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1 Introduction

In the recent preprint [Sz], P. Scholze proved, in much greater generality than quoted here, the
following results. Let N ≥ 3 be an integer, p ≥ 3 a prime integer which does not divide N and
consider the tower

. . . −→ (YNpr+1 ⊂ XNpr+1) −→ (YNpr ⊂ XNpr) −→ . . .

for r ≥ 0, where YNpr denotes the affine modular curve over Cp with full level Npr structure and
XNpr its natural compactification, both seen as adic spaces over Spa(Cp,OCp). The morphisms
in the tower are the natural (forgetful) maps. Then we have:
• (Theorem IV.1.1 [Sz]). There is an adic perfectoid space XNp∞ over Spa(Cp,OCp) such that

XNp∞ ∼ lim
←,r

XNpr ,

where ∼ is defined in definition 2.4.1 of [SzW].

If we denote by H̃1
c,N(Z/pnZ) the compactly supported cohomology of the tower with Z/pnZ-

coefficients, i.e.,
H̃1
c,N(Z/pnZ) := lim

→,r
H1
c

(
YNpr ,Z/pnZ

)
,

then we have
• (Theorem IV.2.1 of [Sz]). There is a natural isomorphism of almost OCp-modules

(∗) H̃1
c,N(Z/pnZ)⊗

(
OCp/p

nOCp

) ∼= H1
(
XNp∞ , I

+
Np∞/p

nI+
Np∞

)
,

where INp∞ ⊂ OXNp∞ is the ideal sheaf of the boundary of XNp∞ and I+
Np∞ := INp∞ ∩ O+

XNp∞
.

One might want to think about the almost isomorphism (∗) above as a 0.5, i.e., a half, of a
p-adic (or maybe perfectoid) Eichler-Shimura isomorphism as the left hand side is compactly
supported completed, étale cohomology of the tower of modular curves and the right hand side
is interpreted in [Sz] as the module of cuspidal p-adic modular forms.

In this article we prove yet another 0.5 Eichler-Shimura isomorphism, which arises in the
context of overconvergent modular symbols and which is perhaps the missing half of (∗).

Let us recall that in the context of overconvergent modular symbols there are two notions cor-
responding to completed cohomology that we will now review. We now start using the notations
used in the rest of this article: let X(N, p) −→ X denote the pair consisting of the modular
curve of level Γ := Γ1(N) ∩ Γ0(p), respectively Γ1(N), over Qp seen as a rigid analytic curves
where the map is forget the level p-structure, let 0 ≤ w ≤ p/(p + 1) be a rational number and
let K be a finite extension of Qp such that there is an element pw of K with v(pw) = w. We
denote by X(w) ⊂ X, respectively X(w) ⊂ X(N, p) the strict neighborhood of the ordinary
locus, respectively the strict neighborhood of the connected component of the ordinary locus
containing the cusp ∞ in X and X(N, p) of width w (see section 2.1 for more details). We let
X (w) be the natural formal model over OK of X(w).

Let us fix an accessible weight k, i.e., a continuous homomorphism k : Z×p −→ K× which
is analytic when restricted to 1 + pZp and let Dk denote the module of K-valued analytic
distributions on T0 := Z×p × Zp which are homogeneous of weight k for the natural action of Z×p
on T0 (see section 3.2 for more details.)

The first analogue of the completed cohomology (associated to the tower of modular curves
of levels Γ1(Npr), r ≥ 0) is the Hecke module of overconvergent modular symbols of weight k,
H1(Γ, Dk).
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AsDk can be seen as a continuous representation of the Kummer-étale geometric fundamental
group of X(N, p) (for a certain base point), associated to Dk there is a continuous Kummer-
étale sheaf Dk on X(N, p) such that we have H1

(
Γ, Dk

) ∼= H1
(
X(N, p)ket

K
,Dk

)
. In particular

H1
(
Γ, Dk

)
has a natural action of the absolute Galois group GK of K.

Next, we can restrict the sheaf Dk to the Kummer-étale site of X(w) and then consider it as

a sheaf on Faltings’ site X(w) associated to the pair (X (w), X(w)). Let also ÔX(w) denote the
continuous structure sheaf of X(w). The second analogue of completed cohomology, for the tower

of rigid curves
(
X1(Npr)(w)

)
r≥0

, would be the group H1
(
X(w),Dk⊗̂ÔX(w)

)
. Let us recall that

there is a GK and Hecke equivariant mysterious map (restriction) connecting the two “completed
cohomology analogues” (see [AIS2]):

H1
(
Γ, Dk

)
⊗K Cp −→ H1

(
X(w),Dk⊗̂ÔX(w)

)
.

In [AIS2] we have proved a full but imperfect Eichler-Shimura isomorphism theorem for H1
(
Γ, Dk

)
as follows: for a slope h ≥ 0, there is a discrete set of bad weights Zh such that if k is an accessible
weight with h /∈ Zh, we have a GK and Hecke equivariant isomorphism

H1
(
Γ, Dk(1))(h) ⊗K Cp

∼= H0
(
X(w), ω†,k+2

w

)(h) ⊗K Cp ⊕ S(h)
k ⊗K Cp(χ

k−1),

where the exponent (h) denotes the factor of slope ≤ h of each of the Up-modules above, ω†,k+2
w

is the modular sheaf on X(w) of weight k + 2 and Sk is a Hecke module on a Banach space on
which Up is compact.

The goal of the present article is to prove an overconvergent 0.5 Eichler-Shimura isomorphism
for H1

(
X(w),Dk⊗̂ÔX(w)

)
. Let k be an accessible weight and h ≥ 0 a slope. We recall that there

is a GK and Hecke equivariant map defined in [AIS2] and reviewed in section 5 of this article

Rk : H1
(
X(w),Dk⊗̂ÔX(w)(1)

)
−→ H0

(
X(w), ω†,k+2

w

)
⊗K Cp.

Then we prove, see Theorem 5.1

Theorem 1.1. We have
a) The Cp-vector space H1

(
X(w),Dk⊗̂ÔX(w)(1)

)
has a natural slope h-decomposition,

and
b) Rk induces an isomorphism

R
(h)
k : H1

(
X(w),Dk⊗̂ÔX(w)(1)

)(h) ∼= H0
(
X(w), ω†,k+2

w

)(h) ⊗K Cp.

The proof of this theorem is based on the following facts:
1) The sheaf Dk⊗̂ÔX(w), contrary to Dk, has a decreasing, separated and exhausting filtra-

tion by sub-sheaves, the cohomology of whose graded quotients can be calculated in terms of
overconvergent modular forms.

2) One can estimate the p-adic valuation of the image of Up on the cohomology of the filtration

of Dk⊗̂ÔX(w)(1).

We think that the fact that the cohomology group H1
(
X(w),Dk⊗̂ÔX(w)(1)

)
has a slope h de-

composition is surprising as we know little of its topological properties. Let us recall that slope
decompositions have been proved for projective Banach modules over Banach algebras and for
modules of overconvergent modular symbols by first decomposing the perfect complexes com-
puting the modular symbols.
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Such complexes are not available for Faltings’ cohomology and therefore we think this result
is interesting in itself. Moreover, we believe that these ideas could be used to define slope
decompositions for other continuous cohomology groups of ind-continuous sheaves.

Notations In what follows we will denote by caligraphic letters X , Y , Z, . . . log formal schemes
over OK and by X , Y , Z respectively the formal schemes underlying X respectively Y , respec-
tively Z. We will denote by X, Y , Z, . . . respectively the log rigid analytic generic fibers of X ,
Y , Z, . . . and by X, Y , Z, . . . respectively the underlying rigid spaces.

2 Faltings’ topoi

2.1 The geometric set-up.

In this section we will recall the geometric set-up from [AIS2]. Let p ≥ 3 be a prime integer, K
a complete discrete valuation field of characteristic 0, ring of integers OK , maximal ideal mK of
OK and perfect residue field F of characteristic p. Let N ≥ 3 be a positive integer not divisible
by p. We fix once for all an algebraic closure K of K and an embedding Q ↪→ K, where Q is
the algebraic closure of Q in C. We denote by Cp the completion of K and by GK the Galois
group of K over K. We denote by v the valuation on Cp, normalized such that v(p) = 1.

Let w ∈ Q be such that 0 ≤ w ≤ p/(p + 1) and let us suppose that there is an element
(which will be denoted pv) in K whose valuation is v := w/(p− 1). We fix an integer r ≥ 1 and
we suppose that w < 2/(pr − 1) if p > 3 and w < 1/3r if p = 3.

We consider the following tower of rigid analytic modular curves over K, with log structures
defined by the divisors of cusps:

X1(Npr) −→ X(N, pr) −→ X1(N),

whereX1(Npr), respectivelyX1(N) classify generalized elliptic curves with Γ1(Npr) (respectively
Γ1(N)) level structure, while X(N, pr) classifies generalized elliptic curves with Γ1(N)∩ Γ0(pr)-
level structure. The morphism X(N, pr) −→ X1(N) is the one which forgets the Γ0(pr)-level
structure.

We denote by Ha a lift of the Hasse invariant (for example Ha = Ep−1, the normalized
Eisenstein series of level 1 and weight p − 1, if p > 3) which we view as a modular form on
X1(N). We define the rigid analytic space

X(w) := {x ∈ X1(N) | |Ha(x)| ≥ p−w} ⊂ X1(N),

and remark that the morphism X(N, pr) −→ X1(N) has a canonical section over X(w), defined
via the theory of the canonical subgroup, whose image we also denote by X(w)). We define
X(pr)(w) := X1(Npr) ×X1(N,pr) X(w) and view X(w) (respectively X(pr)(w)) as a connected
affinoid subdomain of X1(N) and via the above mentioned section of X(N, pr) (respectively of
X1(Npr)). The log structures are defined by the divisors of the cusps in X(pr)(w).

We denote by X1(N), X (N, pr) and X1(Npr) the p-adic formal schemes over OK obtained
by completing the proper schemes over OK classifying generalized elliptic curves with Γ1(N),
respectively Γ1(N)∩Γ0(pr), respectively Γ1(Npr)-level structures along, respectively, their special
fibers. Let X (w) denote the open formal sub-scheme of the formal blow-up of X1(N) defined
by the ideal sheaf of OX1(N) generated by the sections pw and Ha(E/X1(N), ω) which is the
complement of the section at∞ of the exceptional divisor of the blowing-up. Here E −→ X1(N)
is the universal generalized elliptic curve and ω is a global invariant 1-differential form of E over
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X1(N). Finally we let X (pr)(w) denote the normalization of X (w) in X1(Np)(w) (see §2.2 of
[AIS2] for more details). These formal schemes have natural log structures as follows: for X (w)
it is defined by the divisors of the special fibers plus the divisors of the cusps, respectively (see
[AIS2] §2.2.). If we denote by S the formal scheme Spf(OK) with log structure given by the
closed point, then the natural morphism of log formal schemes X (w) −→ S is log smooth.

