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Neuropathic pain is a chronic and debilitating disease that occurs secondarily to injury 

of the peripheral and/or central nervous system. This pathology affects million people 

in the world and can be classified as an incurable disease for the lack of valid 

treatments.  

Neuronal injuries often arise from a nerve trauma or metabolic disease, such as 

diabetes, and neuropathic patients, whatever the cause, typically exhibit a mixture of 

sensory loss with ongoing spontaneous pain and enhanced sensitivity either to 

innocuous or painful stimuli. Although the underlying mechanisms are far to being 

elucidated, it is well established that neuronal injury not only results in profound 

modifications in the activity of sensory neurons and their central projection pathways, 

but is also coupled to a sustained immune response at different anatomical locations 

associated to chronic pain processing with an important contribution of cytokines and 

chemokines (Calvo et al., 2012; Sacerdote et al., 2013).  

Since intensive researches over the past years have identified the prokineticins (PKs) as 

possible candidates for mediating these pathological neuro-immune interactions in 

pain, in these years of PhD school my research was focused on the characterization of 

the PKs system in the development of experimental neuropathic pain.  

PKs family comprehends small chemokines-like proteins highly conserved across the 

species including the mammalian prokineticin 1 (PK1) and prokineticin 2 (PK2). These 

proteins modulate a large spectrum of biological activities in the organism. In 

particular it is well documented the pro-nociceptive/proinflammatory activity of the 

ligand PK2 (Negri et al., 2007). Two G protein-coupled receptors (PKR1 and PKR2) 

mediate PK2 actions.  

PK2, binding to PKR1 and PKR2 widely distributed in the central nervous system, DRG, 

sensory neurons and in cells participating to immune and inflammatory responses, 

exerts in fact a critical role in pain perception inducing nociceptor sensitization and 

increasing the release of neuromediators implicated in pain processing such as CGRP 

and SP (Negri et al., 2007; DeFelice et al., 2012; Vellani et al., 2006). Moreover the 

ligand influences macrophages and T lymphocytes activity inducing a pro-inflammatory 

phenotype in the macrophage and skewing the Th1/Th2 balance towards a Th1 

response (Martucci et al., 2006; Franchi et al., 2008).  

In order to understand if PK2, PKR1 and PKR2 activities were necessary for the onset, 

maintenance and resolution of neuropathic pain, in this study, in vivo and ex-vivo 

experiments were performed using a non-peptidic PKR antagonist, named PC1, proved 

capable of antagonizing all pro-nociceptive effects induced by PK2 (Balboni et al., 

2008; Giannini et al., 2009; Negri and Lattanzi, 2012).  

The efficacy of PC1 treatment was evaluated in two different mouse models of painful 

neuropathy: a mononeuropathy induced by the chronic constriction injury (CCI) of 

sciatic nerve and a diabetic polyneuropathy induced by the injection of a pancreatic β 

cell toxin, streptozotocin (STZ).  
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CCI procedure was performed through three loose ligatures around the right common 

sciatic nerve while the diabetic painful neuropathy was induced in animals by the 

administration of either a single high dose (200 mg/kg) or repeated multi-lower doses 

(80 mg/kg) of STZ. Changes in pain behavior were evaluated measuring the paw 

withdrawal thresholds after noxious (hyperalgesia) and/or innocuous (allodynia) 

stimulation with the Plantar Test Apparatus and the Dynamic Plantar Aesthesiometer, 

respectively.  

To check the efficacy of PC1 to counteract painful manifestations, 3 days after CCI 

surgery and 21 days after STZ administrations, time points corresponding to full 

neuropathic pain development, CCI-operated and STZ-injected mice were subjected to 

a therapeutic treatment with the antagonist PC1 (150 µg/kg).  

The first major finding of this study was that, independently from neuropathic pain 

etiology, PC1 treatment was effective in alleviating established painful symptoms in 

mice without producing tolerance. Repeated systemic injections of PC1 from day 3 to 9 

after surgery or from day 21 to 34 after diabetes induction in fact abolished thermal 

hyperalgesia and mechanical allodynia in nerve injured mice, and mechanical allodynia 

in diabetic animals.  

The fact that painful symptoms were completely reversed by the chronic 

administration of the PKR antagonist unequivocally indicated the involvement of the 

PKs system in neuropathic pain. Moreover, interestingly, in STZ-injected mice the anti-

allodynic effect induced by the antagonist was still evident two weeks after the 

treatment discontinuation leading us to suppose that blocking PK2 signaling could 

induce permanent changes in neuronal circuits involved in the maintenance of 

neuropathic pain.  

At the end of treatments, i.e. on day 10 after CCI surgery and at different time points 

from diabetes induction (7, 14, 35 and 56 days after STZ injection) when the anti-

hyperalgesic and anti-allodynic effects of PC1 were evident, biochemical evaluations 

were performed in neuropathic animals (CCI-operated and STZ-injected mice) treated 

with either PC1 or saline and in the respective controls to determine the expression of 

PK2 and its receptors, PKR1 and PKR2, at the peripheral and central sites of pain 

transmission.  

Real Time PCR analysis performed on sciatic nerve and spinal cord from neuropathic 

animals revealed a general up-regulation of PK2 and PKRs in these tissues furthermore 

demonstrating the close correlation between the PKs system and the development of 

neuropathic pain. In particular, in STZ model, an over expression of PK2 in spinal cord 

was present since the appearance of painful symptoms and was observed for all the 

persistence of allodynia. 

In addition, we also exactly discriminated in the spinal cord and in periphery, the cells 

mainly involved in the CCI-induced PKs system activation. In the spinal cord of injured 

nerve mice the expression of PK2 and PKRs was observed in the superficial layers of 
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the spinal cord, at the levels of the presynaptic terminals. PK2 as well as PKR2 were 

also mostly expressed in proliferating and activated astrocytes. In periphery, at the 

level of the injured nerve, the expression of PK2 was evident in Schwann cells, 

neutrophils and macrophages, while PKR1 and PKR2 were highly expressed on 

activated inflammatory cells and on Schwann cells, respectively.  

In CCI animals the therapeutic treatment with the antagonist PC1 succeeded in 

decreasing the neuropathy-induced PK2 up-regulation both in the spinal cord and in 

the injured nerve, without significantly affecting PKR1 and PKR2 mRNA levels. In 

particular, a significant reduction of PK2 immunoreactivity was observed at the 

presynaptic terminals of the dorsal horns, in the reactive spinal astrocytes and in 

infiltrating neutrophils, mirroring the lower PK2 mRNA levels.  

In STZ mice, the therapeutic treatment with the antagonist was also able to counteract 

the PK2 augmentation in the spinal cord and to significantly reduce the neuropathy-

induced PKR1 up-regulation in the sciatic nerve. Since PKR1 is the receptor mostly 

implicated in the immune response and it was previously demonstrated to mediate 

macrophage migration (Martucci et al., 2006), it can be assumed that blocking PKRs 

with PC1 could affect macrophage chemotaxis, reducing or preventing the recruitment 

of inflammatory cells expressing PKR1 in the nerve with a consequence reduction of 

neuroinflammation.  

Considering the pro-inflammatory activity of PK2 and the presence of the PKRs in 

Schwann and immune cells in the nerve and the PKR2 in the spinal astrocytes, it was 

examined the efficacy of PC1 to counteract also the neuroinflammation associated to 

neuropathic pain development, evaluating by Real Time PCR and ELISA, the levels of 

the pro-inflammatory cytokine IL-1β and anti-inflammatory cytokine IL-10 in the sciatic 

nerve and the spinal cord from neuropathic mice. The release of inflammatory 

mediators, such as cytokines and chemokines, from glia and immune cells plays in fact 

an important role in the genesis of neuropathic pain and it was demonstrated that an 

altered balance of some pro- and anti-inflammatory cytokines in nervous tissues linked 

to pain transmission, such as the nerve, the DRG and the spinal cord is well correlated 

with the presence of neuropathic pain either in CCI or STZ mice (Sacerdote et al., 2013; 

Valsecchi et al., 2011).  

In agreement with what already published, in presence of high levels of PK2 and 

consistently with its immunomodulatory activity, an augmentation of the pro-

nociceptive cytokine IL-1β was observed both in the central and peripheral nervous 

system of CCI and STZ neuropathic mice, while the levels of the anti-inflammatory 

cytokine IL-10 appeared lower respect to the basal levels of controls.  

Repeated PC1 administration induced a clear reduction of the neuropathy-induced IL-

1β increase observed in the sciatic nerve and in the spinal cord from neuropathic mice. 

In addition, PC1 enhanced the levels of IL-10, which is likely to participate in the 

therapeutic effects observed.  
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These data clearly demonstrated the implication of the PKs system in neuropathic pain 

suggesting its possible implication not only in the maintenance but also in the onset of 

the pathology. In order to confirm this hypothesis, we performed a precocious 

blocking of the PKRs in STZ mice not yet neuropathic. Early PC1 administrations from 

day 0, time point corresponding to first STZ injection, to 13 days after diabetes 

induction, prevented in fact the development of mechanical allodynia in STZ mice and 

the spinal cord up-regulation of PK2.  

Glutamate is one of the main mediator in pain processing and it is known to participate 

in the alteration of the synaptic transmission during neuropathic pain (Iwata et al., 

2007; Daulhac et., 2011). In order to further support the anti-allodynic effect of PC1, 

we analyzed the expression of glutamate NMDA and AMPA receptor subunits in spinal 

cord of STZ mice treated with preventive PC1 administrations. 

Western blot analysis revealed that in presence of a fully developed allodynia, a 

decrease of the spinal NMDA subunit N2A was present, while the expression of the 

subunit N2B significantly increased. Early PC1 administration was effective in 

preventing N2B up-regulation in spinal cord of diabetic mice, without affecting the 

levels of the subunit N2A.  

Finally, considering the precocious involvement of the PKs system in the onset of the 

diabetic neuropathy it was interesting to investigate whether a preventive blocking of 

the PKRs positively influenced also the course of the diabetic pathology itself, 

modulating the hyperglycaemic state of the animals or reducing the peripheral 

inflammatory component which is known to be associated to diabetic status (Agrawal 

and Kant, 2014).  

Early PC1 administrations from day 0 to 13 after diabetes induction were not effective 

either in reducing high glucose levels in STZ mice or in re-establishing the plasmatic 

insulin levels. However, blocking the PKs system was effective in ameliorating the 

general pro-inflammatory status that was present in diabetic mice. The antagonist was 

in fact able to prevent the dysregulation of the IL-1β and IL-10 levels in the pancreas, 

which appeared drastically diminished in the STZ mice.  

Moreover, in the diabetic animals we observed a significant alteration of both innate 

and acquired immunity, characterized by elevated levels of IL-1β produced by 

macrophages, and a Th1 pro-inflammatory profile. The PC1 treatment reduced the 

peripheral inflammatory status, decreasing macrophagic IL-1β and switching Th1/Th2 

balance towards Th2.  

In conclusion, considering the efficacy of PC1 to contrast painful symptoms and the 

neuroinflammation associated to the development of neuropathic pain, blocking PKRs 

signalling could represent a new possible therapeutic strategy to treat neuropathic 

pain. In addition, beyond reducing the neuropathy-induced pain hypersensitivity, the 

anti-inflammatory properties of the antagonist PC1 could be useful to ameliorate other 

pathologies, characterized by a sustained inflammatory component. 
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2.1 ANATOMY AND PHYSIOLOGY OF PAIN 

 
In the 1979, the International Association for the Study of Pain (IASP) defined pain as 

“an unpleasant sensory and emotional experience associated with actual or potential 

tissue damage, or described in terms of such damage” (Merskey, 1979). This definition 

takes into consideration two important concepts concerning the phenomenon of pain: 

its subjectivity and its manifestation also in absence of real tissue damage.  

Pain experience is in fact complex and highly variable between individuals. It involves 

an intricate neurobiological apparatus consisting of dynamic excitatory and inhibitory 

nervous circuits, deputed to the transmission and elaboration of painful perception. 

Moreover the presence of modulatory pathways controlling the emotional state (fear, 

anxiety, attention and distraction) and the cognitive functions (past experiences, 

memories of pain) can in turn either enhance or diminish the individual pain 

experience (Ossipov et al., 2010).  

Pain can last for a short (acute pain) or long (chronic pain) period, can be caused by 

several conditions and its processing can imply different neuronal mechanisms. Given 

the complexity and the heterogeneity of pain manifestation, the distinction of the 

pathways and molecules implicated in the several types of pain processing is 

fundamental in order to target the treatments at the mechanisms responsible.  

According to Woolf classification, pain can be broadly divided into three main types: 

nociceptive, inflammatory and pathological pain (Woolf, 2010).  

Nociceptive pain is protective and needful for maintaining body integrity as it 

represents a primitive defence mechanism evolved for warning us about the presence 

of potential dangerous stimuli and for minimizing tissue injury. It follows that the 

absence of nociceptive pain sensitivity has a negative impact on health; congenital 

insensitivity to pain due to mutations of genes encoding for channels or molecules 

involved in pain processing or lacking the ability of pain perception due to a sensory 

damage for instance, typically results in bone fractures, self-mutilation, maintaining of 

unrealized infections and a reduction of the life span (Axelrod and Hilz, 2003; Raoulf et 

al., 2010).  

Also the inflammatory pain is physiological and protective. This kind of pain takes place 

in presence of tissue injuries or infections and is associated to an inflammatory state 

caused by the activation of the immune system. However the increased pain 

hypersensitivity is functional because protects the injured tissue site until healing 

occurs, by minimizing contact with stimuli potentially able to provoke other pain. 

Usually, either nociceptive or inflammatory pain trigger adaptive responses and last 

until the resolution of the initial injury. The switch from a physiological to a 

pathological condition occurs in presence of damage (neuropathic pain) or an 

abnormality functioning (dysfunctional pain) of the nervous system. In these cases pain 

is maladaptive, not protective and is maintained for a long period ranging from weeks 
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to years. In other words, pathological pain is not a symptom of some disorders but 

rather a disease of the nervous system (Woolf, 2010). 

 

2.1.1  PAIN PATHWAY 

 

Nociception is the neuronal process that allows the people to experience pain. Four 

distinct steps occur along the pain pathways:  

 

I.  Transduction of noxious stimuli (mechanical, thermal or chemical stimuli) in 

neural electrical activity by the activation of ion channels, including transient 

receptor potential channel subtypes (TRPA, TRPM and TRPV), sodium channel 

isoforms (Nav), potassium channels subtypes (KCNK) and acid-sensing ion 

channels (ASICs), clustered on nociceptors (Grace et al., 2014);  

 

II.  Transmission of nerve impulses from the site of transduction to spinal cord, 

brainstem, thalamus, and central structures in the brain; 

 

III.  Modulation of nociceptive signals through endogenous mechanisms of pain 

control (spinal inhibitory interneurons and descending pain modulatory 

circuits); 

 

IV.  Perception of pain as the end result of nociceptive stimulus travelling through 

the entire nervous system, including the supra-spinal structures involved in 

memory, cognition and emotion, which contribute to the neuronal network of 

conscious experience of pain (Fields and Basbaum, 1999). 

 

Nociceptive ascending pathway begins in periphery with the activation of the 

nociceptors, sensory neurons able to detect dangerous or potentially damaging stimuli 

for the organism.  

