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ABSTRACT
Semi-analytic models of self-gravitating discs often approximate the angular momentum
transport generated by the gravitational instability using the phenomenology of viscosity.
This allows the employment of the standard viscous evolution equations, and gives promising
results. It is, however, still not clear when such an approximation is appropriate.

This paper tests this approximation using high-resolution 3D smoothed particle hydrody-
namics (SPH) simulations of self-gravitating protostellar discs with radiative transfer. The
nature of angular momentum transport associated with the gravitational instability is char-
acterized as a function of both the stellar mass and the disc-to-star mass ratio. The effective
viscosity is calculated from the Reynolds and gravitational stresses in the disc. This is then
compared to what would be expected if the effective viscosity were determined by assuming
local thermodynamic equilibrium or, equivalently, that the local dissipation rate matches the
local cooling rate.

In general, all the discs considered here settle into a self-regulated state where the heating
generated by the gravitational instability is modulated by the local radiative cooling. It is found
that low-mass discs can indeed be represented by a local α-parametrization, provided that the
disc aspect ratio is small (H/r ≤ 0.1) which is generally the case when the disc-to-star mass
ratio q � 0.5. However, this result does not extend to discs with masses approaching that of
the central object. These are subject to transient burst events and global wave transport, and
the effective viscosity is not well modelled by assuming local thermodynamic equilibrium.
In spite of these effects, it is shown that massive (compact) discs can remain stable and not
fragment, evolving rapidly to reduce their disc-to-star mass ratios through stellar accretion
and radial spreading.

Key words: accretion, accretion discs – gravitation – instabilities – stars: formation – stars:
general.

1 IN T RO D U C T I O N

Accretion discs play an important role in many astrophysical sit-
uations, from protostellar systems to discs around supermassive
black holes in active galactic nuclei. What is still very uncertain
is the process through which angular momentum is transported
outwards in such discs. It is clear, from observations of accretion
rates, that classical hydrodynamical viscosity is insufficient to play
this role. The typical solution is to assume an ad hoc parametriza-
tion of the viscosity, whose origin is not well understood. The
archetype is the α-parametrization introduced by Shakura &
Sunyaev (1973) in which the viscosity ν is assumed to depend on the

�E-mail: dhf@roe.ac.uk

disc sound speed, cs, and thickness, H, through ν = αcsH , where
α � 1.

This allows a number of different physical mechanisms to be
considered as the origin of this viscosity. The most frequently in-
voked is turbulent viscosity, shifting the problem to the origin of the
turbulence. If the disc is sufficiently ionized, the magnetorotational
instability (MRI; Balbus & Hawley 1991; Balbus & Papaloizou
1999; Papaloizou & Nelson 2003) can result in turbulence that can
provide the required viscosity. However, if the disc is very weakly
ionized (as in the case of most protostellar discs at early times),
another source must be sought. During the earliest stages of star
formation, when disc masses are likely to be high relative to the
mass of the central protostar, gravitational instabilities (GIs) may
provide the answer (Lin & Pringle 1987; Laughlin & Bodenheimer
1994).
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The susceptibility of an infinitesimally thin disc to GI can be
measured using the Toomre Q parameter (Toomre 1964):

Q = csκ

πG�
, (1)

where cs is the local sound speed, � is the disc surface density and
κ is the epicyclic frequency (equal to the angular frequency � in
Keplerian discs). Discs are gravitationally unstable to axisymmetric
ring perturbations if Q<1, while simulations have shown that for
Q< 1.5–1.7 discs are unstable to the growth of non-axisymmetric
perturbations (Durisen et al. 2007). GIs will generally lead to a self-
regulating, quasi-steady state in such discs (Paczynski 1978). Discs
that are cool enough to become unstable will be heated by the GIs
through shocks, increasing their Q until they reach stability. Discs
that are initially too hot for the instability to set in will undergo
radiative cooling towards instability. These competing processes
control the disc thermodynamics such that the value of Q is kept
close to, but just above, the instability boundary and is referred to
as marginal stability (Paczynski 1978; Bertin & Lodato 1999).

However, to put forward turbulence generated by GI as the source
of the unknown ‘viscosity’, the nature of the angular momentum
transport generated in this manner must be investigated. In partic-
ular, can the α-parametrization be used to evaluate the viscosity
generated by the GI? If this approximation is to be used, then the
transport needs to be local in origin. Balbus & Papaloizou (1999)
have shown that the energy flux generated by GIs contains terms
that are inherently non-local (associated with global wave trans-
port), indicating that the phenomenology of viscosity will never
exactly reproduce the transport induced by GIs. However, as shown
by Lodato & Rice (2004), the α-approximation may be sufficient
to explain disc behaviour in systems where global wave transport is
negligible. Therefore, the problem can be addressed by considering
some key questions as follows.

Is angular momentum transport local? Can an effective viscous
α be estimated from the assumption of local thermodynamic equi-
librium? Do realistic, self-gravitating protostellar discs settle into
marginally stable, quasi-steady states?