The log structures on the formal schemes X (pr)(w), r ≥ 1 are the inverse images of the log
structure on X (w) defined by the morphisms of formal schemes X (pr)(w) −→ X (w).

Let us remark that we have constructed a natural commutative diagram of log formal
schemes, log rigid analytic spaces and morphisms which is our basic geometric setup:

X (pr)(w) −→ X (w) = X (w)
u ↑ u ↑ u ↑

X(pr)(w) −→ X(w) = X(w)
∩ ∩ ∩

X1(Npr) −→ X(N, pr) −→ X1(N)

In the above diagram u denotes the various specialization (or reduction) morphisms.

2.2 Faltings’ topos

Our main reference for the constructions in this section is [AI] §2.2 and [AIS2] §2.3.
We will define Faltings’ site, denoted X(w), and Faltings’ topos associated to the pair of a log

formal scheme and log rigid space:
(
X (w), X(w)

)
. Namely we first let X (w)ket be the Kummer

étale site of X (w), which is the full sub-category of the category of log schemes T , endowed with
a Kummer log étale morphism T −→ X (w) (see [AI] section 2.2.1 or [Il] section 2.1). We recall
that the fiber product in this category is the fiber product of log formal schemes in the category
of fine and saturated log formal schemes so in particular the underlying formal scheme of the
fiber product is not necessarily the fiber product of the underlying formal schemes (see [Ka]).

If U is an object in X (w)ket then we denote by U fket
K

the finite Kummer étale site attached

to U over K as defined in [AI] §2.2.2.
Now, to define X(w) we denote by EX (w)K

the category such that

i) the objects are pairs (U ,W ) such that U ∈ X (w)ket and W ∈ U fket
K

ii) a morphism (U ′,W ′) −→ (U ,W ) in EX (w)K
is a pair (α, β), where α : U ′ −→ U is a

morphism in Uket and β : W ′ −→ W ×UK
U ′K is a morphism in

(
U ′
)fket
K

.
The pair (X (w), X(w)) is a final object in EX (w)K

and moreover in this category finite
projective limits are representable and in particular fiber products exist (see [AI] section 2.2.3
and [Err] proposition 2.6 for an explicit description of the fiber product).
A family of morphisms {(Ui,Wi) −→ (U ,W )}i∈I is a covering family if either
(α) {Ui −→ U}i∈I is a covering family in X (w)ket and Wi

∼= W ×UK
Ui,K for every i ∈ I

or
(β) there exists U in X (w)ket such that Ui ∼= U for all i ∈ I and {Wi −→ W}i∈I is a covering in
U fket
K

.
We endow EX (w)K

with the topology generated by the covering families defined above and
denote by X(w) the associated site.

Let us observe that (X (w), X(pr)(w)) is an object ofEX (w)K
, for all r ≥ 1 (while (X (pr)(w), X(pr)(w))

is not!) so we define the induced (or localized) site X(pr)(w) := X(w)
/
(
X (w),X(pr)(w)

) see [AIS2]

§2.3, 2.4, 2.5.
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2.3 Sheaves on X(w)

We denote by OX(w) the presheaf of OK-algebras on X(w) defined by

OX(U ,W ) := the normalization of H0(U ,OU) in H0(W,OW ).

We also define by Oun
X(w) the sub-presheaf of W(k)-algebras of OX(w) whose sections over

(U ,W ) consist of the elements x ∈ OX(w)(U ,W ) such that there exist a finite unramified exten-
sion M of K contained in K, a Kummer log étale morphism V −→ U ⊗OK

OM and a morphism
W −→ VK over UK such that x, viewed as an element of H0(W,OW ) lies in the image of
H0(V ,OV). Then the presheaves OX and Oun

X are sheaves and Oun
X is isomorphic to the sheaf

v∗X
(
OX ket

)
.

We denote by ÔX(w) and Ôun
X the continuous sheaves on X given by the projective systems

of sheaves {OX/p
nOX}n≥0 and respectively {Oun

X /pnOun
X }n≥0.

Let r ≥ 1 and w ∈ Q adapted to r, let Z := X(pr)(w) −→ X(w) and let us denote by
X(pr)(w) := X/(X (w),Z) the site induced by (X , Z) and by j∗r , jr,∗(

∼= jr,!) the associated morphism
of topoi. At the level of sites jr : X(w) −→ X(pr) is defined by jr(U ,W ) :=

(
U , Z ×X(w) W, pr1

)
(see [AIS2] section 2.5).

We have functors

vX(w) : X (w)ket −→ X(w), vr : X (w)ket −→ X(pr)(w)

defined by vX(w)(U) := (U ,UK) and vr := jr ◦ vX(w). More explicitly, vr(U) := jr(U ,UK) =(
U , Z ×X UK , pr1

)
. These functors send covering families to covering families, commute with

fiber products and send final objects to final objects. In particular they define morphisms of
topoi. The results of §2 of [AIS2] imply that the Leray spectral sequence for vr,∗ = vX(w),∗ ◦ jr,∗
degenerates and we have Rivr,∗ ∼= RivX(w),∗ ◦ jr,∗.

We denote by OX(r)(w) := j∗r (OX(w)) and by ÔX(w)(pr) := j∗r (ÔX(w)). Let us recall the morphism
θr : X (pr)(w) −→ X (w) which is finite and defines X (pr)(w) as the normalization of X (w) in
X(pr)(w) and let Gr

∼= (Z/prZ)× denote the Galois group of X(pr)(w)/X(w). Then Gr acts
naturally on X (pr)(w) over X (w) and X (w) ∼= X (pr)(w)/Gr.

It is proved in [AIS2] that we have a natural isomorphism of sheaves on X (w)ket

(
vr,∗(OX(pr)(w))

)Gr ∼= OX (w) and similarly
(
vr,∗(ÔX(pr)(w))

)Gr ∼= ÔX (w).

2.4 The localization functors

We recall here the localization of a sheaf or a continuous sheaf on X(w) to a “small affine of
X ket” (for more details see [AI] section 2.2.6). Let U =

(
Spf(RU), NU

)
be a connected small

affine object of X (w)ket and we denote by U := UK the log rigid analytic generic fiber of U . Let
us recall that under the above hypothesis U is a log formal scheme whose log structure is given
by the sheaf of monoids denoted NU .

We write RU ⊗ K =
∏n

i=1RU ,i with Spf(RU ,i) connected, we let NU ,i denote the monoids
which give the respective log structures and we let Ui denote the respective log rigid analytic
generic fiber. Then each RU ,i is an integral domain, so we let CU ,i denote an algebraic closure

of the fraction field of RU ,i for all 1 ≤ i ≤ n and let Clog
U ,i := Spec

(
CU ,i,MU ,i

)
denote a log

geometric point of Ui :=
(
Spf(RU ,i), NU ,i)

)
over CU ,i (see [Il] definition 4.1 or [AI] section 2.2.5

for the definition of a log geometric point). We denote by GU,i := πlog
1

(
Ui,Clog

U ,i
)

the Kummer
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étale fundamental group of Ui. We have then that the category U fket
i is equivalent to the category

of finite sets with continuous GU,i-action. We write (RU ,i, NU ,i) for the direct limit over all finite
normal extensions RU ,i ⊂ S ⊂ CU ,i, all log structures NS on Spm(SK) such that there are

Kummer étale morphisms Clog
U ,i −→

(
Spm(SK), NS

)
−→ Ui compatible with the one between

the underlying formal schemes. Finally we denote RU :=
∏n

i=1RU ,i, NU :=
∏n

i=1NU ,i and
GUK

:=
∏n

i=1 GU,i.
We denote by Rep

(
GUK

)
and Rep

(
GUK

)N
the category of discrete abelian groups with con-

tinuous action by GUK
, respectively the category of projective systems of such. It follows from

[Il] section 4.5 that we have an equivalence of categories

Sh(U fket
K

) ∼= Rep
(
GUK

)
sending F → lim

→
F(Spm(SK), NS). Therefore composing with the restriction Sh(X) −→ Sh(U fket

K
)

defined by F →
(
W → F(U ,W )

)
, we obtain a functor, called localization functor

Sh(X(w)) −→ Rep
(
GUK

)
denoted F → F(RU , NU).

The importance of this result is given by the following result, see [AI] section 2.2.7:

Lemma 2.1. Let F be a locally free (ÔX(w))[1/p]-module of finite rank. The sheaf RbvX(w),∗
(
F
)

is the sheaf associated to the presheaf on X (w)ket:

U = (Spf(RU), NU)→ Hb
(
GU ,F(RU , NU)

)
,

where GU is the Kummer-étale geometric fundamental group of U , for a choice of a geometric
generic point, i.e., GU = Gal

(
RU [1/p]/(RUK)

)
.

We consider the following variant. Let Z → X(w) be a finite Kummer étale morphism in
X(w)fket

K
. Consider the associated site Z := X(w)/(X (w),Z) and let j(X (w),Z) : X(w) → Z be the

induced morphism of sitesj(X (w),Z)(U ,W ) :=
(
U , Z ×X(w) W, pr1

)
. Consider a sheaf F ∈ Sh(Z)

and fix a connected small affine object U =
(
Spf(RU), NU

)
of X (w)ket as before. Denote by ΥU

the set of homomorphisms of RU ⊗ K-algebras Γ
(
Z ×X(w) U,OZ×X(w)U

)
→ RU [1/p]. For any

g ∈ ΥU we write F
(
RU , NU , g

)
:= limF

(
U ,W

)
, where the limit is taken over all finite and

Kummer étale maps Spm(SK) = W → Z ×X(w) U with SK ⊂ RU [1/p] a Γ
(
Z ×X(w) U,OZ×XU

)
-

subalgebra (using g). Let GUK ,Z,g
be the subgroup of GUK

fixing Γ
(
Z ×X(w) U,OZ×X(w)U

)
. Then

Sh
(
(Z ×X(w) U)fket

) ∼= Rep
(
GUK ,Z,g

)
and we obtain as before a localization functor:

Sh(Z) −→ Rep
(
GUK ,Z,g

)
, F → F

(
RU , NU , g

)
.

If {Ui}i is a covering of X ket and for every i we choose gi ∈ ΥUi
, it follows from the definition

of coverings in the site Z that the map Sh(Z) −→
∏

i Rep
(
GUi,K ,Z,gi

)
is faithful. It also follows

from [AIS2] proposition 2.4 that

j(X ,Z),∗(F)
(
RU , NU

) ∼= ⊕g∈ΥUF
(
RU , NU , g

)
. (1)

3 Locally Analytic Modular Symbols

3.1 Accessible weights

LetW denote the weight space for GL2/Q, i.e., the rigid analytic space over Qp associated to the
noetherian Zp-algebra Zp[[Z×p ]]. Let k ∈ W(K) be a K-valued weight, i.e., a continuous group
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homomorphism k : Z×p −→ K×. We embed Z in W(Qp) by sending k ∈ Z to the character
a→ ak and in general if k ∈ W(K) as above and t ∈ Z×p we use the additive notation tk := k(t).