Nociceptors are pseudounipolar neurons with a single axon that forks into peripheral 

and central processes. The afferent branch projects to skin, mucosa, blood vessels and 

connective tissue of visceral organs, while the other runs to central nervous system 

(CNS). Specialized structures at the terminal end of nociceptors, once coming in 

contact with noxious stimuli, convert painful messages in electrical signals that 

propagate along this axonal pathway from periphery to the spinal cord or hindbrain. 

From here the signals reach the supraspinal structures and, finally the cortical and 

subcortical regions, where painful information is interpreted and perceived.  

Unlike to other classes of sensory fibres, nociceptors have high activation thresholds; 

in fact in normal conditions, they can be excited only by stimuli enough intense to 

cause a real tissue damage, but not by innocuous stimulations such as light touch, 
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vibrations or warning. High threshold stimuli for nociceptors activation include 

extreme temperatures, intense pressure and irritant chemicals (Dubin and 

Patapoutian, 2010).  

The main primary afferent fibres that convey noxious stimuli to CNS arise from 

nociceptive neurons having a small or medium-diameter cellular body located in the 

dorsal root ganglia (DRG). They comprehend the thinly myelinated, mostly 

mechanosensitive A  fibres and the unmyelinated, polymodal, i.e. able to detect 

mechanical, thermal and chemical stimuli, C fibres (Julius and Basbaum, 2001).  

All A  fibres response to intense mechanical stimulations but depending on their 

responsiveness to noxious heat can be divided in type I and type II fibres. The first type 

includes capsaicin-insensitive fibres responding to high temperatures (52-56 °C), while 

the type II population comprehends capsaicin-sensitive fibres responsive to noxious 

heat of 40-45 °C (Giordano, 2005). 

Unmyelinated C fibres represent the majority of the primary afferents fibres and, 

according to ability of synthesizing neuropeptides, mostly the substance P (SP) and the 

calcitonin gene related peptide (CGRP), are broadly divided in two main populations, 

the peptidergic and the non-peptidergic.  

A  and C nociceptive fibres differ also in terms of conduction velocity. When activated, 

A  fibres transmit nociceptive potentials with a velocity ranging to 12-30 m/s leading 

to a rapid pain sensation, while C fibres propagate noxious information more slowly 

(0.5-2 m/s) inducing a second, delayed response to pain. The different pattern of signal 

propagation results in two successive and qualitatively distinct pain sensations: brief, 

pricking, and well localized “first pain” and a longer-lasting, burning, and less well 

localized “second pain” (Ploner et al., 2002).  

Another group of nociceptors is represented by C nociceptive fibres known as  “silent” 

or “sleeping” nociceptors which respond to noxious stimuli only when sensitized by 

tissue injury or inflammation. 

Peripheral primary afferents also include myelinated, fasting conducting (30-100 m/s) 

A  fibres arising from DRG large-diameter neurons, responsive to mechanical 

innocuous stimuli. Normally they don’t contribute to pain sensation but in some cases 

they begin to signal pain in response to non-noxious stimuli. Information transmit by 

A  fibres can be in fact greatly altered during disease conditions or after tissue damage 

has resolved, leading to abnormal pain signalling (Milligan and Watkins, 2009).  

The information collected in periphery by nociceptive fibres reach the spinal cord via 

the dorsal roots. Here (spinal cord) their central processes form synapses with 

different populations of second-order neurons mostly distributed in the superficial 

layers of the dorsal horns (Rexed laminae I and II). Nociceptors also synapse in some 

deeper laminae such as Rexed laminae V and X. Dorsal horns neurons include 

Nociceptive Specific (NS) neurons, exclusively responsive to nociceptive input 

conveyed by Aδ and C fibres, Wide Dynamic Range (WDR) neurons that respond to 
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both nociceptive and non-nociceptive stimuli coming from Aδ, C and A  central axons 

and NonNociceptive (N-NOC) neurons responding to innocuous stimulations mostly 

propagated by A  fibres (Almeida et al., 2004).  

 

 

 
 

 

 

Nociceptive fibres transmit the nociceptive message through the release of glutamate, 

as the primary neurotransmitter, and other neuropeptides, which have the potential of 

exciting second-order nociceptive projection neurons (Grace et al., 2014).  

The excitatory amino acid binding to postsynaptic glutamate AMPA and kainate 

receptors is responsible for a fast synaptic transmission and a rapid, short-term 

depolarization of second-order neurons. On the contrary a slow and long-term 

synaptic transmission is mediated by substance P and CGRP release. 

Spinal projection neurons relay the nociceptive signals received to higher centres of 

the CNS following the ascending spinal tracts. Secondary afferents decussate and pass 

up the spinal cord to midbrain via the spinothalamic, spinoreticular and 

spinomesencephalic tracts to the thalamus and to sensory cortex, but also have other 

links, such as to reticular formations, limbic and hippocampal areas (Farquhar-Smith, 

2008).  

Cortical and supra-spinal areas form the “pain matrix”, i.e. a collection of brain regions 

involved in neurological functions, including cognition, emotion, motivation and 

sensation, as well as pain, which acting together in pain modulation context lead to the 

conscious experience of pain (Tracey and Johns, 2010; Ossipov et al., 2010).   

Figure 1 Nociception. Figure taken from Milligan and Watkins, 2009. 



 

INTRODUCTION 
 

 

15 

As mentioned above the three main ascending pathways linking the dorsal horns to 

brain are: 

 

o Spinothalamic tract (STT) 

This tract originates from spinal WDR, NS and N-NOC neuron types propagating 

noxious and innocuous signals that are related to pain, temperature and touch. 

Before ascending, secondary axons decussate transversely through the anterior 

commissure of the spinal cord. During its passage through the brain stem, STT 

originates collateral branches destined to reticular formation of the medulla, 

pons and midbrain, periaqueductal grey matter (PAG), hypothalamus and 

medial and intralaminar thalamic nuclei (Almeida et al., 2004). 

 

o Spinoreticular tract (SRT) 

This tract mostly originates from spinal WDR and NS neurons. It presents two 

components in the brain stem; one is directed at the precerebellar nucleus in 

the lateral reticular formation involved in motor control, while the other is 

directed to the medial pontobulbar reticular formation involved in mechanism 

of nociception (Millan, 1999). SRT is an important pathway for the modulation 

of the nociceptive segmental pathway by activating brain stem structures 

responsible for descending suppression (Almeida et al., 2004).  

 

o Spinomesencephalic tract (SMT) 

As SRT, this tract is highly involved in the mechanisms of pain modulation. This 

tract originates from spinal WDR and NS neurons and projects to different 

regions of PAG. The projections to the midbrain PAG matter from spinal 

neurons are functionally distinct; those the reach the PAG in the portion more 

dorsal to the limiting sulcus have excitatory characteristic in afferent 

nociceptive transmission, while those that project more ventral to the limiting 

sulcus activate mechanisms responsible for the inhibition of the afference of 

this same pathway (Almeida et al., 2004). 

 

 

2.1.2 PAIN MODULATION  

 

The sensory experience of pain extends beyond the activation of nociceptors as it 

involves an intricate neuronal network consisting of dynamic excitatory and inhibitory 

nervous circuits which modulate pain experience enhancing or inhibiting pain 

sensation.  

In the dorsal horn of spinal cord local GABAergic and glycinergic interneurons have a 

functional role of inhibition of pain information processing. As described by Melzack 
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and Wall’s in the Gate Control Theory of Pain, these inhibitory interneurons function as 

a gate in spinal cord regulating the transmission of pain message from primary 

afferents to the spinal second-order projection neurons. Aβ non-nociceptive fiber 

activity inhibits (or “closes”) the gate inducing the activation of local inhibitory 

interneurons, while the activity of small nociceptive C and Aδ fibres facilitates (or 

“opens”) the gate (Moayedi and Davis, 2013). The balance between the inputs from 

nociceptive and non-nociceptive primary afferents which is controlled by the complex 

spinal inhibitory interneuron circuits determines the status of this gate, i.e. whether 

and how strong the nociceptive signal will be transmitted, via secondary projection 

neurons, to the higher brain centers (Guo and Hu, 2014). Descending fibers originating 

from supra-spinal regions which project to the spinal dorsal horns are also implicated 

in the modulation of this gate. (Moayedi and Davis, 2013).  

Pain modulation exists in fact also in the form of descending inhibitory and facilitatory 

pain pathways which involve different regions within CNS, including cortex, thalamus 

and brainstem.  

The midbrain periaqueductal grey region (PAG) and the rostral ventromedial medulla 

(RVM) are particularly important in the endogenous modulation of pain. These regions 

are known to be involved in endogenous pain control through PAG-RVM-spinal cord 

descending inhibitory pain pathway (Fields, 2006).  

These supra-spinal sites exert influences on the perception of pain either directly, 

sending projection neurons to the spinal cord, or indirectly, sending projection 

neurons to other regions in the brainstem that send projections to the spinal cord.  

These modulatory effects are predominantly mediated by descending pathways that 

utilize serotonin, norepinephrine and endogenous opioids.  

Monoamines and endogenous opioids modulate the release of neurotransmitters from 

nociceptive afferents and the excitability of dorsal horn neurons by binding to different 

receptor subtypes. 

Stimulation of PAG and RVM was found to cause release of serotonin in spinal cord 

(Cui et al., 1999); at this level serotonin has either inhibitory or facilitatory role of pain 

transmission which is dependent on the receptor subtype activated (Suzuki et al., 

2004; Dogrul et al., 2009). 

Norepinephrine also strongly contributes in anti-nociceptive mechanisms associated to 

descending inhibition. PAG and RVM communicate with an important noradrenergic 

site to pain modulation, the locus coeruleus (LC), which is one of the major source of 

direct noradrenergic projections to spinal cord involved in the inhibition of presynaptic 

and post-synaptic spinal pain transmission neurons (Fields et al., 2005; Proudfit, 1992). 

Descending pain inhibition from PAG was also observed after direct microinjection of 

opiods (Fang et al., 1989; Ossipov et al., 2010).   

“On-cells” and “off-cells” are two classes of pain modulatory neurons identified in the 

RVM and PAG (Field et al., 1991; Mason, 1999). “Off-cells” are excited by opioids and 
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inhibit ascending noxious stimuli from the periphery by triggering descending 

inhibition. On the contrary, “on-cells” are thought to trigger descending facilitation.  

(Fields and Basbaum, 1999; Mason, 1999; Fields, 2000).  

 

 

2.1.3 MECHANISMS INVOLVED IN THE TRANSITION FROM 

PHYSIOLOGICAL TO PATHOLOGICAL PAIN PROCESSING  

 

- PERIPHERAL SENSITIZATION  

 

Tissue injury and nerve damage produce pain hypersensitivity inducing molecular and 

cellular changes in the primary afferent neurons. This neuronal plasticity manifests 

through an increased responsiveness and reduced activation threshold for thermal and 

mechanical stimuli of nociceptors and is referred as peripheral sensitization. 

These electrophysiological phenomena correlate to behavioral phenomena which 

include spontaneous pain, hyperalgesia (increased responses to noxious stimuli) and 

allodynia (nociceptive response to innocuous stimuli) (Cheng and Ji, 2008).  

The capacity to produce increases in sensitivity after injury is functional and protective 

in physiological pain; however peripheral sensitization can be a leading cause for the 

development of persistent pathological pain. 

Increases in pain sensitivity are mediated by the local release of inflammatory 

mediators (collectively referred as “inflammatory soup”) from primary afferents 

terminals and different non-neuronal cells, including fibroblasts, mast cells, 

neutrophils, monocytes and platelets. After nerve damage, these mediators can also 

be released by Schwann cells and damaged neurons (Campana, 2007). 

“Inflammatory soup” includes prostaglandins E2 (PGE2), bradikinin, ATP, protons, 

nerve growth factor (NGF) and pro-inflammatory cytokines (TNF-α and IL-1β) (Julius 

and Basbaum, 2001).  

These mediators stimulate/activate nociceptors directly (e.g. protons, ATP and 5-

hydroxytryptamine (5-HT)) or by increasing sensitivity to subsequent stimuli (e.g. 

bradikinin, prostaglandins, leukotrienes and NGF) via receptor-mediated second 

messenger action.  

Cyclic AMP, protein kinase A (PKA) and protein kinase C (PKC) are important second 

messenger and effectors involved in nociceptor sensitization, which may be at least in 

part caused by changes to ion channels.  

Ion channels, including voltage-gated sodium ion channels, acid-sensing ion channels 

and the heat and capsaicin receptor, the transient receptor potential channel V1 

(TRPV1), have a significant contribution to activation, sensitization and consequently 

hyperalgesia and allodynia development, and their sensitivity is strongly regulated by 

inflammatory mediators (Farquhar-Smith, 2008).  
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Beyond to activate PKC and PKA pathways, the inflammatory mediators released after 

injury also activate MAPK signalling in nociceptive primary sensory neurons. Activation 

of this pathway results in the regulation of transcriptional and translational factors 

which ultimately lead to increased synthesis of gene encoding for ion channels (such as 

TRPV1, TRPA1, tetrodotoxin-resistant (TTX-R) sodium and calcium channels), 

neuromodulators (BDNF, SP and CGRP) and pro-inflammatory cytokines TNF-α and IL-

1β. Persistent increase in the synthesis of these pro-nociceptive mediators in primary 

sensory neurons maintains hypersensitivity of these neurons and persistent pain 

(Cheng and Ji, 2008). 

In addition, nociceptors activation not only results in the transmission of pain message 

to spinal cord (and from here to brain), but is also responsible for the initiation of 

neurogenic inflammation. 

The antidromic release of peptides and neurotransmitters, notably substance P and 

CGRP, from activated nociceptors induces in fact vasodilation, plasma extravasation 

and activation of immune cells, which in turn contribute additional elements to the 

inflammatory soup (Julius and Basbaum, 2001).  

 

- CENTRAL SENSITIZATION 

Several chemical signals in the spinal cord trigger pain transmission in response to 

incoming noxious stimuli, including substance P, glutamate, CGRP and many others 

neuromodulators. Under normal, non-pathological condition, low-frequency activation 

of Aδ and C fibre nociceptors leads to glutamate release from the central presynaptic 

afferent nerve terminals in the spinal cord dorsal horn, where the excitatory amino 

acid induces a short-term activation of glutamate AMPA/kainate receptor subtypes. 

Although glutamate also binds the NMDA ionotropic glutamate receptor (NMDAR) 

present on the pre- and postsynaptic neurons, the receptor remains silent, i.e. it does 

not lead to changes in membrane potential and subsequent pain-projection neuron 

excitation, because it is plugged by Mg2+ (Milligan and Watkins, 2009). 

Intense, repeated and sustained activity of primary sensory neurons elicits changes in 

neuronal and biochemical processing at central synapses and descending projections, 

transitioning these sites into a pain facilitatory state (Basbaum et al., 2009; Ossipov et 

al., 2010). In the spinal dorsal horn, these changes are collectively known as central 

sensitization and windup.  

These processes involve the phosphorylation of a range of receptors, including AMPA 

and/or kainate receptors, which increases synaptic efficacy by altering channel 

opening time, increasing burst firing, removing the Mg2+-mediated channel blockade at 

the NMDA receptor, and promoting trafficking of receptors to the synaptic membrane 

(Latremoliere and  Woolf, 2009). 
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As a consequence of central sensitization, spinal dorsal horn neurons increase ongoing 

activity, expand their receptive field and increase their responsiveness by lowering of 

excitation thresholds (Farquhar-Smith, 2008). 