Previous work on the locality of this angular momentum transport
has relied heavily on numerical simulations. Laughlin & Rozyczka
(1996) used 2D grid-based simulations to indicate that the value of
α must vary with orbital radius (to produce the expected density
evolution). In three dimensions, the early work of Laughlin & Bo-
denheimer (1994) using smoothed particle hydrodynamics (SPH)
simulations of massive, isothermal discs showed that simple α mod-
els do indeed reproduce the correct density evolution. However, the
strength of the GI is inherently linked to the disc thermodynamics
(Nelson, Benz & Ruzmaikina 2000; Pickett et al. 2000). Any physi-
cally realistic study of angular momentum transport by self-gravity
must therefore include radiative effects (Pickett et al. 2003; Mejia
et al. 2005). Following the approach of Gammie (2001), Lodato &
Rice (2004) used SPH simulations with an adiabatic equation of
state, but with a cooling time of the following form:

tcool� = β = constant. (2)

With the above cooling, the local approximation would suggest
that (Gammie 2001)

α = 4

9

1

γ (γ − 1)tcool�
. (3)

Lodato & Rice (2004) show that this approximation is valid, and
that transport is local, in discs with mass ratios q = Md/M∗ less
than 0.25 (and aspect ratios H/r ≤ 0.1), where the self-regulation
controlled by Q ensures a quasi-steady state. Further investigation

of more massive discs (Lodato & Rice 2005) showed that despite
the evolution being clearly non-steady (with recurrent episodes of
variable accretion) there was no significant evidence for global
wave energy transport. Cossins, Lodato & Clarke (2009) have also
carried out a detailed analysis of the GI under this cooling time
approximation, investigating discs with q < 0.1 and characterizing
the resultant spiral structure. They demonstrated (see also Balbus
& Papaloizou 1999) that global transport occurs whenever spiral
waves dissipate far from their corotation radius. For the low-mass
ratios considered in Cossins et al. (2009), this does not happen
and the resulting transport is therefore local and quasi-steady to
a high degree, showing that the viscous approximation works for
discs with parametrized radiative cooling, although it may depend
on the form of the cooling function (Mejia et al. 2005; Durisen
et al. 2007). Recent semi-analytic works (Clarke 2009; Rice &
Armitage 2009; Rice, Mayo & Armitage 2010) have, however, used
this approximation to study the formation and evolution of massive
protostellar discs.

This paper builds on these earlier results using global 3D SPH
simulations of protostellar discs over a range of stellar masses and
disc-to-star mass ratios. What makes this different to most earlier
work is that the SPH code, in this case, uses a hybrid method
of radiative transfer (Forgan et al. 2009), which models the effects
of frequency-averaged radiative transfer without significant runtime
losses. By adding radiative transfer, these simulations are in the best
position to accurately model GIs in realistic protostellar discs. The
analysis will focus on the key questions defined earlier, in effect to
characterize the efficacy of the α-parametrization in self-gravitating
protostellar discs. Section 2 will outline the key physics involved
in this work; Section 3 will focus on the numerical techniques used
to produce the simulations; Section 4 will outline and discuss the
results of the simulations and Section 5 will summarize the work.

2 A N G U L A R M O M E N T U M T R A N S P O RT
A N D T H E α-PARAMETRI ZATI ON

If a thin-disc approximation is adopted, an accretion disc’s equations
of motion can be cast in terms of vertically averaged properties.
Therefore, the equation of continuity (using cylindrical coordinates)
becomes

∂�

∂t
+ 1

r

∂

∂r
(r�vr) = 0, (4)

where � is the surface density that depends on position, r, and time,
t, and vr is the radial velocity of the disc material. Conservation of
angular momentum gives

∂

∂t

(
�r2�

) + 1

r

∂

∂r

(
�r3�vr

) = 1

r

∂

∂r

(
r2Trφ

)
, (5)

where Trφ is the (vertically averaged) viscous stress tensor compo-
nent. The calculation of Trφ is the crux of the problem, and the most
important facet of accretion disc theory in general. As has already
been stated, typical hydrodynamical viscosity is insufficient. To
characterize Trφ , the α-parametrization (Shakura & Sunyaev 1973)
can be used:

Trφ = d ln �

d ln r
α�c2

s , (6)

or equivalently, in terms of the kinematic viscosity ν,

ν = αcsH, (7)

where H = cs/� is the scaleheight of the disc. If the disc is in
thermal equilibrium, an expression can be found for α by equating
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the rate at which viscosity dissipates energy in the disc with the
rate at which this energy is lost through radiative cooling. Viscous
dissipation occurs according to

Q+ = Trφr
d�

dr
, (8)

where this describes the dissipation rate per unit surface. The radia-
tive cooling can be parametrized in terms of the local cooling time,
tcool, giving

Q− = U

tcool
= �c2

s

γ (γ − 1)tcool
, (9)

where U is the internal energy per unit surface, and γ is the ratio
of specific heats. Equating Q+ and Q− and rearranging gives the
following expression for α (Pringle 1981; Gammie 2001)

αcool =
(

d ln �

d ln r

)−2 1

γ (γ − 1)tcool�
. (10)

Note that equation (10) requires that local heating and cooling
be in balance: in practice, this balance must be true over some
characteristic time-scale, where we should instead equate time-
averaged quantities, i.e. 〈Q+〉 ≈ 〈Q−〉. If the disc is self-gravitating,
the component of the viscous stress tensor associated with the GI is
given by (Lynden-Bell & Kalnajs 1972)

T
grav

rφ = −
∫

grgφ

4πG
dz, (11)

where gr and gφ are the components of the gravitational accelera-
tion in cylindrical coordinates. The full viscous stress tensor also
includes the ‘Reynolds’ stresses (i.e. stresses produced by velocity
and density perturbations as a result of gravito-hydrodynamics)

T
Reyn

rφ = −�δvrδvφ, (12)

where δvr and δvφ are (vertically averaged) fluctuations from the
mean fluid velocity (again in cylindrical coordinates). The total
viscous stress in the disc is therefore the sum of these two tensor
components. Using Trφ = T

Reyn
rφ + T

grav
rφ together with equation (6)

provides a means for calculating an effective α associated with GIs

αtotal =
(

d ln �

d ln r

)−1
Trφ

�c2
s

. (13)

If the angular momentum transport is local, the stress tensor,
and consequently αtotal, depend only on local conditions in the disc
and equation (10) would also be valid. Gravitational stresses may,
however, be exerted as a result of global features in the potential
at large separations (such as spiral density waves). In fact, it has
been shown (Balbus & Papaloizou 1999) that the energy transport
associated with GIs contains global terms and, if such terms are
significant, a local prescription for angular momentum transport in
self-gravitating discs may be a very poor approximation. A prime
goal of this work is to compare αtotal, computed as above from the
Reynolds and gravitational stresses in the disc, with αcool, computed
by assuming that the disc is in local thermodynamic equilibrium.

