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Abstract

The Dominant T-wave (DTW) offers an overall view of

the venticular repolarization as it reflects the first-order

derivative of the transmembrane potential of the myocytes

during repolarization (TMPR). DTW can be estimated

from the analysis of surface T-waves, which are modeled as

a linear combination of DTW and its derivatives. Usually,

the contribute of the DTW dominates but, when dispersion

of the repolarization times increases (as during patholog-

ical conditions) the effects of DTW derivatives can not be

neglected. Unfortunately the estimators of DTW proposed

so far, do not consider these terms.

In this work, an algorithm to estimate the DTW tak-

ing into account the second-order derivative of the TMPR

curve is introduced. The algorithm was tested on synthetic

ECG recordings. When the dispersion of the sources is

varied from 10 to 50 ms, the new technique shows an av-

erage improvement in the precision of the estimate of the

TMPR curve of about 18.9% over previous methods.

1. Introduction

The Dominant T-wave (DTW) was first introduced by

van Oosterom [1] as a conceptual entity capable of ex-

plaining the empirical finding that T waves of all leads

on the thorax seem, in a first approximation, a scaled ver-

sion of a single waveform shape. Building on the work

of Geselowitz [2] and assuming linearity of the conduc-

tive properties of the medium, van Oosterom showed that

the potentials recorded at the skin during the repolariza-

tion phase of the ventricula can be approximated, using an

equivalent surface source model (ESSM), by

Ψ = A





D(t− ρ1)
· · ·

D(t− ρM )



 , (1)

where Ψ is a [L×N ] matrix containing the N ECG sam-

ples recorded from L leads while A is a transfer [L ×M ]
matrix which accounts for both the volume conductor (ge-

ometry and conductivity) and the solid angle under which

the single source contributes to the potential Ψ. Matrix A

is fixed for a given subject and a specific leads configura-

tion. The function D(t) is the repolarization phase of the

transmembrane potential (TMPR) of the single myocyte

which, for simplicity, is supposed to be identical across

cells. The repolarization of each cell occurs with a time

shift ∆ρm = ρm − ρ̄ where ρ̄ =
∑M

m=1
ρm/M is the

average repolarization time. From geometrical considera-

tions, Ae1 = 0 where e1 is a [M, 1] vector whose elements

are all set to 1. Interestingly, the latter constrain on A im-

plies that there is a surface T-wave only if the repolariza-

tion times differ. To have a convenient model, groups of

nearby myocytes are modeled as a single source. In here,

M is the number of sources (“nodes”) at the cellular level.

When ∆ρm ≪ ρ̄, the function D(t) can be expanded in

series around ρ̄ leading to

D(t− ρm) = D(t− ρ̄)−∆ρm
dD(τ)

dτ

∣

∣

∣

∣

τ=t−ρ̄

(2)

+
∆2ρm
2!

d2D(τ)

dτ2

∣

∣

∣

∣

τ=t−ρ̄

+ o(∆3ρm).

Given the fact that Ae1D(t−ρ̄) = 0 and neglecting higher

order terms, the model in equation (1) can be recast into

Ψ ≈ −A





∆ρ1
· · ·

∆ρM



 Ḋ(t−ρ̄)+
A

2





∆2ρ1
· · ·

∆2ρM



 D̈(t−ρ̄). (3)

A rank-1 approximation of Ψ is given by

Ψ ≈ −A∆ρḊ(t− ρ̄) = w1Td (4)

where w1 = −A∆ρ and the first derivative of the repo-

larization curve Ḋ(t − ρ̄) was termed by Van Oosterom

dominant T-wave (Td). In fact, when the approximation in

equation (2) holds, the single T-waves measured on differ-

ent leads are only a rescaled version of Td. In the definition

(4), the modules of both Td and the lead factors w1 are un-

determined. Several routes might be followed; one is that

of rescaling Td such that its integral evaluates to the dif-

ference between the intracellular potential before (tde) and

after repolarization (tre ) which is typically 100 mV:

D(tde − ρ̄)−D(tre − ρ̄) = −
∫ tre

tde

Td(τ)dτ = 100. (5)
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The apex of Td as defined here might be negative.