During this time, altered low-threshold non-nociceptive Aβ sensory fibers activate 

spinal pain-projection neurons, contributing to development of allodynia. 

Substance P and CGRP released from primary afferent neurons also contribute to 

central sensitization by the activation of the NMDA receptor in persistent pain states. 

Neurokinin A and B acting on neurokinin receptors may influence the NMDA receptors 

directly by inducing a slow depolarization (by decreased potassium ion conductance). 

Nerve growth factor (NGF) induces stimulation of neuropeptide formation and release, 

which contribute to the development of central sensitization and hyperalgesia. Brain-

derived neurotrophic factor (BDNF) is produced by NGF-dependent nociceptors, and 

its synthesis is increased with inflammation. BDNF augments spinal neuron excitability 

by phosphorylation-mediated stimulation of the NMDA receptor (Farquhar-Smith, 

2008).  

Sustained nociceptor activation caused by peripheral nerve injury and inflammation 

leads to central sensitization, where enhanced responsiveness of neurons in the spinal 

dorsal horn is thought to underlie chronic hyperalgesia and allodynia (Chapman et al., 

1998; Kidd and Urban, 2001).  

 

2.2 NEUROPATHIC PAIN 
 

Neuropathic pain is a pathological pain that occurs secondarily to injury of the central 

and/or peripheral nervous system. The International Association for the Study of Pain 

(IASP) has recently modified its definition as “pain caused by a lesion or disease of the 

somatosensory system” to emphasized that the injury in the nervous system has to be 

within the somatosensory system (Treede et al., 2008). 

Neuropathic pain is an emerging pathology affecting million people in the world and 

can be classified as an incurable disease for the lack of valid treatments. In fact it is 

partially unresponsive to classical analgesics and its treatment with adjuvant drugs, i.e. 

antidepressant or anticonvulsive, provides only a temporary relief of pain in a small 

percentage of patients.  

This chronic pain is highly invalidating because it directly impacts on lifestyle of 

sufferers who very often are forced to leave their work influencing the social life and 

psychological and emotional condition characteristic of the individual. This obviously 

poses enormous costs to society in terms of healthcare and social care .  

For these reasons, nowadays, the development of new and efficacious therapies to 

contrast painful neuropathy represents a priority. 
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Neuropathic pain arises from lesions to both the central and peripheral nervous 

system and in the human many etiologies have been recognized, including (Sacerdote 

et al., 2013):  

 

- mechanical nerve injuries/compression; 

- spinal cord injuries; 

- metabolic diseases (e.g. diabetes); 

- viral diseases (e.g. herpes zoster, HIV); 

- inflammatory/immunological mechanism (e.g. Multiple sclerosis); 

- alcoholism (vitamin B12 deficiency); 

- iatrogenic: chemotherapy of cancer, AIDS or tuberculosis (e.g. cis-platinum); 

- vascular lesions of the hypothalamus; 

- congenital (e.g. Charcot-Marie-Tooth); 

- aging.   

 

Whatever the cause, neuropathic patients typically exhibit a mixture of sensory loss 

with ongoing spontaneous pain and enhanced sensitivity to innocuous stimuli, i.e. 

mechanical allodynia. Mechanical and thermal hyperalgesia (increased pain response 

to painful stimuli) are also frequent and classical symptoms (Treede et al., 2008; 

Zimmermann, 2001; Colleoni and Sacerdote, 2010).  

Much of the initial research on the pathophysiological basis of neuropathic pain 

focused on the plasticity properties of neurons following a nerve injury, leading to the 

proposal of both peripheral and central sensitisation as important disease  

mechanisms (Sacerdote et al., 2013). 

Peripheral and central amplification is mediated by changes in the expression and 

distribution of ion channels (sodium and calcium channel); expression of receptors and 

neurotransmitters; increased neuronal excitability and ectopic generation of action 

potentials; axonal atrophy, degeneration or regeneration (Wallerian degeneration); 

damage to small fibres; neuronal cell death and reorganization of central nociceptive 

circuits (Costigan et al. 2009; Latremoliere and Woolf, 2009). Loss of spinal inhibitory 

control and changes in the balance of facilitation/inhibition within descending pain 

modulatory pathways are other mechanisms which contribute to neuropathic pain 

development (Tesfaye et al., 2013). 

Recently it has emerged that neuropathic pain pathogenesis and maintenance also 

involve a pathological interaction between neurons, inflammatory immune cells and 

glia cells, as well as a wide cascade of pro and anti-inflammatory cytokines (Austin and 

Moalem Taylor, 2010; Calvo et al. 2012). Neuronal injury therefore, not only results in 

profound modifications of the activity of sensory neurons and their central projection 

pathways, but is also coupled to a sustained immune-inflammatory response at 



 

INTRODUCTION 
 

 

21 

different anatomical locations associated to chronic pain processing, i.e. nerve, DRG, 

spinal cord and brain (Calvo et al., 2012). 

 

2.2.1  NEUROPATHIC PAIN TRIAD (NEURONS, IMMUNE CELLS AND GLIA) 

 

Peripheral nerve injury provokes the recruitment of immune cells as well as the 

activation of resident cells at the site of injured nerve, in the DRG, and in the spinal 

cord. Communication among immune cells and immune-like glial cells along the way of 

pain transmission is driven by a plethora of immune cell-derived inflammatory 

cytokines and chemokines, which are crucial mediators for the development and 

maintenance  of persistent pain state. 

 

- Neuroimmune interactions in injured nerve 

 

Macrophages act as pivotal mediators in the peripheral inflammatory reactions to 

nerve lesion. Immediately after nerve injury, resident macrophages rush to the lesion 

site like a rapid-response team (Mueller et al., 2001). 

Neutrophils also participate in the very early immune response to nerve injury, 

particularly during the first 24 hours after injury, reinforcing macrophage recruitment 

through the release of chemoattractans and cytokines (Perkins and Tracey, 2000).  

Activated macrophages and Schwann cells produce matrix metalloproteases that 

interrupt blood-nerve barrier (Shubayev et al., 2006). In addition, vasoactive mediators 

including CGRP, substance P, bradykinin and nitric oxide released from injured axons 

promote further invasion of monocytes and lymphocytes at site of injury by increasing 

vascular permeability. As results of these vascular changes, two days after injury, a 

dense cellular infiltrate predominantly composed by macrophages, T lymphocytes and 

mast cells, forms at the lesion site (Scholz and Woolf, 2007).  

Resident and infiltrating immune cells as well as Schwann cells release pro-

inflammatory cytokines, such as TNF-α, IL-1β, IL-6 that contribute to axonal damage, 

and several other factors including chemokines, PGs and NGF, responsible for the 

initiation and maintenance of sensory abnormalities after injury.  

Macrophages and Schwann cells are also implicated in the Wallerian degeneration of 

axotomized nerve fibres distal to nerve lesion. Macrophages remove by phagocytosis 

dead or dying remnants of injured Schwann cells, axotomized axons and myelin debris 

(Bruck, 1997), thus facilitating the reorganization of Schwann cells in order to axonal 

repair.  

Schwann cells, in turn, release chemical signals, such as NGF and GDNF, that promote 

axonal growth and remyelination (Esper and Loeb, 2004). However, these growth 

factors induce pain initiation directly activating and sensitizing nociceptors (Malin et 

al., 2006).  
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The inflammatory responses to nerve injury driven by resident and infiltrating cells, 

particularly by macrophages, directly contribute to pain hypersensitivity. Hyperalgesia 

is delayed in genetically manipulated  WLDs mice, in which Wallerian degeneration and  

the recruitment of macrophages in response to nerve injury are delayed (Myers et al., 

1996; Araki et al., 2004). Moreover, systemic depletion of macrophages reduces 

mechanical hypersensitivity after peripheral nerve injury in animal models, revealing 

their crucial role in the generation of neuropathic pain (Liu et al., 2000). 

Uninjured fibers also contribute to the development of pain. Crossing the degenerating 

environment they change their biologic properties with increased spontaneous activity 

and up-regulate nociceptive molecules like TRPV1, cytokines and chemokines. They 

also develop an enhanced responsiveness to pro-inflammatory cytokines. 

 

 
 

 

 

- Neuroimmune interactions in DRG 

 

Normally, macrophages and few T lymphocytes reside in DRG. Their numbers increase 

after nerve damage. In parallel satellite glia cells begin to proliferate.  

These resident immune and glia cells strongly react to nerve injury and their response 

is reinforced by invading macrophages and T cells. Injury-induced macrophage invasion 

appears to be triggered by the release of chemokines from DRG neurons (Zhang and 

DeKoninck, 2006). The accumulation of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) 

and chemokines in the DRG after injury contributes to the sensitization of sensory 

neurons (Levin et al., 2008; Uceyler et al., 2007). 

TNF-α acts to increase the density of tetrodotoxin-resistant (TTX-R) sodium channel 

currents within DRG neurons (Jin and Gereau, 2006), while other cytokines such as IL-6 

regulate the synthesis of neuropeptide transmitters. The resultant changes in the 

Figure 2  Inflammatory changes associated to Wallerian degeneration.      
Figure taken from Scholz and Woolf, 2007. 
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phenotype of sensory neurons is likely to alter the efficacy of their synaptic input to 

the spinal cord (Scholz and Woolf, 2007). 

Moreover, it was found that deletion of IL-1β receptor or IL-1RA overexpression inhibit 

the development of spontaneous sensory neuron firing, while blocking IL-1β or IL-6 

mediated signalling attenuates neuropathic pain-like behavior (Arruda et al., 2000; 

Wolf et al., 2006). 

 

- Neuroimmune interactions in spinal cord 

 

Spinal cord glia activation is a common underlying mechanism that leads to 

development and maintenance of chronic pain. 

Microglia and astrocytes have in fact a well-documented role in pain facilitation, 

modulating neuronal synaptic function and excitability by various mechanisms (Halassa 

et al., 2007; Pocock and Kettenmann, 2007).  

In spinal cord and supra-spinal sites within CNS microglia predominate in the early glial 

response, subsequently followed by activation and proliferation of astrocytes.  

CGRP, substance P, glutamate and ATP released from the presynaptic terminals of the 

primary afferents after nerve injury determine the activation of spinal microglia and 

astrocytes.  

Once become activated, these cells release immune mediators which diffuse and bind 

to receptors on presynaptic and postsynaptic terminals in the spinal dorsal horn to 

modulate excitatory and inhibitory synaptic transmission, resulting in nociceptive 

hypersensitivity.  

The release of inflammatory mediators, such as TNF-α, IL-1β, IL-6, nitric oxide, ATP and 

prostaglandins initiates in fact a self-propagating mechanism of enhanced cytokine 

expression by microglial cells. The production and subsequent release of pro-

inflammatory cytokines from activated microglia cells leads to further activation of 

neighboring astrocytes (Watkins and Maier, 2003). The activation of astrocytes results 

in the prolongation of a pain state (Dinarello, 1999). 

TNF-α, IL-1β and IFN-γ, chemokines and reactive oxygen species (ROS) directly 

modulate excitatory synaptic transmission at central terminals by enhancing glutamate 

release. Their effect is partly due to the activation of transient receptor potential 

channel subtypes (TRPV1 and TRPA1), and the functional coupling between IL-1β 

receptor and presynaptic glutamate receptors (NMDAR) (Grace et al., 2014). 

TNF-α and IL-1β from astrocytes increase neuronal excitability and synaptic strength by 

increasing the conductivity of glutamate AMPA and NMDA receptors, as well as by 

increasing the trafficking and surface expression of glutammate AMPA 

(α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid) receptors, which render 

neurons vulnerable to excitotoxicity (Beattie et al., 2002; Stellwagen and Malenka, 

2006). 
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IL-1β also induces the phosphorylation of specific NMDA receptor subunits (i.e. NR1 

and NR2A or NR2B subunits) leading to its activation (Stellwagen et a., 2005; Zhang et 

al., 2008; Viviani et al., 2003). 

NMDA receptor channel opening leads to the influx of calcium and to increased 

production of NO and PGE2, which are involved in amplifying the excitability of pain-

projection neurons (Milligan and Watkins, 2009).  

Excitatory synaptic transmission is further indirectly enhanced following astrogliosis by 

IL-1β and TNF-α, as the spinal astrocyte glutamate transporters ,excitatory amino acid 

transporter 1 (EAAT1) and EAAT2 are persistently downregulated after peripheral 

nerve injury, leading to excitotoxicity and nociceptive hypersensitivity (Xin et al., 2009; 

Ramos  et al., 2010). 

Cytokines, chemokines and ROS also decrease GABA and glycine release from 

interneurons and inhibitory descending projections, leading to spinal cord pain circuits 

disinhibition, phenomenon known to be implicated in the genesis of central 

sensitization and chronic pain (Latremoliere and Woolf, 2009). Brain-derived 

neurotrophic factor (BDNF) released as a consequence of microgliosis, also contributes 

to pain inhibition/ disinhibition by causing a depolarization shift that inverts the 

polarity of currents activated by the inhibitory neurotransmitter GABA in spinal 

second-order nociceptive projection neurons (Milligan and Watkins, 2009).  

 

 

It is also important to highline that either in peripheral nerve and DGR or in CNS a 

complex network of regulatory circuits controls immune signalling after neuronal 

insult. These mechanisms include the production of anti-inflammatory mediators and 

the polarization of specialized immune and glia cells with an anti-inflammatory 

phenotype to prevent uncontrolled inflammation (Grace et al., 2014) 

Alternatively activated microglia (also known as M2 macrophages), sub-populations of 

T lymphocytes (i.e. Th2 and Treg cells) as well as macrophages contribute to the 

resolution of nociceptive hypersensitivity after nerve injury, by releasing naturally anti-

inflammatory mediators which include IL-10, IL-4 and IL-1RA. 

IL-10 and IL-4 cytokines indirectly inhibit the synthesis of pro-inflammatory/pro-

nociceptive cytokines and chemotactic factors by microglia, T-cells and macrophages  

regulating and promoting the differentiation of immune-like cells towards an anti-

inflammatory profile.  

Intrathecal IL-1RA administration and the elevation of IL-10 and IL-4 levels in spinal 

cord result in attenuated nociceptive hypersensitivity associated to gliosis (Watkins et 

al., 1997; Leger et al., 2011). 
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2.2.2  PHARMACOLOGICAL CONSIDERATIONS: PRESENT AND FUTURE 

 

Pain processing involves multi-pathways and dynamic systems in the periphery, spinal 

cord and brain which expose potential pharmacological targets for analgesia. Some of 

these are already used in clinic by existing analgesics (Farquhar-Smith, 2008). 

Opioids are among the most powerful of all analgesics. Their efficacy can be explained 

by the large distribution of opioids receptors in the spinal cord and in areas of brain 

associated to descending pain modulatory pathways as locus coeruleus and PAG. Thus, 

opioids induce analgesia acting both on transmission and pain perception. 

The fact that most of pain inhibitory pathways are noradrenaline/serotonin-based 

pathways indicate why the antidepressants (inhibitor of noradrenaline/serotonine re-

uptake) may be effective in controlling pain.  