Once we fixed k ∈ W(K) we define

r = r(k) := min{n ∈ N | n > 0 and ||k(1 + pnZp)− 1|| < p
−1
p−1},

and we choose w ∈ Q with w ≥ 0 and w < 2/(pr − 1) if p > 3 and w < 1/3r if p = 3. We say
that w is adapted to r (and to k). Let us also note that given k, r as above there is a unique
a ∈ K such that for all t ∈ 1 + prZp we have tk = exp(a log(t)).

Denote by W∗ the rigid subspace of W of weights k such that |k(t)p−1 − 1| < p−1/(p−1, i.e.,
of weights k such that r(k) = 1. we call it the subspace of accessible weights.

3.2 Analytic functions and distributions

In this section we recall a number of definitions and results from [AIS2] and also from [AS] and
[HIS]. Let T0 := Z×p ×Zp, which we regard as a compact open subset of the space of row vectors
(Zp)

2. We have the following structures on T0:

a) a natural left action of Z×p by scalar multiplication;

b) a natural right action of the semigroup

Ξ(Zp) =

{(
a b
c d

)
∈M2(Zp)

∣∣∣∣ (a, c) ∈ Z×p × pZp

}
and its subgroup

Iw(Zp) := Ξ(Zp) ∩GL(Zp)

given by matrix multiplication on the right.

The two actions commute.

Definition 3.1. We set

Aok :=
{
f : T0 −→ OK

∣∣∣∣ i) ∀a ∈ Z×p , t ∈ T0, we have f(at) = k(a)f(t)

and

ii) the function z → f(1, z) extends to a rigid analytic function on the closed unit disk B[0, 1]
}
.

Let us make ii) of the above definition more precise. Let ordp denote the p-adic valuation on
OK normalized such that ordp(p) = 1. Then we say that the function z → f(1, z) in the definition
above is rigid analytic on B[0, 1] if there exists a power series F (X) =

∑∞
n=0 anX

n ∈ OK [[X]] with

ordp(an)
n→∞−→ ∞ and such that f(1, z) = F (z) for all z ∈ Zp. Let us denote by Ak := Aok⊗OK

K,
which is naturally a K-vector space. In fact Ak is an orthonormalizable K-Banach space, where
an orthonormal basis is given by: {fn}n≥0 where fn ∈ Aok are the unique elements such that
fn(1, z) = zn for all z ∈ Zp. In other words fn(x, y) = k(x)(y/x)n for all (x, y) ∈ T0.

For every γ ∈ Ξ(Zp) and function f : T0 −→ OK we define (γf)(v) := f(vγ). We have

Lemma 3.2. If f ∈ Aok and γ ∈ Ξ(Zp) then γf ∈ Aok.
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Proof. Let γ =

(
a b
c d

)
. Then for every v ∈ T0 and a ∈ Z×p we have (γf)(av) = f

(
(av)γ

)
=

k(a)f(vγ)k(a)(γf)(v).
Moreover,

(γf)(1, z) = f(a+ cz, b+ dz) = k(a+ cz)f
(

1,
b+ dz

a+ cz

)
= k(a)k(1 + ca−1x)

∞∑
n=0

an

(b+ dz

a+ cz

)n
.

Using the fact that k is analytic and an
n→∞−→ 0 we deduce that the function z → (γf)(1, z)

extends to an analytic function on the closed unit disk B[0, 1].

Definition 3.3. Let k ∈ W∗(K) be a weight. We define Do
k := Homcont,OK

(
Aok,OK

)
, i.e.,

the OK-module of continuous, OK-linear homomorphisms from Aok to OK . We also denote by
Dk := Do

k ⊗OK
K.

Remark 3.4. i) The (left) action of the semigroup Ξ(Zp) on Aok induces a (right) action on Do
k

by (µ|γ)(f) := µ(γf) for all γ ∈ Ξ(Zp), f ∈ Aok and µ ∈ Do
k.

ii) It is customary to define Dk by taking the continuous and compact homomorphisms
from Aok to OK . Our definition has the advantage that the cohomology of Dk with respect to
modular groups can be naturally identified with the étale cohomology of lisse sheaves on modular
curves and, in particular, inherits an action of the absolute Galois group of Q. We refer to the
introduction of [AIS2] for a discussion.

iii) We have a natural, fundamental homomorphism of OK-modules

ψ : Do
k −→

∏
n∈N

OK , defined by µ→
(
µ(fn)

)
n∈N.

As the family
(
fn
)
n

is an orthonormal basis of Ak over K, the above morphism is a OK-linear
isomorphism. Moreover, under this isomorphism, the weak topology on Do

k corresponds to the
weak topology (i.e., the product of the mK-adic topologies on the product where mK is the
maximal ideal of OK).

3.3 The geometric picture

Let us recall from the beginning of section §2.1 the modular curves X(N, p) −→ X1(N), their
natural formal models X (N, p) −→ X1(N) and if w ∈ Q, 0 ≤ w ≤ p/(p + 1) we also have a
rigid analytic space X(w) ⊂ X(N, p) and its formal model X (w), with its natural morphism
X (w) −→ X (N, p). All these rigid spaces and formal schemes are in fact log rigid spaces and
respectively log formal schemes, which are all log smooth and all the maps described are maps
of log formal schemes or log rigid spaces.

Sheaves on X(N, p)ket
K

associated to analytic distributions: Let E −→ X(N, p) be the universal
generalised elliptic curve, and let us denote by T the p-adic Tate-module of E , seen as a contin-
uous sheaf on the Kummer étale site of X(N, p), denoted X(N, p)ket. If η = Spec(K) denotes
a geometric generic point of X(N, p), let G denote the geometric Kummer étale fundamental
group associated to

(
X(N, p), η

)
and let T := Tη. One can easily see that T is a free Zp-module

of rank 2 with continuous action of G. Let us choose a Zp-basis {ε0, ε1} of T satisfying the
properties: 〈ε0, ε1〉 = 1, ε0( mod pT ) ∈ Eη[p] does not belong to the universal level p-subgroup
C and ε1( mod pT ) is a generator of C . We let T0 := {aε0 + bε1 | a ∈ Z∗p, b ∈ Zp}. Then T0
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is a compact subset of T preserved by G which can be identified to Z×p ×Zp. Moreover the right
action of G on the above chosen basis defines a continuous group homomorphism

γ : G −→ Iw defined by (ε0σ, ε1σ) = (ε0, ε1)γ(σ) for σ ∈ G.

Therefore, if k ∈ W∗ and n ≥ 1 as in section 3.2 then via the homomorphism γ above, the
Iw-modules Ak and Dk can be seen as ind-continuous representations of G.

Notation: For later use, for A = Ak we write Ao :=
(
Aon
)
n∈N for the continuous sheaf on Faltings’

site X(N, p) associated to the continuous representation of Ao =
(
Ao/mn

KA
o
)
n∈N of the Kummer

étale fundamental group G of X(N, p). The ind-continuous sheaf A is simply Ao[1/p].
Analogously, for Dk, we write Dok :=

(
Dk,n

)
n∈N for the continuous sheaf associated to

Do
k/Filn(Do

k). Then, Dk is the ind-continuous sheaf Dok[1/p].

Sheaves on Faltings’ site associated to analytic distributions: Let us now denote by X(w) Falt-
ings’ site associated to the pair

(
X (w), X(w)

)
. The map of sites u : X(w) −→ X(w)ket

K
, given

by (U,W ) 7→ W , sends covering families to covering families, commutes with fibre products and

sends the final object to the final object. It defines a morphism of topoi u∗ : Sh
(
X(w)ket

K

)
−→

Sh
(
X(w)

)
which extends to inductive systems of continuous sheaves. In particular all the ind-

continuous Kummer étale sheaves Dk can be seen as ind-continuous Kummer étale sheaves on
X(N, p)ket

K
, by restriction as ind-continuous Kummer étale sheaves on X(w)ket

K
and by applying

u∗ as ind-continuous sheaves on X(w). For simplicity we omit u∗ from the notations.

4 Modular sheaves

4.1 The sheaves Ωk
X(w)

In this section we recall the main constructions of chapter 3 of [AIS2]. Let w ∈ Q be such that
0 ≤ w < p/(p+ 1).

Let f : E −→ X (w) and fK : EK −→ X(w) denote the universal semi-abelian scheme over
X (w) and respectively its generic fiber and let T −→ X(w) denote the p-adic Tate module
of E∨K −→ X(w) seen as a continuous sheaf on X (w)ket

K
. Notice that E admits a canonical

subgroup C1 ⊂ E . Let T0 ⊂ T be the inverse image of C∨1,K\{0} in T via the natural map
T → E∨K [p]→ C∨1,K . Then T and T0 are continuous, locally constant sheaves on X (w)ket

K
and as

such can be seen as a continuous sheaf on X(w). Notice that the sheaf T is a continuous sheaf of
abelian groups, while T0 is a continuous sheaves of sets and it is endowed with a natural action
of Z∗p.

Let e : X (w) −→ E denote the identity section of f and let ωE/X (w) := e∗
(
Ω1
E/X (w)

)
. It is a

locally free OX (w)-module of rank 1 and we denote by ωE/X(w) := v∗X (w)

(
ωE/X (w)

)
. Then ωE/X(w)

is a continuous sheaf on X(w), a locally free Ôun
X(w)-module of rank 1.

We have a natural sequence of sheaves and morphisms of sheaves on X(w) called the Hodge-
Tate sequence of sheaves for E/X (w)

0 −→ ω−1
E/X(w) ⊗Ôun

X(w)
ÔX(w)(1) −→ T ⊗ ÔX(w)

dlog−→ ωE/X(w) ⊗Ôun
X(w)
ÔX(w) −→ 0. (2)

10



For every connected, small affine object U =
(
Spf(RU), NU

)
of X (w)ket, the localization of the

Hodge-Tate sequence (2) at U gives the Hodge-Tate sequence of continuous GU -representations
which appears in [AIS1] section 2

0 −→ ω−1
E/X (w)(U)⊗RU R̂U(1) −→ Tp

(
E∨U
)
⊗ R̂U

dlogU−→ ωE/X (w)(U)⊗RU R̂U −→ 0

Moreover, in [AIS2] it is proved the following. Let F0 := Im(dlog) and F1 := Ker(dlog).
Then

i) F0,F1 are locally free sheaves of ÔX(w)-modules on X(w) of rank 1. We denote by F i,(r) :=

j∗r (F i) for i = 0, 1, they are locally free ÔX(pr)(w)-modules of rank 1.

ii) We set v := w/(p − 1) and let us suppose that w is adapted to r, for a certain r ≥ 1,
r ∈ N. We denote Cr ⊂ E [pr] the canonical subgroup of level pr of E [pr] over X(pr)(w) (which
exists by the assumption on w), denote by C∨r its Cartier dual and we also denote by Cr and
C∨r the groups of points of these group-schemes over X(pr)(w), and by the same symbols the

constant abelian sheaves on
(
X(pr)(w)

)ket
. We have natural isomorphisms as ÔX(w)-modules on

X(w): F0/p(1−v)rF0 ∼= C∨r ⊗OX(w)/p
(1−v)rOX(w) and F1/p(1−v)rF1 ∼= Cr ⊗OX(w)/p

(1−v)rOX(w).

iii) we have natural isomorphisms of OX (pr)(w)-modules with Gr-action:

vX(pr)(w),∗
(
F i,(r)

) ∼= F (r)
i ⊗OK

OCp ,

for i = 0, 1. Here F (r)
i are the sheaves on X (pr)(w) defined in section 2 of [AIS1]. Moreover

F i,(r) ∼= v∗X(pr)(w)(F
(r)
i )⊗Ôun

X(pr)(w)
ÔX(pr)(w).

