since B (ko) = 0, we obtain dg:),caq;/[( =0. O

In the following two subsections, we assume O = O
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5.1. p-adic L-functions when ek (p) = +1. In this subsection, we assume p splits in K. Thanks to Lemma
2.1 (3), we may assume without loss of generality that Lg+ /k [; is obtained from j € £(O, Ry).

Lemma 5.3. We have X; =Y - Y ((1) t}i) =Y —YP; forj € £E(O,Ry).
Proof. We first observe that X; can be defined as above for any Z,-algebra embedding j of ZIZJ into Ro(pZy).
Suppose
. 2 . z 0
Jo - Zp — R()(pr)’ ]0(‘T7y) = 0 y )
is the diagonal embedding. Then Q;,(z,y) = ary for some o € Z and
10
Xj, =2y XL, :Y—Y<O p>'
Recall the extension j, of j to a map
Jp: Zi = OK,p @ OKyp/ =0g® Zp — RO(pr).
Write Zf) as Zpu ® Zyv where u and v are eigenvectors of jy (Zg), uniquely determined up to multiplication
by an element of Z;2, ordered so that
ujp(z,y) =uz,  vjp(z,y) =vy.

By (18) and (21),
a atj

Jp(a»p) = (0 0 ) (mOd p)
Noting that, up to multiplying (u,v) by an element of Z;2,
(1 tj) Jela,p) =a (1 t) , (0 1) Je(a,p) =0 (0 1) (mod p),
we must have
u= (1 t;), v=(0 1) (modp).

Therefore,

Jp = A7Y0A, where A= <Z) .
It follows that
1 0
X;=Xj, =Xa-154 :XjOA:YA—Y(O p)’

Now YA=Y as A € Ro(pZ)™, and the congruence

A= ((1) t{) (mod p)

-1
1 0 1 ¢t
(L 0a(l ) emipz
The result follows. O

implies that

Proposition 5.4. Suppose k € Q.. Then
(D5, » Clituko) — P28 (ko) (D » Cr- ko) if k = ko,

+ p* +.4
Lo=/k[(k) = 1 (k)<<1 + ap(k)2)<¢’f’  Clilk) —
o2
a, (k)

(<¢ki7ﬁvcp-[j],k> + <¢ki7u70p’~[j],k>>>v if k # ko.
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Proof. To reduce notational clutter, we omit the + from the notation. Unwinding (44) by means of (43), we

have
X
Lo/ 5)(K) = (pi” px, D, [Cji])-
By Lemma 5.3, X; =Y — Y P;. Therefore,

X P 'ToP; yp,
pr’ px, OF = resp? pll pF@F —vesp? 7 p i OF
and
YP; P T P;
(47) Loy j(k) = (p}. py ®F, cores[Cix]) — (o, pyp, ®F, coresy? —* 7 [Cil)

We evaluate these terms separately. First, by Proposition 4.4

(i 3 ®F, coresy? [Cjix]) = (pi (®), coresy? [Cji]])
(48) = 1u(k){6y, coresy[Cjx]).
Moving on to the second term in (47), by Corollary 4.6 and Lemma 3.3 (2)

o Py

-1
YP; X ot P; ToPj
(pr " Pyp,® ; coresp’

Y P; - P;
[Cii]) = oy 7 p3p, @F)| Py, Py - coresp? 7 [C4])
= P (e, @IP ) conesty L [Co e o)
= p*/2(pY (a; D), cores? - P_l[C’ijijl,kD

(19) = n(k)pH 8, (k) coresyy . i [Cp o ).

If k = ko, then p(ko) =1, coresll:(’ = Cljj,ko» and coresl; rp I[CijPj‘l,ko] = Cyr.[j],ko- Thus,

Lax.;(ko) = (ko) (dry, Clip ) — wlko)p*/?a = (ko) (Dry» Cor ] k0)

Now suppose k # kg. Continuing from (48), using (31),

(pk p3¥ ®F, cores?[Cja]) = p(k)((rest, ¢y %, corest? [Cyi]) — ap (k)™ ((xesE, 65 %)W), corest[Cjal))

(k) (GFF, Cpx) — 2, (k)™ {(resk, 6 )W, corest? [C.4]))-

Noting that Rw, = RP, we have

(50)

w, pr

-1
(vest, 9})IWy = resp? ¥ (8} |W},) = resf, "7(6}IP).
Therefore,

7| P, coresf, R coresg0 (Cjk])

,P- corebff FP[C'JykD

((rest, ¢1)[ W), corest?[Cj]) =

k/2<¢u coresg ) '[CPijl,kD

(@}
= (¢}
= ( kaOTeSPF p—1(P-[Cjk]))
=p
= p"*(¢}, Clop 1, k>

(51)
Combining (50) and (51), we get

k/2

p
(52) (i, p3¥ @*, corest® [C ]) = p(k) (S}, Cljpe) — o) (k;)< L Clak)
P
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Moving on to the second term in (47) and continuing from (49),

P 'To P, _
<PkYP Py P, o ; coresp’ [Ciikl) = M(k)pkﬂa (k) ((rest, ¢k,c0reb; r;P; [CijPfl,kD_
ap(k)~ (resr ¢k)|Wp700reSE I P—l[opjjpjfl,k]» (by (31))

pk/2

= p(k)p*/?a, (k)™ (<¢>2, Cor (i k) — m@i, c[p].[p/].[j],w) (by (51))

ph/2 k
(53) = 10 ( 2 5 0k Cortad — 23108 )

Plugging (52) and (53) into (47), we obtain the desired formula

k

k)2
La x5 (k) ZM(k’)<<1+ o ()7 )<¢k70[;] k) — i( )(<¢k7C[p] Lk + <¢9C7C[P/]'[j],k>)>' O

Recall the function L4,k . defined in (46).

Proposition 5.5. Let k € Q.. Then

k/2 Nk/2
a2 (k) (1 - %) (1 - %) L*(Fy/K, ¥, k/2+ 1) if Fy is p-new,

Loy (k) =

W)2 (1_ w2’

452 (k) (k) (1 ~ o () ) L*(F¥ /K, b, k/2+1) if Fy is p-old.

Proof. We prove the stated result for k € le")ld. The argument in the other case is similar. By Proposi-
tion 5.4,

t—1 t—1

1 - o
(k) Z:O¢(P)££¢>/K,pf~m(k) = ez:; {d)(p)z((l + ap(k)2> (@, e ) —
k/2
app(k) (<¢kacpe+1 5] k) <¢ﬁka pe—1.15] k>))}
k t—1
N (1+ aﬁk)?) ~ D (P)" Dk Cpeiy p)—
pk/2 {w( /)Sw( )€+1<¢ >+
a, (k) L) 2 VIR0 Batt
0e) Y HP) (8L, i) }
£=0
_ p* pk/?
_{1+ap(k)2 _ap(k)( }Z¢ YA, Coe.18)
_ P(p)p*/? )ph/?
(54) - <1—ap(k)> (1— )Zw ¢ka pf/ >



Choose a system {3} C Cl}; of representatives for Cl}. /(p). Then

La)xw.(5)(K)
Tk; Z Y(0)Lg,0151(F)
oeClf;
t—1
Z ( -t Z 7/}(p)e£¢,p‘f‘6‘[j](k)>
5 £=0
k/2 / k/2 t—1
= (1B ) (1 S ) S u) X w0 (6 Cose) (v 1)
ap ap (k) 5 e
¢(P)pk/2> < Y(p')p ’”2)
=(1-—"F—)(1- Y(o QS,C'[,.-, .
< a, (k) a, (k) GZC%* F 2 k)
The desired result now follows from the definition of Lg/f ., together with Theorem 3.5. O
Define
_ n(k)u(k)?
(55) v(k) = O k€ Qq.