3 ME T H O D

3.1 SPH and the hybrid radiative transfer approximation

SPH (Gingold & Monaghan 1977; Lucy 1977; Monaghan 1992) is
a Lagrangian formalism that represents a fluid by a distribution of
particles. Each particle is assigned a mass, position, internal energy
and velocity. State variables such as density and pressure are then
calculated by interpolation (see reviews by Monaghan 1992, 2005).

Table 1. Summary of the disc parameters investigated in this work.

Simulation M∗ (M	) qinit = Md/M∗ Md (M	)

1 1.0 0.25 0.25
2 1.0 0.5 0.5
3 1.0 1.0 1.0
4 1.0 1.5 1.5
5 0.5 0.25 0.125
6 2.0 0.25 0.5
7 5.0 0.25 1.25
8 0.5 1.0 0.5
9 2.0 1.0 2.0

In the simulations presented here, the gas is modelled using 500 000
SPH particles while the star is represented by a point-mass particle
on to which gas particles can accrete, if they are sufficiently close
and are bound (Bate, Bonnell & Price 1995).

The SPH code used in this work is based on the SPH code
developed by Bate et al. (1995) which uses individual particle time-
steps, and individually variable smoothing lengths, hi, such that the
number of nearest neighbours for each particle is 50±20. The code
uses a hybrid method of approximate radiative transfer (Forgan
et al. 2009), which is built on two pre-existing radiative algorithms:
the polytropic cooling approximation devised by Stamatellos et al.
(2007b), and flux-limited diffusion (e.g. Whitehouse & Bate 2004;
Mayer et al. 2007, see Forgan et al. 2009 for details). This union
allows the effects of both global cooling and radiative transport to
be modelled, without imposing extra boundary conditions.

The opacity and temperature of the gas is calculated using a
non-trivial equation of state. This accounts for the effects of H2

dissociation, H0 ionization, He0 and He+ ionization, ice evaporation,
dust sublimation, molecular absorption, bound–free and free–free
transitions and electron scattering (Bell & Lin 1994; Boley et al.
2007; Stamatellos et al. 2007b). Heating of the disc is also achieved
by P dV work and shock heating.

3.2 Initial disc conditions

The gas discs used in this work were initialized with 500 000 SPH
particles located between rin = 10 au and rout = 50 au, distributed
such that the initial surface density profile was � ∝ r−3/2 and
with an initial sound speed profile of cs ∝ r−1/4. We are primar-
ily interested in considering quasi-steady self-gravitating systems,
rather than systems that could fragment to form bound companions.
These initial conditions (in particular the small disc radii) were
therefore motivated by recent work suggesting that massive discs
will fragment at radii beyond ∼60–70 au (Rafikov 2005; Stamatel-
los, Hubber & Whitworth 2007a; Stamatellos & Whitworth 2008;
Clarke 2009; Rice & Armitage 2009). This result is consistent with
observations that massive discs tend to have outer radii less than
100 au (Rodrı́guez et al. 2005) and with observations suggesting
the presence of a protoplanet at ∼65 au in the disc around HL Tau
(Greaves et al. 2008). A summary of the disc parameters investi-
gated can be found in Table 1. The simulations were selected to
evaluate the α-approximation’s ability to function under

(i) increasing disc-to-star mass ratio, q, and
(ii) increasing stellar mass, M∗.

As we are interested in q, which will evolve as the star accretes
from the disc, we should be rigorous and also define qinit as the
value of q at the start of the simulation.
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3.3 Resolution

There are several resolution requirements that must be discussed at
this point. The first is the standard Jeans criterion (Bate & Burkert
1997). As some of the discs used in this work are very massive com-
pared to the mass of the parent star, the possibility of fragmentation
exists. To ensure that potential fragmentation is resolved, the mini-
mum Jeans mass resolvable (one neighbour group of SPH particles,
around 50 in the case of the code used) must be sufficiently small:

Mmin = 2Nneighmi = 2Mtot
Nneigh

Ntot
. (14)

The minimum Jeans mass resolvable ranges between 50M⊕ for
the most massive disc and 4M⊕ for the least massive. As it is
expected that fragment masses will be typically several orders of
magnitude higher than these values (Kratter, Murray-Clay & Youdin
2010), this establishes that the simulations would comfortably re-
solve disc fragmentation if it were to occur.

