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Abstract. The nucleus of the Seyfert galaxy NGC 1068 is believed to host a supermassive black hole. Evidence for the presence
of a massive central object is provided by water maser emission, which displays a linear pattern in the sky, suggestive of a
rotating disk. The rotating disk hypothesis is further strengthened by the declining shape of the derived rotation curve. Similar
maser emission from NGC 4258 has led to a reliable estimate of the mass of the central black hole, because in this case the
rotation curve is Keplerian. In the case of NGC 1068 the rotation curve traced by the water maser is non-Keplerian. In this paper
we provide an interpretation of the non-Keplerian rotation in NGC 1068 by means of a self-gravitating accretion disk model.
We obtain a good fit to the available data and derive a black hole mass M• ≈ (8.0 ± 0.3) × 106 M�. The resulting disk mass is
comparable to the black hole mass. As an interesting by-product of our fitting procedure, we are able to estimate the viscosity
parameter, which turns out to be α ≈ 10−2, in line with some theoretical expectations.
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1. Introduction

There is now convincing evidence that most AGNs host a su-
permassive black hole, with masses ranging from 107 M� to
109 M�. The gravitational energy extracted from an accretion
disk around such black holes is generally considered to be the
main source of the AGN luminosity. Determining the mass of
the central black hole M• is thus one important goal of stud-
ies of AGNs. This has received greater attention recently, in
a more general context, because correlations have been found
between M• and the global properties of the host galaxy, such
as its mass or luminosity (Magorrian et al. 1998) or its central
velocity dispersion (Ferrarese & Merritt 2000; Gebhardt et al.
2000a).

The central point mass M• can be measured by differ-
ent methods. The analysis of HST optical spectra in terms of
stellar dynamical models (see, for example, Gebhardt et al.
2000b) and the study of gas kinematics from HST spectra
(van der Marel & van den Bosch 1998) probe the nuclear gravi-
tational field of nearby galaxies at distances typically of the or-
der of ≈100 pc from the center. M• can be estimated also from
reverberation mapping of the broad line region, which is able to
probe the gravitational field at smaller scales. However, rever-
beration mapping is not applicable to Type II Seyfert galaxies,
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like NGC 1068, in which the broad line region is hidden from
our line of sight. An independent powerful tool to obtain reli-
able estimates of M• is provided by the study of the Doppler
shift of water maser emission lines (when available). This lat-
ter method provides the most reliable determinations of M•,
because it probes the gravitational field at very small distances
(less than 1 pc) from the center. The masing spots are often
observed to trace a linear structure and show a declining rota-
tion curve. In the case of NGC 4258 (Miyoshi et al. 1995), the
rotation curve is remarkably Keplerian and leads to a robust
determination of M• ≈ 3.9 × 107 M�.

NGC 1068 is one of the best studied Seyfert galaxies. It is
considered to be the prototypical Type II Seyfert, in which the
central engine is believed to be hidden from our line of sight by
a dusty structure. This obscuring structure, now resolved with
VLBA radio continuum observations (Gallimore et al. 1997),
appears to have a disk-like rather than a toroidal shape. The
bolometric luminosity of the nucleus is Lbol ≈ 8 × 1044 erg/s
(Pier et al. 1994). If we adopt for the accretion efficiency a
value of η = 0.06, appropriate for a non-rotating black hole, the
resulting mass accretion rate is Ṁ ≈ 0.235 M�/yr. Throughout
this paper we will assume that the distance to NGC 1068 is
14.4 Mpc (so that 1 mas = 0.069 pc).

Water maser emission is observed from the nucleus of
NGC 1068 extending out to a radius r ≈1 pc (Greenhill et al.
1996; Greenhill & Gwinn 1997). This emission is believed to
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come from a rotating, almost edge-on accretion disk, possibly
associated with the disk seen in VLBA continuum (Gallimore
et al. 1997). The striking feature of this maser emission is that,
in contrast with the case of NGC 4258, the rotation curve of the
masing spots is clearly non-Keplerian. Greenhill et al. (1996)
report a best fit to the data with a circular velocity V ∝ r−0.31.
Possible causes for the sub-Keplerian rotation may be: a) the
maser may not be associated with a pure rotating structure, be-
cause an outflow is present; b) radiation pressure may reduce
the rotational velocity (Pier & Krolik 1992a); c) the source of
the gravitational field may be extended, including a nuclear
stellar cluster (as proposed by Kumar 1999) or the accretion
disk itself.