Note that v is independent of K and .
Lemma 5.6. The function v extends to an element of O(2)*

Proof. Suppose ¢ is a genus character corresponding to the quadratic Dirichlet characters x; and x, as
described in the paragraph following Remark 1.7. Then we may thus rephrase Proposition 5.5 as:

420 (k) <1 - W) (1 - ’W) L*(Fy /K, k)2 +1) if F}, is p-new,

Lory(k) = ,

420 (k) (k)? (1 - W) (1 - W) L*(F} /K, k/2+1)  if Fy is pold.

It now follows from (7) and (12) that
Lao/icp(k) = dil2v(k)Lry, () Lry, (k).

for all k € Q, for all real quadratic fields K satisfying Assumption 1.5 and ex(—N) = 1, and all pairs
(X1, X2) of quadratic Dirichlet characters corresponding to genus characters of K. Nonvanishing results
of [28] may be applied to show that for each k € ., there is a pair (x;, x2) as above such that Lg /x4 (k),

Ly y,(k), and Lg y, (k) are all nonzero. For details, see [4, Proposition 5.2]. The result follows. O
Finally we define
Ly x (k)
ACF/K,q/)(k):k/ﬂiw; ke Q.

dyl“v(k)
The ex(p) = +1 case of Theorem 1.6 now follows from Proposition 5.5.
5.2. p-adic L-functions when ex(p) = —1. In this subsection, we assume p is inert in K and take
j€E(O,R).

Lemma 5.7 ([4, Lemma 3.7]). We have Q;(z,y) € Z if and only if (v,y) € X, i.e. X; = X.

Proposition 5.8. Suppose k € Q’C’l"’ld. Then

k
Los (k) = p*=(k) (1 - ajk:ﬁ) (Qf’ﬁ,C[j],k)-

If F, is p-new, then Lo, j(ko) = 0.
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Proof. Unwinding (44) by means of (43), we see that
E@i/K’j(k) = <(I>§’ﬁ, C[]‘Lk>, ]C S Qp_(jld.

cl

The desired result now follows from Corollary 4.8. If F},, is p-new, then @ﬂko = 0 by Lemma 4.9. Therefore,

Lok .15 (ko) = <®?¢U,C[j],ko> =0. U

By arguments analogous to those of Proposition 5.5, we see that

k 2
(56) La/wcw(k) = di*n(k)u* k)’ (1 - ajk)2> L*(FE/K . k2 +1).
Set
Lo/ (k)
(57) Lp/xp(k) = L")
P

The ek (p) = —1 case of Theorem 1.6 now follows from (56).

It will be convenient to impose the following normalization at kg, in order to appropriately state the
results in terms of classical Coleman families, as it is done in the introduction. We note that the Q-
structure Sk,1+2(pN1TD,Q) obtained by means of the g-expansion coincides with the de Rham Q-structure
Sko+2(PNTD)g, by the g-expansion principle.

Remark 5.9. By multiplicity one, we may fix a Hecke equivariant identification (unique up to Hecke equi-
variant Q-automorphisms):
Sko+2(PN ' D, Q)" = Sy 12 (pNTD)F™ 5 HY(T (pn*), Vi (@) 50,

Working p-adically we may promote this correspondence to families (passing through new modular forms at
ko): this is a consequence of the Jacquet-Langlands correspondence investigated in [19] and the multiplicity
one result [19, Corollary 11.4]): it means that, working over any finite Galois extension E/Q,, the corre-
spondence F — ® is such a way that o (F) +— o (®), where 0 € G/q,. Furthermore, the pairing (44) is
G E/q,-equivariant, since it makes sense working with  defined over E' = Q). On the other hand, L4,k 4[5
is obtained by pairing ® with the class [C} ] := >__ % (0) [Cs.;], which can only be defined assuming that
E D Hgp, from which it follows that we have o (E@/K_’w) = Lyo/K,p When o € Gg/p, ,. Finally, ac-
cording to the subsequent Lemma 6.10, the value NEy,,D =V (ko) only depends on (Fy,, D) and satisfies

o (anO,D) = o (Fy,),D Under the assumption of Corollary 1.9 we have Ly x4 (ko) = L/F/Kﬂp (ko) = 0 for
%/727[(160) We deduce from
4 gy,

every Fi, € Sko+2(To(Np),Cp) and (57) gives E%/Kﬂb (ko) =

;?VXN):WN,X(P):*WP
Remark 5.2 that Fy,, — L, K. (ko) is a well defined function. It also respects Hg p-structures by the above
discussion. A similar remark also applies to the Mazur-Kitagawa p-adic L-functions considered in Theorem
1.4 and to the function Fy, — Eijl/)K,w (ko) considered in Corollary 1.10.

Part 3. Derivatives of p-adic L-functions

In this part of the paper, we focus on a p-new point kg, under the assumption that ex (p) = —1. The aim
is to establish a relation between the derivatives at kg of our p-adic L-functions, that are known to vanish,
and the so called Darmon cycles.

We fix, once and for all, a p-adic field E/Q,, and let the spaces of functions be E-valued, even if the
notation will not reflect this fact. The same abuse is in force for the spaces of distributions to be considered.
We let £ := ENQ," be the maximal unramified subextension of E. The notation ()v will always mean
FE-dual.

This part of the paper is organized as follows. In §6, we state Theorem 6.7 and derive its consequences:
the main result provides evidences to the rationality conjectures about Darmon cycles. Then, in §7, we prove
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this theorem, except up to showing that two previously defined Abel-Jacobi maps agree. This is the content
of the last section, thus closing the circle.

6. p-ADIC L-FUNCTIONS: RELATIONS WITH DARMON CLASSES

In this section, we first introduce a canonical arithmetic p-adic Abel-Jacobi map
log, AJ:H;(I',A,, (Pr,)) — HZO,
where Hy, := H, (T, Vi, )"""®. Our interest in this map relies on the fact that it is directly linked

par

with the Abel-Jacobi images of the so called Darmon cycles, whose definition is recalled in §§6.2. While the
precise relationship with the derivatives of our p-adic L-functions is described by Theorem 6.7, whose proof
is deferred to §7, here we derive its consequences in §§6.4.

6.1. The arithmetic p-adic Abel-Jacobi map. Recall that we let GL3(Q,) acts from the left on the
Bruhat-Tits tree T, that we set L, := Z2, v, := [L,] € V and write VT (resp. V7) to denote the set of those
v € V that are at even (resp. odd) distance from v,. Let GL3 (Q,) C GL3(Q,) be the subgroup of those
elements g such that ord, det g is even. Consider the unramified p-adic upper half-plane

H =P Q) — P1(Qp).

Actually, H, is a Q,-rigid analytic space such that H,(K) = P!(K) — P}(Q,) for complete field extensions
K/Q,. The group GL2(Q,) acts from the left on H,* by fractional linear transformations:

a b at +b
T = .
c d et +d
riH) =Y
is then GLy(Qj)-equivariant. Set H"y =" (V*) and HY', :=r~" (v) for v € V. Note that, since ro = r

for every o € GQ;r /Q,» the Galois group G@;r /Evwe acts on the spaces DivH", and Div’ H,r, of divisors and

D
degree zero divisors supported on H where * may be empty, = or v € V. For * empty, & or v € V, set

The reduction map

ur
P,*x)

A, = (Div Hgf*)G@z“f/E“, A? = (Div’ H;;)GQB”E‘", A (Pr,) = Ay ® Py, (E) and AY(Py,) = A2® Py, (E).
As remarked, the group GL3(Q,) acts on H, from the left by fractional linear transformations. We may
view A, (Py,) and A%(Py,) as GL2(Q,)-modules (resp. GL3 (Q,)-modules or GL(L)-modules) when * is
empty (resp. *x = + or x = v = [L]) by the usual tensor product action. For future reference, we record
the following exact sequence of GL(Q,)-modules (resp. GL3 (Q,)-modules or GLy(L)-modules) when * is
empty (resp. * = & or x =v = [L]):

(58) 0— A%Py) 5 Au(Pry) ¥ Py — 0.