Perhaps more important are the resolution issues raised by artifi-
cial viscosity. While required by the SPH code used, this artificial
viscosity must be quantified so that we know where in the disc the
artificial viscosity is likely to be lower than the effective viscosity
generated by the GIs. The linear term for the artificial viscosity can
be expressed as (Artymowicz & Lubow 1994; Murray 1996; Lodato
& Price 2010)

νart = 1

10
αSPHcsh, (15)

where cs is the local sound speed, h is the local SPH smoothing
length and αSPH is the linear viscosity coefficient used by the SPH
code (taken to be 0.1). We can define an effective α parameter
associated with the artificial viscosity by using equation (7) (Lodato
& Rice 2004):

νart = αartcsH, (16)

and hence combining equations (15) and (16) gives (Artymowicz
& Lubow 1994; Murray 1996; Lodato & Price 2010)

αart = 1

10
αSPH

h

H
. (17)

This shows that where the vertical structure is not well resolved
(i.e. h/H is large), artificial viscosity will dominate. In the simula-
tions presented here, this is likely to be the case inside ∼10 au, so
any data inside this region can not be used. We therefore did not
initially populate the region inside 10 au and although particles will
move inside 10 au during the course of the simulations, we only
consider results outside this radius.

4 R ESULTS AND DISCUSSION

All of the simulations presented here were evolved for 27 outer
rotation periods (ORPs).1 This ensures that all our simulations have
sufficient time to settle into quasi-steady states. In fact, the duration
of these simulations (∼104 yr) is roughly 10 per cent of the main
infall phase, during which we expect protostellar discs to be self-
gravitating, and therefore we capture a significant fraction of the
self-gravitating history of such discs.

We consider two free parameters, the disc mass Md, and the
disc mass ratio, q = Md/M∗. Both q and the local sound speed

1 ORPs are defined as the rotation period at the initial outer radius of the
disc, rout = 50 au, with 1 ORP equal to 354 yr.

determine whether a disc is self-gravitating or not. The sound speed
is determined by the local radiative physics, in particular the optical
depth to the mid-plane. The optical depth is a function of the disc
surface density, �, which in turn is related to the disc mass, Md. It
can then be seen that the values of both q and Md will affect the
disc’s evolution under self-gravity.

Secondly, there is the issue of how to calculate αcool. The radia-
tive transfer algorithm allows the calculation of tcool for each SPH
particle, and therefore each particle has its own αcool. However, equa-
tion (10) shows that particles with short cooling times (e.g. those
at higher elevation from the mid-plane) can skew attempts to create
azimuthally averaged radial profiles. Therefore, when comparing
αcool with αtotal, two quantities are considered: αcool, using the mid-
plane values of tcool, � and γ , and αcool calculated using vertically
averaged values of t̄cool, �̄ and γ̄ . We calculate t̄cool by first averag-
ing the specific internal energy u and its rate of change u̇ separately,
giving

t̄cool = ū

¯̇u
. (18)

This distinction between mid-plane and vertically averaged val-
ues is important. Using the midplane values of tcool allows us to
determine the validity of recent 1D semi-analytic models, such as
Clarke (2009) and Rice & Armitage (2009), that calculate transport
properties based on the mid-plane temperature. The vertically aver-
aged quantities, however, give a more accurate estimate of the rate
at which the disc loses energy and allows us to establish if local
heating and cooling is in balance. This will then determine if the
local α-approximation is still appropriate, even if using mid-plane
values is not.

4.1 The influence of disc mass

To study the effect of increasing disc mass on angular momentum
transport, Simulations 1, 2, 3 and 4, which share the same stellar
mass (M∗ = 1 M	) are analysed together. These discs have initial
masses of 0.25, 0.5, 1.0 and 1.5M	, respectively.

4.1.1 General evolution

Despite all four simulations beginning with a wide range of disc
masses, their surface density profiles do not differ greatly between
r ∼ 20–60 au, as can be seen in Fig. 2. The higher mass discs (qinit =
1 and 1.5) are in general much denser between r ∼ 10–20 au,
indicating mass build-up in the inner regions as suggested and seen
by other authors (Armitage, Livio & Pringle 2001; Zhu, Hartmann &
Gammie 2009a; Rice et al. 2010). The lower mass discs (qinit = 0.25
and 0.5) undergo a period of quiescent settling lasting approximately
2000 yr, adjusting themselves by accretion on to the central star,
spreading in radius (see Fig. 1) and by cooling towards marginal
instability, ultimately settling into quasi-steady, self-regulated states
(Lodato & Rice 2004).

The higher mass discs (qinit = 1 and 1.5) undergo several transient
burst events, marked by persistently strong m= 2 spiral activity (see
Fig. 1). They also adjust their q more rapidly compared to the
two lower mass discs, with reductions between 20–30 per cent over
approximately 10 ORPs. This is due to significant accretion, with the
central star accreting a total of 0.23 M	 for qinit = 1 and 0.38 M	
for qinit = 1.5, and is consistent with the suggestion (Clarke 2009;
Rice & Armitage 2009) that the mass accretion rate has a very strong
dependence on surface density or, equivalently, disc mass. The discs
with qinit >0.5 also spread to a much larger radius than the qinit <0.5
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Figure 1. Images showing the surface density structure of Simulations 1 (top left-hand panel), 2 (top right-hand panel), 3 (bottom left-hand panel) and 4
(bottom right-hand panel) after 27 ORPs. The stellar mass in each case is 1M	, and the initial disc masses of 0.2, 0.5, 1 and 1.5M	 respectively. The axis
ranges are shown in each figure and it is clear that the more massive discs exhibit higher amplitude spiral structures, in particular the m = 2 mode.