In this paper we interpret the non-Keplerian rotation in
NGC 1068 in terms of a self-gravitating accretion disk model
(Bertin & Lodato 1999, hereafter BL). The disk is assumed
to be self-regulated at the threshold of Jeans instability. The
gravitational field is computed by solving the relevant Poisson
equation including both the central point-like object and the
disk. The resulting rotation curve is characterized by an inner
Keplerian curve connected with an outer asymptotically flat ro-
tation curve.

We have fitted the Very Long Baseline Interferometry
(VLBI) data of Greenhill & Gwinn (1997) with our theoret-
ical models. The fit is very good. From the results of the
fit we can derive the value of the central black hole mass,
M• ≈ 8 × 106 M�, roughly one half of the value that would
be inferred from a Keplerian fit (from which one would obtain
M• ≈ 1.5 × 107 M�), basically because we attribute part of
the gravitating mass to the disk. As an interesting by-product
of our modeling procedure, we are able to derive the value of
the viscosity parameter α that regulates the accretion process,
which turns out to be in agreement with some theoretical
expectations.

The paper is organized as follows. In Sect. 2 we describe
the role played by the disk self-gravity in the outer parts of
AGNs. In Sect. 3 we report the observations of the nucleus of
NGC 1068, focusing on its geometry and kinematics. In Sect. 4
we describe our fit to the water maser data. In Sect. 5 we dis-
cuss some possible alternatives to the model presented in this
paper. In Sect. 6 we draw our conclusions. In Appendix A we
describe in some detail the statistical significance of the fitting
procedure adopted.

2. Preliminary considerations on the influence
of the disk self-gravity in AGN accretion disks

The disk self-gravity may affect several aspects of the dynamics
of accretion disks: a) gravitational instabilities are expected to
modify the energy and angular momentum transport in the disk,
perhaps being the main tool able to drive accretion at large radii
(Lin & Pringle 1987); b) the vertical gravitational field associ-
ated with the disk modifies the vertical hydrostatic equilibrium
(Paczyński 1978; Bardou et al. 1998); c) the radial gravitational
field of the disk may lead to deviations from Keplerian rotation
(BL).

2.1. Self-regulation of Jeans instability

The onset of gravitational instabilities in a fluid disk is con-
trolled by the well-known axisymmetric stability parameter Q:

Q =
csκ

πGσ
, (1)

where cs is the thermal speed, κ is the epicyclic frequency, and
σ is the disk surface density. For Q < 1 the disk is unstable. As
Q is proportional to the thermal speed, a hot enough disk is ex-
pected to be free from the effects related to the disk self-gravity,
while, on the other hand, if the disk is cold enough to begin
with, it cannot survive long in such a condition and is likely to
be eventually characterized by a value of Q close to unity, as a
result of a self-regulation mechanism, studied and recognized
especially in the field of galactic dynamics (see Bertin & Lin
1996). Self-regulation has been sometimes taken into account
also in the context of accretion disks (Lin & Pringle 1987; Huré
2000). The inner parts of the accretion disk in AGNs are very
hot, so that the disk self-gravity is not expected to play a role
there. On the other hand, it is easy to show that the outer colder
parts of the disk may be subject to gravitational instabilities.
Consider the outer region of the α-disk solution by Shakura &
Sunyaev (1973), for the case in which gas pressure and free-
free absorption dominate. The radial dependence of Q in this
case is:

Q ≈ 5.6 × 103α7/10 Ṁ−11/20
26 M−3/4

8 r̂−9/8, (2)

where we have scaled the basic physical parameters to typical
AGN values, so that Ṁ26 is the mass accretion rate in units of
1026 g/s ≈ 1.57 M�/yr, M8 is the black hole mass in units of
108 M�, and r̂ is the radius in units of the Schwarzschild radius
of the black hole R• = 2GM•/c2; α is the dimensionless vis-
cosity parameter entering the Shakura-Sunyaev prescription for
viscosity. The value of Q thus decreases rapidly with increas-
ing radius and becomes equal to unity at r̂Q = rQ/R• ≈ 103

(for M8 = Ṁ26 = 1 and α = 0.01), i.e. at rQ ≈ 10−2 pc.
Kumar (1999) has carried out a similar analysis in the case in
which the opacity is dominated by metal grains and has ba-
sically confirmed the above estimate, finding that Q ≈ 1 at
rQ ≈ 3 × 10−3 pc, for the same input parameters.

The argument of self-regulation suggests that the outer
disk, beyond rQ, be characterized by Q ≈ 1.

2.2. Impact of the disk self-gravity on the vertical
structure

If we consider the modifications of the vertical hydrostatic
equilibrium by the disk self-gravity, a simple way to address
the problem is to compare the vertical lengthscales derived in
the limiting cases of non-self-gravitating disk and of fully self-
gravitating disk. In the non-self-gravitating case we have:

hnsg =
cs

Ω
, (3)

while in the self-gravitating case:

hsg =
c2

s

πGσ
· (4)
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The disk self-gravity will then modify the vertical structure of
the disk if:

hsg

hnsg
=

csΩ

πGσ
≈ Q ≈ 1, (5)

because κ is related to Ω by a numerical factor (dependent on
the rotation curve) close to unity. Therefore, a discussion of
the vertical equilibrium also leads to the conclusion that an ac-
cretion disk is expected to be self-gravitating if it extends to
radii larger than rQ. This simplified analysis is confirmed by
the more detailed study presented earlier by us (BL, Appendix),
where a convenient analytical expression for the disk thickness,
in the case in which both the disk and the central object are
taken into account, is provided:

h =
c2

s

πGσ
π

4Q2(2Ω2/κ2 − 1)

×

√

1 +
8
π

Q2
(

2Ω2

κ2
− 1

)
− 1

 . (6)

2.3. Modification of the rotation curve

In this paper we will refer to the self-gravitating steady-state
disk model of BL, who considered disks that are self-regulated
with respect to Jeans instability, so that Q = Q̄ ≈ 1. The
gravitational field of the disk is computed by solving self-
consistently the relevant Poisson equation (see Eq. (4) of BL).

The basic dynamical feature of such self-regulated disk
model is that at large radii the rotation curve V(r) departs from
the Keplerian profile, approaching an asymptotically flat ro-
tation curve. The typical lengthscale that marks the transition
from Keplerian to self-gravitating regime is:

rs = 2GM•
(

Q̄
4

)2 (
GṀ
2α

)−2/3

· (7)

Deviations from Keplerian rotation occur already at radii of the
order of a fraction of rs; in fact, we can have d lnV/d lnr =
−0.4 at r = 0.1rs. For r � rs, the mass of the disk grows
linearly, and the surface density behaves as σ ∝ 1/r. If we
estimate the value of rs, assuming the typical AGN values for
the relevant parameters used earlier (M8 = Ṁ26 = 1 and α =
0.01), we find that rs is of the order of a few pc. Interestingly,
we find that deviations from Keplerian rotation are expected
to occur exactly at a distance from the center probed, in the
case of NGC 1068, by the water maser emission. In contrast,
in the case of NGC 4258, a similar analysis would lead to an
estimated rs � 1 pc, consistent with the Keplerian rotation
curve observed by Miyoshi et al. (1995).

Based on the arguments presented in this section, we there-
fore conclude that, if the water maser emission from NGC 1068
traces the outer parts of the nuclear accretion disk, such disk is
likely to be self-gravitating for what concerns its vertical struc-
ture and transport phenomena, and it should display significant
deviations from Keplerian rotation.