Set W := Q2 —{0} and let A (W) ko.ko P€ the space of locally analytic functions on W' that are homogeneus
of degree ko under the action of Q. Write D(W )k, k, to denote the strong E-dual space of A(W), . .
Let DW)), ks € D(W)ko ko be the GLy(Q,)-subspace of those distributions that are zero on Py, (E) C
AW), x, and let D(W)g;)b,ko C D(W), x, be the subspace of bounded distributions (see 32, §3] and [40,
Remark 5]).

Let £ = log ((-)) or ord and, for every 71,72 € H,;" and P € Py, (E), define

_ _ —+ ToX
0 W s C, 0 (ay) = (22D Payy).
L Py Y (l’,y) Y+ Tz (x,y)
We extend the definition of 0;27“’1) by linearity, so that for d € A? and P € Py, (E), we may view 9?’13 as
a function HZ’P : W — E. Note that 67> (¢ (z,y)) = t"6]> ™" (2,y) for every t € Q,; in particular
Hj’P € A(W),, 1, and the quantity

Ig (1, d®@ P):=p (927P> €Ll pe D(W)ko,km

makes sense.
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Lemma 6.1. The pairing
1§ =D (Wi, g, © AXPy) = B

is GLy(Qy)-invariant (resp. GLj (Q,)-invariant or GL(L)-invariant) for * empty (resp. + or v = [L]).
Proof. Exploiting the relation g | y+7z = (cy7 + dy) (y + (97) x) gives the equivariance of the pairing 1. O
Let 7 : W — P!(Q,) be the canonical projection 7 (z,y) := y/x. Write £ to denote the set of oriented

edges of the Bruhat-Tits tree 7. If e € £ let U, C P}(Q,) be the open compact subset corresponding to
the ends originating from e and define W, := w1 (U,). Set Vi, := kao and let Cpar (€, Vi, ) be the space of

harmonic cocycles, i.e. maps ¢, : £ = Vi, such that cz = —c. and Zs(e):v ce = 0 for every v € V.
Consider the GL2(Q))-equivariant morphism
(59) R:D (W) = Char (€, Vo)

R(p), (P):= pn(Pxw,) -
If e € € write p, : Char (€, Vi,) = Vi, to denote the evaluation morphism and set
Re:D(W) 1 25 Char (€. Vig) 25 Vi
Note that, if we define €5, € £ by the rule Ug_ :=Z,, We_ = p™Y and the stabilizer of €., in T is Tp.
Lemma 6.2. Rz__ induces in cohomology an isomorphism
Re_ : H' (f,D(W)Q;ﬁkO) 2 H (o, Vi )P

Proof. Let Ay, (Q,) be the space of locally analytic functions on Q,, that extend to meromorphic functions on
P!'(Q,) with poles at oo of order at most ko, and let Dy, (Q,) be its dual, equipped with the strong topology.

The association I+ fr (2) := F (1, 2) realizes an E-linear topological identification A (W), = A, (Qy),

with inverse the association f — Fj (z,y) := z*o f (y/x) (when x = 0, Fy (z,y) = y* lirr(l) 2Ff(1/2)). With
zZ—r

this identification the claim follows from Lemma 2.8 and Theorem 3.5 of [32]. g

If M is a Hecke module which has a decomposition into Eisenstein and cuspidal parts, we write M, to
denote its cuspidal part. Since H' (T, Vi, )" ™" posseses such a decomposition with H' (I'g, Vi, )2~ "
=H},, (Lo, Vi, )" ™", Re,, gives rise to

Re : H! (f’D (W)giko)c S H (F07 Vko)g_new =: Hi,-
We let Ty, be the Hecke Q,-algebra generated by the Hecke operators Ty for £ 1 Np, U, for {|pNT and W,
for £|D, acting on Hy,.

Consider the following piece of the long exact sequence in I'-cohomology obtained from (58)

~ 5 ~ i ~ ~
oo — Ho(L, Py,) — H1(T, A% (Py,)) — H1(L, A(Py,)) — Hi(T, Py) — ++
By [32, Lemma 3.10], the map ¢ induces an isomorphism
i:Hy(T,A%Py,))/imd = Hy (T, A(Py,)).

Since I{ restricted to D (W)ZO, ko 18 [-equivariant, when restricted to D (W)Z;)b’ko, it induces by cap product

~ ~ \
19 Hy (T, A%(Py,)) — H' (F,:D(W)g;jjko) . We define

0 = A0 I} (% 06 \V 1 (7 0,b RZL
AJY  Hi (T, A%(Py,)) 5 H (1“72) (W)k;hko) —H (P,D (W)k;,ko) % HY
where the middle arrow is the projection onto the cuspidal part.

Theorem 6.3 ([32, Corollary 3.13]). There is a unique L € Ty, such that
(Ing — LI0,4)imd = 0.
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Set log AJ® := AJY, —LAJ,,. Thus, we may consider the following commutative diagram, where log Az

is induced by log AJ°:
Hy (DAY, (Pr,)) =5 Hi(T,A%(Py,)
(60) bi bi N\
Hy (T, A, (Py,)) =5 Hy(T,A(Py,)) T, A%(P,))/imd tog 7" Hy .
We define the arithmetic Abel-Jacobi maps
log AJ : Hy (T, A(Py,)) — HY, and log, AJ:H, (I,A,, (Py,)) — HY,

to be the composites in the above commutative diagram.

6.2. Darmon classes and conjectures. Let Vklg (N*p) be the Q,-adic representation attached to weight
ko + 2 cusp forms S,?H (ntp) and let ng (N*Tp)P™™ be its p-new part; this construction is explained in
[35] and [9]. By Fontaine’s theory, we may associate to (the restriction to a decomposition group at p
of) V,fo) (NTp)P™Y a filtered Frobenius module with a monodromy operator

Dy, (N*p)™™ ™ =Dy (Vig (N )"
Since p divides the level exactly, it is a ']Tg:ew—monodromy module over Q, by results of [9].

On the other hand, as explained in [32, §4.2], the space Dy, := ]HI}C/O @ HZO has a natural structure of
']Tg:ew—monodromy module defined over Q,, whose filtration is given by

FODy, = Dy, FI ={(—Lz,z) 1z € H) } (1<j<k-1).
The following result was proved by the second author:

Theorem 6.4 ([40]). There is an isomorphism of T¢,"*"-monodromy modules defined over Q,

Dy, = Df (Ntp)P™™"
such that the diagram
Hy, (E)” ®Hy, (E) —————=Dp (N*p)""" 9 E
(z,y)—z+Ly l
v ~ DP (Nt ™ oFE
Hko (E) Fk0/2+k10((D£‘(’) (]2]+p)p—nmu®E)

commutes for every local field extension E/Q),p.

As in the introduction, we will use the shorthand m = k¢/2 4+ 1. The Bloch-Kato exponential yields an

isomorphism
DP (D)™™ o E
0

, (
- Fm(Dyg (To)™™ ™ ® E)

exp = Hy (B, Vi) (NFp)"™ (m).