Van Oosterom suggested to estimate Td as the average

of the potentials in Ψ weighted by their integrals eT1 Ψ
T ,

TVO
d = c1e

T
1 Ψ

T
Ψ, (6)

where the scalar c1 is set using equation (5). He also no-

ticed [3] that the series expansion in equation (3) is a com-

position of rank-1 matrixes, with some resemblances with

the more classical rank-1 decomposition obtained through

singular value decomposition (SVD),

Ψ = UΛV
T =

L
∑

l=1

uiλiv
T
i . (7)

A check on 160 subjects [3] showed that a second esti-

mate of the DTW obtained with TR1
d ∝ vT1 was highly

correlated with TVO
d . Also the singular vectors vT2 and vT3

were found correlated with higher (numerical) derivatives

of TVO
d .

When the dispersion of the repolarization times in-

creases, as it is speculated in several pathological condi-

tions like the long QT syndrome or when T wave alter-

nance appears, the expansion in equation (3) breaks down

and higher order contributions became relevant. Unfortu-

nately so far no suggestions have been offered on how to

take in account higher order derivatives in the estimate of

the DTW.

In the following we suggest an algorithm to estimate the

DTW taking into account the second-order derivative of

the TMPR curve as indicated in equation (12).

2. Methods

The correlation found by Van Oosterom between the two

estimates TVO
d and TR1

d is not incidental and can be ratio-

nalized by observing that

Ψ
T
Ψ = VΛ

2
V

T =

L
∑

l=1

λ2
i viv

T
i . (8)

Then, if the singular values λi ≪ λ1 for i 6= 1,

eT1 Ψ
T
Ψ =

L
∑

l=1

(λ2
i e

T
1 vi)v

T
i ≈ (λ2

1e
T
1 v1)v

T
1 . (9)

When Ψ is actually a rank−1 matrix, the two estimates are

identical, up to a scalar. Otherwise their similarity is con-

strained by how predominant is λ1 over the other singular

values. While we refer to the final discussion for a com-

parison of the two estimators, here we notice that TR1
d is

optimal in the sense that it minimizes the Frobenius norm

of the error

ǫ = ‖Ψ− w1Td‖F , (10)

thus offers (with w1) the best rank−1 approximation to the

matrix of the surface potentials. This claim follows di-

rectly from a classic result in linear algebra. By definition,

the best rank-1 approximation to Ψ is the matrix Ψ1 such

that the Frobenius norm of the quadratic error

ǫ = ‖Ψ−Ψ1‖F (11)

is minimum. But a classical theorem [4] states that Ψ1 =
u1λ1v

T
1 . Then it must be w1Td = u1λ1v

T
1 . Multiply-

ing both sides for uT
1 , we get Td ∝ λ1/(u

T
1 w1)v

T
1 where

λ1/(u
T
1 w1) is a constant factor.

A minimization of the Frobenius norm of the residual

matrix, similar to equation (10), is commonly pursued in

inverse electrocardiography. Coherently with this perspec-

tive, we suggest to find a DTW estimate which generalize

this approach. Starting from equation (3), a rank-2 approx-

imation Ψ2 of Ψ is given by

Ψ ≈ −A∆ρḊ(t− ρ̄) + 1/2A∆ρ2D̈(t− ρ̄) (12)

Ψ2 = w1Td + w2Ṫd

where w2 = 1/2A∆ρ2. Then, we look for a vector TR2
d

which minimizes the Frobenius norm

ǫ = ‖Ψ− w1Td − w2Ṫd‖F . (13)

As before the optimal solution would be Ψ2 = w1Td +
w2Ṫd = u1λ1v

T
1 + u2λ2v

T
2 , but now this equation can not

be solved directly as we can not force Td ∝ vT1 and Ṫd ∝
vT2 at the same time. Therefor the minimization of ǫ in the

differential equation (13) must be enforced right away and

several routes can be pursued. In here, we first exchange

Ṫd with a finite difference numerical approximation

ǫ2 =
L
∑

i=1

N
∑

j=1

{Ψi,j − w1(i)Td(j) (14)