3. The masing spots in NGC 1068: Geometry
and kinematics

In this section we will discuss the geometry of the maser emis-
sion in NGC 1068, for which different interpretations have been
given.

3.1. Disk or torus?

Greenhill et al. (1996) observed the “red-shifted” water maser
emission from NGC 1068, finding that it traces a linear pat-
tern in the plane of the sky, inclined by approximately 45◦ with
respect to the direction of the radio jet. The misalignment be-
tween the radio axis and the maser emission led to an early
interpretation of the maser spots as arising from the upper limb
of a nearly edge-on torus, characterized by a rather large aspect
ratio (see the schematic representation in Fig. 1). According
to this interpretation, we would expect that the corresponding
“blue-shifted” emission should come from the dashed region
shown in Fig. 1. On the other hand, subsequent observations
(Greenhill & Gwinn 1997) showed that the emission traces a
linear pattern from the “red-shifted” to the “blue-shifted” emis-
sion, hence arguing in favor of a thin disk interpretation. The
misalignment between the disk axis and the radio jet is not un-
common in AGNs (see Schmitt et al. 2002) and may be due to
a variety of physical mechanisms (for example, a warp in the
outer disk; Pringle 1997).

3.2. Geometry of the disk emission

The rotation curve of the maser spots can be divided in two
different regions: 1) at small impact parameter the masers show
an apparently rising rotation curve; 2) starting from a radial
distance ≈0.6 pc from the center the rotation curve declines,
following a sub-Keplerian profile.

The natural interpretation of the declining part of the rota-
tion curve is that it arises from material that moves parallel to
our line of sight (i.e. that lies on a disk diameter perpendicular
to the line of sight). The best argument in favor of this inter-
pretation is that maser amplification is largest for material that
lies close to the line of the nodes. On the other hand, the ris-
ing part of the observed “rotation curve” is thought to originate
from one quarter of the disk at the inner maser disk radius, so
that the rising curve is an effect of velocity projection along the
line of sight (see also Miyoshi et al. 1995). According to this
interpretation, the inner radius of the maser disk is located at
≈0.6 pc and the outer disk radius is at ≈1 pc.

Baan & Hashhick (1996) claimed to have observed a drift in
the velocity of the water masers, indicating that the maser spots
are subject to large accelerations, incompatible with the disk
interpretation, according to which the maser centripetal accel-
eration should be perpendicular to the line of sight. Those large
accelerations have not been confirmed by subsequent work by
Gallimore et al. (2001), who, monitoring the velocity drift, find
that the maser spots between 0.6 pc and 1 pc should lie within
θ . 2◦ from the line of nodes.

In the following we will therefore assume that the water
maser emission comes from an edge-on thin disk extending
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Fig. 1. Schematic representation of the lo-
cation of the maser emission according to
the torus interpretation. The three elliptical
patches show the location of the observed
“red-shifted” masers, of the predicted “blue-
shifted” emission, based on the torus inter-
pretation, and of the observed “blue-shifted”
emission (see also Greenhill et al. 1996).

from 0.6 pc to 1 pc and that the declining part of the rotation
curve comes from material that lies within 2◦ from the line of
nodes.

4. Non-Keplerian rotation as an effect of the disk
self-gravity

4.1. Fit procedure and results

Here we will fit the kinematical data of NGC 1068 by using
the completely self-regulated disk model of BL (in which, for
simplicity, the self-regulation prescription is taken to hold at
all radii). Actually, we expect the inner disk to be hotter and
characterized by a higher value of the stability parameter Q,
so that a partially self-regulated disk model (also described in
BL) would be more appropriate. In Sect. 4.3 we will justify the
consistency of the simpler model adopted below.

The rotation curve of the completely self-regulated model
by BL is determined when one specifies the radial lengthscale
rs (defined in Eq. (7)), the velocity scale V0, defined as:

V2
0 =

8

Q̄2

(
GṀ
2α

)2/3

, (8)

and a dimensionless parameter (called ξ), which is proportional
to the net angular momentum flux in the disk J̇. We will fix
this parameter by requiring the no-torque condition at the ra-
dius corresponding to the innermost stable orbit around the
black hole. However, the specific choice of ξ is not critical
for our conclusions, because we are exploring the disk prop-
erties at large radii, where the effects of the inner boundary
condition are negligible. Therefore, we are left with two free
dimensional scales, that are obtained by fitting the available
data (from Greenhill & Gwinn 1997).