Anticonvulsants induce analgesia acting on neuron excitability through the blocking of 

sodium and calcium channels; similarly capsaicin exerts its analgesic effect binding to 

TRPV1 channel. Non-steroidal anti-inflammatory drugs (NSAID), that prevent the 

formation of prostaglandins by inhibiting cyclooxygenase (COX), are generally not 

efficacious in neuropathic pain treatment . 

The fundamental role of NMDA receptor in central sensitization makes it a potentially 

therapeutic analgesic target although, to date, only few NMDAR antagonists are 

available for clinical use. 

Moreover, considering the key role of the neuroimmune interface in chronic pain there 

is great interest in targeting immune and glia functions for pain management. Several 

promising strategies to target the neuroimmune interface include the direct inhibition 

of pro-inflammatory signalling, the stimulation of local protective anti-inflammatory 

mechanisms, inhibition of specific immune mediators and the antagonism of specific 

cytokine and chemokine receptors (Grace et al., 2014).  

In this direction, a better knowledge of the mechanisms underlying neuropathic pain 

could lead to the identification of novel promising targets for the development of 

more efficacious analgesic therapy. 

 

 

2.3 DIABETES AND DEVELOPMENT OF NEUROPATHIC 

PAIN 

 
Diabetes mellitus (DM) is a group of metabolic disorders characterized by chronic 

hyperglycaemia with impaired metabolism of carbohydrate, fat and proteins as a result 

of endogenous insulin deficiency and/or resistance (Davey et al., 2014).  

Polydipsia, polyphagia, polyuria, blindness, weight loss or gain, burning and tingling 

sensation are some of distinct symptoms associated to diabetic status and are 
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common for the two main forms of diabetes: type 1 (DMT1) and type 2 (DMT2) 

diabetes.  

Both types of diabetes are characterized by a progressive failure of pancreatic -cells 

but the mechanisms leading to pancreatic cell death are quite different in the various 

forms of the disease (Cnop et al., 2005). In type 1 diabetes -cell destruction arises 

from an autoimmune assault against pancreatic cells by autoreactive T lymphocytes 

resulting in chronic pancreatic inflammation (processes known as insulitis) which 

culminates with an absolute insulin deficiency. During insulitis, invading immune cells, 

including Th1 (CD4 and CD8) lymphocytes, macrophages and dendritic cells, participate 

to destruction of pancreatic β-cells by directly triggering cytotoxic processes or 

releasing pro-inflammatory cytokines.  

IL-1β, IFN-γ and TNF-α are important pro-inflammatory mediators. These cytokines 

induce β-cell apoptosis via the activation of pancreatic cell gene networks under the 

control of different transcription factors, including Nf-kB. The activation of Nf-kB leads 

to nitric oxide and chemokines production and depletion of endoplasmatic reticulum 

calcium, which ultimately contribute to pancreatic cell destruction. Parallel, anti-

inflammatory cytokines, such as IL-4 and IL-10, produced by activated Th2 

lymphocytes, prevent β-cell destructive insulitis, indicating that an imbalance between 

pro- and anti-inflammatory cytokines could be essential for the development of type 1 

diabetes (Amirshahroki and Ghazi-Khansari, 2012). 

The pathogenesis of type 2 diabetes is more variable than that of type 1 diabetes as it 

is linked to a combination of genetic and lifestyle factors that results in different 

degrees of insulin resistance and deficiency. Chronic exposure to elevated glucose and 

free fatty acids causes β-cell dysfunction and may induce β-cell apoptosis in type 2 

diabetes (Cnop et al., 2005). Islet cell inflammation as result of altered immune 

activation has since long time been recognized in type 1 diabetes, and now it is 

increasingly implicated in the pathogenesis of type 2 diabetes leading to defects in β-

cell secretion (Das and Mukhopadhyay, 2011). 

Inflammation and alteration in immune system thus result common underpinning 

mechanisms in the pathophysiology of type 1 and type 2 diabetes as well as of their 

complications (Agrawal and Kant., 2014). 

Macrophage, in particular, is the major source of pro-inflammatory cytokines and 

emerges as a key player in the initiation and maintenance of chronic inflammatory 

responses in diabetes by programming through the release of IL-12 cytokine T 

lymphocytes to develope into Th1 cells (Wen et al., 2006). Elevation of systemic 

inflammatory mediators was found in patients with type 1 and type 2 diabetes 

(Agrawal and Kant, 2014; Davey et al., 2014).  

The establishment of a persistent hyperglycaemic state in diabetes causes a series of 

physiological dysfunctions in the organism which, over time, turn into very serious 

http://link.springer.com/search?dc.title=IFN-%CE%B3&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
http://link.springer.com/search?dc.title=TNF-%CE%B1&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
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complications responsible of the high rate of morbidity and mortality in diabetes 

sufferers. 

These complications are associated to a progressive, dramatic failure and dysfunction 

of the vascular system. They are grouped in “macro-vascular complications” and 

“micro-vascular complications” depending on the vascular district which is affected. 

Macro-vascular complications result from damage to arteries that supply the heart, 

brain, and lower extremities and include accelerated cardiovascular disease, peripheral 

arterial disease, myocardial infarction, stroke and limb amputation (Hofmann and 

Brownlee, 2004; Forbes and Cooper, 2013).  

The complications resulting from damage to small blood vessels are grouped as 

microvascular complications. Persistent chronic hyperglycemia resulting in the 

development of diabetes-specific microvascular complications in the retina, renal 

glomerulus, and peripheral nerves are characteristic of all forms of diabetes. 

Microvascular complications are classified into retinopathy, nephropathy, and 

neuropathy (Davey et al., 2014).  

 

2.3.1 PAINFUL DIABETIC NEUROPATHY 

 

Diabetic neuropathy (DN) is one of the most frequent long-term complications of 

diabetes. It affects about 60% of diabetic population and is a source of morbidity and 

mortality in diabetic patients (Aslam et al., 2014). This type of peripheral nervous 

disorder is characterized by a progressive neuronal death, dymyelination and 

suppression of the nerve regeneration mechanisms, resulting in an impaired nerve 

functioning.  

Nerve damage can involve both the autonomic and the sensorimotor divisions of the 

nervous system, so every nerve fibre in the body is potentially vulnerable.  

Diabetic neuropathic patients typically experience lack of sensibility in areas of the 

body and lose the capacity to judge the temperature or sense even painful, with a 

consequent impairment of the quality of life. Further, the progressive loss of 

innervations can lead to atrophy of essential pedal muscles, resulting in deformities 

that predispose the patient to ulceration and in the more severe cases to lower 

extremities amputation (Duby et al., 2004). Severity of symptoms increases gradually 

over time and correlate with the degree of hyperglycaemia (Han et al., 2013). 

There are many types of DN. Depending on the organ systems and the types of nerves 

affected and the entity of the nerve damage, which can be diffused or well localized, 

diabetic neuropathies are classified in diffuse somatic neuropathy, autonomic 

neuropathy and focal neuropathy. Among these, the sensorimotor neuropathy or 

distal symmetrical polyneuropathy (DSPN) is the most common form.  

DSPN affects both large and small sensory fibres resulting in a mixture of symptoms 

and sensory loss. The onset of the neuropathy is usually gradual and insidious and is 
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heralded by sensory symptoms that start from the most distal extremities of the limbs 

(toes and fingers) and progress proximally in a symmetrical “glove and stocking” 

distribution (Tesfaye et al., 2013). The syndrome involves initially the lower limbs.  

Approximately 50% of patients with DSPN exhibits neuropathic pain symptoms, which 

include uncomfortable tingling in the lower limbs (dysesthesia), spontaneous and 

evoked pain and numbness. Unusual sensations such as feeling of swelling of the feet 

or severe coldness of the legs when clearly the lower limbs look and feel fine, odd 

sensations on walking likened to “walking on pebbles” or “walking on hot sand”  are 

other characteristic clinical manifestations of the disease (Tesfaye et al., 2013). The 

pain is often worse at night and interferes with normal sleep causing tiredness during 

the day. The constant unremitting pain negatively impacts on the quality of life of 

diabetic patients resulting in form of depressions; in extreme cases patients experience 

loss of appetite and body weight known as “diabetic neuropathic cachexia” (Aslam et 

al., 2014).  

The exact pathophysiology of diabetic neuropathic pain is not fully understood. 

However, the abnormalities of pain processing in the peripheral and central nervous 

system which are supposed to contribute to the development and maintenance of 

neuropathic pain (see chapter 2.2) could be related to hyperglycaemia, as this is the 

key metabolic abnormality of diabetes (Aslam et al., 2014).  

 

2.3.2 PATHOGENESIS OF DIABETIC NEUROPATHY 

 

Despite decades of intensive researches, the pathogenesis of the diabetic neuropathy 

has not been yet fully elucidated. Hyperglycaemia is considered to be one of the major 

pathophysiological determinants of the disease. However, the cause of this syndrome 

is more complex than dysregulated glucose levels alone (Han et al., 2013). Several 

factors have been postulated to participate in the DN pathogenesis, including 

microcirculatory dysfunction, impaired insulin signalling, growth factor deficiency and 

inflammation.  

All these abnormalities are intertwined through numerous competing or parallel 

pathways and are supposed to contribute to a pathological self-perpetuating cycle of 

oxidative stress, inflammation and cellular dysfunction ultimately resulting in the 

progression of neurovascular disease associated to loss of nerve fibres.   

Polyol pathway, advanced glycation end-product (AGE) production, poly-ADP ribose 

polymerase (PARP) over activation, protein kinase C (PKC) and altered Na+/K+ ATPase 

activity are some of the molecular mechanisms underlying DN. (Sandireddy et al.,  

2014).  
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- HYPERGLYCAEMIA 

 

Prolonged hyperglycaemic state contributes to cell damage and, thus to neuropathy, 

through the generation of oxidative stress, as the final result of increased glycolysis, 

polyol pathway activity and generation of AGE products. Excess of glycolysis overloads 

the mitochondrial electron transport chain promoting the production of reactive 

oxygen species (ROS), while the abnormal high rate glucose “flux” through the polyol 

pathway leads to NAPDH depletion causing  oxidative stress. 

Accumulation of reactive oxygen species (ROS) increases lipid, DNA and protein 

peroxidation, induces cellular apoptosis, reduces nerve blood flow (NBF) and induces 

impairment of vasodilation of epineural blood vessels, which results in ischemia to the 

neural tissue. Oxidative stress also leads to deterioration of Schwann cells, which play 

a key role as a provider of insulation for neurons, immunologic perineurial blood nerve 

barrier, and effector of nerve regeneration (Han et al., 2013). 

The production of AGEs can impair cellular function by altering the structure and so 

the biological function of essential proteins. Moreover, binding to receptors (RAGE), 

they can trigger an inflammatory cascade that involves the activation of MAPK and PKC 

pathways  and that ultimately generate oxidative stress (Duby et al., 2004).  

 

- IMPAIRED INSULIN SIGNALLING 

 

Insulin is essential for general neuronal function as it promotes neuronal growth and 

survival. Insulin receptors are present in DRG sensory neurons and in peripheral axons 

sustaining epidermis and a their increase was found after physical injury of peripheral 

nerves and in diabetes (Guo et al., 2011).  

In diabetic mice, local or intranasal insulin administrations improve sensory nerve fibre 

density in the plantar foot pad and mechanical sensation (Francis et al., 2009).  

In DMT1 patients, the reduction of C-peptide, marker for pancreatic β-cells 

functionality, contributes to nerve dysfunction by reducing the activity of Na+/K+ 

ATPase and eNOS and the endoneurial blood flow.  

Treatment with C-peptide can slow down the progression of neuropathy (Ekberg and 

Johansson, 2008). Tight glucose control with insulin supply can also reduce neuropathy 

in DMT1 patients. However, the reduction of glucose levels is not enough to block the 

vicious cycle of oxidative stress, inflammation and cellular damage triggered by 

hyperglycaemia (Han et al., 2013). 

 

- VASCULAR AND GROWTH FACTOR DEFICIENCY 

 

Various studies report a major pathophysiological role of vascular and neurotrophic 

supply in diabetic neuropathy. 
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Maintaining adequate blood supply to nerves is crucial for maintaining nerve structure 

and function (Han et al., 2013). Deficiency in the nerve blood perfusion resulting in 

ischemic hypoxia largely contributes to pathogenic mechanisms of diabetic neuropathy 

as it determines malnourishment of nerve and thus neuronal dysfunction.  

Pathologies of nervous and vascular system are highly intertwined in diabetes. As the 

disease progresses, neuronal dysfunctions correlate closely with the development of 

vascular abnormalities, such as capillary basement membrane thickening and 

endothelial hyperplasia, which contribute to diminished oxygen tension and hypoxia 

(Duby et al., 2004). Impaired vasodilation in diabetic epineurial arterioles (caused by 

ROS) decreases nerve conduction velocity. 

Neurotrophic support has also an important role in diabetic neuropathy. Reduced 

neurotrophic supply in experimental diabetes was found to contribute to nerve 

malnourishment and neuronal dysfunction (Ekberg and Johansson, 2008).  

Many growth factors exert both neurotrophic and angiogenic effects. In ischemic 

tissues, VEGF induces angiogenesis by stimulating the proliferation and migration of 

endothelial, thus improving tissue ischemia. It also promotes axonal outgrowth and 

survival of neurons and Schwann cells in DRG. Like VEGF, IGF induces vessel 

remodelling and has neurotrophic  effect. It also stimulates Schwann cell mitogenesis 

and myelinisation. NGF, a well-known neurotrophic factor, promotes survival and 

differentiation of sensory and sympathetic neurons (Han et al., 2013). Moreover it 

provides neuroprotective and repair functions. In addition to these neurotrophic 

effects, NGF directly induces angiogenesis (Graiani et al., 2004).  

 

- NEUROINFLAMMATION 

 

Oxidative stress in combination with the activation of the classic metabolic pathways 

mentioned above, especially the MAPK signalling and the increased production of 

AGEs, can directly or indirectly initiate and progress the production of inflammatory 

mediators leading to neuroinflammation and thus nerve damage. 

Activation of RAGE on microglia and macrophages initiates an inflammatory cascade 

through the activation of the transcriptional factor Nf-kB, a potent inducer of the 

inflammatory processes (Yan et al., 1994). The activation of this transcriptional factor  

results in the up-regulation of genes encoding for pro-inflammatory cytokines (IL-1β, 

TNF-α and IL-6) and chemokines, induction of neuronal apoptosis, and suppression of 

antioxidant genes with a consequent weakening of the innate antioxidant defence 

(Ganesh et al., 2013). 

A persistent hyperglycaemic state also induces neuroinflammation by affecting the 

structural features of neurons; the glycosylation of myelin proteins alters their 

antigenicity and causes the infiltration of monocytes, macrophages, neutrophils from 
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the blood circulation as well as the activation of glia cells of the nervous system (King, 

2001; Shi et al., 2013).  

Moreover, NADP depletion mediate by PPAR overactivation leads to bioenergic failure 

driving the cells towards necrosis. This mechanism contributes to neuroinflammation 

as the release of cellular debris by necrotic cells determines the recruitment of further 

inflammatory cells to injury site which enhance the local inflammatory response 

(Szabò, 2003).  

Inflammatory cytokines released by either resident or infiltrating cells mediate 

damages to myelin sheets and increase nerve excitability leading to edema and 

neuroinflammation. Moreover, inflammatory cells have a vicious positive feedback 

loop for increasing further production of inflammatory mediators thus potentiating 

nerve derangement (Sandireddy et al., 2014). 