−w2(i) [Td(j + 1)− Td(j − 1)] /(2∆t)}2

and then take the partial derivatives of ǫ2 with respect to

w1(i), w2(i) and Td(j). The constant ∆t is the inverse

of the sampling rate as usual. The minimization results

in solving a system of nonlinear equations in 2L +N un-

knowns but this difficulty can be overcame by iteratively

solving two linear sub-parts of the system. In each itera-

tion, an estimate for w1 and w2 is computed first by solving
{

w1‖Td‖2 + w2ṪdT
T
d = ΨTT

d

w1ṪdT
T
d + w2‖Ṫd‖2 = ΨṪT

d .
(15)

Then a new value for Td is obtained from

Td(j)
[

‖w1‖2 + 2‖w2‖2/(2∆t)2
]

(16)

+ [Td(j + 2)− Td(j − 2)] ‖w2‖2/(2∆t)2 =
∑

i

{Ψi,jw1(i) + [Ψi,j−1 −Ψi,j+1]w2(i)/(2∆t)} .
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Figure 1. Panel (a). Three different estimates of the DTW

Td are compared with the first derivative of the TMPR

D(t) (continuous line). The simulation was performed

with σρ = 20 ms. Panel (b). Same as panel (a) but com-

paring the second derivative of the TMPR D(t) with the

first derivative of Td, as estimated by method BF2.

Finally the two steps are iterated until the changes in the

value of ǫ2 between successive iterations is smaller then

a predefined threshold (0.001 in the following). The two

systems in equations (15) and (16) are banded diagonal and

computationally efficient solvers do exist. We will term the

value of Td estimated with this method as TR2
d .

The separate evaluation of w1 and w2 might seem ques-

tionable as they both depend on ∆ρ. On the other hand,

this appears reasonable if one considers that: (i) if the val-

ues ∆ρm are independent random variables, then it can be

shown that the linear correlation of w1 and w2 is actually

zero. (ii) in practical situations, where the changes in re-

polarization times of nearby cells are coupled, the large

number of sources in ∆ρ makes w1 and w2 practically un-

correlated.

To test the new algorithm and to compare it with the

other two DTW estimates we discussed in the introduction,

synthetic surface ECG T-waves were generated. Equation

(1) was used to generate the potentials Ψ. In this way

a direct comparison could be established with the deriva-

tive of the TMPR D(t). The scaling factors A which ac-

counts for the geometry of the sources were derived from

ECGSIM [5], a freely available software implementing the

ESSM of equation (1). We only considered 8 independent

leads among the 12 standard ones. In this configuration,

the matrix A linked the effect of 257 sources on 8 sur-

face potentials. Also the shape of the repolarization curve

was taken from ECGSIM and approximated with a spline

model to make possible shifts below 1 ms.

The average repolarization delay ρ̄ was kept fixed dur-

ing the simulation, while the repolarization time of each

node was set to be ρm = ρ̄ + ϕm, where ϕm are inde-

pendent zero-mean normal random variables ∼ N (0, σ2
ϕ).

The standard deviation σϕ determines the dispersion of the

repolarization times. When σϕ = 0 no T wave is observ-

able at the skin.

For each potential Ψ, the DTW was estimates with

TVO
d , TR1

d and the newly introduced TR2
d . The three es-

timates were compared with the effective value of Ḋ(t)
derived from the function D(t) used in the model (1).

The goodness of the estimates was quantified by (i) the

squared error ζ2, computed over the differences between

Ḋ(j∆t) and any Td; and (ii) the correlation coefficient

among Ḋ(j∆t) and any Td. Each of the DTW estimates

and Ḋ(j∆t) were rescaled to unit norm before the com-

parison. The dispersion of the repolarization times σϕ was

increased on a logarithmic scale from 0.1 ms to 1 second

and, for each value of σϕ, the procedure was repeated 40

times to ensure statistical convergence.