Let
AJ: Hi(T,A(Pr,)) — Hi(E, V;E (NTp)"™ (m))
be the composite

~ log AJ ~ DP (D)™™ o FE
H, (F7 A(Pko)) g—> Hko (E)V — Fm(.]gD (Fo)p—new ® E)
ko

The map AJ is a group cohomological analogue of the étale Abel-Jacobi map (see the discussion in the
introduction and in §5 of [32]), justifying our notation for the map we denote log AJ.

=5 H (B, Vi) (N*p)"™™ (m)).

Let 6, Q;, and u be as in §3.3, where } e& ((5,]%) Recall

O : K = Rand 0 : K = Qp2
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we already fixed in the introdution. The torus K acts on H" with two fixed points 75,75 € H, N oy, (K)
via j and the identification B ® Qp, = M2 (Q,). Of course we have vy =T (73) =r (?3)7 and we may order
(7’;,?;) in such a way that K* acts on the tangent space at T3 via z — z/Z. We fix u € Of in such a way
that 0o (u) > 0. Then D5, = j(u) ® (7; ® 0y (5*’60/2) Q;jo/?) belongs to Z1 (I, A(Py,)), and its image
in Hy (T, A(Py,)) is an element D[ﬂ,ko that only depends on the class of j in I'\E (6, E) We remark that,
if [}] e T\&, (6,&), thanks to Lemma 2.1 (3), there is [j] € T'\E (O, R) mapping to [ﬂ The element
Djgy=7juw) @ (1; @0y (5_k°/2> Q?Om) gives an element Dyjj . € Hi(I', A(Py,)) such that

(61) log,,, AJ (Dy,) = log AJ (Dpp 4, ) -

The Darmon conjecture, phrased precisely below, asserts that the local cohomology classes AJ (Dm ko)
are restrictions of global classes. We now define the appropriate global cohomology groups.
Definition 6.5. Let H be a number field. The semistable Selmer group of V' over H is

T1, resy Hl(Hv V)
Selg(H,V) :=ker | HY(H,V) " *— ||7’ )
t( ) ( ( ) - Hslt(HvaV)

As before, let [ﬂ S f\&r ((5, E) and let H := H(Jg be the narrow ring class field of O. Let B be the

prime of H above p induced by ¢,. Since H/Q is a Dihedral extension, it induces an identification K, = Hy
and a restriction map

res, : H'(H, V) (N*p)"™" (m)) — H'(K,,, Vil (N*p)""" (m)).
Also note that, since Hy is Galois over K, the group Gal(H/K) = C1* (0O) acts on H'(H, VP (NTp)" " (m)).
Conjecture 6.6. There is a class sp; € Selg(H, Vk’g (N*+p)P"™ " (m)) such that
AJ(D[ﬂ,ko) = resy 5[]
Moreover, the Shimura reciprocity law
Soulj) = S[j)
holds for all 0 € Gal(H/K).
Since their construction is based on techniques of Darmon, we call the local classes
AT(D) ,,) € HE (K, Vg (NFp)"™)

Darmon classes. It follows from Lemma 2.1 (1) and (61) that Conjecture 6.6 is equivalent to the same
statement restricted to [j] € T\& (O, R). Therefore, we will restrict ourself to the consideration of

D}g} (Fo)p—new QF
Fm(Dp (To)"™ " @ E)

log,, AJ

AJ,. : H{(T,A(Py,)) Hy, (B)Y — =B HA(B,VE (NTp)P™™ (m)).

If 4 is a character of G g/ and [j] € T\E™ °(O, R), we define, in Hy (T, A(Py,))¥  and Hy (T, A(Py,))? L,
P — P —
Dig =D, ¥(0) Dk D, = Y. ¥(0) Dy,

UGGH;/K UGGH;/K

Conjecture 6.6 predicts that

AlJ,, (DE']J@O) =AJ (D[ﬂ,ko) € resy (Sel(H}”/’,VkJOj (N+p)p'new (m))w_l) .

Here (~)’1’_1 means the ¥~ -component of (-) ® Z [¢/], where Z [¢}] is obtained adding the values of 1.
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6.3. Darmon classes and derivatives of p-adic L-functions. Since p is inert, we know that L,k [
and Lok ;) vanish at ko, while Lg,x 4 vanishes at ko to order at least two. Thanks to Remark 5.2,

Pro + Loy (ko) and @y = Ly e, 0 (ko) give well defined elements L)) 1 (ko) € Hnewv (K,) and
Lp g5 (ko) € H™ v (Kp)wil7 while ¢, — L4, (ko) gives a well defined quadratic form L7, , (ko) :
HEo™ (Kp)d’ — K. The proof of the following result is postponed to §7.

Theorem 6.7. The following equality holds, for an element [j] € T\E(O, R)

k0/2

(62) L5115 (ko) = “5— (log,. AT (D) + (1> 10g, AT (D)) -

Corollary 6.8. The following equalities hold, for a character ¢ of GH+/K and [j] e T\E(O, R),

k0/2

Lrpw.) (ko) = —5— (log”* AJ (Dfﬁ‘l,ko) (=) og,, AJ( 7 ko))

K" (logv* AJ (DE/]’MO) 4 (=R P g, AT (D%k))

) (10&* AJ (DE?J;O) 4 (=1)ro/2H1 log, AJ (D%Lko)) )

C;L,,zp (ko) =

Proof. The first equation readly follows from Theorem 6.7 and

=t -1 o 1=
Dmo N Z ¥ (U)Do[j],ko* Z Y (U)yam

O’EGH/K UEGHO/K

Z w()a[a

UGGHO/K

Since ‘C@/Kw = L<I>/K1[; ]]‘C@/Kz/; 4] and £<I>/K1/) 9] (ko) = ‘C@/K »=1[4] (ko) = 07 EZP/K,w (ko) = 0. USiIlg
this information we see that E@/K¢ (ko) = 2£¢»/K 1] (kO)EQ/Kw L) (ko). Hence the second relation
follows from the first. |

We now specialize to a genus character ¢ attached to the pair of Dirichlet characters (x;, x5). Recall that
X; (—N) = 1 (oon) does not depend on i = 1,2.

Corollary 6.9. The following equality holds, for a genus character 1 of GH;/K attached to the pair of
Dirichlet characters (x1,x2) and [j] € T\E(O, R),

2
ko/2 P - —
1 (ko) = { 20" tog,, AT (Dfjy,) " i X (=N) =won
0 if X; (=N) = —wn.
Proof. Lemma 2.1 (2) implies that Dé’] b = Xi (- )WNDE’[)] .- Since ¢ = Pt
0 0

(log,, AJ) (WnC) = wy i, log,, AJ(C)
(for every C'), Corollary 6.8 yields

ko/2
o/ 9

(1 + (—l)k‘)/2+1 X; (—N) UJN,Ico) log,,, AJ( 7], ko) (o) -

The claim follows from this formula. O

<1>/K,w (ko) =

6.4. Darmon classes and their rationality. We end this section with an application of our p-adic L-
functions to Conjecture 6.6.
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6.4.1. Admissible modular parametrizations: changing the quaternion algebras. In what follows, we restrict
ourselves to the new part V.2 (NTp)"™" of V;D (N*p)"™". As we remarked in the introduction this is not a
serious restriction for the purposes of providing evidences to Conjecture 6.6. Suppose that there is a prime
g || N and let N = M@ be a factorization such that @ is squarefree and divisible by an odd number of
primes, as in the introduction. There is an Hecke equivariant identification of Gg-modules

(63) V= Vi (Np)™Y = V2P (M) = V2 (NTp)™ ™.