Hypoxia and ischemia created in diabetes aggravate the neuroinflammation by 

inducing iNOS activity, which is responsible for the release of nitric oxide (NO), another 

important  mediator of inflammation. 

 

 

2. 4 MURINE MODELS OF NEUROPATHIC PAIN 
 

Although intensive researches over the last decades have contributed to make light of 

some of molecules, receptors, channels and pathways mainly associated to 

pathological pain, a clear comprehension of the mechanisms underlying the 

development and maintenance of neuropathic pain is unfortunately still far. Important 

advances in the study of neuropathic pain have been achieved using animal models, 

excellent  systems to simulate the clinical pain conditions observed in human and to 

test novel therapeutic agents for contrasting this intractable pain. Even if most of 

animal models of neuropathic pain were initially generated in rats as preferred species, 

now the majority of pain models have been transposed in mice for the availability of 

genetically characterized or manipulated inbred strains in which specific proteins or 

signal transduction components have been altered throughout genetic knockout 

technology (Colleoni and Sacerdote, 2010).   

According to the huge ethiology of human painful neuropathy different types of well-

characterized animal models have been developed over time in order to resemble as 

closely as possible the heterogeneity of the pain manifestations.  

 

2.4.1 PERIPHERAL NERVE INJURY MODELS 

 

Many animal models have been created to emulate human painful neuropathy, most 

of which are based on surgical procedures at or near the sciatic nerve for ease to 

access and its relative large size. Peripheral nerve transection, resection, crushing, 
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loose or tight ligation and cryoneurolysis are some of the most widely lesions induced 

in animals (Colleoni and Sacerdote, 2010).  

Depending on the entity of nerve injury animals develop characteristic neuropathic 

behaviours. In neuroma model, a complete sectioning of the sciatic nerve is used to 

replicate the human syndromes seen after an amputation (phantom limb) or after 

transection in an intact limb (anesthesia dolorosa) (Janicki and Parris, 1997). Following 

the injury, a neuroma develops at the proximal nerve stump, consisting of regenerative 

nerve sprouting in all direction (Wang and Wang, 2003). The resulting immediate 

interruption of nerve conduction causes in animals episodes of self-attack and 

mutilation (autotomy) of their denervated limb, that are widely assumed as signs of 

chronic spontaneous pain. In this model allodynia and hyperalgesia are not detectable. 

Other models are based on the partial nerve lesions and include the chronic 

constriction injury (CCI) of sciatic nerve, the sciatic nerve partial ligation (PNS) and the 

spinal nerve ligations (SNL). These procedures preserve some innervation functions, 

mimicking clinical manifestations that occur after nerve trauma in human, and produce 

similar pain behaviours with some variations in the magnitude (Colleoni and 

Sacerdote, 2010). Injured animals experience both allodynia and hyperalgesia that are 

two specific symptoms of human peripheral neuropathy; on the contrary the presence 

of autotomy is restricted to some mouse strains.  

The chronic constriction injury procedure is performed through three or four loose 

ligatures around the mid-thigh of sciatic nerve and results in intraneural oedema, 

which strangulates the nerve, effectively axotomizing many but not all the nerve 

axons, Wallerian degeneration and epineural inflammation (Colleoni and Sacerdote, 

2010). After surgery, animals exhibit thermal hyperalgesia and allodynia to mechanical 

stimuli as signs of spontaneous pain that include guarding, excessive grooming and 

limping of ipsilateral hind paw and avoidance of placing weight on the injury side 

(Wang and Wang, 2003).  Evidence of pain sensation is detected 2 to 7 days after 

injury, reaching peak severity in 10-14 days and disappearing in about two months 

(Janicki and Parris, 1997).  

CCI-induced lesion produces a series of morphological, electrophysiological and 

pathological changes around the ligated nerve. In this model the processes of change 

are divisible into three phases: a first inflammatory phase characterized by a consistent 

inflammatory cell infiltration associated to the disruption of perineurium, 

demyelination with phagocytosis and axonal degeneration; a second phase consisting 

of axonal sprouting and remyelination processes and a third last phase in which 

maturating myelination and interstitial fibrosis lead to a complete recovery of the 

damaged area (Bai et al., 1999). 

PNS and SNL are two other peripheral nerve injury models largely used to resemble 

human causalgia. PNS model is produced in animal trough the ligation of a part, in 

general 1/3-1/2, of sciatic nerve thickness, while the SNL consists of unilaterally and 
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thigh ligation around L5-L6 spinal nerves. These procedures induce long-lasting 

neuropathic behaviours. In comparison to CCI model, painful symptoms following SNL 

and PSN surgery persist for at least 4 months, in the case of SNL, and over 7 months for 

PSN.  

A recent model of neuropathic pain is the spared nerve injury (SNI). This involves a 

lesion of two of the three terminal branches of the sciatic nerve, the tibial and the 

common peroneal nerves, leaving the remaining sural nerve intact (Decosterd and 

Woolf, 2000). Contrarily to CCI, PNS and SNL models, this procedure allows the 

comparison of difference in mechanical and thermal sensitivities of non-injured skin 

territories adjoining to the denervated areas (Jaggi et al., 2011).  Variants of SNI model 

are produced through different combinations of nerve transection.  

Another technique to produce nerve injury is the sciatic nerve freezing. The sciatic 

cryoneurolysis (SCN) model induces a reversible damage of the nerve offering the 

opportunity to study the transient nerve injury and the healing process. 

Ligation, transection or cryoneurolysis models show little difference in pain behaviours 

in the first 7 days after injury (Wang and Wang, 2003). 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3  Time course of the activation of the pro-inflammatory cytokines TNF, IL-1β 
and IL-6 along somatosensory pathways (sciatic nerve, DRG and spinal cord) after 
nerve injury (CCI) in mouse. + indicates a significant increase of mRNA measured in the 
nervous tissue at different time points after CCI in comparison to sham operated 
animals – indicates no significant difference is present in comparison to sham operated 
animals. Figure taken from Sacerdote et al., 2013. 
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2.4.2 MODELS OF DIABETES-INDUCED PERIPHERAL NEUROPATHIC PAIN 

 
Peripheral painful neuropathy often occurs as a consequence of metabolic (diabetes), 

viral (Herpes Zoster and HIV infection) and autoimmune (multiple sclerosis) diseases. 

Among these conditions, diabetes is the most frequent cause of neuropathic pain 

development.  

Experimental models of diabetes exhibit behavioural responses similar to those 

present in diabetic neuropathic patients, including spontaneous pain, decrease in 

mechanical nociceptive thresholds and/or hypoalgesia characterized by decreased 

responses to mechanical and thermal stimuli (Colleoni and Sacerdote, 2010). 

Murine models of diabetes are either chemically-induced or genetically determined. 

The induction of experimental diabetes using chemicals which selectively destroy 

pancreatic -cells is the most commonly model used for the study of peripheral 

diabetic neuropathy (PDN).  

Alloxan and streptozotocin (STZ), cytotoxic glucose analogues, are the most prominent 

diabetogenic chemicals in diabetes research (Lenzen, 2008). Both toxins selectively 

accumulate into -cells via glucose transporter GLUT2. Although their cytotoxicity is 

achieved via different pathways, by the generation of reactive oxygen species in the 

case of alloxan and through DNA alkylation for streptozotocin, these chemicals 

produce severe DNA changes leading to a rapid destruction of -cells with a 

consequent deficit in insulin production and rapid development of hyperglycaemia 

(Szkudelski, 2001).  

In STZ-induced diabetic neuropathy model, single or repeated administrations of STZ 

produce in mice long-lasting thermal and mechanical hyperalgesia and cold, thermal 

and mechanical allodynia (Morita et al., 2008; Vareniuk et al., 2008). The main reason 

of STZ-induced -cell death is the alkylation of the DNA (Elsner et al., 2002). Following 

its uptake into the -cells, streptozotocin is split into its glucose and methylnitrosourea 

moiety and methyl groups are transferred from streptozotocin to the DNA molecule 

causing a damage, which ultimately results in the fragmentation of the DNA (Lenzen, 

2008). 

The metabolism of STZ occurring inside -cells liberates also a toxic amount of nitric 

oxide (NO), which inhibiting aconitase enzyme activity induces a restriction of 

mitochondrial ATP production. (Welsh and Sandler, 1994).  

Moreover, STZ-induced DNA damage activates the poly (ADP-ribose) polymerase 

(PARP). Its overstimulation leads to consumption of cellular NAD+ and further 

reduction of the ATP content (Heller et al., 1994; Lenzen, 2008). The depletion of the 

cellular energy stores ultimately results in -cell necrosis with a subsequent inhibition 

of insulin synthesis and secretion (Nukatsuka et al., 1990). Protein glycosylation may 

be an additional damaging factor (Konrad and Kudlow, 2002). Depending on the choice 

of the experimental protocol STZ-induced diabetes involves different pathological 
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pathways. Direct -cell toxicity is exerted by intraperitoneal (i.p.) injection of STZ (180-

200 mg/kg bw), whereas i.p. injections of multiple low doses (40 mg/kg on five 

consecutive days) induce subtoxic effects on -cell, leading to slow progressive 

hyperglycaemia, accompanied by lymphocytic infiltration of pancreatic islets, which 

resembles type 1 diabetes in human patients (Homs et al., 2011).  

Due to  the selectively for the glucose transporter GLUT2, STZ induces toxic effects also 

on other organs expressing this transporter, particularly kidney and liver. As result 

animals exhibit over time a progressive deterioration of their general condition.  

Most studies on the etiopathogenesis of type 1 diabetes (T1D) have focused on the 

non-obese diabetic (NOD) mouse model, which shares many genetic and 

immunological disease characteristics with human T1D (In’t Veld, 2014). In this model 

spontaneous development of the autoimmune diabetes involves a long-term 

inflammatory process. Similarly to diabetic patients, in NOD mice neuropathic 

symptoms, including hyperalgesia, appear during the early inflammatory stage of the 

disease and precede the onset of an evident hyperglycaemic state (Colleoni and 

Sacerdote, 2010). Other animal models that exhibit long-term complications of 

diabetes include transgenic insulin resistant ob/ob and db/db mice. These animals 

develop obesity and type 2 diabetes as a result of spontaneous genetic mutations that 

cause a decrease in functional leptin (ob/ob) or its receptor (db/db) (Colleoni and 

Sacerdote, 2010).  

 

 

2.5 THE PROKINETICIN SYSTEM 
 

Prokineticins (PKs) are a family of secreted peptides highly preserved throughout 

evolution, from invertebrates (crayfish, shrimp) to various species of mammals, 

including human.  

The first members of this family to be identified were VRPA or MIT1, a non-toxic 

constituent of the venom of the black Mamba snake (Joubert and Strydom, 1980) and 

Bv8 a small basic protein of 8 kDa isolated from the skin secretion of the frog Bombina 

variegata  (8 kDa) (Mollay et al., 1999). Bv8-like proteins were subsequently 

recognized in skin secretion of other amphibians, in reptiles, fishes and mammals. In 

mammals two Bv8 homologs were identified: the prokineticin 1 (PK1 or endocrine 

gland-derived vascular endothelial growth factor, EG-VEGF) and the prokineticin 2 (PK2 

or mammalian-Bv8) (Negri et al., 2007). 

Prokineticins are involved in a large spectrum of functions in the organism. They were 

originally determined as potent agents mediating gut motility in the digestive system, 

but were later shown to promote angiogenesis in steroidogenic glands, hearth and 

reproductive organs (Ngan and Tam, 2008). Moreover over the last decades it was 

demonstrated that numerous other biological activities are associated to prokineticins, 
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such as neurogenesis, circadian rhythms, nociception, hematopoiesis as well as 

inflammatory and immunomodulatory processes (Negri et al., 2007). In addition, these 

proteins are implicated in pathologies affecting the reproductive and nervous system, 

cardiomyopathy and tumorigenesis (Ngan and Tam, 2008).  

 

2.5.1 PROKINETICINS AND PROKINETICIN RECEPTORS: gene sequence, 

protein structure and anatomical localization 
 

Mammalian prokineticins PK1 and PK2 are encoded by distinct genes at different 

localization. PROK1 gene maps to regions of human chromosome 1p21.1 and mouse 

chromosome 3 and is organized in three exons encoding a mature form of 86 

aminoacids (LeCouter et al., 2003a; Lin et al., 2002b), whereas PROK2 gene is located 

on human chromosome 3p21.1 and mouse chromosome 6 (Jilek et al., 2000) and 

consists of four exons which give rise to two mature proteins: PK2 of 81 aminoacids 

and a splice variant with 21 additional basic aminoacids called PK2L of 102 aminoacids, 

which is known to be processed by protease cleavage into a smaller active peptide 

called PK2Lβ (Chen et al., 2005). However, the biological function of the long isoform 

PK2L and PK2Lβ has not yet been elucidated.  

The genomic organization of PK1 and PK2 is similar. The first exon encodes for 19 

residues and the first five aminoacids of the mature proteins corresponding to signal 

peptide and the conserved AVITGA sequence domain, respectively. The second 

encodes 42 aminoacids, including 6 of the ten cysteins characterizing the mature form 

of the proteins, while the third exon, which is absent in the genomic structure of PK1, 

encodes the 21 aminoacids insert that is instead present in an alternative mRNA of 

PK2. The remaining 34 aminoacids are encoded by last exon and include 4 of the ten 

cysteines of the secreted proteins (Negri et al., 2007; Martin et al., 2011).   

Prokineticins and Bv8-related peptides share an elevated structural identity, 

particularly in the N-terminal and central regions. All these proteins in fact exhibit an 

identical amino terminal sequence, AVITGA (Ala, Val, Ile, Thr, Gly, Ala), which is critical 

for receptor recognition and the biological activity (Bullock et al., 2004; Negri et al., 

2005).  

The presence of this distinctive preserved domain led Kaser et al. to define them the 

“AVIT proteins” in order to group in a unique family (AVIT family) the prokineticins and 

their non-mammalian orthologs. 

The N-terminal hexapeptide sequence is essential for the function of PK2. Deletions, 

insertions and substitution mutations (Bullock et al., 2004), as well as proteolytic 

fragmentation of the conserved domain (Negri et al., 2005), result in partial or 

complete loss of the biological activity. 
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Another common features of these proteins are the presence of ten cysteine residues 

with identical spacing (Kaser et al., 2003) and a tryptophan residue in position 24 

(Trp24).  

The ten cysteines form five disulphide bridges conferring to the molecules a stable and 

compact three-dimensional structure highly resistant to protease degradation (Kaser 

et al., 2003). The N- and C- ends as well as some hydrophobic residues, including 

Trp24, are exposed on the surface, whereas the more charged residues are buried 

inside the molecules (Boisbouvier et al., 1998). One side of the roughly ellipsoid 

proteins has a positive net charge, whereas the opposite side is hydrophobic (Kaser et 

al., 2003).  

PK1 and PK2 were identified in an impressive array of organs including brain, ovary, 

testis, placenta, adrenal cortex, intestinal tract, hearth and bone marrow (Ngan and 

Tam, 2008; Negri et al., 2009). Lymphoid organs, peripheral blood cells, synoviocytes 

and dendritic cells also constitutively express moderate levels of prokineticins 

(LeCouter et al., 2004; Martucci et al., 2006; Franchi et al., 2008).  