Let k ∈ W(K) and r ∈ N and w ∈ Q such that w is adapted to r and k. Let us also recall that
we denoted v := w/(p− 1).

Let us denote SX(pr)(w) := Z×p
(
1+p(1−v)rÔX(pr)(w)

)
, it is a sheaf of abelian groups on X(pr)(w)

which acts on ÔX(pr)(w) as follows: let s = c ·x ∈ SX(pr)(w)(U ,W, α) = Z×p
(
1+p(1−v)rÔX(w)(U ,W )

)
and y ∈ ÔX(pr)(w)(U ,W, α) = ÔX(w)(U ,W ). Then we define

s ∗ y := exp(a log(x)) · ck · y, where a ∈ K is such that tk = exp(a log(t)), t ∈ 1 + prZp.

Let us remark that s ∗ y ∈ ÔX(pr)(w)(U ,W, α). We denote by
(
ÔX(pr)(w)

)(k)
the continuous sheaf

ÔX(pr)(w) with the above defined action of SX(pr)(w).
We have an isomorphism of sheaves

ϕ : F0,(r)/p(1−v)rF0,(r) ∼=
(
Cr
)∨ ⊗ ÔX(pr)(w)/p

(1−v)rÔX(pr)(w).

Let F (r)′ denote the inverse image under the isomorphism ϕ above of the sheaf of sets (Cr)∨ −
(Cr)∨[pr−1]. It is endowed with an action of SX(pr)(w).

Recall that we have a morphism of sites jr : X(w) → X(pr)(w). It then follows from the
construction that dlog induces a map

dlog : j∗r (T0) −→ F (r)′ ,

compatible with the actions of Z∗p on the two sides.

Moreover, following [AIS2] §4, the sheaf F (r)′ is an SX(pr)(w)-torsor and there exists a covering
of X (w) by small affine objects {Ui} such that F (r)′|(Ui,Ui×X (w)X(pr) is the trivial torsor for every i.
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Let us now consider the OX(pr)(w)-module

M(r)
k (w) := HomSX(pr)(w)

(
F (r)′ , (ÔX(pr)(w))

(−k)
)
.

It is a locally free OX(pr)(w)-module of rank 1 and we have a natural isomorphism of OX(pr)(w)-
modules

HomÔX(pr)(w)

(
M(r)

k (w), ÔX(pr)(w)

)
−→M(r)

−k(w).

We also have a map of continuous sheaves of OX(pr)(w)-modules

dlog∨,k : M(r)
k (w) −→ HomZ∗p

(
j∗r (T0), (ÔX(pr)(w))

(−k)
)

induced by dlog.

For every element σ ∈ Gr we denote also by σ the functor
(
EX (w)K

)
/(X (w),X(pr)(w))

−→(
EX (w)K

)
/(X (w),X(pr)(w))

defined on objects by (U ,W, α) → (U ,W, σ ◦ α) and by identity on the

morphisms. This functor induces a continuous functor on the site X(pr)(w). If H is a sheaf (or
continuous sheaf) on X(pr)(w) we denote by Hσ the sheaf: Hσ(U ,W, α) := H

(
σ(U ,W, α)

)
=

H(U ,W, σ ◦ α).
a) Let us suppose that G is a sheaf of abelian groups on X(w) and H := j∗r (G). Then Hσ = H

for all σ ∈ Gr.

b) For H = F (r)′ , (ÔX(pr)(w)⊗̂B)(−k), or j∗r (T0) we have
(
H
)σ

= H for every σ ∈ Gr. Hence,

the same applies for M(r)
k (w) and A(r)

k compatibly with dlog∨,k.

c) Suppose that H is a sheaf on X(pr)(w) such that Hσ = H for all σ ∈ Gr. Then each
element σ ∈ Gr defines a canonical automorphism of the sheaf jr,∗(H), i.e., we have a canonical
action of the group Gr on the sheaf jr,∗(H).

Definition 4.1. We define the sheaves Ωk
X(w) and ω†,kX(w) on X(w) by

Ωk
X(w) :=

(
jr,∗
(
HomSX(pr)(w)

(F (r)′ , (ÔX(pr)(w))
(−k))

))Gr

and

ω†,kX(w) :=
(
jr,∗
(
HomSX(pr)(w)

(F (r)′ , (ÔX(pr)(w))
(−k))

)
[1/p]

)Gr

.

The sheaves thus defined enjoy the following properties. For every k and w as above we have

i) ω†,kX(w) is a locally free (ÔX(w))[1/p]-module of rank 1.

ii) vX(w),∗
(
ω†,kX

) ∼= ω†,kw ⊗K Cp, where ω†,kw is the invertible ÔX (w)[1/p]-module given in section
3.3 of [AIS1].

iii) ω†,kX(w)
∼= ω†,kw ⊗̂ÔX (w)

ÔX(w).

Remark 4.2. We remark that for r = 1 the properties above remain true without inverting p
and for Ω†,kX(w) in place of ω†,kX(w) and for an invertible ÔX (w)-module Ω†,kw in place of ω†,kw .

This follows as G1 = (Z/pZ)∗ is a group of order prime to p so that taking G1-invariants is
a well behaved operation. See [AIS1] corollary 3.17. This will play a crucial role in the next
section.
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4.2 The sheaves Dk, and Dm
k .

We start by fixing k, w as in the previous section with k accessible. The goal of this section is to
construct a decreasing and exhausting filtration of the sheaf Dok⊗̂OX(w) by ÔX(w)-sub modules,
denoted

(
Dm
k

)
m≥−1

and determine their graded quotients. In fact we will proceed as follows: we

will first define (independently) the sheaves film(Ak), Dm
k , for m ≥ −1 and we will show that

D−1
k
∼= Dok⊗̂OX(w) as ÔX(w)-modules.

Let m, n ≥ 0 be integers. We define

film
(
Ak

)
:= Symm(T ∨)⊗Zp Ω−k+m

X(w) .

Then film
(
Ak

)
is a locally free ÔX(w)-module of rank m+ 1 thanks to remark 4.2.

Let U :=
(
Spf(RU), NU

)
denote a connected, small object of X (w)ket, let T := T (RU , NU)

be the p-adic Tate module of ERU −→ Spec(RU) and let C ⊂ E [p] denote the canonical sub-

group. We let e0, e1 denote an R̂U -basis of T ⊗ R̂U such that e1 is a basis of F 1 over R̂U
whose restriction to X(p)(w) reduces to the canonical generator of C modulo p1−v, dlogU(e0) is

a basis of F 0 over R̂U whose restriction to X(p)(w) reduces to the dual generator of C∨ modulo

p1−v. We denote by G(1)
U the sub-group of the elements of GU which are trivial on X(p)(w),

therefore GU/G(1)
U
∼= G =: G1. We can choose the basis e0, e1 such that for all σ ∈ G(1)

U we have
σ(e1) = χ(σ)e1 and σ

(
dlogU(e0)

)
= dlogU(e0).

Let X, Y denote the basis of T∨ ⊗ R̂U which is R̂U -dual to e0, e1 respectively (i.e., X(e1) =

Y (e0) = 0 and X(e0) = Y (e1) = 1). Then the (right) action of G(1)
U on X, Y is given by:

X|σ = X and Y |σ = χ(σ)Y + ξ(σ)σ
−1

X for σ ∈ G(1)
U ,

where ξ : GUY
−→ R̂U is defined by ξ(σ)e1 = σ(e0)− e0 and if u ∈ R̂U and α ∈ G(1)

U we denote by

uα the natural action of α on u. Moreover, as G(1)
U acts trivially on X we have a natural action

of the group G on it given by: for σ ∈ G, X|σ = τ(σ)X (see remark 4.3 below).

Remark 4.3. In fact we may regard X as an R̂U -linear map X : F 0 −→ R̂U , or by restricting
it to F ′(RU , NU), as a morphism of SX(p)(w)(RU , NU)-torsors

X : F ′(RU , NU) −→ (R̂U)(1),

i.e., an element of Ω−1
X(w)(RU , NU). Moreover, let us recall that k is attached to a pair (s, i)

with s ∈ K (satisfying v(s) > p−2
p−1

) and 0 ≤ i ≤ p − 2 an integer. Then for m ∈ Z we have:

Xk−m := (Xs−i ·X i) ·X−m := exp
(
(s− i) log(X)

)
·X i−m is a generator of Ω−k+m

X(w) (RU , NU).

Lemma 4.4. We have

film
(
Ak

)
(RU , NU) =

m∑
i=0

R̂UX
k(X−1Y )i,

In particular film
(
Ak

)
(RU , NU) is a free R̂U -module of rank m+ 1.

Proof. We notice that Symm(T∨) ⊗ R̂U =
m∑
i=0

R̂UX
m−iY i while Ω−k+m

X(w) (RU , NU) is a free R̂U -

module with basis Xk−m.
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Let us define the morphism φm : film
(
Ak

)
−→ film+1

(
Ak

)
as the composition

film
(
Ak

)
= Symm(T ∨)⊗ Ω−k+m

X(w) =

= Symm(T ∨)⊗ Ω−k+m+1
X(w) ⊗ Ω−1

X(w)

dlog∨−→ Symm+1(T ∨)⊗ Ω−k+m+1
X(w) = film+1

(
Ak

)
.

Definition 4.5. We set:
Ak,i := lim

→,m

(
film(Ak)⊗Zp Z/piZ, φm

)
.

The sheaf Ak,i thus defined is a locally free sheaf of OX(w)/p
iOX(w)-modules on X(w) and we

denote by Ak the continuous sheaf of ÔX(w)-modules {Ak,i}i≥0. We also set

Dk,i := HomOX(w)/p
iOX(w)

(
Ak,i,OX(w)/p

iOX(w)

)
.

and
Dm
k,i := Ker

(
Dk,i −→ HomOX(w)/p

iOX(w)

(
film(Ak,i),OX(w)/p

iOX(w)

))
for all i ≥ 0,m ≥ 0, and denote Dk,i := D−1

k,i .

We have the following simple properties of these sheaves.

Lemma 4.6. a) For each j ≥ 0 we have Ak,j+1 ⊗Zp Z/pjZ ∼= Ak,j.

b) For each j ≥ 0 we have a natural morphism of ÔX(w)-modules Dk,j+1 −→ Dk,j which give

the family {Dk,j}j≥0 the structure of a continuous sheaf of ÔX(w)-modules on X(w) which we
denote Dk.