According to Theorems 1.3 and 6.4, (63) induces an Hecke equivariant identification of filtered Frobenius
modules defined over Q,

new ~ Sk0+2 (Fo(Np) Qp)new ,V, 2
On the tangent spaces, this identiﬁcatlon induces the following commutative diagram

Sko+2(Do(Np), Q,)new:V2 Fho/2+1 D2§W/Fko/2+1

(64) ! o
Sko+2(To(Np), Qp)"e™V ~  HR™Y,

where the vertical arrows are (z,y) — x 4+ Ly and the lower row is defined in such a way that it makes
the diagram commutative. By elementary linear algebra (see for example the proof of [38, Lemma 6.5]) we
may assume that, after a base change from Q, to a local field £ such that o, (Q (F,)) C E, the 0, 0 Ap, -
component of the lower row identification appearing in (64) is dual to ¢y, + F, given by Remark 5.9. This
fact will be implicit in the proof of the subsequent Theorem 6.11. Then, for every number field L and a
prime p of L over p, we may consider the following commutative diagram:

CH§0/2+1(MQP ® L)

\L 1k0/2+1
(65) Selg (L, V( )) — HL(Ly, V(m)) — Skyr2(To(Np), Ly)Pew:V
| | l
Selst (L, V2 (NTp)P™ ™ (m)) = Hi(Lp, V& (N*Tp)"™ (m)) — " (Lp)-

We write logcl”” (iees;g) cl’F) for the composition going from CH’SO/QH(M,CQOP ® L) to HZ(;HCW(LP) (resp.
Selyt (L, Vg (NFp)"™ (m)).

Recall the function v = v p that enters in the factorization formula Lg /5,y (k) = d;(/QZ/ (k) LFx, (k) LF,y, (K)
of a genus character v, that only depends on F and D. Its value n Fyy.D "=V (ko) at ko only depends on Fy,
and D.

Lemma 6.10. We have ng, p € Q (Fy,)™* and o (Fyy)0 = O (anO D) for all o € Gg.
; ) ;

Proof. We first remark that vg 1 = 1. Indeed, in this case 7 (k) = 1 for every k € QF] old , as it follows from
the explicit formula [31, Theorem 6.3.1]. In particular, we may assume that there exists a prime ¢ || D, and
hence consider a factorization D = DDy with D; divisible by an odd number of prime factors. If (x}, x%)
is a pair of quadratic Dirichlet characters, let wxll b be the associated genus character and let d,, be the
discriminant of x;.

To evaluate np, p, choose a pair (X1, X2) such that x; (p) = X2 (P) = Wpkes X1 (—N) = X2 (—N) = wy
and such that the complex L-functions of x; do not vanish at kg/2 + 1, whose existence follows by non-
vanishing results of [28]. Then me,m = Lok, LF,x, and Ly y, do not vanish at kg and we have

Loy (8)
K/2 k)2
A L x, () L, ()
Let x} be a quadratic Dirichlet character such that x; (p) = Xl( ), i (1) = —x; (1), xi (1) = x; (1) for
X

every L | N*, x1 (1) = —x1 (1) and x3 (1) = x5 () for | Dy and x} (1) = x3 () and x5 (I) = —x, () for [ | D».
Note that, since the number of primes dividing D; is odd,

X1 (=N) =x1 (=) x1 (N') X1 (D1) X5 (D2) = x1 (=N) = wy
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and similarly x5 (—N) = x5 (—N) = wy. Hence, thanks to [28], we may arrange (x},x5) in such a way
that the complex L-functions of x} do not vanish at ky/2 4+ 1. Note that ¥y, .x. is the genus character of an
imaginary quadratic field K, .+ of discriminant d,,d,s such that the primes dividing N* Dy (resp. N* D)
are split in K+ (resp. K, ), while the primes dividing Dy (resp. D) are inert in K, .,/ (vesp. K, ).
It follows that N = NT Dy - Dy (resp. N = NTD; - D) is an admissible factorization and [4, Proposition
5.1] (or [38, Theorem 5.21] for arbitrary Coleman’ families) yields the existence of ‘wai,x;’yF!Di € 0O(Q)

such that

(67) Ly, (K)= dgfzd;g 2Up.p, (1) Lrx, (8) Ly ().

The condition placed on x; (p) = wy k, prevents the p-adic L-function Lva'i from having an exceptional zero.
It follows that we may recover L ,, from (67). Similarly, 1/)X/1 18 the genus character of a real quadratic
field Ky, , of discriminant d,d,, such that the primes dividing N split in K, ,, and, since we already

remarked that v =1,
K/2 j5/2
(68) Loy oy (1) = A2 A2 Loy (R) Loy ().
Inserting the expression of L, recovered from (67) in (66) and then using (68) yields

'wal,xz (K) ['wx/l,xzz ("{)
VF,D (I{) = ,C

PYxa.x) (H) ‘Cquz,x’z (H)
Now the claim follows from [4, Theorem 3.12] (or [38, Corollary 5.19] for arbitrary Coleman’ families),
implying that a;p,, = Ly, (ko) € Q(F,)"” satisfies N (ai,p,,) for all 0 € Gg, and our
XiXj s 0
Theorem 1.6, joint with the analogue of Theorem 3.5 at k = ko and the defining relation Lg,x ., (k) =

d';</21/(/<) Ly /iy (k), implying that bp, = Ly (ko) € Q(Fy,)”” satisfies bo'(FkO) = 0 (bp,,) for all

X1:X2
o € Gg and similarly for the quantity b’Fk0 =Ly, , (ko). O
Y 172
6.4.2. The rationality of Darmon classes. For a newform Fj,, we write V[I% | = ka (N"‘p)z[)l_;:ev]v for the
0 o)

p-new

F},,]-isotypic component of V;2 (NTp . We also write
0 ko

Ay im) - Hi(D, A(Py,)) — H (K, VIR, 1(m))
for the [F}, ]-isotypic component of A.J, , and a similar notation is in force for cI’%.

Theorem 6.11. Suppose that there is a prime q with q || N and choose a factorization N = MQ as in
§6.4.1. Let K be such that e (p) = —1 and ex (—N) = +1. Let ¢ be a genus character of K associated to the
pair of Dirichlet characters (x1, X2), ordered in such a way that the sign of L (Fy,, X1, ko/2 + 1) is negative,
and suppose that wnx, (—N) =1 for one (or equivalently both) i € {1,2}. Then the following facts hold:

(1) There is a cycle

ko/2+1 ko/2+1
d{@ko] = dgp,[Fko] € CHy"* " (MPP @ QU ¢ CHE* T (M © HY)
. ¥ . 1JL W
such that, setting S[Fko] = Cl[FkO] (d[FkU]) ,

P _ P
res, (S[Fko]) = AJv*,[FkO] (D[j]’ko) .
(2) 10 # sy, | € Selu(Hye, Vi, 1(m)),
Se]st(H;g, V[}Qko](m))w = Selst((@X17V[gk0](m))X1 = T[Fko] ® Qp . 57[?&0] ~ T[Fko] ® Qp.