PK1 is predominantly expressed in steroidogenic organs (LeCouter et al, 2001) whereas 

PK2 is mainly (but not exclusively) expressed in the central nervous system and non-

steroidgenic cells of testis (Ferrara et al, 2004; Cheng et al., 2005).  

Contrary to low expression of PK1 detected in brain, PK2 is abundantly expressed in 

this organ, particularly in suprachiasmatic nucleus and the olfactory bulb (Cheng at al., 

2002; Ng et al., 2005). Almost simultaneously with the discovery of the prokineticins, 

three independent research groups identified in mammals two closely related G 

protein receptors for Bv8/PKs, prokineticin receptor 1 (PKR1) and prokineticin receptor 

2 (PKR2) (Lin et al., 2002a; Masuda et al., 2002; Soga et al., 2002). Prokineticin 

receptors belong to the neuropeptide Y (NPY) receptor class, have an overall identity in 

their aminoacid sequences of 85% with most differences at the N-terminal and are 

about 80% identical to the previously described mouse orphan receptor gpr73 (Parker 

et al., 2000). The gene encoding for PKR1 maps to human chromosome region 2q14 

and mouse chromosome 6, while that for PKR2 is located on human chromosome 

region 20p13 and mouse chromosome 2 (Kaser et al., 2003).  

Data obtained from binding experiments on cell membranes exogenously transfected 

with PKR1 and PKR2 revealed a general non-selectivity of all prokineticins for either 

receptors, except MIT-1 and PK2Lβ that display a clear selectively for PKR2 and PKR1, 

respectively (Negri et al., 2007).  The affinity of PK1 and PK2 for their receptors are in 

similar range, although PK2 displays a moderately higher affinity for both receptors: 

the Kd (nM) values for PK1 and PK2 binding to PKR1 are 12.3 ± 4.2 and 1.4 ± 0.5, 

respectively, the Kd (nM) values for PK1 and PK2 binding to PKR2 are 1.8 ± 0.1 and 2.0 ± 

0.7, respectively (Lin et al., 2002a; Soga et al., 2002; Cheng et al., 2005; Maldonato-

Perez et al., 2007).   
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All prokineticins activate PKR1 and PKR2 in the nanomolar concentrations. PKRs 

activation produce a variety of downstream signalling events which ultimately result in 

proliferation, anti-apoptosis, differentiation and migration/mobilization of the target 

cells in various systems (Kaser et., 2003; Maldonado-Perez et al., 2007; Ngan and Tam, 

2008). Multiple intracellular pathways are triggered by PKRs. One of the major 

signalling mechanisms is the intracellular calcium mobilization via protein Gq activation. 

PKRs/Gq interaction by activating phospholipase Cβ (PLCβ) promotes the formation of 

inositol triphosphate and the consequent calcium release from intracellular stores 

leading to altered cell activity (Lin et al., 2002b).  

Intracellular calcium stimulation also activates the calcineurin pathway, which induces 

dephosphorylation of the transcription factor, NFAT (nuclear factor of activated T 

cells), followed by nuclear translocation of NFAT and regulation of gene transcription 

(Maldonado-Perez et al., 2009; Cook et al., 2010). In the dorsal root ganglion PKRs 

increase intracellular calcium current carried by the transient receptor potential 

vanilloid 1 channel (TRPV1) via a pathway involving the activation of protein kinase C 

(PKC) (Vellani et al., 2006). Crosstalk between the glial cell line-derived neurotrophic 

factor (GDNF)/Ret, TRPV1 and prokineticin signalling has also been reported (Hu et al., 

2006; Ngam and Tam, 2008). 

Moreover, coupling to Gi (especially PKR2) and Gs proteins, PKRs mediate the 

phosphorylation of p44/p42 mitogen-activated protein kinase (MAPK), 

serine/threonine kinase Akt and cAMP accumulation, respectively (Chen et al., 2005).  

PKRs are widely distributed in the organism and frequently, tissues with high levels of 

PKR1 exhibit low to detectable levels of PKR2 and vice versa (Martin et al., 2011).  

PKR1 is mainly, but not exclusively, diffused in the peripheral tissues including those of 

the endocrine system, gastrointestinal tract, lungs, hearth, blood cells and 

reproductive organs, while PKR2 is abundantly expressed in discrete nuclei of the 

central nervous system, particularly in the hypothalamus, the olfactory ventricular 

regions, the limbic system and thalamic areas (Negri et al., 2007; Cheng et., 2002; 

Cheng et al., 2006). PKRs expression has been also reported in endocrine and 

peripheral organs such as pituitary and thyroid glands, testis and ovary (Soga et al., 

2002; Martin et al., 2011). In CNS, PKR2 is prevalently expressed in neurons, whereas 

PKR1 is mostly expressed in glia cells, as indicate by analysis on primary cultured 

neurons, astrocytes and microglia prepared from mouse cerebrum (Koyama et al., 

2006).  

The distinct expression patterns of the receptors and ligands gives reasons for the 

large spectrum of biological activities exerted by prokineticins. Differential G-protein 

expression pattern and multiple G-protein coupling of the receptors furthermore 

increase the functional complexity of the system (Ngam and Tam, 2008). 
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2.5.2 BIOLOGICAL FUNCTIONS OF PROKINETICINS  

 

o Gastro-intestinal motility 

 

Prokineticins are firstly identified in the gastrointestinal tract as endogenous 

regulatory agents mediating gastrointestinal motility by their ability to contract 

isolated guinea pig ileum and promote relaxation of colon (Li et al., 2001). 

The role of PKs in gastric and colon contractility was later demonstrated also in 

rodents. In murine proximal colon PK1 was found to suppress spontaneous giant 

contractions of the circular muscle via the release of nitric oxide (Hoogerwerf, 

2006). In another study, PK2 was claimed as potential therapeutic to increase post-

operative gastric and intestinal motility (Lewis, 2004). 

 

o Neurogenesis 

 

PK2 and PKR2 are widely expressed in CNS. In situ hybridization studies have 

demonstrated the presence of PK2 in layer II of the cerebral cortex, in dorsal and 

ventral hippocampus and in cerebellar cortex of brain rodents. PK2 expression was 

also observed in the olfactory bulb (OB), a region where neurogenesis persists also 

in adulthood (Melchiorri et al., 2001).  

Expression analysis for prokineticin receptors in rodents at various ages has 

furthermore shown differential anatomical and temporal localization of PKRs  

within the CNS. One day after birth PKR2 is strongly expressed in the olfactory 

Figure 4  Prokineticin signalling. Figure taken from Ngan and Tam, 2008. 
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bulb, neuroepithelium, striatum, hippocampus, thalamic and hypothalamic areas, 

amygdala and cortex of rat, whereas PKR1 expression is restricted in the cortex; in 

the brain of adult rat only PKR2 is still expressed. Both receptors are instead highly 

expressed in adult DRGs (Negri et al., 2006).  

PK2 was found to stimulate neuronal survival in primary cultures of cerebellar 

granule cells and protect cultured cortical neurons against excitotoxic death via 

ERK and Akt pathways activation (Melchiorri et al., 2001). Moreover, in the 

olfactory bulb PK2 functions as a chemoattractant inducing the migration of 

subventricular zone-derived neuronal progenitors and regulating OB 

morphogenesis (Ng et al., 2005).  

Genetic studies demonstrated that PK2/PKR2 signalling pair has a critical role in the 

development of olfactory bulb. PK2 and PKR2 deficient mice display hypoplasia and 

defects in the architecture of OB (Matsumoto et al., 2006; Negri et al., 2007).  PKR2 

null mice also show severe atrophy of the reproductive system, pathological 

change which resembles the clinical manifestations of Kallmann syndrome, human 

developmental disease characterized by hypogonadotropic hypogonadism, 

ascribed to the lack of gonadotropin-releasing hormone neurons, and anosmia, 

related to defective olfactory bulb (Matsumoto et al., 2006). 

 

o Circadian rhythm regulation 

 

The suprachiasmatic nucleus (SCN) of the hypothalamus is the primary mammalian 

circadian clock that drives daily rhythms of diverse physiological functions and 

behaviours, including the sleep/wake cycle, blood pressure and energy metabolism 

(Reppert and Weaver, 2002).  

Mapping the distribution of prokineticins and cognate receptors in mouse brain 

has revealed that PK2 and PKR2 are abundantly expressed in SNC indicating a 

potential regulator function for PK2/PKR2 signalling in the circadian clock. 

Prokineticins levels in SCN display dramatic circadian rhythmicity under light/dark; 

hypothalamic PK2 mRNA is high during the day, while very low levels are detected 

in the dark phase (Cheng et al., 2002). Moreover, high levels of PKR2 are detected 

in the dorsal medial nucleus (DMN), and the paraventricular thalamic nuclei (PVT), 

brain structures known to regulate circadian activity. Contrarily to PK2 expression, 

the levels of PKR2 show no significant diurnal alteration (Matsumoto et al., 2006).  

The involvement of the PKs system in circadian rhythms regulation is supported by 

studies performed in transgenic animal models. It was in fact demonstrated that 

PK2-deficient mice exhibit reduced rhythmicity for a variety of physiological and 

behaviour parameters, including sleep/wake cycle, activity, body temperature, 

circulating glucocorticoid, glucose levels and the expression of peripheral clock 
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genes (Li et al., 2006). PKR2 disruption also results in similarly damped circadian 

rhythms in locomotor activity and body temperature (Prosser et al., 2007).  

Mood disorders are known to be linked to disrupted circadian rhythm. In rodents, 

intracerebroventricular injection of PK2 results in increased anxiety-like behaviour, 

whereas PK2-deficient mice display reduced anxiety and depression-like 

behaviours (Martin et al., 2011). 

  

o Angiogenesis, reproductive system and tumorigenesis 

 

The angiogenic activity of prokineticins is well documented. PK1, also known as 

endocrine gland-derived vascular endothelial growth factor (EG-VEGF) for its 

selective angiogenic effect on endocrine glands, was found to promote 

angiogenesis in the ovary (LeCouter et al., 2001) and  testis (LeCouter et al., 2003b) 

and induce proliferation, migration and fenestration of endothelial cells derived 

from adrenal glands (LeCouter et al., 2001). Moreover, the presence of PK1 on 

mouse epithelial tubule cells and liver hepatocytes and the restricted expression of 

PKR2 on endothelial cells, suggested the hypothesis that PK1 also functions as a 

paracrine growth and survival factor for kidney and liver endothelial cells (LeCouter 

et al, 2003b; Ferrara et al., 2004). 

Both PK1 and PK2 mediate vascular effects through the activation of PKRs widely 

expressed in endothelial cells from different tissue vasculatures. The activation of 

PKR1 enhances cell survival and proliferation while PKR2 is mostly implicated in 

regulating  endothelial cell permeability (LeCouter et al., 2003a; Lin et al., 2002b; 

Kisliouk et al., 2003).  

PK2/PKR1 pair signalling not only promotes the growth of capillary endothelia, but 

also modulates the cardiomyocyte survival, inducing vessel-like formation and 

protecting cardiac cells against oxidative stress (Urayama et al., 2007).   

PKs and PKRs are predominantly expressed in reproductive system. Testis and 

placenta are the sites with the highest levels of prokineticins. PK1 expression is 

restricted to the testosterone producing Leyding cells and believed to promote the 

interstitial angiogenesis to support testicular endocrine activity of testis 

(Maldonato-Perez et al., 2007), while PK2 is highly expressed only in the primary 

spermatocytes (Wechselberger et al., 1999; LeCouter et al., 2003b).  

In human female reproductive organs PK2 is practically absent (Ferrara et al., 

2004). On the contrary a strong expression of PK1 was found in the endocrine 

component of placenta, the syncytiotrophoblast layer, where PK1 could act as a 

novel placental growth factor for trophoblast differentiation (Maldonato-Perez et 

al., 2007). PK1 is also present in the ovary showing a dynamic pattern of expression 

during the ovulatory cycle and pregnancy (Ferrara et al., 2004). In addition, in 
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uterus PK1 was found to facilitate implantation by increasing microvascular 

permeability of the endometrium (Ngam et al., 2006).  

On the other hand, aberrant PKs signalling results in hyperplasia and 

hypervascularity in various tissues and is associated to the development of 

polycystic ovarian syndrome, neuroblastoma, colorectal, prostate and testicular 

cancers (Maldonato-Perez et al., 2007; Ngam and Tam, 2008). Clear evidences also 

indicate a potent role of PK2 released by infiltrating myeloid cells in promoting 

tumor angiogenesis (Shojaei et al., 2007).  

    

2.5.2.1 ROLE OF PROKINETICINS IN PAIN 

 

PK2 is the key regulator of different biological events in the nervous system including 

neurogenesis and circadian rhythms, as previously mentioned, and pain processing. 

PK2 enhances pain sensitivity through the activation of PKR1 and PKR2, widely 

expressed in anatomical stations associated to pain transmission, such as dorsal root 

ganglion (DRG), outer layers of the dorsal horns of spinal cord and in the peripheral 

terminals of nociceptor axons, as well as in cells participating to immune and 

inflammatory responses (Negri et al., 2006; Negri and Lattanzi, 2012). 

The involvement of the PKs system in nociception was suggested by the observations 

that intraplantar injections of very low doses of PK2 in rodents caused strong and 

localized hyperalgesia by decreasing nociceptive thresholds to thermal and mechanical 

stimuli (Mollay et al., 1999; Negri et al., 2002).  

It was also demonstrated that PK2 produced a biphasic hyperalgesia to tactile and 

thermal stimuli when administered in rats by systemic routes. The first hyperalgesic 

peak was attributed to a local action of PK2 on nociceptors, because PK2 injected 

intraplantary induced hyperalgesia with a similar time course to that of the initial 

phase of hyperalgesia seen with systemic injection, while the second phase of 

hyperalgesia probably results from a central action of PK2 as it is not seen with the 

local intraplantar injections. (Negri et al., 2002; Vellani et al., 2006).  

PK2 was found to promote central sensitization enhancing the release of mediators 

implicated in pain processing as Calcitonin-Gene Related Peptide (CGRP) and substance 

P (SP). PK2-responding neurones contain and release CGRP and SP upon exposure to 

PK2. Moreover, i.t. injection of PK2 in rats results in an up-regulation of CGRP and SP 

immunoreactivity in lumbar dorsal horn and in DRG (DeFelice et al, 2012).  

PKR1 and PKR2 are highly expressed in DRG neurons. In vitro culture of rats DRG 

neurons showed that PK2 significantly lowers the nociceptive thresholds to a broad 

spectrum of physical and chemical stimuli and subsequent studies showed the ability 

of PK2 to induce nociceptor sensitization through the modulation of TRPV1, channel 

notoriously involved in pain transmission (Negri et al., 2006; Vellani et al., 2006). 

Functional assay revealed in fact that PK2 dose-dependently mobilize intracellular 
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calcium promoting the translocation of PKCε from cytoplasm to neuronal membrane, 

which activation is responsible for the phosphorylation and the consequent 

sensitization of TRPV1 (Numazaki et al., 2002).  

These functional studies are consistent with results of colocalization experiments 

indicating that the majority of PKR1-positive DRG neurons express TRPV1 (Hu et al., 

2006). The critical role of TRPV1 in the downstream signalling of PKR1 in pain 

perception is further supported by the reduced response of TRPV1 deficient mice to 

PK2 (Negri et al., 2006; Zhou et al., 2006). 