Proof. As film(Ak,j) is a free OX(w)/p
i(OX(w)-module we have

film(Ak,j+1)⊗Zp Z/pjZ = film(Ak,j+1)⊗OX(w)/p
j+1OX(w)

OX(w)/p
jOX(w)

∼= film(Ak,j).

This proves a).
For b) let us notice that we have

Dκ,j+1 = HomOX(w)/p
j+1OX(w)

(
Ak,j+1,OX(w)/p

j+1OX(w)

) ◦φj−→

◦φj−→ HomOX(w)/p
j+1OX(w)

(
Ak,j+1,OX(w)/p

jOX(w)

) ∼= HomOX(w)/p
jOX(w)

(
Ak,j,OX(w)/p

jOX(w)

)
= Dk,j

Let us remark that the natural ÔX(w)-linear morphism Dk,j+1 −→ Dk,j of lemma 4.6 induces, for
every m ≥ −1 natural morphisms Dm

k,j+1 −→ Dm
k,j, for all j ≥ 0, i.e., we obtain a filtration of Dk

by ÔX(w)-sub-modules
(
Dm
k := {Dm

k,j}j≥0

)
m≥−1

.

Let U :=
(
Spf(RU), NU

)
be a connected small object of X (w)ket

K
and let us use the notations

before lemma 4.4. We have

Lemma 4.7.

a) Ak(R̂U) = {
∞∑
n=0

anX
k−nY n | an ∈ R̂U with an

n→∞−→ 0}.

b) Dk(R̂U) = Hom
R̂U ,cont

(
Ak(R̂U), (R̂U

))
.

c) We have

Dm
k,j(R̂U) = {µ ∈ HomRU/pjRU

(
Ak,j, RU/p

jRU
)

such that µ|filmAk,j
= 0}.
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Proof. Everything follows from lemma 4.4 and the fact that the sheaves filmAk,j for m ≥ 0 and
Ak,j are free OX(w)/p

jOX(w)-modules, for all j ≥ 1.

Corollary 4.8. We have natural isomorphisms as ÔX(w)-modules

Ak
∼= Ao⊗̂ÔX(w) and Dk

∼= Dok⊗̂ÔX(w).

Proof. For every U :=
(
RU , NU

)
connected small object of X (w)ket

K
, by lemma 4.7 we have

canonical isomorphisms as R̂U -modules, compatible with GU -actions between the localizations:

Ak(R̂U) ∼= Aok⊗̂R̂U and Dk(R̂U) ∼= Do
k⊗̂R̂U .

Now we’d like to determine the graded quotients associated to the filtration
(
Dm
k

)
m≥−1

of Dk.

Let us first remark that if m ∈ Z ⊂ W∗(Qp) therefore Ωm
X(w) is a free ÔX(w)-module of rank 1

which satisfies the following properties.

Lemma 4.9. For every m ≥ 0,m ∈ Z we have an exact sequence of sheaves on X(w):

0 −→ Symm(T ∨)⊗Zp Ω−1
X(w)

u−→ Symm+1(T ∨)⊗Zp ÔX(w) −→ Ωm+1
X(w)(−m− 1) −→ 0,

where the morphism u is induced by dlog∨ and the twists are Tate twists.

Proof. Identifying F0 with Ω1
X(w) and F1 with Ω−1

X(w) (see remark 4.3) we obtain from the Hodge-

Tate sequence (2) the exact sequence of locally free sheaves of ÔX(w)-modules on X(w)

0 −→ Ω−1
X(w)(1) −→ T ⊗ ÔX(w) −→ Ω1

X(w) −→ 0,

which dualizing gives

0 −→ Ω−1
X(w) −→ T

∨ ⊗ ÔX(w)
u∨−→ Ω1

X(w)(−1) −→ 0.

We tensor this exact sequence with Symm(T ∨)⊗ÔX(w) (which is a free ÔX(w)-module) and obtain
the commutative diagram

0 → Symm(T ∨)⊗ Ω−1
X(w) → Symm(T ∨)⊗ T ∨ ⊗ ÔX(w) → Symm(T ∨)⊗ Ω1

X(w)(−1) → 0

|| ↓ ↓ ψm
0 → Symm(T ∨)⊗ Ω−1

X(w) → Symm+1(T ∨)⊗ ÔX(w) → Ωm+1
X(w)(−m− 1) → 0

Let us first define the arrow: ψm : Symm(T ∨)⊗ Ω1
X(w)(−1) −→ Ωm+1

X(w)(−m− 1).
For m = 0 the map ψ0 is the identity. So let us suppose the map ψm is defined for m ≥ 0

such that the diagram is commutative and let us define ψm+1. We first notice that we have a
natural map

u∨ ⊗ ψm : T ∨ ⊗ Symm(T ∨)⊗ Ω1
X(w)(−1) −→ Ωm+1

X(w)(−m− 1).

Moreover as Ω1
X(w) is locally free of rank 1, Ωm+1

X(w) = Symm+1

ÔX(w)
(Ω1

X(w)) and therefore u∨ ⊗ φm

factors uniquely as ψm : Symm(T ∨)⊗Ω1
X(w)(−1) −→ Ωm+1

X(w)(−m−1), and the respective diagram
is commutative. Now analyzing the localizations at small affines it follows that the bottom
sequence is exact which proves the lemma.
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Corollary 4.10. We have
a) film+1(Ak)/film(Ak) ∼= Ω−k+2m+2

X(w) (−m− 1).

b) Dm
k /D

m+1
k
∼= Ωk−2m−2

X(w) (m+ 1).

Proof. a) We have the exact sequence of ÔX(w)-modules of lemma 4.9

0 −→ Symm(T ∨)⊗Zp Ω−1
X(w)

u−→ Symm+1(T ∨)⊗Zp ÔX(w) −→ Ωm+1
X(w)(−m− 1) −→ 0.

Now we tensor over ÔX(w) with Ω−k+m+1
X(w) and obtain the exact sequence

0 −→ Symm(T ∨)⊗Zp Ω−k+m
X(w) −→ Symm+1(T ∨)⊗Zp Ω−k+m+1

X(w) −→ Ω−k+2m+2
X(w) (−m− 1) −→ 0,

which proves a).
b) We dualize the exact sequence above and obtain

Dm
k /Dm+1

k = HomÔX(w)

(
film+1(Ak)/film(Ak), ÔX(w)

) ∼= Ωk−2m−2
X(w) (m+ 1).

In particular, for m = −1 we have

Dk/D0
k
∼= Ωk

X(w).

4.3 The map dlog∨,k.

We start by fixing a K-valued weight k as in the previous section. In particular w is accessible
and the associated r is equal to 1. Let w be adapted to k. We have explained in section 3.3
how to construct a continuous sheaf Aok =

(
Aok,n

)
n∈N on Faltings’ site X(w) associated to the

continuous representation of Aok =
(
Aok/m

nAok
)
n∈N of the Kummer étale fundamental group G of

X(N, p). We denoted by Ak := Aok⊗̂ÔX(w). Similarly we have the sheaves Dk =
(
Dk,n

)
n∈N. By

construction the sheaf Dk,n is a quotient of HomOK

(
Ak,n,OK/mm

)
.

We write T0 for the continuous sheaf on X(w) associated to the G-representation T0. Then
we have an inclusion of sheaves

Aok,n ⊂ HomZ∗p
(
T0,
(
OK/mn

)(k))
on X(w), which for every r and n ∈ N provides a map of sheaves of OX(pr)(w)⊗OK/mn-modules

β(r)
n : j∗r

(
Aok,n

)
⊗OK

(
OX(pr)(w)/p

nOX(pr)(w)

)
−→ HomZ∗p

(
j∗r
(
T0

)
, (OX(pr)(w) ⊗OK/mn)(−k)

)
.

These maps are compatible for varying n and define a map of continuous sheaves

β(r) : j∗r
(
Aok
)
⊗̂OK
ÔX(pr)(w) −→ HomZ∗p

(
j∗r
(
T0

)
, ÔX(pr)(w)

)
.

This map has the following properties (see [AIS2] proposition 4.8):

(1) The map β(r) is injective and Gr-invariant.

(2) The map dlog∨,k is Gr-invariant and factors via β(r).
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For the rest of this section we assume r = 1. From the discussion above it follows that dlog∨,k

defined in section 4.1 induces a G1-invariant morphism of ÔX(p)(w)-modules

M(1)
k (w) −→ j∗1

(
Aok
)
⊗̂OK
ÔX(p)(w).

Applying the functor HomOX(p)(w)

(
− ,OX(p)(w)

)
and using the identification

HomOX(p)(w)

(
M(1)

k (w),OX(p)(w)

) ∼=M(1)
−k(w),

we get an induced G1-invariant morphism OK-modules

δ : HomOK

(
j∗1
(
Aok
)
,OK

)
−→M(1)

−k(w).

Then, for every n ∈ N there exists m ≥ n such that the map

HomOK

(
j∗1
(
Aok,m(w)

)
,OK/mm

)
−→ HomOX(p)(w)

(
M(1)

k (w), (OX(p)(w) ⊗OK/mn)(−k)
)
,

induced by δ, factors via j∗1
(
Dok,m

)
.

It follows that we get a map of continuous sheaves of ÔX(w)-modules

Dk −→
(
j1,∗
(
j∗1
(
Dok
)))G1 ⊗̂ÔX(w) −→

(
j1,∗
(
M(1)
−k(w)

))G1

= Ω†,kX(w).

Passing to ind-sheaves (i.e., inverting p) we obtain a map

δ∨k (w) : Dk,K = Dk[1/p] −→ ω†,kX(w)
∼= ω†,kw ⊗̂ÔX (w)

ÔX(w). (3)

In the next section we will calculate the cohomology of the ind-continuous sheaves ω†,kX(w)
∼=

ω†,kw ⊗̂ÔX (w)
ÔX(w).

4.4 The cohomology of the sheaves ω†,k
X(w)

Let ι : Z −→ X(w) be a morphism in X (w)fket
K

. Let Z := X(w)/(X (w),Z) the associated induced

site and j := j(X (w),Z) : X(w) −→ Z the map j(U ,W ) :=
(
U , Z×X(w)W, pr1

)
; see 2.3. It induces a

morphism of topoi. For i ≥ 0 we shall calculate Hi
(
Z, j∗

(
ω†,kX(w)

))
. For ι = id we get in particular

the calculation of Hi
(
X(w), ω†,kX(w)

)
.

Theorem 4.11. [AIS2]. We have isomorphisms as GK-modules

a) H0
(
Z, j∗

(
ω†,kX(w)(1)

)) ∼= H0
(
Z, ι∗

(
ω†,kw

))
⊗̂KCp(1);

b) H1
(
Z, j∗

(
ω†,kX(w)(1)

)) ∼= H0
(
Z, ι∗

(
ω†,k+2
w

))
⊗̂KCp;

c) Hi
(
Z, j∗

(
ω†,kX(w)(1)

))
= 0 for i ≥ 2.