Figure 2. Azimuthally averaged radial profiles from the M∗ = 1 M	 simulations [Simulation 1 (solid line), Simulation 2 (dotted lines) Simulation 3 (dashed
lines) and Simulation 4 (dot–dashed lines)] after 27 ORPs. The figures show the time average of each variable (taken from the last 13 ORPs, to give the discs
time to settle into quasi-steady states). The top left-hand panel shows the surface density profile, the top right-hand panel shows the aspect ratio, the bottom
left-hand panel shows the mid-plane temperature, and the right-hand panel shows the disc-to-star mass ratio, q, as a function of time. Artificial viscosity
dominates inside 10 au, so data from inside this region is ignored.

discs (which is clear in Fig. 1), with significant fractions of mass
outside 60 au. All the discs in Fig. 2 are stable against fragmentation,
with β = tcool�  3(αcool < 0.06) at all radii (Gammie 2001; Rice
et al. 2003). The values of β as a function of opacity regime are

also in good agreement with those predicted by Cossins, Lodato &
Clarke (2010).

Considering the azimuthal Fourier modes of the higher mass
discs (Fig. 3) confirms previous results regarding mode strength and
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Figure 3. Azimuthal mode amplitudes for the M∗ = 1 M	 simulations [Simulation 1 (top left-hand panel), Simulation 2 (top right-hand panel), Simulation 3
(bottom left-hand panel) and Simulation 4 (bottom right-hand panel)]. The figures show the time average of the modes (taken from the last 13 ORPs). These
figures illustrate how the m=2 mode becomes more dominant as the disc-to-star mass ratio, q, increases, indicating the presence of large-scale, global spiral
density waves.

disc mass ratio (Lodato & Rice 2004, 2005; Cossins et al. 2009).
The lower mass ratio discs have power distributed over a range of
modes (up to m ∼ 8) with the m = 2 mode (and its harmonics)
becoming dominant as q increases, indicating the possibility of
global transport in the discs. The qinit = 1 disc appears to have a
larger m = 2 amplitude than the qinit = 1.5 disc. The precise reason
for this is difficult to ascertain based on the available evidence, but
it may be due in part to (a) the more rapid evolution of q in the latter
case (Fig. 1, lower right-hand panel) and/or (b) a more efficient
cascade of power into the harmonics m = 4, 6 and 8 reducing the
amplitude at m = 2.

4.1.2 The α-approximation

What we really want to establish is whether or not these discs obey
the local viscous approximation. If they do, then the effective α

parameter for these discs can be approximated using equation (10).
Fig. 4 shows the azimuthally averaged, radial α profiles for the four
simulations in which M∗ = 1 M	. The radial profiles in each case
are also time averaged over the final 13 ORPs. In each panel, the
solid line is αtotal computed using equation (13), while the dashed
line is mid-plane αcool and the dotted line is vertically averaged αcool.

In the low-mass case (qinit = 0.25), it can be seen (Fig. 4) that
αcool calculated from both the mid-plane cooling time (dashed line)
and the vertically averaged cooling time (dotted line) approximates
well αtotal, computed directly from the Reynolds and gravitational
stresses. That αtotal increases with radius beyond 15–20 au is also
consistent with numerical and semi-analytic calculations that use
the local approximation for calculating the effective gravitational
viscosity (Clarke 2009; Rice & Armitage 2009; Zhu et al. 2009b).
The same is true for qinit = 0.5, but it can be seen that this ap-

proximation fails for the higher mass discs in Simulations 3 and 4,
with the profile for αtotal being quite different to that for the mid-
plane αcool. The vertically averaged αcool is a slightly better match
to αtotal; however, the radial profiles are quite different with αtotal

being flatter than αcool. This shows that, for the higher mass discs,
the local torque – in a time-averaged sense – is different to what
would be expected if the effective viscous dissipation rate matched
the local cooling rate and suggests the presence of non-local energy
transport (Cossins et al. 2009). That αtotal exceeds the vertically av-
eraged αcool at small radii (r � 40 au), and is less than the vertically
averaged αcool at larger radii (r � 40 au) suggests that energy is be-
ing transported, via global wave modes, from the inner to the outer
disc.

Note that both of the high-mass simulations have disc aspect
ratios above 0.1 across their entire disc radius, suggested to be a
critical value by Lodato & Rice (2004) for deviations from local
transport. Kratter, Matzner & Krumholz (2008) have suggested that
there should be two self-gravitating α-parametrizations, one when
high-m modes dominate and another when low-m modes dominate.
Our results would suggest that there is some merit in this sugges-
tion with the local approximation being appropriate when qinit < 0.5,
changing to an approximately radially independent α when qinit >

0.5. Fixing the value of α in the latter case appears difficult al-
though our results may suggest that the value derived from the local
approximation at r ∼ 40 au may be suitable.

The increase of α with decreasing radius inside 20 au is a re-
sult of the numerical viscosity αart (the triple-dot–dashed lines in
Fig. 4) dominating in these inner regions, illustrating why we do
not consider the region inside 10 au. The dash–dotted lines in Fig. 4
show the effective gravitational α computed using only the gravita-
tional stresses [i.e. αgrav = (d ln �/d ln r)−1T

grav
rφ /�c2

s ]. This illus-
trates that in the inner disc, due to the dominance of the numerical
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Figure 4. Azimuthally averaged α parameter, time averaged over the last 13 ORPs of the simulations [Simulation 1 (top left-hand panel), Simulation 2 (top
right-hand panel), Simulation 3 (bottom left-hand panel) and Simulation 4 (bottom right-hand panel)]. The solid line indicates the α calculated from Reynolds
and gravitational stresses, the dashed line indicates αcool calculated using the mid-plane cooling time, while the dotted line indicates αcool calculated from the
vertically averaged cooling time. For illustrative purposes, we also show the stress tensor component due to GI αgrav, indicated by the dot–dashed line, and the
the stress tensor component due to the artificial viscosity αart.

viscosity (triple-dot–dashed lines), the Reynolds stresses dominate
over the gravitational stresses. If we were able to reduce the numer-
ical viscosity significantly we would expect, as suggested by Zhu
et al. (2009b) and Rice & Armitage (2009), that the effective grav-
itational α in the q < 0.5 simulations would continue decreasing to
very small values in the inner disc, potentially leading to a pile-up
of mass and periodic FU Orionis-like outbursts if the temperature
in the these inner regions becomes high enough for MRI to operate
(Armitage et al. 2001; Zhu et al. 2009b).