Note that, from the definitions of rs and V0, we have that:

V2
0 =

GM•
rs
· (9)

Therefore, from the value of rs and V0 we can estimate M• and
Ṁ/α. In addition, once these quantities are specified, from the
models of BL we can obtain the disk mass.

In our fit, we have restricted our attention to the data of the
declining part of the rotation curve of the “red-shifted” maser
(i.e. the data points with r > 0.6 pc), because these data are
directly related to the gravitational potential. In contrast, the
velocity data points at r < 0.6, according to the interpretation
of the masing disk geometry presented in Sect. 3.2, only reflect
the rotation at the inner radius of the masing disk and do not
carry any additional information about the mass distribution.
We have assumed that the systemic velocity is 1126 km s−1

(Greenhill & Gwinn 1997). The uncertainty in the position of
the maser spots in the Greenhill & Gwinn (1997) data is of the
order of ≈50 µas. The spectral resolution of the VLBI data is
.1 km s−1. However, the velocity uncertainty ∆V is expected
to be higher due to the uncertainties in the estimate of the sys-
temic velocity and of the magnitude of turbulent motion in
the disk. We will assume that these uncertainties sum up to
≈10 km s−1 (see also discussion in Appendix A). All fits are
obtained with a χ-square minimization. The result of the fit,
shown in Fig. 2, is satisfactory. The resulting reduced χ-square
is χ̃2 = 0.55, with 48 degrees of freedom. The fit parameters
are V0 = (110.4 ± 0.3) km s−1 and rs = (2.82 ± 0.1) pc, where
the uncertainties define the 68% confidence level and are de-
rived from the Hessian of the χ-square. The resulting black
hole mass is M• = (8.0 ± 0.3) × 106 M� and the disk mass
is approximately equal to the black hole mass. We also obtain
Ṁ = (28.1±0.2) α M�/yr. If we estimate Ṁ from the bolomet-
ric luminosity (assuming an accretion efficiency η = 0.06), we
obtain α ≈ 8.3 × 10−3, a reasonable number.

The best-fit curve resulting from the self-gravitating disk
model is not a power-law. However, Greenhill et al. (1996)
were able to obtain a good fit to the data by assuming a ro-
tation curve of the form V ∝ r−0.31. If we compute the quantity
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Fig. 2. Fit to the rotation curve from the wa-
ter maser emission by a self-gravitating accre-
tion disk model. Data from Greenhill & Gwinn
(1997). The small panel shows a blow up of the
declining part of the rotation curve together with
the best fit obtained by assuming Keplerian rota-
tion. The error bars reported here include uncer-
tainties beyond the actual VLBI spectral resolu-
tion (see text).

d lnV/d lnr for our best fit model, we find that it ranges from
−0.35 at the inner edge of the disk to −0.30 at the outer edge.

We have also performed a fit by assuming a Keplerian rota-
tion curve. The quality of the fit is definitely worse. The mini-
mum χ-square in this case is in fact χ̃2 = 1.557 and is formally
rejected at the 95% confidence level. The small panel of Fig. 2
compares the two models: the Keplerian best-fit curve fails to
reproduce both the highest and the lowest part of the rotation
curve. The resulting best-fit value of the black hole mass in the
Keplerian fit is M• ≈ (1.50±0.02)×107 M�. Note that the total
mass (disk + black hole) of our self-gravitating best fit model
is roughly the same as the black hole mass of the Keplerian
fit. Therefore, a non-self-gravitating fit, which attributes all the
mass to the central object, gives the correct value for the total
mass, but fails to provide the correct slope of the rotation curve.