(3) 0 sﬁ%] & L' (Fy /K, 0, ko /2 + 1) # 0 when ko = 0.
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Proof. We are in the setting of Corollary 1.9; in particular, as recalled in the introduction, Lg ,, vanishes to

order at least two at ko. The factorization formula Lg /x4 (k) = d;}pyp (k) Lr,y, (k) LF,y, (K), joint with
Corollary 6.9, gives

0 2 0
(69) 2032/ 10g,, AT (Df 1, ) (#10)" = Lo jsc.y (ko) = di/*v (ko) L, (ko) - L, (ko)

lj
Since Ly, does not have any exceptional zero at ko, Theorem 1.1 implies that Ly ., (ko) = 2L* (F,, X2, ko/2 + 1)
is zero if and only if L (Fi,, X2, ko/2 + 1) = 0. Since L (Fy,, X2, ko/2+ 1) = 0ifand only if L (f, x5, ko/2 + 1) =

0 forall f € [Fy,], in this case (69) applied to all f-components for all f € [F},] shows that log, A.J (DEZ]’,] ko) =

0 and the claim follows setting dE/’Fk 1= 0. Otherwise, Corollary 1.9 (4) applies: joint with the defining rela-
0

tion Lo,k (k) = d’;(/Zl/F (k) Lr /K,y (k) implying E%/K,w (k) = d’;(”/Qano Ly /i,y (ko), it gives the existence

of ¥ € CHE/?*1 (My, ® @Q¥1)%1 such that

ko/2 2 ko/2 ko/2 2
2d}§/ ano cl (@ﬂl)) (Fko) = dKO/ 77Fk0 /1{“,)( (ko) = 2dKO/ logv* AJ (Dfﬁ]’]m) (SDIC()) .

Thanks to Lemma 6.10 there is an Hecke operator n € T[XFi ] inducing 7 Py, O the Fj,-component. Since
0

the lower row identification appearing in (64) is dual to ¢ + F,, the commutative diagram (65) implies
that this relation taken over all f-components is equivalent to

JL 2 _ P ?
77C1[Fk0] (fzﬂ’) =log, AJ (Dm’k()
Thanks to Lemma 6.10 it makes sense to set d?}FkO] = %ﬂw, where \75 is any lift of \/n € T[Xl%] to the Hecke
algebra acting on Chow groups. Claim (1) follows and the other assertions follow from the corresponding
assertions in Corollary 1.9 (4) and our definition of dﬁ} e O
°0

Remark 6.12. When kg = 0, cl[lFLko] factors through the Mordell-Weil group A[Fko] (H}/;) ® Q. It is also true
that AJv*,[FkO] factors through Afp, | (K;)®Q (see [18]). Since (-)®Q < (-) ®Q, is injective and the Bloch-

Kato logarithm is compatible, up to the Kummer map, with the usual p-adic logarithm, our result actually
gives evidences to the conjectures as formulated in [18]. See the final remark of [20] for the generalization of
Greenberg’s theory as formulated in [18] to include non rational eigenvalues, i.e. the case where A[Fko] may
be of dimension greater than one.

7. PROOF OF THEOREM 6.7

In this section, we first introduce a faux Abel-Jacobi map
log, AJ:Hy (T,A,, (Py,)) — HZO.

While log, AJ was related with the Abel-Jacobi image of Darmon cycles, log, AJ is very close to the
derivatives of our p-adic L-functions. Indeed, the proof of Theorem 6.7, can be divided in the following
two steps: prove the claimed formula with log, AJ replaced by log, AJ and then proof the equality
log, AJ =log, AJ. While the first step is carried on in this section, the latter is proved in §8.

7.1. The faux Abel-Jacobi map. Let A (W), be the space of locally analytic functions on W that are
homogeneus of degree ko under the action of p. Write D (W) ko b0 denote the strong E-dual space of A (W) ko
and set D(W)qk, = O () @D(Z;)D(W)ko. The restriction map A(W), ~— A(X) is easily checked to
be a GL2(Z,)-equivariant identification, thus inducing a GL3(Z,)-equivariant O (Q2)-linear identification
D(X)a — D(W)a.k,, whose inverse we denote by pW? (see [40, before Lemma 7]). When Q = {ko},
D(W )k ko is identified with the strong E-dual space of A(W)ko’ko introduced before Lemma 6.1, thus

2Note that, in spite of the notation, pW has a different nature than pt. The latter is given by the rule pis (u) (F) := p (Fxy),
where F'yy- is F extended by zero. The first is given by p¥ (1) (F) := p (ﬁ) . where F is obtained from F extending the function
by p*0-homogeneity.
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justifying the overlap in the notation (see [40, Lemma 4]). We note that, as we assume ko € 2, there is a
GL3(Q,)-equivariant specialization map

Nky = k0®p( )1 D(W)Q,ko - ’D(W)ko,kt)'

We denote by D(W)g, . C D(W)ak, (resp. D(V[/)?lbkO C D(W)$,) the GLy(Qy)-subspace of those
elements whose specialization at ko (under 7, ) belongs to D(V[/)k0 ko (resp D(VV)kO ko )» and we let D(X)Y, ~
D(W>?z,k0 (resp. D(X)%b o~ D(VV)Q %) be the corresponding space under the identification P DW)a ke =~

D(X)q. Since the polynomials of homogeneus degree kg, when viewed as functions on W, correspond to the
same space of polynomials viewed as functions on X, D(X) agrees with our previusly defined D(X)J,.

Let () : Q" — 1+ pOQ;r be the projection onto the principal units. Up to shrinking 2 around kg
in an open affinoid defined over E, we may write x € Q as x (t) = [t]* (t)°. Then we define (£)" " :=
exp ((s — ko) log ((t))), where t € Q). For every 7 € H," and P € Py, (E), define

of.axw—=c,
07" (k, (x,y)) == (y +72)" " P (2,9) >,

We extend the definition of ©™F by linearity so that, for d € A, and P € Py, (E), we may view % as a
function ©4F : W — O (), the target being O () because d € A, is fixed by Ggu/pur and P € Py, (E).
Let Agq (X) be the space defined in a similar way as Agq (X;) was defined at the beginning of §5. As
above, by [19], the elements of D (X), naturally integrate elements of Ag (X). Note that ©7F (k,t (z,y)) =
k(t) O™ (K, (z,y)) for every t € Z, and 0™ (k,p(z,y)) = p"O™F (k, (z,y)); in particular O%F satisfies

the same properties, @“i)’(P € Ag (X) and the quantity

(70) 1 (0%F) = o (1) (0) € 0(Q), e D (W)g,

makes sense. We set I (u,d @ P) := dy, [u (0%F)] € E, where di, := £ [],_, . Let E; be the field
generated by 7 € H;' over E and let Qp_ be the base change of  over E to E;; we abusively write
1 (07F) € O(Qp,) and I (u,7 @ P) :=dj, [ (07F)] € E; for any 7 € H,", by viewing p as an element of
D(W)QJCO = 1®D (W)Q,k‘o C D (W)QET,]C()'

Lemma 7.1. The pairing

I:D (W), ® Au(Pry) > E
is GLo(Q,)-invariant (resp. GL3(Q,)-invariant or GL(L)-invariant) for * empty (resp. + or v = [L]).
Furthermore I (au,C) = a (ko) I (1, C), for a € O(Q), u € D (W)?l,ko and C € A (Py,)-

Proof. Using the relation ¢ | y + 7z = (¢y7 + dy) (y + (g7) ), the invariance of the pairing can be proved.
The second assertion follows form [7, Lemma 4.11]. O

Consider the composition

Pr

P Y (T, DOWG,,) S HY (T, D(X)S) % HY (Do, D(Y)a) ™3 H' (T, Vi)

If @y, € Hp,p (Do, Vi)"Y, by Proposition 4.4, gy, = (,D)Vg)f1 (¢#) € H* ( D(W) ) satisfies
w/Y
P (@) = ok, (03 (8%)) =l (@) = gy,
Since [ is I'-invariant when restricted to D(W)Q ko+ 1t induces by cap product
v
[ H\(T, Ay (Py,)) — H (r D(W)Qko) .