Proof. As Rij∗ = 0 for all i ≥ 1 by [AIS2] corollary 2.6 we have Hi
(
Z, j∗

(
ω†,kX(w)(1)

)) ∼=
H1
(
X(w), j∗

(
j∗(ω†,kX(w)(1))

))
. Set F := j∗

(
j∗
(
ω†,kX(w)(1)

))
. Recall that ω†,kX(w) is isomorphic to

ω†,kw ⊗̂ÔX (w)
ÔX(w). Thus, j∗

(
ω†,kX(w)(1)

) ∼= ω†,kw ⊗̂ÔX (w)
ÔZ(1) as j∗

(
ÔX(w)

) ∼= ÔZ and F ∼= ω†,kw ⊗̂ÔX (w)
j∗
(
ÔZ

)
(1).

The natural map ÔX(w)⊗̂ÔX (w)
ι∗(ÔZ) −→ j∗

(
ÔZ

)[
p−1
]

is an isomorphism. Hence, F ∼= ω†,kw ⊗̂ÔX (w)
ι∗(ÔZ)(1)

is a locally free (ÔX(w)[1/p]-module.
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To prove the theorem we will first calculate the sheaves RbvX(w),∗
(
F
)

using lemma 2.1 and
then we’ll use the Leray spectral sequence:

Ha
(
X (w)ket, RbvX(w),∗

(
F
))

=⇒ Hi
(
X(w),F

)
.

We compute the Galois cohomology of the localization of the ind-continuous sheaf F

F(RU , NU) = ω†,kw (U)⊗̂RU,K
ι∗(OZ)(UK)⊗̂RU R̂U(1).

for U = (Spf(RU , NU) a small affine open of X (w)ket. Using that ω†,kX(w) is a locally free

(ÔX(w)⊗̂A)[1/p]-module of rank 1, it follows from the main result of [Fa] that H0
(
GU , R̂U ,K

)
=

RU ,K⊗̂KCp so that

H0
(
GU ,F(RU , NU)

)
= ω†,kw (U)⊗̂RU,K

ι∗(OZ)(UK)⊗̂KCp(1).

Moreover H1
(
GU , R̂U ,K

) ∼= Ω1
UK/K

⊗̂KCp(−1) so that

H1
(
GU ,F(RU , NU)

) ∼= (Ω1
UK/K

⊗̂KCp(−1)
)
⊗̂RU,K

ι∗(OZ)(UK)⊗̂Kω†,kw (U)(1).

The Kodaira-Spencer isomorphism gives Ω1
UK/K

⊗̂KBK
∼= ω⊗2

EUK
/UK
⊗̂KBK

∼= ω†,2w (U). Therefore

we obtain
H1
(
GU ,F(RU , NU)

) ∼= ω†,k+2
w (U)⊗̂RU,K

ι∗(OZ)(UK)⊗̂KCp.

Finally Hi
(
GU ,F(RU , NU)

)
= 0 for i ≥ 2 because GU has cohomological dimension 1. It follows

that we have
R0vX(w),∗F ∼= ω†,kw ⊗̂RU,K

ι∗(OZ)(UK)⊗̂KCp(1),

where the isomorphism is as sheaves on X (w)ket. Similarly we have

R1vX(w),∗F = ω†,k+2
w ⊗̂RU,K

ι∗(OZ)(UK)⊗̂KCp,

and RbvX(w),∗F = 0 for b ≥ 2. Now let us observe that ω†,k⊗̂RU,K
ι∗(OZ)(UK)⊗̂KCp(1) is a sheaf

of K-Banach modules on X(w), as it is locally isomorphic to ι∗(OZ)⊗̂BK⊗̂Cp. As X(w) is an
affinoid we obtain that

H1
(
X (w)ket, ω†,kw ⊗̂OX (w)

ι∗(OZ)⊗̂KCp(1)
)

= H1(X(w), ω†,kw ⊗̂OX (w)
ι∗(OZ)⊗̂Cp(1)

)
= 0,

by Kiehl’s vanishing theorem. Therefore the Leray spectral sequence gives now the result of the
theorem.

5 The main result

Let k ∈ W∗(K) be an accessible weight and h ∈ Q, h ≥ 0 a slope. Let us recall the morphism
of continuous sheaves on X(w) defined in section 4.3

δ∨k (w) : Dk,K = Dk[1/p] −→ ω†,kX(w)
∼= ω†,kw ⊗̂ÔX (w)

ÔX(w).

It induces a GK and Hecke equivariant morphism

Rk : H1
(
X(w),Dk(1)

)
−→ H1

(
X(w), ω†,kw ⊗̂ÔX(w)(1)

)
−→ H0

(
X(w), ω†,k+2

w

)
⊗̂KCp.

Notice that for w close enough to 0 the Hecke module H0
(
X(w), ω†,k+2

w

)
is identified with Cole-

man’s notion of overconvergent form of weight k + 2 thanks to [AIS1] section 5.1 and theorem
5.1. In this chapter we prove the main result of this note, i.e., the following theorem
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Theorem 5.1. a) The Cp-vector space H1
(
X(w),Dk(1)

)
has a natural slope h-decomposition,

and
b) Rk induces a GK and Hecke equivariant isomorphism

R
(h)
k : H1

(
X(w),Dk(1)

)(h) ∼= H0
(
X(w), ω†,k+2

w

)(h) ⊗K Cp.

The proof of this theorem will occupy the rest of the chapter.

5.1 The cohomology of the quotients Dm
k,K/D

m+n
k,K

We start by fixing an accessible weight k ∈ W∗(K) and w ∈ Q such that 0 < w < p/(p+ 1). In
this section we propose to calculate the cohomology groups Hi

(
X(w),Dm

k,K/D
m+n
k,K

)
for all m ≥

−1, n ≥ 1. Here X(w) is Faltings’ site associated to the pair
(
X (w), X(w)

)
and Dk,K := Dk⊗K

is the ind-continuous sheaf of ÔX(w) ⊗K-modules on X(w) defines in section 4.3. It is endowed
with a natural filtration {Dm

k,K := Dm
k ⊗K}m≥−1.

Let us recall how to calculate these cohomology groups. Let F be an ind-continuous sheaf
on X(w). We have the Leray spectral sequence

Ha
(
X (w)ket, RbvX(w),∗(F)

)
=⇒ Ha+b

(
X(w),F

)
.

Moreover, thanks to 2.1 for all b ≥ 0 the sheaves RbvX(w),∗
(
F
)

can be computed using the Galois
cohomology of the localizations of F at small affines, i.e., it is the sheaf on X (w)ket associated
to the presheaf

U :=
(
Spf(RU), NU

)
−→ Hb

(
G,F(RU , NU)

)
,

where G := Gal
(
RK/RU ,K

)
is the Kummer-étale geometric fundamental group of UK for the

chosen geometric generic point.
We now fix m ≥ −1, s ≥ 1 and we have.

Proposition 5.2. i) R0vX(w),∗
(
Dm
k /D

m+s
k

)
= Ωk−2m−2s+2

w ⊗OK
OCp(m+ s− 1).

ii) R1vX(w),∗
(
Dm
k,K/D

m+s
k,K

) ∼= ω†,k−2m
w ⊗K Cp(m).

iii) RbvX(w),∗
(
Dm
k,K/D

m+s
k,K

)
) = 0 for b ≥ 2.

Proof. Let us first notice that iii) is a consequence of the fact that G has cohomological dimen-
sion 1.

Let us fix U :=
(
Spf(RU), NU

)
a small affine of X (w)ket and let e0, e1 be the R̂U -basis of

T ⊗ R̂U defined there with X, Y the corresponding R̂U -dual basis. We recall that we denoted
by ∆ := G(1) the open subgroup of the fundamental group G of automorphisms which fix the
log affinoid VK where V := U ×X (w) X (p)(w), i.e., ∆ is the kernel of the map G −→ G =
Gal(X(p)(w)/X(w)) ∼= F×p . Let us also recall that the (right) action of ∆ on X, Y is given by

X|σ = X and Y |σ = χ(σ)Y + ξ(σ)σ
−1

X for all σ ∈ ∆.

With these notations, Dm
k,K(RU) = {µ ∈ Dk,K such that µ(Xk−nY n) = 0 for all 0 ≤ n ≤ m}.

Let us first remark that the localization of the isomorphism of corollary 4.10 at U can be
described explicitly as follows. We have a natural map, G-equivariant,

Dm
k (RU , NU) −→ Ωk−2m−2

X (RU , NU)(m+ 1) defined by µ→ µ(Xk−m−1Y m+1),
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which is surjective and whose kernel is Dm+1
k (RU , NU). Therefore we have an R̂U -linear isomor-

phism which is G-equivariant (we recall that the action of G is semi-linear)
(
Dm
k /D

m+1
k

)
(RU , NU) ∼=

Ωk−2m−2
X (RU , NU)(m+ 1). Using the main result of [Fa] we obtain that:

H0
(
G,
(
Dm
k /Dm+1

k (1)
)
(RU , NU)

)
∼= Ωk−2m−2

w (U)⊗̂OK
OCp(m+ 2),

Moreover we have

H1
(
G,
(
Dm
k,K/Dm+1

k,K (1)
)
(RU , NU)

)
∼= ω†,k−2m−2

w (U)⊗K Cp(m+ 2)⊗Cp H1
(
G, R̂U ⊗K(1)

) ∼=
ω†,k−2m−2
w (U)(m+ 1)⊗K Ω1

UK/K
⊗K Cp

∼= ω†,k−2m
w (U)⊗K Cp(m+ 1).

The last isomorphism is induced by the Kodaira-Spencer isomorphism: ω†,2w
∼= ω2

EK/UK

∼= Ω1
UK/K

.
It follows that the proposition 5.2 is proved for s = 1.

Let now s = 2 and let us consider the exact sequence of GU -modules

(∗) 0 −→ (Di+1
k /Di+2

k )(RU , NU) −→ (Di
k/Di+2

k )(RU , NU) −→ (Di
k/Di+1

k )(RU , NU) −→ 0.

As Dj
k/D

j+1
k
∼= Ωk−2j−2

X(w) (j + 1), we have that the class of the extension (∗) restricted to ∆U is a
class in

Ext1

R̂U ,∆U

(
Ωk−2i−2

X(w) (RU , NU)(i+ 1),Ωκ−2i−4
X(w) (RU , NU)(i+ 2)

) ∼= H1
(
∆U ,Ω

−2
X(w)(RU)(−1)

)
,

and we’d like to calculate it. For this let µ0, µ1 ∈ Di
k(RU , NU) be distributions such that

• µ0 ∈ Di+1
k (RU , NU) is such that µ0

(
Xk−i−2Y i+2

)
= 1

and
• µ1

(
Xk−i−2Y i+2

)
= 0 and µ1

(
Xk−i−1Y i+1

)
= 1.