One consequence of the smaller value of the black hole
mass derived from the self-gravitating disk model is that the
corresponding Eddington luminosity of the black hole is pro-
portionally reduced, hence leading to a higher Eddington ratio
for the observed central object. In fact, based on the results
of our fit, we derive that Lbol/LEdd = 0.77, to be compared
to the value Lbol/LEdd = 0.41 obtained from the Keplerian fit.
Note, however, that the Eddington luminosity is not well de-
fined when the mass is not spherically distributed.

Some data points (at approximately 0.8 pc from the cen-
ter) are not well fitted by neither the self-gravitating nor the
Keplerian model. The velocities of these points display a higher
slope with respect to that predicted by the best fit model. This
discrepancy could be due to the fact that the corresponding
masing spots lie on a spiral arclet, on a pattern not perfectly

perpendicular to our line of sight, therefore leading to a smaller
projected velocity.

The statistical significance of the above results, and in par-
ticular of the uncertainties on the parameters derived from the
fit, depends on the assumed uncertainty in the observed veloc-
ities, which may not be easy to estimate. In Appendix A we
discuss in detail this dependence and how to discriminate be-
tween the different models.

4.2. Properties of the best-fit disk model

Figure 3 shows the main physical properties of the best-fit
disk model: the surface density profile, the cumulative mass,
the equivalent thermal speed, and the aspect ratio (h/r), as de-
rived from the self-regulated disk models of BL. The cumula-
tive disk mass inside the outer radius of the disk is Mdisk(rout) ≈
(8.6 ± 0.6) × 106 M�. Note that at large radii σ ∝ 1/r (also ap-
parent from the approximately linear growth of the cumulative
mass), with significant deviations at r . 0.6 pc. The equiva-
lent thermal speed of the self-regulated model is approximately
constant at large radii, as expected. The number density of H2

molecules in the outer disk is in the range 1 − 5 × 108 cm−3,
compatible with the conditions for maser emission and con-
sistent with models of circumnuclear gas heated by the AGN
(Neufeld et al. 1994; Pier & Voit 1995). X-ray observations
(Bianchi et al. 2001) and VLBA radio continuum observations
(Gallimore et al. 1997) provide lower limits for the electron
number density in the disk/torus to be ne & 3 × 105 cm−3, and
ne & 106.8 cm−3, respectively.
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Fig. 3. Surface density profile (upper left), cumulative mass (upper right), equivalent thermal speed (lower left), and aspect ratio (lower right)
of the best-fit accretion disk model to the maser data of NGC 1068. The dotted line in the surface density plot is the curve with σ ∝ 1/r that
matches the asymptotic behavior at large radii.

4.3. Consistency of the self-regulated disk assumption

Starting from Eq. (2), we can compute the radius at which
Q is expected to become of the order of unity in a non-self-
gravitating model. If we refer to the physical parameters found
from the fit in the previous section (i.e., M• = 8 × 106 M�,
α = 8.3 × 10−3, and Ṁ = 0.23 M�/yr), we find rQ ≈ 10−3 pc.
The onset of the self-regulation mechanism is therefore ex-
pected to take place very deep inside the disk, with respect to
the radial distances on which we focus here, so that the use of
a simple completely self-regulated model made in the previous
Section is justified.

To strengthen this argument, we have also perfomed a fit by
assuming the partially self-regulated disk model, described in
BL, in which the profile of the stability parameter Q is assumed
to decrease according to Eq. (2) for r � rQ and to be flat at
r � rQ, with rQ = 10−3 pc. No significant differences are found
with respect to the completely self-regulated case.

5. Alternative scenarios

In this Section we discuss some possible models, alterna-
tive to the self-gravitating disk picture, developed to explain
the non-Keplerian curve in NGC 1068. In particular, we will

concentrate on the effect of a nuclear stellar cluster and on the
effect of radiation pressure. Other models also exist (for exam-
ple, the effect of a warp in the disk), but have been discussed in
the literature less frequently.