4.1.3 Are the discs quasi-steady?

Although the mismatch between the αtotal profiles and the αcool

profiles in the higher mass simulations (see Fig. 4) suggests the
presence of non-local transport, it does not tell us whether these
simulations reach quasi-steady states or not. To identify how quasi-

steady the discs are, the discs’ temperature profiles and Toomre
instability profiles are averaged over the final 13 ORPs. The standard
deviation about this mean is then measured, and the normalized
quantities σT /T and σQ/Q are calculated for each radius (Fig. 5).
This shows the deviation of the disc from quasi-steady, thermal
equilibrium (through σT /T ) and its deviation from a marginally
stable, self-regulated state (through σQ/Q).

Simulation 1 (qinit = 0.25, solid line in Fig. 5) shows the low-
est temperature deviation, maintaining thermal balance to within
around 5 per cent except in the outer regions, where this is mainly
due to the reduced value of T . A deviation of 1 K from a mean of
10 K will be more significant than from a mean of 100 K. This is
also true for qinit = 0.5 (dotted line in Fig. 5), although the amplitude
increases further at larger radii. The lower mass simulations (qinit <

0.5) are therefore not only local, but also settle into long-lived,
quasi-steady states.

Figure 5. Variation in the mean temperature profile (left-hand panel) and the mean Toomre instability profile (right-hand panel) for the M∗ = 1 M	 simulations
[Simulation 1 (solid lines), Simulation 2 (dotted lines), Simulation 3 (dashed lines) and Simulation 4 (dot–dashed lines)], averaged over the last 13 ORPs.
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α in Radiative self-gravitating discs 1001

The temperature profiles for the high-mass (qinit > 0.5) discs
(dashed and dash–dotted lines in Fig. 5) show significant variation
(varying by as much as 60 per cent in the worst case), illustrating
that these discs not only have non-local transport, but also do not
attain well-defined, long-lived quasi-steady states. This implies that
in these discs – at any given location – there will be periods when the
dissipation rate exceeds the local cooling rate (causing the temper-
ature to rise) followed by a period when the cooling rate dominates.
This is presumably inherently linked to the global nature of the
energy transport in these simulations. Energy is being transported
non-locally, and is hence not being generated and dissipated at the
same location, and therefore it is not possible for the local heating
and cooling rates to balance at all locations in the disc.

Fig. 5 also shows deviations from uniform Q, with again the
lower mass discs showing the lowest deviation in the inner 50 au,
averaging around 10 per cent. Simulations 3 and 4 (qinit > 0.5)
again vary much more significantly, peaking at around 40 per cent.
These results show that for qinit > 0.5 a disc is unable to settle into
a long-lived, marginally stable, self-gravitating state.

4.1.4 Is the transport non-local?

Although the above suggests that there is non-local transport in the
higher mass discs, we have not yet convincingly shown that this is
indeed the case. One way to do this is to compare the pattern speed
of the dominant spiral mode, �p, with the angular speed of the
disc material itself, �. As shown by Balbus & Papaloizou (1999),
transport through GI can only be described in viscous terms when
�p = �. When �p �= �, the non-local transport terms become more
significant. Waves producing non-local transport therefore have a
pattern speed that deviates significantly from corotation (Balbus &
Papaloizou 1999; Cossins et al. 2009). Equivalently, the non-local
transport fraction ξ must deviate significantly from zero (Cossins
et al. 2009), where

ξ =
∣∣� − �p

∣∣
�

. (19)

|�p − �| can be calculated from the dispersion relation for finite
thickness Keplerian discs (Bertin 2000; Cossins et al. 2009)

m2
(
�p − �

)2 = c2
s k

2 − 2πG�|k|
1 + |k|H + �2. (20)

The factor of 1+ |k|H is required as the disc thickness dilutes the
vertical gravitational potential. In order to determine the dominant
modes, the radial and azimuthal wavenumbers (k, m) are spectrally
averaged for each radius (i.e. the average is weighted by the squared
amplitude in each mode), and hence �p is calculated for each radius,
which allows the calculation of ξ (r), shown in Fig. 6 (where we
have averaged ξ over the last 13 ORPs). As can be seen, ξ increases
with increasing disc mass, exceeding 1 for qinit ≥ 1, illustrating that
non-local transport becomes important as the disc-to-star mass ratio
exceeds 0.5. The most massive disc (qinit = 1.5) undergoes rapid
evolution to adjust its q towards 0.85 with a flat surface density
profile, ensuring that ξ is also flat out to larger radii (exceeding
the qinit = 1 disc outside 40 au). The peak values of ξ at around
20–30 au are consistent with the peak deviations of αtotal from αcool,
lending weight to the conclusion that non-local effects transport
energy from the inner disc to the outer disc.