It is then easy to see that µ0, µ1 is an R̂U -basis of (Di
k/D

i+2
k )(RU , NU) on which ∆U acts as

follows
σ(µ0) = χ(σ)i+2µ0 and σ(µ1) = χ(σ)i+1

(
µ1 + (i+ 2)ξ(σ)µ0

)
.

In other words the class of (∗) seen as an element of H1
(
∆U ,Ω

−2
X(w)(RU , NU)(−1)

)
is (an integer)

×ξ. Therefore the boundary map ∂ in the long exact cohomology sequence associated to (∗)

H0
(
∆, (Di

k/Di+1
k )(RU , NU)

) ∂−→ H1
(
∆, (Di+1

k /Di+2
k )(RU , NU)

)
is injective and it is an isomorphism after inverting p. It follows that we have isomorphisms

H0
(
∆, (Di

k/Di+2
k )(RU , NU)

) ∼= H0
(
∆, (Di+1

k /Di+2
k )(RU , NU)

) ∼= Ωk−2i−4
w (U)⊗RURV⊗OK

OCp(i+2),

where let us recall V := U ×X (w) X (p)(w) = Spf(RV) and we also have (R̂U)∆ = RV⊗̂OK
OCp .

Moreover

H1
(
∆, (Di

k,K/Di+2
k,K)(RU , NU)

) ∼= H1
(
∆, (Di

k,K/Di+1
k,K(RU , NU)

) ∼= ω†,k−2i
w (U)⊗RU RV⊗̂OK

Cp(i).

Here we used that the natural map VK −→ UK is (finite) étale and therefore Ω1
VK/K

= Ω1
UK/K

⊗RU
RV as G-modules. Now we need to compute the G-cohomology of these modules. We have

H0
(
G, (Di

k/Di+2
k )(RU , NU)) ∼=

(
H0
(
∆, (Di+1

k /Di+2
k )(RU , NU))

)G
= Ωk−2i−4

w (U)⊗̂OK
OCp(i+ 2).
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Moreover, let us remark for later use that the natural map H0
(
G, (Di

k/D
i+2
k )(RU , NU)

)
−→

H0
(
G, (Di

k/D
i+1
k )(RU , NU)

)
is the zero map.

For H1 we shall use the inflation-restriction exact sequence: if M is a continuous R̂U or ind-

continuous R̂U ⊗K-module with continuous semilinear action of G we have an exact sequence:

0 −→ H1
(
G,M∆

)
−→ H1

(
G,M

)
−→ H1

(
∆,M

)G −→ H2
(
G,M∆

)
.

As G has order p− 1 which is invertible on M , and therefore in M∆ we have H1
(
G,M∆

)
=

H2
(
G,M∆

)
= 0. We obtain that

H1
(
G, (Di

k,K/Di+2
k,K)(RU , NU)

) ∼= (H1
(
∆, (Di

k,K/Di+2
k,K)(RU , NU)

))G
= ω†,k−2i(U)⊗̂KCp(i).

This proves the case s = 2. We prove the general case by induction on s ≥ 2. To shorten
notations let us, for the rest of this section denote by by Dj := Dj

k(RU , NU). We have the
following commutative diagram with exact rows and columns

0 0
↓ ↓

0 −→ Di+s−1/Di+s −→ Di+1/Di+s −→ Di+1/Di+s−1 −→ 0
|| ↓ ↓

0 −→ Di+s−1/Di+s −→ Di/Di+s −→ Di/Di+s −→ 0
↓ ↓

Di/Di+1 = Di/Di+1

↓ ↓
0 0

The relevant portion of the associated diagram of cohomology groups is then the following

H0
(
∆, Di+1/Di+s−1

) ∂s−1−→ H1
(
∆, Di+s−1/Di+s

)
↓ αs−1 ||

H0
(
∆, Di/Di+s−1

) ∂s−→ H1
(
∆, Di+s−1/Di+s

)
↓= 0

H0
(
∆, Di/Di+1

)
By induction hypothesis the morphism ∂s−1 is (an integer)times (an isomorphism) and αs−1 is
an isomorphism. Therefore ∂s is injective and it becomes an isomorphism after inverting p. We
obtain

H0
(
∆, (Di

k/Di+s
k )(RU , NU)

) ∼= H0
(
∆,Di+s−1

k /Di+s
k )(RU , NU)

) ∼=
∼= Ωk−2i−2s+2

w (U)⊗RU RV⊗̂OK
OCp(i+ s− 1).

Moreover the natural map H0
(
G, (Di

k/D
i+s
k )(RU , NU)

)
−→ H0

(
G, (Di

k/D
i+s−1
k )(RU , NU)

)
is the

zero map.
We also have

H1
(
∆, (Di

k,K/Di+s
k,K(RU , NU)

) ∼= H1
(
∆, (Di

k,K/Di+s−1
k,K )(RU , NU)

) ∼= ω†,k−2i
w (U)⊗RU RV⊗̂OK

Cp(i).

Now we take G-invariants reasoning as in the case s = 2 above and this ends the proof of the
proposition.
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Corollary 5.3. We have
i) R0vX(w),∗

(
Dk

)
= 0.

ii) R1vX(w),∗
(
Dk,K/Ds

k,K(1)
) ∼= ω†,k+2

w ⊗̂OK
Cp, independently of s ≥ 0.

Proof. Let us first recall that by our conventions Dk = D−1
k , therefore ii) follows directly from

proposition 5.2. To prove i) let us localize at a small log affine U :=
(
Spf(RU), NU

)
of X (w)

as in the proof of proposition 5.2. We remark that we have an isomorphism as R̂U -modules,
G-equivariant

H0
(
G,Dk(RU , NU)

) ∼= lim
←,s

H0
(
G, (Dk/Ds

k)(RU , NU)
)

= 0

because the transition maps of the projective system {H0
(
G, (Dk/Ds

k)(RU , NU)
)
}s are zero, as

can be seen from the proof of proposition 5.2.

Finally we have

Theorem 5.4. Let k ∈ W∗(K) and m ≥ −1, m ∈ Z. We have
i) H0

(
X(w),Dk,K/Dm

k,K(1)
)

= H0
(
X(w), ω†,k−2m+4

w

)
⊗̂KCp(m− 1).

ii) H1
(
X(w),Dk,K/Dm

k,K(1)
) ∼= H0

(
X(w), ω†,k+2

w

)
⊗̂KCp.

iii) Hi
(
X(w),Dk,K/Dm

k,K(1)
)

= 0 for i ≥ 2.

Proof. i) follows from proposition 5.2 i) and the fact that

H0
(
X(w),Dk,K/Dm

k,K(1)
)

= H0(X(w), R0vX(w),∗
(
Dk,K/Dm

k,K(1)
)
.

For ii) let us notice that the Leray spectral sequence degenerates to the following exact
sequence

0 −→ H1
(
X(w), R0vX(w),∗

(
Dk,K/Dm

k,K(1)
))
−→ H1

(
X(w),Dk,K/Dm

k,K(1)
)
−→

−→ H0
(
X(w), R1vX(w),∗

(
Dk,K/Dm

k,K(1)
))
−→ H2

(
X(w), R0vX(w),∗

(
Dk,K/Dm

k,K [1/p](1)
))
.

As R0vX(w),∗
(
Dk,K/Dm

k,K(1)
)

is a coherent sheaf of OX(w)-modules (proposition 5.2 i)) on the
affinoid X(w), its cohomology in positive degrees vanishes therefore we obtain the claimed result
by applying proposition 5.2 ii).

iii) follows in a similar way by using the spectral sequence and proposition 5.2.

5.2 The Up-operator

In this section we prove the main property of the operator Up with respect to the cohomology
of the filtration {Dh

k}h≥−1. Henceforth we denote by Dh
k,w the continuous sheaf on X(w) which

was so far denoted by Dh
k, as in this section we need to keep track of the dependence on w.

Theorem 5.5. Let h ≥ 0, k ∈ W∗(K), 0 ≤ w < 1/(p+ 1) and we set w′ = pw.
The operator Up : H1

(
X(w′),Dh

k,w′

)
−→ H1

(
X(w),Dh

k,w

)
has the property that

Up

(
H1
(
X(w′),Dh

k,w′

))
⊂ ph+1

(
H1
(
X(w),Dh

k,w

))
.
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Proof. The proof of this theorem is based on an explicit calculation of the action of the isogeny
π∨p on the sheaves of distributions on X

(1)
p (w). Let us first recall the universal isogeny of degree

p: πp : E −→ E/H on X
(1)
p (w). It induces an exact sequence of groups 0 −→ H −→ E −→

E/H −→ 0. Dualising we get the exact sequence:

0 −→ H∨ −→ (E/H)∨ −→ E∨ −→ 0

Now we let U = (Spf(R), N) be a small affine of X (w)ket
K

and for every n ≥ 1 we obtain a

commutative diagram with exact rows of R̂U -points

0 −→ H∨ −→ (E/H)∨[pn + 1] −→ E∨[pn + 1] −→ H∨ −→ 0
↓ 0 ↓ p ↓ p ||

0 −→ H∨ −→ (E/H)∨[pn] −→ E∨[pn] −→ H∨ −→ 0

Taking the projective limits with respect to n we obtain an exact sequence of continuous repre-
sentations of the Kummer étale fundamental group of UK .:

0 −→ T
(
E/H)∨

) πp−→ T
(
E∨
)
−→ H∨ −→ 0

↓ ↓
(C ′)∨ ∼= C∨

where we have denoted C ⊂ E [p] and C ′ ⊂ (E/H)[p] the canonical subgroups of E and E/H,

respectively. Now we choose a Zp-basis e0, e1 of T (E∨)(R̂U) such that the image of e0 is an Fp-
basis of C∨. In this case there is a ∈ Fp such that H∨ ∼= (e0Fp ⊕ e1Fp)/(ae1 + e0)Fp. Therefore

one can choose a Zp-basis {e′0, e′1} of T
(
(E/H)∨

)
(R̂U) such that the image of e′0 is an Fp-basis

of (C ′)∨ and πp(e
′
0) = [a]e1 + e0 and πp(e

′
1) = pe1. Here we denoted by [a] ∈ Zp the Teichmüler

lift of a ∈ Fp.
Now we’d like to describe the dual map: π∨p : T ∨

(
E∨
)
(R̂) −→ T ∨

(
(E/H)∨

)
(R̂U). For this

let {X, Y } be as at the beginning of section 4.3, the basis of T ∨
(
E∨
)
(R̂U) dual to {e0, e1}, i.e.,

X(e0) = 1, X(e1) = 0, Y (e0) = 0, Y (e1) = 1. Let also A,B be the basis of T ∨
(
E/H)∨

)
(R̂U) dual

to the basis {e′0, e′1}.
Then π∨p : T ∨

(
E∨
)
(R̂U) −→ T ∨

(
(E/H)∨

)
(R̂U) is defined by: π∨p (X) = A, π∨p (Y ) = pB+[a]A.