5.1. Nuclear stellar concentration

One possibility is that the non-point-like source of gravita-
tional field be distributed spherically rather than in a disk. A
spheroidal nuclear stellar cluster, for example, could produce
significant changes to the rotation curve traced by water maser
emission, if its mass enclosed within 1 pc from the central en-
gine exceeds 107 M� (Kumar 1999).

Indeed, a nuclear cusp in the luminosity profile has been
observed in NGC 1068 (Thatte et al. 1997). Based on stel-
lar velocity dispersion measurements, Thatte et al. (1997) es-
timate the dynamical mass within 1′′ (≈69.8 pc at a distance of
14.4 Mpc) to be ≈6× 108 M�. Schinnerer et al. (2000) report a
value of 108 M� within a 25 pc diameter from the center, based
on CO kinematics. It should be noted, however, that these mass
estimates cannot be associated with the stellar cluster only, as
the observed kinematics includes also the contributions of the
central black hole and of the disk to the gravitational field.
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Kumar (1999) has extrapolated the mass profile down to
small radii of the order of 1 pc from the central engine of
NGC 1068 starting from the mass estimate of Thatte et al.
(1997) and assuming that the stellar cluster can be described
as a singular isothermal sphere, with stellar density ρ ∝ r−2.
In this case, the resulting mass enclosed in 1 pc would be
≈8.6 × 106 M�, therefore able to reproduce the desired devi-
ations from Keplerian rotation. However, this procedure over-
estimates the stellar contribution in the inner regions, because
the stellar cluster is not expected to be characterized by the sin-
gular isothermal sphere profile down to the innermost regions.
Empirically, shallower profiles are generally found (Faber et al.
1997). In addition, the adiabatic growth of a black hole at the
center of a stellar cluster leads to a density profile ρ ∝ r−3/2

(Cipollina & Bertin 1994) inside the radius of influence of the
black hole rbh = GM•/σ2

?, where σ? is the stellar velocity dis-
persion (curiously, if we use the value ofσ? provided by Thatte
et al. 1997, we find that rbh is of the order of a few parsec, com-
parable to the scales at which the maser emission is observed
in NGC 1068). Recent N-body simulations of the formation of
galactic nuclei by merger of two galaxies with initially steep
density profiles (ρ ∝ r−2) (Milosavljević & Merritt 2001) have
shown that a shallow stellar cusp is left around the nucleus,
with ρ ∝ r−1 inside a break radius of the order of 102 pc.

Another difficulty with the picture of a compact stellar clus-
ter is based on dynamical arguments. A collisional timescale
for a stellar system characterized by a velocity dispersion σ?
and density ρ is given by:

tcoll =
σ3
?

8πG2ρm lnΛ
, (10)

where m is the stellar mass and lnΛ is the Coulomb logarithm
(we will assume lnΛ = 10). The nuclear stellar cluster should
have at least a density of ρ = 107 M�/pc3 in its inner re-
gions. If we assume σ? = 150 km s−1, the value reported by
Thatte et al. (1997), and a stellar mass m = M�, we obtain
tcoll ≈ 6.5 × 107 yrs. Therefore, the nuclear stellar cluster, at
the high densities required to modify the rotation curve, will be
subject to collisional effects, that may lead to the rapid dynam-
ical evolution of the stellar cluster itself.

To derive firm conclusions about the effect of the stellar
central concentration on the water maser rotation curve, a more
detailed knowledge of the properties of the cluster at the small-
est scales is needed.

5.2. Radiation pressure support

Based on radiative transfer models of a thick torus (Pier &
Krolik 1992a,b), it has been shown that radiation pressure may
reduce the importance of the gravitational field of the central
object. The relative importance of this effect changes at dif-
ferent radii inside the torus and could in principle lead to a
modification of the rotation curve. The main drawback of this
picture is that radiation pressure is also very efficient at reduc-
ing the vertical gravitational field. Therefore, we would expect
the disk to be rather thick, against the observational evidence
that the water maser emission lies in a geometrically thin struc-
ture. In fact, the model of Pier & Krolik (1992a) was intended

to give a theoretical framework for the existence of thick tori in
AGNs. A more detailed investigation of the effect of radiation
pressure on thin configurations would therefore be needed to
assess the importance of this process in the case of NGC 1068.