A possible involvement of PKs system in central modulation of pain is documented by 

DeNovellis and co-workers. This study reports that intra-periaqueductal grey (PAG) 

administration of PK2 exerts a pro-nociceptive action increasing the intrinsic 

GABAergic tone which, in turn, is responsible for the inhibition of PAG anti-nociceptive 

output neurons impinging on RVM neurons (DeNovellis et al., 2007).  

Recently it was also highlighted a crucial role for PK2 in mediating inflammatory 

hyperalgesia (Giannini et al, 2009). In animal model of inflammatory pain induced by 

complete Freund’s adjuvant (CFA), a strongly increase of PK2 in granulocytes and 

macrophages correlates with the development and duration of pain.  

Evidence for a direct involvement of PKs/PKRs pair signalling in modulating pain 

processing also comes from studies in PK2-, PKR1- or PKR2- deficient mice (Negri et al., 

2006; Hu et al., 2006). Animals lacking the PKRs or PK2 exhibit impaired pain 

perception to various stimuli, including noxious heat, mechanical stimuli and capsaicin. 

PKR1-deficient mice also display an impaired development of hyperalgesia after tissue 

injury. 

 

2.5.2.2 FUNCTION OF PROKINETICINS IN IMMUNE SYSTEM 

 

In human and mouse, hematopoietic stem cells, lymphoid organs, and peripheral 

blood cells (peripheral leucocytes, neutrophils, dendritic cells and monocytes) as well 

as resident organs immune cells constitutively express moderate levels of prokineticins 

and their receptors (LeCouter et al., 2004; Dorsch et al., 2005).  

Coupling to cognate receptors, prokineticin 2 was found to modulate growth, survival 

and cell function of both innate and adaptive immune system. The involvement of the 

PKs system in haematopoiesis and in regulatory processes associated to inflammatory 

and immune responses is reported in numerous studies (LeCouter et al., 2004).  

It was demonstrated that PK1 supports the differentiation of mouse and human bone 

marrow cells into monocyte/macrophage lineage (Dorsch et al., 2005), and a similar 

effect of PK2 was observed on monocyte lineage (LeCouter et al., 2004).  

Moreover, prokineticins were shown to regulate the functioning of immune cells. PK1 

and PK2 are in fact highly expressed on mature blood cells types. PK2 expression is 

particularly associated to monocytes, neutrophils and dendritic cells, and this protein is 
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released in large quantity by neutrophils at site on inflammation where it stimulates 

migration of monocytes (LeCouter et al., 2004). 

PK1 promotes monocyte activation inducing changes in cell morphology and 

expression levels of cytokines or cytokines receptors (Dorsch et al., 2005), while PK2 

was found to modulate murine macrophage and spleen lymphocyte activity affecting 

both innate and acquired immunity functioning (Martucci et al., 2006; Franchi et al., 

2008). In particular, our group reported the ability of PK2 to induce macrophage 

migration at very low concentrations and to acquire a pro-inflammatory phenotype 

significantly increasing the LPS-induced production of the pro-inflammatory cytokines 

IL-1β and IL-12, while decreasing that of anti-inflammatory cytokine IL-10 (Martucci et 

al. 2006). PK2 also influences T lymphocyte population skewing the Th1/Th2 balance 

towards a Th1 response (Franchi et al., 2008).  

All these effects are exquisitely mediate by the activation of PKR1 because they lack in 

macrophages and spleen lymphocytes from PKR1 deficient mouse, revealing a pivotal 

role of this receptor in the regulation of immune response (Martucci et al., 2006; 

Franchi et al., 2008).  

Very little is known about the regulation of prokineticin and prokineticin receptors 

within immune cells (Monnier and Samson, 2008). However, PK2 transcription was 

recently shown to be positively regulated in CD11b+Gr1+ bone marrow-derived cells 

(i.e. neutrophils and cells of the macrophage lineage), specifically by granulocyte 

colony-stimulating factor (G-CSF) (Shojaei et al., 2007).  

It has also been shown that human monocytes exposed to PK2 induced extracellular 

signal-regulated kinase phosphorylation that was abolished by pertussis toxin, 

suggesting involvement of the Gi protein signaling pathway (LeCouter et al., 2004). 

Interestingly, in mouse macrophages, it seems that pertussis toxin was unable to block 

the actions of PK2, but rather inhibition of the Gq protein pathway blocked the 

secretion of cytokines mediated by PK2 (Martucci et al., 2006). 

Prokineticins were also found to be involved in inflammatory diseases and tumours. 

Expression analysis revealed high levels of PK1 in rheumatoid arthritis synoviocytes 

(Dorsch et al., 2005) and PK1 transcripts were also detected in tumor-infiltrating  T 

lymphocytes in ovarian carcinoma (Kisliouk et al., 2007). 

PK2 is particularly overexpressed in inflamed appendix and tonsil associated with 

infiltrating cells. It was also clearly demonstrated a role of PK2 in mediating 

inflammatory hyperalgesia induced by CFA injection (Giannini et al., 2009).  From this 

study also results a clear involvement of both PKRs in inflammatory pain as in mice 

lacking PKR1 or PKR2 a significant less inflammation-induced hyperalgesia was 

observed in comparison with WT mice. However, the inflammation-induced up-

regulation of PK2 was significantly less in PKR1 deficient  mice than in WT and PKR2 

null mice, once again demonstrating a specific involvement of PKR1 in setting the 
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enhanced PK2 levels during inflammation (Giannini et al., 2009; Negri and Lattanzi, 

2011).  

It was supposed that the activation of PKR1 present on granulocytes and macrophages 

by PK2 released at the site of inflammation could promote their recruitment (Martucci 

et al., 2006) and survival by paracrine and autocrine mechanisms, directly or 

synergizing with G-CSF (Shojaei et al., 2007; LeCouter et al., 2004).  

 

2.5.3 PROKINETICIN RECEPTOR ANTAGONISTS 

 

Considering the involvement of the PKs system as peripheral and central modulator in 

a wide spectrum of biological functions and pathological conditions in various tissues, 

the development of effective PKR antagonists may be useful in the treatment of 

various disease states.  

Interestingly PK2 was found to be a potent pro-nociceptive/pro-inflammatory agents 

regulating pain processing. It follows that the antagonism of PKs signalling could also 

represent a novel  promising approach to control different kinds of pain.  

The identification of the structural determinants required for receptor binding and 

hyperalgesic activity of PKs is mandatory for the design of PKR antagonists (Balboni et 

al., 2008). As previously described, the highly conserved amino terminal sequence 

AVITGA and the tryptophan (Trp) residue in position 24 in all members of the PKs 

family are essential for their biological activity.  

As suggested by Miele et co-workers, AVIT proteins could interact with PKRs by 

orienting the protein region that comprises the AVITGA sequence and the conserved 

Trp24 (Miele et al., 2010). Moreover, it was demonstrated that deletions and 

substitutions in these conserved residues produce antagonist molecules (Bullock et al., 

2004; Negri et al., 2005).  

The N-terminal deletion of the first two amino acids alanine and valine in Bv8 molecule 

(dAV-Bv8), yields an analogue lacking any biological activity but still able to bind the 

receptors acting as PKR antagonist in vitro and in vivo (Negri et al., 2005). The 

substitution of Trp with Ala in position 24 produces another antagonist-like protein, A-

24, which, preferentially binding PKR2, was found to exert a long-lasting anti-

hyperalgesic effect in animal models of postsurgical and inflammatory pain (Lattanzi et 

al., 2012). However, the big size of these peptides makes difficult and expensive their 

use for clinical therapy. 

Recently, new promising non-peptidic PKR antagonists, triazine-guanidine derivates, 

have been synthetized and developed. 

The “lead  compound” of triazine antagonists is the molecule named PC1. PC1 mimics 

the structural features required for PKRs binding; the triazine-guanidine moiety of the 

molecule mimics the N-terminal AVIT sequence, whereas the methoxybenzyl moiety is 

oriented as the tryptophan residue in position 24 (Balboni et al., 2008). 
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Results from binding assay demonstrated that PC1 is a PKR1-preferring ligand. This 

molecule displays in fact an affinity about 70-fold higher for PKR1 (Ki=22 nM) than for 

PKR2 (Ki=1610 nM).   

In vitro studies revealed a clear antagonist activity of PC1 as it was found to inhibit 

Bv8-induced intracellular calcium mobilization in PKR1- and PKR2-transfected CHO 

cells (Balboni et al., 2008). In vivo studies furthermore demonstrated the efficacy of 

PC1 to selectively antagonize Bv8-induced hyperalgesia and capsaicin-induced thermal 

hypersensitivity, suggesting that it may prevent activation of PKRs and TRPV1 by their 

endogenous ligands (Negri and Lattanzi, 2012).  

In CFA-induced inflammatory pain model, systemic injections of PC1 (from 20 to 150 

µg/kg, s.c.) reduced hyperalgesia in dose-dependent manner, completely abolishing it 

at the dose of 150 µg/kg (Giannini et al., 2009). 

 

 

 

Figure 5  PC1 chemical structure. 
Red circle indicates triazine group.  



 

47 

 

 

 

 

 

3. AIM OF THE WORK

 

 

 

 

 



AIM OF THE WORK 
 

48 

In the last years it has been recognized that cytokines and chemokines are potent 

neuromodulators involved in neuroinflammation at different anatomical locations, 

including peripheral injured nerve, DRGs, spinal cord and brain and contribute to 

chronic pain processing (Abbadie et al., 2009; Gao and Ji, 2010). In the pathological 

and complex network between neuronal and non-neuronal cells along the way of pain 

transmission, increasing evidences now suggest also a possible implication of a 

recently discovered family of chemokine-like proteins, the prokineticins (PKs).  

Prokineticin 2 (PK2) belongs to this new family of chemokines and was found to have a 

pivotal role in pain transmission and immunomodulation acting on its receptors PKR1 

and PKR2 widely distributed in the central nervous system, DRG neurons and in cells 

participating to immune and inflammatory response (Negri et al., 2007). 

PK2 is especially active in lowering pain threshold and displays a major role in 

triggering inflammatory pain (Negri et al., 2006; Giannini et al., 2009); it is involved in 

neuronal sensitization through co-operative interaction with TRPV1 channels in DRGs 

and promotes the release of neuromediators implicated in pain processing as CGRP 

and substance P (DeFelice et al., 2012). In addition, PK2 has a role in regulating the 

immune response. The stimulation of PKR1 induces a pro-inflammatory phenotype of 

the macrophage, activating this cell to migrate and produce pro-inflammatory 

cytokines; PK2 also induces the shift towards a Th1 profile in lymphocytes (Martucci et 

al., 2006; Franchi et al., 2008). 

Considering that PKR1 and PKR2 as well as PK2 are expressed in neurons, glia and 

immune cells and that this system is involved in nociception and immunoregulation, 

PK2/PKR pair might exerts a critical role in chronic pain transmission (Koyama et al., 

2006). 

On these premises, the aim of my PhD project was to investigate the role of the PKs 

system in the development of neuropathic pain in order to identify new targets for the 

development of novel modality to control this kind of pain. 

The involvement of this system was investigated in two widely accepted mouse models 

of neuropathic pain, i.e. a mononeuropathy induced by the chronic constriction injury 

(CCI) of sciatic nerve and a diabetic polyneuropathy induced by the injection of a 

pancreatic  cell toxin, streptozotocin (STZ).  

In order to understand if PK2, PKR1 and PKR2 activities were necessary for the onset, 

maintenance or resolution of neuropathic pain, mice were chronically treated with the 

PKR antagonist PC1, which was proved to be effective in inflammatory pain treatment 

(Giannini et al., 2009). Different approaches and complementary methods 

(behavioural, biochemical and hystochemical analysis) were used to prove the 

existence of a correlation between the presence of pain symptoms and the activation 

of the prokineticin system. 

The CCI model was used in the first part of the study in order to characterize the PKs 

system in the main anatomical stations associated to neuropathic pain processing. The 
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efficacy of PC1 to counteract CCI-induced neuropathic painful symptoms, i.e. thermal 

hyperalgesia and mechanical allodynia, was tested and at the end of the chronic 

treatment with the antagonist the variations in pain behavior were evaluated and 

correlated with (i) the changes in mRNA expression and protein distribution of PK2 and 

PKRs in spinal cord and in the sciatic nerve by Real-Time PCR and 

immunocytochemistry (ii) the changes in mRNA expression and protein content of the 

pro-inflammatory cytokine IL-1β and the anti-inflammatory IL-10 in spinal cord and in 

the sciatic nerve by Real-Time and ELISA analysis. 

Since one of the major cause of neuropathic pain in human is the presence of diabetes, 

the next step was to investigate the role of the PKs system in experimental diabetic 

model induced by STZ injection, i.e. the painful peripheral diabetic neuropathy model. 

In order to deepen knowledge about the timing of activation and the specific role of 

the PKs system in neuropathic pain evolution in this model mice were chronically 

treated with the PKR antagonist PC1 at different time points from diabetes induction, 

i.e. either when animal exhibited an overt neuropathic pain (therapeutic treatment) or 

in mice not already neuropathic (preventive protocol) .  

The efficacy of PC1 to counteract STZ-induced neuropathic painful symptoms, i.e. 

mechanical allodynia, was tested and at the end of the chronic treatments with the 

antagonist the variations in pain behavior were evaluated and correlated with (i) the 

changes in mRNA expression  of PK2 and PKRs in spinal cord and in the sciatic nerve by 

Real-Time PCR (ii) the changes in protein content of glutamate AMPA and NMDA 

receptor subunits in spinal cord by Western blot analysis, and (iii) the changes in mRNA 

expression and protein content of the pro-inflammatory cytokine IL-1β and the anti-

inflammatory IL-10 in spinal cord and in the sciatic nerve by Real-Time and ELISA 

analysis. 

As inflammation and alteration in immune system are known to be underpinning 

mechanisms in the pathophysiology of type 1 diabetes as well as of its complications, 

including neuroinflammation (Agrawal and Kant, 2014), the efficacy of chronic PC1 

treatment to counteract the hyperglycaemic state of animals or to reduce the 

peripheral inflammatory component was also investigated, evaluating (i) the blood 

glucose concentration and plasmatic insulin levels by using a glucometer and ELISA 

method, respectively, (ii) the protein content of the pro-inflammatory cytokine IL-1β 

and the anti-inflammatory IL-10 in pancreas by ELISA analysis, and (iii) the functioning 

of peripheral immune system by the measurements of cytokine production by 

peritoneal macrophages and spleen lymphocytes from diabetic mice treated with 

either PC1 or saline, by ELISA. 
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4.1 ANIMALS 

All experiments were performed in accordance with the Italian Ministry of Health 

guidelines (DL 116/92 and DL111/94-B) and the European Community directives 

regulating animal research (86/609/EEC). All efforts were made to minimize the 

number of animals used and their suffering. 

Painful neuropathy was induced in C57BL/6J male mice weighing 20-25 g  9 weeks old 

(Harlan Laboratories, Italy). Animals were housed under controlled conditions with 

light/dark cycles of 12 hours, temperature of 22  2 C, humidity of 55  10%, food and 

water ad libitum and were acclimatized to the new environment for at least one week 

before being used. 