3. Results

In figure (1) the three estimates of the DTW are dis-

played along with the curve Ḋ(t) (panel a) for a case

where σϕ = 20 ms. While TVO
d and TR1

d are nearly in-

distinguishable, TR2
d gets closer to the effective value of

the derivative of the TMPR. Panel (b) shows the second

derivatives; the large amplitudes reached by D̈(t) hint sig-

nificative effects on Ψ when w2 is not negligible.

Figure (2) report the values of the squared error ζ2 and

the correlation coefficients varying with σϕ. For values

of σϕ < ≈ 5 ms the three estimates are mainly indistin-

guishable. On the contrary for σϕ > 5 ms the estimated

provided by TR2
d are generally more precise than the others

two. On average, when the dispersion of the sources is in

the physiologically relevant range of 10 to 50 ms, the new

technique TR2
d shows an improvement of about 18.9% over

previous methods. Finally, for σϕ > ≈ 70 ms, the contri-

bution of the second order terms becomes comparable to

first order ones and the expansion (3) breaks down. The

estimates provided by TR2
d are yet better than those ob-

tained through the other two methods, but the shape of Td

starts departing from Ḋ(t) (the correlation coefficient low-

ers below 0.9 for all methods). In these last situations, the

increased computational burden of TR2
d over TVO

d might

be questionable for the little accuracy gained.

These results can be rationalized as follows. Under

the hypothesis that the delays ∆ρm are independent nor-

mal random variables, it can be proven that E[|w2(i)|] =

847
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Figure 2. Panel (a): Average squared error ζ2 estimating

the DTW. Panel (b): Average correlation coefficients.

σϕ/
√
2E[|w1(i)|] (see next section). We might ex-

pect the second order term in eq. (12) to start being

not-negligible approximately when |w2(i)|maxt |Ṫd| >
γ|w1(i)|maxt |Td| (being γ a small number), that is when

σϕ > γ
√
2maxt |Td|/maxt |Ṫd|. In figure (2) we add a

pair of vertical dotted lines corresponding to γ = 5% and

γ = 70%. The theoretical prediction matches the results

of the simulations very well.

4. Discussion and conclusions

The values in A make the contribution of each node

on Ψ different, therefor for a given σϕ a large T wave

variability is displayed. As a consequence the results dis-

cussed here are related to the average performances of the

estimators. The work showed that DTW estimates which

take into account only the first derivative of the TMPR

are nearly equivalent with a slighter accuracy of TVO
d over

TR1
d . This might be rationalized considering equation (9):

TVO
d is affected by every singular value and this turns rel-

evant when the first one is not predominant.

The three method give estimates which are indistin-

guishable for small value of σϕ. But when the dispersion

of the sources is increased over 10 ms, TR2
d offers, on av-

erage, better estimates. We think that it might permit to

employ the DTW formalism in a larger set of applicative

contexts.

As a final remark, we notice that the method we sug-

gested in this work, a part from being a better alterna-

tive for the estimate of the DTW, permits an assessment of

the dispersion of repolarization times σϕ. We only sketch

here the main idea, which is valid only under the assump-

tion made in this paper, that the times ∆ρm are indepen-

dent normal random variables ∼ N (0, σ2
ϕ). While this

might be limited, it is still a starting point for future im-

provements. Under this hypothesis, it can be proven that

w1(i) is a normal random variable ∼ N (0, σ2
ϕ

∑

m A2
i,m).

On the other hand, w2(i) is a linear combination of chi-

squared random variables (1 degree of freedom). But M
is large and for the central limit theorem, w2(i) is also ap-

proximatively normal with ∼ N (0, σ4
ϕ

∑

m A2
i,m/2). The

standard deviation of w2(i) depends quadratically on σϕ,

while that of w1(i) only linearly. Therefore, one can as-

sess σϕ =
√
2 std[w2(i)]/std[w1(i)], where std[·] is the

sample standard deviation.
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