6. Conclusions

In this paper we have shown how the study of water maser
emission in AGNs can be a very useful tool not only to esti-
mate the central black hole mass, but also to study the prop-
erties of the associated accretion disk. In particular, we have
described the non-Keplerian rotation curve in NGC 1068 in
terms of a self-gravitating accretion disk, by fitting the data of
Greenhill & Gwinn (1997) with the model described in Bertin
& Lodato (1999). The quality of the fit is satisfactory and leads
to M• ≈ Mdisk ' 8 × 106 M�. We have also estimated the long-
sought value of the α viscosity parameter, obtaining α ≈ 10−2.

Our study has additional interesting consequences.
Previous estimates of M•, using a non-self-gravitating disk
model, give M• ' 1.5 × 107 M�, very close to the value of
the total black hole + disk mass obtained by us. The reduced
black hole mass obtained in the self-gravitating disk scenario
leads to a reduced LEdd for NGC 1068, so that the Eddington
ratio turns out to be larger than previously thought. In fact,
we obtain Lbol/LEdd ' 0.77. More generally, it is important
to derive firm results on M• also in view of the correlations
recently found between M• and the global properties of the
host galaxy, such as the M• − σ? relation (Ferrarese & Merritt
2000; Gebhardt et al. 2000a). In this context, it is worth noting
that the masses derived from water maser emission have been
considered as the most reliable estimates; NGC 1068 is indeed
one of the galaxies in the Gebhardt et al. (2000a) sample.
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about statistical analysis, and J. Gallimore and M. Lombardi for inter-
esting suggestions. This work has been partially supported by MIUR
of Italy.

Appendix A: A likelihood ratio test
for the self-gravitating disk model

As noted at the end of Sect. 4.1, the results of a statistical anal-
ysis of the water maser data depend significantly on the un-
certainty assigned to the velocity data points. In this Appendix
we examine this issue and discuss how it is connected with the
general problem of discriminating between the Keplerian disk
from the self-gravitating disk model. In fact, if the uncertainty
in the velocities were sufficiently high, we would be unable to
discriminate between the two different models.

The self-gravitating disk hypothesis is a generalization of
the Keplerian one, to which it reduces when Mdisk → 0 (or
equivalently when rs → ∞). Clearly, if the two models are
fitted to the data, the minimum χ-square of the model with a
larger number of parameters is going to be smaller. On the other
hand, a well-known result of statistical analysis (see Eadie et al.
1971) enables us to compare two competing hypotheses in this
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Fig. A.1. Likelihood ratio λ as a function of velocity uncertainty ∆V .
The dotted lines indicate the 95% and the 99% confidence limits.

case. For Gaussian, independent measurements, the “likelihood
ratio” λ, defined as:

λ = (minχ2)Kep − (minχ2)sg, (A.1)

is distributed like a χ-square with n degrees of freedom, where
n is the number of new parameters in the more general model
(in our case n = 1), under the hypothesis that the less gen-
eral model is correct (in our case, the Keplerian model). Of
course, the resulting value of λ depends on the assumed uncer-
tainties. Therefore, an interesting question is how large should
the velocity uncertainty (for example, that associated with the
magnitude of turbulent velocities) be to make the Keplerian hy-
pothesis acceptable with respect to the self-gravitating one.

In Fig. A.1 the likelihood ratio λ is plotted as a function
of the assumed velocity uncertainty ∆V . The two dotted lines
define the 99% and 95% confidence limits. The figure clearly
shows that the Keplerian model should be rejected against the
self-gravitating one, with 99% confidence, if ∆V . 25 km s−1,
and with 95% confidence, if ∆V . 30 km s−1. Note that the
required uncertainty to make the Keplerian model acceptable
is more than 20 times the formal instrumental uncertainty.

This may be the reason why Greenhill & Gwinn (1997) argued
that “the scatter in the data may indicate turbulent velocities of
up to a few tens of km s−1”.
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