4.2 The influence of stellar mass

To disentangle the influences of disc mass and disc-to-star mass
ratio, two sets of simulations are to be analysed together. The first

Figure 6. The non-local transport fraction, ξ , for the M∗ = 1 M	 simula-
tions [Simulation 1 (solid lines), Simulation 2 (dotted lines), Simulation 3
(dashed lines) and Simulation 4 (dot–dashed lines)], averaged over the last
13 ORPs.

set of discs has qinit = 0.25 (Simulations 1, 5, 6 and 7), but has
different stellar masses. The previous section showed that the α-
approximation holds well for Simulation 1. If disc-to-star mass ratio
is the key property that determines the nature of angular momentum
transport (and not the local sound speed), then the α-approximation
should be equally effective for all simulations in this first set.

The second set will analyse the discs with qinit = 1 (Simulations
3, 8 and 9). If q is key to the nature of angular momentum trans-
port, then it should be expected that non-local transport should be
exhibited by all the discs in the second set.

4.2.1 The qinit = 0.25 discs

4.2.1.1 General evolution. As with the previous set of simulations,
the discs undergo an initial settling phase, and become marginally
stable after a period of cooling (Fig. 7). The low initial value of q
is relatively unchanged in all simulations, with the most massive
disc changing mass by less than 20 per cent (see Fig. 8, bottom
right-hand panel). All four simulations share similar aspect ratios –
this follows from the result that the aspect ratio H/r is proportional
to q during marginal instability (cf. Lodato 2007). For this to be
possible, the surface density profiles must therefore increase with
disc mass, as can be seen in the top left-hand panel. However, the
radial dependence of the surface density is roughly the same for all
discs. This in turn ensures that the more massive discs are hotter
(bottom left-hand panel), with similar radial temperature profiles
for all four simulations.

4.2.1.2 The α-approximation. Repeating a similar analysis of α as
was done for the M∗ = 1 M	 discs, it can be seen (Fig. 9) that the
α-approximation holds with increasing stellar mass, confirming that
the key parameter is the disc-to-star mass ratio, q, which is held con-
stant here. A local approximation therefore appears to be suitable
for systems in which qinit < 0.5. Simulation 7 in which M∗ = 5 M	
suggests that there may be some dependence on the stellar mass
as the calculated αtotal is somewhat lower than the expected αcool

inside 30 au. The aspect ratio of this disc is, however, quite flat with
H/r > 0.1 for a much wider radial range than in the other simu-
lations. The region where the aspect ratio exceeds 0.1 corresponds
with the region where αtotal deviates from the expected values, con-
sistent with previous analysis (Lodato & Rice 2004) suggesting that
the local approximation is suitable when H/r < 0.1.
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1002 D. Forgan et al.

Figure 7. Images showing the surface density structure of Simulations 5 (top left-hand panel), 1 (top right-hand panel), 6 (bottom left-hand panel) and 7
(bottom right-hand panel) after 27 ORPs. The discs shown have initial mass ratios of q=0.25, with star masses of 0.5, 1, 2 and 5M	, respectively.

Figure 8. Azimuthally averaged radial profiles from the qinit =0.25 simulations [Simulation 5 (solid line), Simulation 1 (dotted lines), Simulation 6 (dashed
lines) and Simulation 7 (dot–dashed lines)] after 27 ORPs. The figures show the time average of each variable (taken from the last 13 ORPs). The top left-hand
panel shows the surface density profile, the top right shows the aspect ratio, the bottom left-hand panel shows the mid-plane temperature, and the right-hand
panel shows the disc-to-star mass ratio, q, as a function of time. Artificial viscosity dominates inside 10 au, so data from inside this region is ignored.

4.2.1.3 The local and quasi-steady assumptions. Fig. 10 also
shows that, for qinit = 0.25, the temperature fluctuates by less than
10 per cent and Q fluctuates by 10–20 per cent, over the final 13
ORPs. This illustrates that all these discs settle into quasi-steady
states that are marginally stable. The non-local transport fraction

(Fig. 11) also remains low. The seemingly high ξ for M∗ = 0.5 M	
is due to its slightly elevated mass ratio in comparison to the other
discs (Fig. 8, bottom right-hand panel). This, coupled with its com-
paratively lower sound speed and lower surface density (with the
scaleheight kept constant) will boost the non-local transport fraction
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α in Radiative self-gravitating discs 1003

Figure 9. The α parameter for the qinit =0.25 simulations [Simulation 5 (top left-hand panel), Simulation 1 (top right-hand panel), Simulation 6 (bottom
left-hand panel) and Simulation 7 (bottom right-hand panel)], averaged over the last 13 ORPs of the simulations. The black line indicates the α calculated from
the Reynolds and gravitational stresses (αtotal), the dashed line indicates αcool calculated using the mid-plane cooling time at that radius, and the dotted line
indicates the αcool calculated from the vertically averaged cooling time.

Figure 10. Variation in the mean temperature profile (left-hand panel) and the mean Toomre instability profile (right-hand panel) for the q=0.25 simulations
[Simulation 5 (solid line), Simulation 1 (dotted lines), Simulation 6 (dashed lines) and Simulation 7 (dot–dashed lines)], averaged over the last 13 ORPs.

Figure 11. The non-local transport fraction for the qinit = 0.25 simulations
[Simulation 5 (solid line), Simulation 1 (dotted lines), Simulation 6 (dashed
lines) and Simulation 7 (dot–dashed lines)], averaged over the last 13 ORPs.

to a higher value than expected ab initio. However, its maximum
value is still below that of the qinit = 0.5 disc studied in this analysis
(Simulation 2), so this is not inconsistent with expectations.