We define
log,, AJ : Hy (T, A, (Py,)) — HY,
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by the rule log, AJ(C) (¢y,) = I (@r,C), where ¢, € H* (F,'D(W)%),CJ is obtained as above from a
lift ® € H' (Do, D(Y)a)™" of ¢, € Hy, such that & | U, = a,® (take h < ko + 1).

Lemma 7.2. log, AJ is well defined, i.e. it does not depend on the choice of the lift oy, € H! (R D(W)?z,ko)-

Proof. Let I, C O(Q) be the ideal of functions that vanish at kg. Then, by the control theorem proved
in [19], ® is well defined up to an element of I, H' (To, D(Y )o)=". The associated ©r, is well defined up to an
element of I, H! (F, D(W)%,ko). Thus, it suffices to show that I (a@, C) = 0 for ap € I, H' (R D(W)?Z,ko)'
But this follows immediately from Lemma 7.1: if o € I,
I (Oé&, O) =« (kO) I (@7 C) =0.
O

Remark 7.3. Strictly speaking we have defined log, AJ as a map with values in the new quotient HZEW’V

of Hzo, since we need to apply Theorem 4.2. However, a lift of log, AJ to a map with values in HXO is
certainly possible. Indeed, we may take a basis of Hy, by eigenvectors for the Hecke algebra generated by the
Hecke operators prime to N. Then we may uniquely write such an eigenvector ¢, as a linear combination
of eigenvectors arising from new eigenvectors of some level Mp with M | N, and apply Theorem 4.2 to these
new eigenvectors. Working similarly as in the proof of [40, §6.2] shows that the required lift exists.

7.2. Faux Abel-Jacobi map and derivatives of p-adic L-functions. If 71,72 € H;" and P € Py, (E),
define

2P O x W - C,

r—kg r—kg

O™ (k, (z,y)) = (y+71z) 7 (y+7az) 7 P(z,y).
Again ©7172F gsatisfies the same homogeneity properties as ©7F. In particular, for an element pu €
D(X)q ks M (@IT;(’TZ”P) € 0 (Qpg,, ,,) makes sense, if E,, ,, is the field generated by 7, and 75 over
E and Qp, . the base change of 2 to E;, r,. On the other hand, we already considered the quantity
I (@&P) € O(Qg.) appearing in the definition of the integration pairing I. We set Ix (u, 7 ® P) :=
d, [,u (@&Pﬂ € E; and extend the definition by linearity to A, (P, ), thus obtaining a GLg (Z,)-invariant
E-valued pairing

Ix :D(X)g 4, @ Au(Pr) = E.

It is clear from (70) that
(71) log,, AJ (O) (¢r,) = Ix (2%,C),
where ®# € H' (I, D(X),) is obtained from a lift ® € H* (To, D(Y)q)=" of @y, € Hy, such that ® | U, =
a,® (take h < ko +1).
Lemma 7.4. If 71,72 € Hy', P € Py, (E) and p € D (X)q .

o (O77)) = 5

Proof. See [39, Proposition 3.1] O

(Ix (1, 71 @ P) + Ix (1,72 @ P)).

Proof of Theorem 6.7. Write Q; (X,Y) = A(X + 7;Y) (X +7;Y). Since Q; (z,y) € Z, for (z,y) € X,

K K= r—kq

Qs (@, 9)™% = Q; (w,y) T Qy (w,y)™2 = (Q; () T Q; (w,9)" /% = (4) T @ TQ

Let us write cg# for a cocycle representing ®# and set 7, := Jj (u). By definition

Lapiein () = cas (1) (Qs (2.9)"") = (4) 7" g (€7779°) ().
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Note also that (@Tj’?j’Q?O/z) (ko) = Lo/, (ko) = 0, so that Lemma 7.4 applied to cox (’Yj) € D(X)a
yields

1 K _ K
(72) %/K,[]] (ko) = 5 (IX (C(D# ('}/]) ,Tj ® Q]0/2> + IX (Cq;.# (’y]) ,Tj X QJO/Q)) .
Since cox (,yj) = —co (’Y;l) 7;1 (by the cocyle relation), fy;le =Ty, ’VJIQ?O/Q = Q?O/Q
Ix is GLy(Z,)-invariant when we restrict to D(X)2,

Ix (C<I># (v;) 7 ® Q§O/2) =-Ix <C<1># (’Y;I) T ® Q?O/Q) )

and the pairing

Note that ('y;, T Q;) = ('y;l,?j, —Qj), so that

(73) Ix (C(I,# ('yj) T ® Q§0/2> — (71)k0/2+1 Ix (&I»# (’y;—) ;77 ® Q§0/2) .
By definition and (71),
L (can (7). 75 © Q%) = 8% Lx (9%, Dyy,) = 6%/ log,, AT (D, (o)

(74) Ix (C<1># (’Y}) 77 ® Qk0/2> = gro/? log,, AJ (Dm,k0> (k) -

j
Combining (72), (73) and (74) yields the claimed equality (62), except that log, AJ is replaced by log, AJ.
The full proof of (62) is then achieved by the following result, shown in the next section.

Proposition 7.5. log, AJ =log, AJ.

8. EQUALITY OF THE ARITHMETIC AND THE FAUX ABEL-JACOBI MAPS

We prove in this section Proposition 7.5 asserting the coincidence of the previously defined Abel-Jacobi
maps. Let TP be the abstract Hecke algebra generated by the operators Ty for £ Np, U, for £|{N*+ and W, for
¢|D, acting on the homology and cohomology groups by double cosets operators. Then log, AJ,log, AJ €
Homqp» (H 1 (T, A, (Pr,)) JHIXO). Consider the following piece of the long exact sequence in I'-cohomology
obtained from (58)

(75) oo — Hy(T, Py,) N H,(T,A% (Py,)) SN H (T, Ay, (Pry)) deg Hi (T, Pyy) — -+

Ve

The strategy of the proof is simple: first prove that log, AJ o4 = log, AJoi and then show that this
equality suffices to deduce the full equality log, AJ = log, AJ. This latter implication is granted by the
following proposition.

Proposition 8.1. The composition with i induces an inclusion
Homy» (Hy (T, Ay, (Py,)), Hy,) = Homp» (Hy (T, AY, (Py,))  HY,) -
Proof. We extract from the long exact sequence (75) the following short exact sequence
0 — coker 0 — H1(T', A,, (Py,)) — imdeg — 0
and apply the functor Homy» (—, HXO) to it, yielding
0 — Homy» (im deg, Hy ) — Homy» (Hy (T, A(Py,)), Hy, ) —
Homq» (coker 9, HZO) — Ext%—p (im deg, HZO) —

Since only cuspidal, p-new systems of 7TP-eigenvalues occur in HZO while the systems occuring in im deg C
H, (T, Py,) are either Eisenstein or p-old, we have

Hom7+ (im deg, H) ) = Ext}, (im deg, H, ) = 0.

The result follows. O
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It remains to be checked that log, A.J oi =log, AJoi and this will be achieved by showing that both
of them equals a thirt map, namely

Ly ~ ATy,
AT, o Hy (T,AY (Pry)) =5 Hi(T,A%(Py,)) =% HY, .
This is the content of the subsequent lemmas 8.2 and 8.4.
Lemma 8.2. We have log AJ o i = log AJ° and log, AJoi =logAJ° o, =:log, AJ°. Furthermore,
log,, AJ? = AJY ou,, = AR, , .