Let us remark that this map is compatible with the map π∨p : Ω1
E(R̂U) −→ Ω1

E/H(R̂U) given by

π∨p (X) = A.
Now for k = (s, j) ∈ W∗(K) and h ≥ −1 we have the morphism:

πkh : filh
(
Ak(E)

)
−→ filh

(
Ak(E/H)

)
which is given locally

πkh : filh
(
Ak(E)

)
(R̂U) =

( h∑
i=0

R̂UX
iY h−i)Xk−h −→ Filh

(
Ak(E/H)

)
=
( h∑
i=0

R̂UA
iBh−i)Ak−h

by the formula:

πsh

(( h∑
i=0

biX
iY h−i)Xk−h

)
=
( h∑
i=0

biA
i([a]A+ pB)h−iAk−h

)
=

h∑
i=0

bi([a] + pB/A)h−iAk.
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Now we’ll work modulo pt, i.e., let us recall from section 4.3 that if k = (s, j) and h ≥ −1
we denote Ak,t(E) := lim

→,n

(
filn(Ak(E) ⊗ Z/ptZ)

)
for the transition maps defined at loc. cit., we

define by Dk,t(E) := HomOX(w)/p
tOX(w)

(
Ak,t(E),OX(w)/p

tOX(w)

)
and Dh

k,t(E) := Ker
(
Dk,t(E) →

HomOX(w)/p
tOX(w)

(
filh(Ak,t(E)),OX(w)/p

tOX(w)

))
.

Then (see lemma 4.7)

Dm
k,t(E)(RU , NU) = {µ ∈ HomRU/ptRU

(
Ak,t(E)(RU , NU), RU/p

tRU
)

such that µ|film(Ak,t(E))(RU ,NU ) = 0}.

One defines analogously the objects attached to E/H.
Then the morphisms πkh modulo pt induce by duality morphisms of sheaves ρhk : Dh

k,t(E/H) −→
Dh
k,t(E) such that their localization at U = (Spf(RU), NU) is ρhk : Dh

k,t(E/H)(RU , NU) −→
Dh
k,t(E)(RU , NU) given by the formula

ρhk(µ)(Xk
(X
Y

)n
) = µ(Ak

(
[a] + p

B

A

)n
) =

n∑
i=0

( n
i

)
[a]n−ipiµ(Ak

(B
A

)i
).

As µ ∈ Dh
k,t(E/H)(RU , NU) we have that µ

(
Ak
(B
A

)i)
= 0 for i ≤ h and so ρhk

(
Dh
k,t(E/H)

)
⊂

ph+1Dh
k,t(E) It follows that ρhk

(
Dh
k(E/H)

)
⊂ ph+1Dh

k(E) and as the other maps whose composition
is Up are Zp-linear, the theorem follows.

5.3 Slope decomposition

Let k ∈ W∗(K) and let us fix h ∈ Q, h ≥ 0. We choose and integer m such that m − 1 ≥ h.
Then let us recall that we have a natural Cp-linear map commuting with the action of the Hecke
operators T` for ` not dividing Np and Up and the Galois group GK :

Rk : H1
(
X(w),Dk,K(1)

)
−→ H1

(
X(w),Dk,K/Dm

k,K(1)
) ∼= H0

(
X(w), ω†,k+2

w

)
⊗̂KCp,

where the last isomorphism is provided by theorem 5.4. Let us recall that we want to prove
theorem 5.1 which states that

i) H1
(
X(w),Dk,K(1)

)
has a slope h decomposition for the operator Up.

ii) The morphism above induces an isomorphism of Hecke modules:

R
(h)
k : H1

(
X(w),Dk,K(1)

)(h) ∼= H0(X,ω†,k+2
k )(h).

We now define finite slope decompositions and will prove theorem 5.1. We will first recall some
definitions and results from [AS].

Let Q ∈ K[T ] be a polynomial of degree d. We define Q∗ := T dQ(1/T ) ∈ K[T ]. We say that
the polynomial Q has slope h, for some h ∈ Q if the Newton polygon of Q has all slopes smaller
or equal to h.

Let now H be a K vector space (we do not assume that H has a topological structure) and
u : H −→ H a K-linear map. An element x ∈ H has slope h with respect to u if there is a
polynomial 0 6= Q ∈ K[T ] such that:

1) Q∗(u) · x = 0.

2) The slope of Q is ≤ h.

We set H(h) the subset of H of elements having slope ≤ h. Then H(h) is a K-vector subspace
of H and we say that a K-vector subspace M ⊂ H has slope h if M ⊂ H(h).
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Definition 5.6 ([AS]). A slope h decomposition of H with respect to u is a K[u]-module
decomposition

H = Hh ⊕H∗h,
such that

a) Hh is a finitely generated K-vector subspace of H of slope ≤ h.

b) For every 0 6= Q ∈ K[T ] of slope ≤ h, the map Q∗(u) : H∗h −→ H∗h is an isomorphism.

Finally we have the following::

Theorem 5.7 ([AS]). 1) If a slope h decomposition of H with respect to u exists, then Hh = H(h).
2) If

(∗) A −→ B −→ C −→ D −→ E

is an exact sequence of K[u]-modules and if A,B,D,E have slope h decompositions with respect
to u then so does C. Moreover, if this happens the exact sequence (∗) induces the exact sequence

A(h) −→ B(h) −→ C(h) −→ D(h) −→ E(h).

Proof of theorem 5.1

Let us fix h ∈ Q, h ≥ 0, k ∈ W∗(K) and choose m ∈ Z such that m ≥ h. We consider the
exact sequence of ind-continuous sheaves on X(w)

0 −→ Dm
k,K −→ Dk,K −→ (Dk,K/Dm

k,K) −→ 0.

Taking the long exact cohomology sequence we obtain

0 −→ H0
(
X(w), (Dk,K/Dm

k,K)(1)
)
−→ H1

(
X(w),Dm

k,K(1)
)
−→ H1

(
X(w),Dk,K(1)

)
−→

−→ H1
(
X(w), (Dk,K/Dm

k,K)(1)
)
−→ H2

(
X(w),Dm

k,K(1)
)
,

We have the operator Up-acting on all terms of this sequence compatible with the maps. Using
the theorem 5.4 we obtain isomorphisms as Hecke modules

H0
(
X(w), (Dk,K/Dm

k,K)(1)
) ∼= H0

(
X(w), ω†,k−2m+4

w

)
⊗̂KCp(m− 1)

and
H1
(
X(w), (Dk,K/Dm

k,K)(1)
) ∼= H0

(
X(w), ω†,k+2

w

)
⊗̂KCp.

By [Co] as both H0
(
X(w), (Dk,K/Dm

k,K)(1)
)

and H1
(
X(w), (Dk,K/Dm

k,K)(1)
)

are identified as Hecke
modules with spaces of overconvergent modular forms, they have slope h decompositions for Up.

We now analyse Hi
(
X(w),Dm

k (1)
)

for i = 1, 2. All we know about the topological structure
of these OCp-modules is that they sit in exact sequences

0 −→ lim
←,t

(1)Hi−1
(
X(w),Dm

k,t(1)
)
−→ Hi

(
X(w),Dm

k (1)
)
−→ lim

←,t
Hi
(
X(w),Dm

k,t(1)
)
−→ 0,

for i = 1, 2. By theorem 5.5 there is a linear operator U ′ on each term of the sequence such that
Up = pm+1U ′. Then theorem 5.1 follows from the following general result.

Let us suppose that {Cn}n, {Bn}n are projective systems of abelian groups, Bn and Cn are
OCp/p

nOCp-modules for all n ≥ 0 and A is a OCp-module such that the following sequence of
OCp-modules is exact

(∗) 0 −→ lim
←,n

(1)Cn −→ A −→ lim
←,n

Bn −→ 0.
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Moreover let us suppose that there is anOCp-linear operator U ′ : A −→ A compatible with the se-
quence (∗), i.e., it induces linear homomorphisms between the projective systems U ′ : {Cn}n −→
{Cn}n and U ′ : {Bn}n −→ {Bn}n. For an integer m ≥ 1 we denote U := pmU ′.

Lemma 5.8. For 0 ≤ h ≤ m − 1 the module AQp = A ⊗Zp Qp has a slope h decomposition for

the operator U and A
(h)
Qp

= 0.

Proof. It is enough to show: if P ∈ Zp[T ] is a monic polynomial such that P (T ) =
∏d

i=1(T +αi)
with αi ∈ OCp such that v(αi) ≤ h for all 1 ≤ i ≤ d then P (U) is invertible on AQp .

We choose βi ∈ OCp such that βiαi = pm for all 1 ≤ i ≤ d. Then βi ∈ pOCp for all 1 ≤ i ≤ d.
We denote by α := α1 · α2 . . . αd and

P1(T ) = P (pmT ) =
d∏
i=1

(pmT + αi) = α

d∏
i=1

(1 + βiT ) = α(1 + pQ(T )),

where Q(T ) ∈ OCp [T ] is a polynomial. Then P (U) = P1(U ′) = α(1 + pQ(U ′)).
Claim 1 + pQ(U ′) is invertible on A.
Proof of the claim It is enough to prove that 1 + pQ(U ′) is invertible on lim←,nBn and on

lim←,n
(1)Cn.

If more generally {Dn}n is a projective system of abelian groups with Dn a OCp/p
nOCp-

module for every n ≥ 0 and we have a linear morphism of projective systems V : {Dn} −→
{Dn}n then the operator 1 + pQ(V ) is invertible both on lim←,nDn and lim←,n

(1)Dn, where
Q(T ) ∈ OCp [T ]. Let us recall that we have an exact sequence of abelian groups

0 −→ lim
←,n

Dn −→
∏
n

Dn
1−δ−→

∏
n

Dn −→ lim
←,n

(1)Dn −→ 0.

Now let us remark that 1 +Q(V ) is invertible as group homomorphism from
∏

nDn −→
∏

nDn,
its inverse is

∑∞
i=0(−1)ipi(Q(V ))i and it, the inverse that is, commutes with 1− δ. This proves

the claim and the lemma.

Therefore, coming back to the theorem 5.1, we have an exact sequence of GK and Hecke
modules

0 −→ H0
(
X(w), (Dk,K/Dm

k,K)(1)
)
−→ H1

(
X(w),Dm

k,K(1)
)
−→ H1

(
X(w),Dk,K(1)

)
−→

−→ H1
(
X(w), (Dk,K/Dm

k,K)(1)
)
−→ H2

(
X(w),Dm

k,K(1)
)
,

where all the terms except possibly H1(X(w),Dk(1)) have slope h decompositions and the H2

term is zero.
By theorem 5.7 3) H1(X(w),Dk(1)) has also a slope h decomposition such that we have an

exact sequence

0 −→ H1
(
X(w),Dm

k,K(1)
)(h)

= 0 −→ H1
(
X(w),Dk,K(1)

)(h) −→ H0
(
X(w), ω†,k+2

w

)(h) ⊗ Cp −→ 0,

which proves the claim.
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[Ka] K. Kato: Semi-stable reduction and p-adic étale cohomology, Astérisque 223 (1994), 269–
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