4.2.2 The qinit = 1 discs

4.2.2.1 General evolution. Fig. 12 shows the profiles of the qinit =
1 discs, averaged over the final 13 ORPs. The initial stellar masses
are M∗ = 0.5, 1 and 2 M	. The discs grow hotter with increasing
disc mass (with a flatter temperature profile), while maintaining a
similar surface density profile. This results in the higher disc mass
simulations obtaining a flatter aspect ratio (top right-hand panel).

4.2.2.2 The α-approximation. Fig. 13 shows that all the discs have
similar qualitative α profiles, with αtotal being different to what
would be expected if the local approximation were appropriate
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Figure 12. Azimuthally averaged radial profiles from the qinit =1 simulations [Simulation 8 (solid line), Simulation 3 (dotted lines) and Simulation 9 (dashed
lines)]. The figures show the time average of each variable, taken from the last 13 ORPs. The top left-hand panel shows the surface density profile, the top
right-hand panel shows the aspect ratio, the bottom left-hand panel shows the mid-plane temperature and the bottom right-hand panel shows the disc mass ratio
q as a function of time. Artificial viscosity dominates inside 10 au, so data from inside this region is ignored.

Figure 13. The α parameter [Simulation 8 (top left-hand panel), Simulation 3 (top right-hand panel) and Simulation 9 (bottom right-hand panel)], averaged
over the last 13 ORPs of the simulations. The black line indicates the α calculated from Reynolds and gravitational stresses, the dashed line indicates the α

calculated by the mid-plane cooling time at that radius and the dotted line indicates the α calculated from the vertically averaged cooling time. The bottom
right-hand panel shows the non-local transport fraction for the qinit = 1 simulations [Simulation 8 (solid line), Simulation 3 (dotted lines) and Simulation 9
(dashed lines)], averaged over the last 13 ORPs.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 410, 994–1006

 at U
niversity degli Studi M

ilano on February 3, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


α in Radiative self-gravitating discs 1005

Figure 14. Variation in the mean temperature profile (left-hand panel) and the mean Toomre instability profile (right-hand panel) for the q=1 simulations
[Simulation 8 (solid line), Simulation 3 (dotted lines) and Simulation 9 (dashed lines)], averaged over the last 13 ORPs.

(αcool). The value of the enhancement appears to increase with in-
creasing disc mass, showing that while q dictates whether or not a
disc deviates from the local approximation, the disc mass Md con-
trols the strength of this deviation (through its influence on � and
ultimately the disc thickness). All three discs have aspect ratios in
excess of 0.1 for most of their radial extent, again consistent with
previous predictions for non-locality (Lodato & Rice 2004).

4.2.2.3 The local and quasi-steady assumptions. Fig. 14 shows that
the quasi-steady approximation also appears to be violated. The
temperature fluctuates at values of ∼20 per cent and higher, with
similar fluctuations in Q. The non-local transport fraction (bottom
right-hand panel in Fig. 13) in all three cases is ∼1 or larger showing
that the transport is very non-local.

5 C O N C L U S I O N S

This work has studied in detail whether a local, viscous approxi-
mation can accurately model the angular momentum transport in
realistic, radiative, self-gravitating protostellar discs. For the vis-
cous approximation to hold, the angular momentum transport must
be local. If the analytical results of Gammie (2001) and others also
hold (which calculate the stresses using the assumption that the dis-
sipation rate matches the local cooling rate), the discs must also be
in approximate thermodynamic equilibrium.

A series of simulations using SPH with radiative transfer were
carried out, and the effective viscosity generated by the GI was cal-
culated directly from the Reynolds and gravitational stresses in the
simulated discs. This was then compared with the expected viscos-
ity, based on the assumption of local thermodynamic equilibrium,
and the results analysed as a function of increasing disc-to-star mass
ratio and increasing stellar mass.

The results show that if the discs have an initial disc-to-star mass
ratio qinit <0.5, and are geometrically thin (H/r ≤ 0.1), the lo-
cal viscous approximation performs well in calculating the angular
momentum transport. Such discs are shown to have a low non-local
transport fraction (Cossins et al. 2009), moderate azimuthal Fourier
mode amplitudes up to m ∼ 8 (with increased power at m = 2), and
maintain a strictly self-regulated, quasi-steady state (Lodato & Rice
2004, 2005). It has also been demonstrated that increasing stellar
mass (while keeping q constant) does not significantly affect the ef-
ficacy of the viscous approximation, holding over at least an order
of magnitude in stellar mass. There is, however, some suggestion
that there is some dependence on stellar mass with the M∗ = 5 M	
simulation showing some evidence for non-local transport corre-
sponding to regions of the disc where H/r > 0.1.

However, if the disc-to-star mass ratio qinit > 0.5, the azimuthal
m = 2 spiral modes begin to dominate. The strength of these global
spiral waves introduces strong non-local torques, and are also sub-
ject to transient burst events. The disc stresses calculated show that
locally, in a time-averaged sense, the amount of energy released
through cooling does not match the thermal energy generated by
the instability. It is likely that this excess energy is transported by the
low-m mode global waves to larger (r ≥ 40 au) radii where it can
be lost through radiative cooling. This is a clear indication of global
effects and is confirmed by their high non-local transport fractions
(Cossins et al. 2009). Together, these violate the assumptions made
to satisfy the viscous approximation.

In summary, semi-analytic models are justified in using the vis-
cous approximation to model realistic self-gravitating protostellar
discs, provided that the parameter space studied does not include
discs that are too massive or geometrically thick. The current semi-
analytic models (Clarke 2009; Rice & Armitage 2009) in which
the mid-plane cooling time is used to determine the effective grav-
itational α will, however, certainly underestimate the value of the
effective viscosity in massive, geometrically thick discs.
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