Proof. The equalities log AJ o3 = log AJ° and log, AJoi = log,, AJO follow from the defining diagram
(60). The equality log, AJ° = AJI%&U* follows from [6, Lemma 2.5]. Indeed, up to the identification

R:H' (f,D (W)gjjko) £y (f,char (&, Vk0)> of [32, Theorem 3.5], it implies that I°

Ra(e,7a—T1®@P):= Z ce (P).

e:r(11)—r(T2)
It follows that I2,; = 0 when we restrict to AY_(Py,), so that 10, 0 ¢,, = 0 and

AJl?ag O ly, = AJff,g 0Ly, — LAY

T

q is induced by

40 ly, = AJI%g O Ly,
O

Before proving Lemma 8.4 and, hence, completing the proof of Proposition 7.5, we need the following
result. The proof of this commutativity, which is implicit in [7, proof of Lemma 4.10], is left to the reader.

Lemma 8.3. The following diagram is commutative:

DWWy, © AdPy) - E
Mo + K |
I

DWWy © AdPy)

Lemma 8.4. log, AJoi= AJ

log,v. *
Proof. Set ¢, = Rg; (¢r,) and consider the morphism £l (f,D(W)Zgb,ko) — H! (F,D(W)ko’ko)

induced by the restriction and the inclusion ¢ : D (W)g;b ko C D (W), , in either orders. We claim that we

may choose iy, is such a way that

(76) Mo (%) = LF (wko) .

This fact may be deduced from [40, Theorem 13] as follows (choose ko/2 < h < ko + 1 in order to apply
the result). For that we recall the definition of some relevant spaces of distributions that appear in [40]. Set
L,=1L} =172, L :=p 'Low, = Zy, X p~*Z, and v¥ := [LE] € V*; it will be convenient to set I't :=T
and I'™ := wp_lpr. We note that p~!Zw, = Y and that, setting X~ := Ly — pL; = p~'Xuw,, there
is a Shapiro’s isomorphism pyx  : H*(I'",D(X )a.k,) =~ H* (To, D(Y)a.k,) which is the analogous of the
Shapiro’s isomorphism p% ' : H' (I, D(X ") a.k,) ~ H' (To, D(Z)a.k,) we already considered for X+ := X.
We denote by C (V*, Dqgy,) the right GL3 (Q,)-module of maps u, : V¥ — D(W)qy,. By Shapiro’s
Lemma, the evalutation morphism p,+ : C (VE,Dak,) = D(W)q.k,, followed by the GL(LF)-equivariant
identification p%¥. : D(W)qk, =~ D(XF)q (see [40, before Lemma 7]), induces

w
s P, Px+
pxene  H (T, (V5 Dag,)) & B (T,D (W), ) & H (15, D (XF),,).
A further composition with Shapiro’s isomophisms px " and py yields
+ L fad ~ i
bt =S op i H (F,c (v+,DQ,k0)) 3 H (Do, D(2)g)

i =0 opy o HH(T.C (VT Dag,)) S H (T, D(Y)g).
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Let ¢y : ’D(W)gfko C C (V*%, Dy, 1) be the GLF (Q,)-equivariant inclusion obtained by viewing the elements

of D(W)%Ob,ko as constant functions on V*. The specialization map 7, induces
Mo 1 C (VE, Daky) = C (VE, Diy i)
by the rule 0y, . (1.), = Ny, (1) Define
= {1 € C(VE Do) 1y (1) € 1 (12) -

It is easily checked that iy : C (W, Do i,)" " C C(VE, Doy, ) is a GL3 (Q,)-submodule (see [40, end of
§2]). We write py ,,, for the GLa(Z,)-equivariant morphism

p—new

¢ (V*, Do)

—new Pu, I)W b
Px. :C (VT Do)’ =5 DW)Gh, = D(X)g" .
Recall the eigenvector ® := &+ € H* (Ty, D (Y),,) lifting ¢, = @fo and set
-1 ~ _
@, = (o) (@ en (T,c(V",Daw)),

which is the family denoted c2"* in [40, before definition 15]. In [40, §3.2] it is defined an operator V—

*,—

sitting into the following commutative diagram

. [~ -~ pkO-V7 L [~
Hi(T.c(v-Das)) "2 1 (Fe (v Do)
P [
3 UPWP 7
H"(Ty,D(Y)g) = H"(Ty,D(Z)g).
Let a, € O (Q) be the eigenvalue of the U, operator acting on ®. Since a,, (ko) = —wp k,p"/?, with w1, €

{#£1} the eigenvalue of the Atkin-Lehner involution acting on Fj,, up to shrinking € in a neightbourhood of

ko, we may assume that a, € O (Q)” is a norm multiplicative element. Setting ®. y := a, (ko) a; ' ®. _ | V™

P
(denoted CZ’J’:O in [40, before definition 15]), we see that

Pz (ap (ko) P+ ot (<I>*,+)) = a,'pt (P [ V) =a,p (D.) | UW,
= a '@ |UW, =W,
In other words,
% = a, (ko) a, ' pyi o+ (Puy) € H (T, D (X)),
e Gy = () (pxe s (ap (o) 2, e y) ) = o, (3 (o) @, ")
But since we have pZZ/ Y (
Theorem 13 (b*)]. This result implies that there is a canonical ®7 " € H! (f,C (V*, Dk, )p_new) such

that oy (") = ay, (ko) a, '@, 4. It follows that

Pro = o (@ (ko) &, 0. y) = 1 (p,, (2277°)) € o (H' (T.DOVNG, ).

E,:D) = Pr,» ap (ko) a;1<I>*7+ specializes to ¢, under the map considered in [40,

Then (76) follows from [40, Theorem 13 (*)]: it gives the equality 1y, . (97"") = iy, € H' (T, DW)§),)
and then
Mo (Pro) = o (Po. (14 (R27))) = po. (Mg e (14 (R27)))
= pq)* (L+ (7]]907* (@{::‘_’new))) — pv* (L+ (wk‘o)) .

Now the claimed equality follows from the fact that p, ot = L§7 because p,,_ oty is the inclusion D(W)
D(W)a.k, as I'-modules.

0,b
Oky ©
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We are now ready to prove the Lemma. Consider the following commutative diagram, induced by Lemma
6.1:

~ AO Il(fig 1 (7 0 A 1 (T 0,b v
Hl(ra (Pko)) — H F’D(W)ko,ko - H F’D(W)kmko

~ —\V
T Ly, T (resr) T (resg)
AO Iloog 1 0 Voo 1 0,b v
H,y (F, . (Pko)) - H F,D(I/V)ko,]CD - H F,D(W)km,CO
Note that the morphism I}, (vesp. Iy, , := I{}, ot,,) appearing in the definition of AJ{, (resp. AJY, , )
is here the composition ¢V o Iﬂ)g (resp. ¥ o IIOOg o i,,) appearing in the above diagram; we are sorry for the
redundancy in the notation, but since we are really interested in Il(())gm* =Vo II% 2 O Lo, there will be no fear
—\V
. . . . _ I‘ .
of confusion. The diagram implies ), , = <L ) o If),, ie.
(77) T, () = Iy (i£.(),C)  for € € Hy (T, AY (Pyy).-

Note that Iff)g appears in the first row of the following commutative diagram, whose existence follows

from Lemma 8.3:
0 Il%g 1 0 v
Hy (D,AY (Py,)) = H (va (W)ko,ko)
il Ly, y
Hl(FaAv* (Pko)) l> H' (F’D(W)?),ko)

It follows that I oi =7y oI, ie.

(78) (i (C)) = Tigg (my, (), C)
Now the claim follows from (78), (76) and (77):
(log, AT 0d) (C) (px,) = =1(Pr,i(C)) = Iig (mk, (¥5,).C)
Il?)g ([’Il: (¢k0) ,C) = Il?)g,’u* (1/)1%7 C) = (AJl%g,v*) (C) (‘pko) .
O
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