 

4.2 INDUCTION OF PAINFUL NEUROPATHY 
 

4.2.1 PERIPHERAL NERVE INJURY MODEL  
 

Peripheral painful mononeuropathy was induced in mice according to Chronic 

Constriction Injury (CCI) model originally described by Bennet and Xie (1987) for rats. 

Mice were anesthetized with sodium pentobarbital (i.p. 60 mg/kg, 0.1 ml/10 g) and an 

incision at the level of the right mid thigh, parallel to sciatic nerve, was made. The right 

common sciatic nerve was then exposed, separated from surrounding connective 

tissue and, taking care to preserve epineural circulation, three ligatures with sutures 

thread (4/0 chromic silk, Ethicon, Belgium) were loosely tied around it until a brief 

twitch in the respective hind paw was elicited. Ligatures were made upstream of the 

nerve trifurcation at about 1.0-2.0 mm of interval spacing one from the other. To avoid 

possible local infections, the wound was treated with neomycin (Boehringer Ingelheim, 

Italy) and closed with suture thread (3/0 chromic silk, Ethicon, Belgium).  

Sham-operated animals, i.e. mice subjected to the same surgery procedure of CCI 

animals except that sciatic nerve was not tied, were used as control.  

Since it was previously demonstrated that three days after surgery, the nociceptive 

thresholds and immune parameters of sham-operated animals were comparable to 

values of animals not subjected to any surgical procedure, naïve mice were not 

included in this study in order to reduce the number of animals used (Sacerdote et al., 

2008). 

 

4.2.2 DIABETES-INDUCED NEUROPATHIC PAIN MODEL 

 

Type 1 diabetes was induced in mice through chemical pancreatectomy by a single 

(200 mg/kg, 0.1 ml/10 g) or repeated (MLD, 80 mg/kg for three consecutive days, 0.1 
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ml/10 g) administrations of streptozotocin (STZ) (Sigma Aldrich, Italy) intraperitoneally 

(i.p.), freshly prepared in citrate buffer 0.1 M, pH 4.55. Control mice were i.p. injected 

with citrate buffer (Noh et al., 2013).   

The development of diabetes was monitored 7 days after STZ administrations 

evaluating the blood glucose levels of each animal. Blood samples were obtained from 

a small prick on the caudal vein of the animals and glucose concentration was assessed 

using a glucometer (GLUCOCARD G+ meter, A. Menarini diagnostics, Italy). Only the 

animals with blood glucose values above 250 mg/dl were considered diabetic; mice 

with blood glucose values inferior to this concentration were excluded from the study.  

Blood glucose levels and mouse body weight were monitored over the entire length of 

the experimental studies. 

 

4.3 EXPERIMENTAL DESIGN 
 

Various sets of experiments are performed. Schematic experimental designs used for 

the study of the PKs system in neuropathic pain induced by CCI and diabetes are 

depicted in figure 6. 

 

4.3.1 TREATMENT 

 

The PKR antagonist PC1, a triazine-guanidine compound (Balboni et al., 2008), was 

dissolved in sterile saline solution and used at the dose of 150 g/kg, a dose which was 

clearly demonstrated to be effective in alleviating inflammatory pain (Giannini et al., 

2009). Animals were subcutaneously injected with the PKR antagonist PC1 (0.1 ml/10 

g) twice-daily for different consecutive days, depending on experimental animal model 

used.  Control animals were injected with an equal amount of sterile saline solution. 

Mice subjected to CCI surgery were treated with PC1 or saline for 7 days starting from 

the third postoperative day, time point corresponding to full painful symptom 

development (figure 6, panel A). STZ-treated animals received PC1 or saline 

administrations for 14 days starting either 21 days after diabetes induction, when they 

were already hyperglycaemic and neuropathic (therapeutic protocol) (figure 6, panel B, 

a), or at the same time of STZ administrations (day 0), i.e. when hyperglycaemia and 

mechanical allodynia were not yet developed (preventive protocol) (figure 6, panel B, 

b).  

 

PERIPHERAL NERVE INJURY (CCI) MODEL  

 

For these studies animals were randomly divided in four groups: 

 Sham-false operated animals treated with saline (Sham/saline) 

 Sham-false operated animals treated with PC1 (Sham/PC1)  
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 CCI animals treated with saline (CCI/saline) 

 CCI animals treated with PC1 (CCI/PC1) 

 

DIABETES-INDUCED NEUROPATHIC PAIN (STZ) MODEL 

 

For these studies animals were randomly divided in four groups: 

 Control animals treated with saline (CTR/saline) 

 Control animals treated with PC1 (CTR/PC1)  

 STZ-injected animals treated with saline (STZ/saline) 

 STZ-injected animals treated with PC1 (STZ/PC1) 

 

 

 

 
 

 

 
Figure 6- Experimental protocol schema. (A) therapeutic protocol used in peripheral nerve injury 

model; (B) therapeutic (a and c) and preventive (b) protocols used in diabetes-induced neuropathic 

pain model. 
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4.3.2 CHARACTERIZATION OF NOCICEPTIVE BEHAVIOUR 

 

In order to characterize the nociceptive behaviour of neuropathic mice, two of the 

most frequent symptoms encountered in neuropathic patients were evaluated, i.e. 

thermal hyperalgesia and mechanical allodynia, monitoring over time the threshold 

responses of the animals to thermal and mechanical stimuli, respectively.  

Behavioural testing was performed before neuropathic induction (T0), i.e. before CCI 

surgery and chemical pancreactomy with STZ, to establish a baseline for comparisons 

with post-induction values, and at different successive times, as described below.  

In the peripheral nerve injury model the responses to thermal and mechanical stimuli 

were assessed at T0 and at 3, 7 and 10 days after CCI surgery on the ipsilateral and 

controlateral hind paws of all mice (fig.6, panel A). 

In the diabetes-induced neuropathic pain model the responses to mechanical stimuli 

were measured at T0 and, after diabetes induction, weekly for whole period of 

experimental study on both hind paws of all animals (fig.6, panel B). In order to 

investigate a potential long-lasting effect of the antagonist PC1 on nociceptive 

mechanical sensitivity, after 14 days of therapeutic PC1 administrations, the drug 

treatment was stopped, and behavioural testing was performed most frequently, 

every 2/3 days, until the disappearance of PC1 efficacy (56 days after STZ 

administration) (fig.6, panel B, c).   

In all experiments, in order to avoid the evaluation of potential acute effect of the 

antagonist on nociceptive thresholds, on days of behavioural testing, the PC1 

administration was immediately performed after the pain behaviour assessment.  

The effect of a single bolus of PC1 was instead studied in STZ-injected mice 21 days 

after diabetes induction evaluating the responses to mechanical stimuli 30, 60, 120 

and 240 minutes after PC1 administration. 

 

4.3.3 TISSUE AND CELL SAMPLING 

 

PERIPHERAL NERVE INJURY (CCI) MODEL  

 

- Spinal cord and sciatic nerve collection for biochemical analysis 
 

At the end of different sets of studies, spinal cord and injured-right sciatic nerve were 

dissected from CCI neuropathic mice treated with either saline or PC1 and their 

respective controls, immediately frozen in liquid nitrogen and  conserved at -80°C until 

use. 

The mRNA expression of PK2, PKR1 and PKR2 and the mRNA levels and the protein 

amount of IL-1β and IL-10 in spinal cord and sciatic nerve were evaluated on the day 

after the last therapeutic PC1 administration in animals killed 10 days after CCI surgery.  
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- Spinal cord and sciatic nerve collection for PK2, PKR1 and PKR2 immunohistochemical 
analysis 
 
At the end of chronic PC1 treatment, 10 days after CCI surgery, anesthetized mice 

were transcardially perfused with 30 mL of saline phosphate buffer (PBS 1X, pH 7.4), 

followed by 60 mL of cold 4% paraformaldehyde. Spinal cord (L4-L5 region) and 

injured-right sciatic nerve were dissected from animals, post-fixed overnight in the 

same fixative at 4°C and after three washes in PBS, finally crio-protected in 30% 

sucrose at 4°C.  

Subsequently, the sciatic nerves were embedded in paraffin while spinal cord samples 

were maintained in 30% sucrose at 4°C until use.  

 

DIABETES-INDUCED NEUROPATHIC PAIN (STZ) MODEL 

 

- Spinal cord and sciatic nerve collection for biochemical analysis 
 

At the end of different sets of studies, spinal cord and sciatic nerves were dissected 

from diabetic neuropathic mice treated with either saline or PC1 and their respective 

controls, immediately frozen in liquid nitrogen and  conserved at -80°C until use. 

The mRNA expression of PK2, PKR1 and PKR2 and the mRNA levels and the protein 

amount of IL-1β and IL-10 in spinal cord and sciatic nerves were evaluated on the day 

after the last therapeutic PC1 administration in animals killed 35 days after MLD-STZ 

injections. The mRNA expression of PK2 was also evaluated in spinal cord of mice killed 

7 or 14 days after MLD-STZ injections, i.e. after only 7 days or at the end of preventive 

PC1 treatment respectively, and 21 days after the discontinuation of therapeutic PC1 

administrations, corresponding to 56 days after MLD-STZ injections. 

Protein content of glutamate NMDA and AMPA receptor subunits in spinal cord of 

neuropathic mice was evaluated on the day after the last preventive PC1 

administration in animals sacrificed 14 days after MLD-STZ injection. 

 

- Pancreas and plasma collection for biochemical analysis 

 

At the end of preventive PC1 administrations, 14 days after diabetes induction, MLD-

STZ injected mice treated with either PC1 or saline and respective controls was 

sacrificed for pancreatic tissue isolation. Pancreas were rapidly removed and 

immediately frozen in liquid nitrogen. Samples were conserved at -80 °C until IL-1β and 

IL-10 protein content assay. 

Before proceeding with tissue removal, a small aliquot of blood from fasted non-

diabetic control and MLD-STZ injected mice treated either with PC1 or saline was 

collected in heparinized tubes for plasmatic insulin dosage.  
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Plasma separation was carried out by centrifuging the whole blood samples at 10000 

rpm for 30 minutes at 4 °C. Samples were then stored at -20 °C until plasmatic insulin 

assay. 

 

- Macrophages purification and stimulation for cytokine assay 

 

Macrophage collection was performed at the end of both preventive and therapeutic 

PC1 treatment, 14 and 35 days after MLD-STZ injections, respectively. At these time 

points mice were killed and peritoneal macrophagic cells (PECs) were harvested in 

RPMI 1640 medium (collection medium) (Sigma-Aldrich) plus 10% FCS. Cell viability 

was checked by the Trypan blue exclusion test. Turk solution was used to discriminate 

nuclei and on the basis of their morphology, cells were counted.  

The amount of cells recovered by a single mouse was very low as animals were not 

subjected to any macrophages elicitation. Hence, the cells obtained from mice 

belonging to the same treatment groups were pooled. 

PECs were diluted in collection medium at the final concentration of 1x106/ml, and 1 

ml/well aliquots were dispensed into 24-well culture plates.  

Isolation and purification of macrophages were carried out by 2 hours of adherence. As 

previously reported (Martucci et al., 2007), this procedure produces a population of 

macrophages with a 90% purity. Non-adherent cells were removed, and adherent cells 

washed twice with PBS solution and incubated with or without 1 µg/ml LPS for IL-1β 

and IL-10 stimulation. The stimulus was added to the macrophage cultures in a final 

volume of 1 ml/well in RPMI 1640 plus 10% FCS, 1% glutamine, 2% streptomycin 

solution and 0,1% 2-mercaptoethanol (complete RPMI).  

After 24 hours of culture at 37 °C in 5% CO2 and 95% air, the supernatant was collected 

and stored frozen at -80 °C for cytokine evaluation. 

 

- Spleen cells collection and stimulation for cytokine assay  

 

Spleen cell collection was performed at the end of both preventive and therapeutic 

PC1 treatment, 14 and 35 days after MLD-STZ injections, respectively.  

At these time points mice were killed and their spleens rapidly and aseptically 

removed.  Splenocytes were spilled out from an incision on spleen cuticle made with 

20-gauge needles, adjusted in 24-well plates at the final concentration of 5x106 cell/ml 

of culture medium (complete RPMI, i.e. RPMI 1640 supplemented with 10% FCS, 1% 

glutamine, 2% antibiotics and 0.1% 2-mercaptoethanol) and incubated at 37 °C in 5% 

CO2 and 95% air with or without 10 g/ml Concanavalin A (ConA) for Th1 and Th2 

cytokine stimulation. The stimulus was added to the cell cultures in a final volume of 1 

ml/well in complete RPMI.  
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After 24 (in the case of IFN-γ and IL-2) or 48 hours (in the case of IL-4 and IL-10) of 

culture, times of maximum cytokines release (Sacerdote et al., 2000; Martucci et al., 

2007), the supernatant was collected and stored frozen at -80 °C for cytokine assay. 

In order to evaluate the Th1/Th2 balance, the IFN-γ/IL-4 ratio was calculated for each 

mouse. 

 

4.4 NOCICEPTIVE BEHAVIOURAL TESTS 
 

All behavioural tests were carried out in the morning in a quiet temperature-controlled 

room after a habituation period of 30 minutes that allows an “appropriate behavioural 

immobility” of the animals. The behavioural evaluations were always performed by 

researchers who were blind to treatments. 

 

4.4.1 PLANTAR TEST: THERMAL HYPERALGESIA EVALUATION 

 

Thermal hyperalgesia, an increase of pain sensitivity to thermal painful stimuli, was 

assessed according to the Hargreaves procedure, using the Plantar Test Apparatus 

(Ugo Basile, Italy) (Martucci et al., 2008).  

 

 
 

The instrument basically consists of a movable infrared (I.R.) generator lodged into a 

cylindrical vessel of aluminium, placed below a glass pane upon which is supported a 

Perspex enclosure within which the researchers place the animals. Three 

compartments, further subdivided by wooden structures in order to test at the same 

time more animals, divide the Perspex box and delimit the space within which the 

animals are free to move, helping the operator to carry out a rapid “testing” work.  

The instrument is also equipped with a controller that allows the setting of the I.R. rays 

intensity (100 mW/cm2 for mouse) and the reading (in seconds) of the paw withdrawal 

latency (PWL) time.   
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After the acclimation period the operators place the movable I.R. generator under the 

glass pane at the level of the hind paw of the animals and the heat stimulation of their 

mid plantar surface is commenced by depressing a start key. When mice feel pain and 

withdraw their paw, the I.R. source switches off and the reaction time, i.e. PWL, 

recorded. The cut-off time was set at 22 seconds in order to prevent tissue damage. 

PWL was measured three times on both hind paws and the mean of the values was 

calculated. 

 

4.4.2 VON FREY TEST: MECHANICAL ALLODYNIA EVALUATION 

 

Mechanical allodynia, painful response to innocuous mechanical stimuli, was 

monitored evaluating the mechanical touch sensitivity through a blunt probe (Von Frey 

filament, 0.5 mm diameter) on the mid plantar surface of the animal hind paw, using 

the Dynamic Plantar Aesthesiometer (Ugo Basile, Italy). This instrument consists of a 

moveable force actuator containing the Von Frey filament, placed below a metallic 

perforated platform upon which the researchers deposit the animals, whose mobility is 

restrained by a Perspex cage very similar to that provided for the Plantar Test 

Apparatus (see above). The moveable force actuator is a cylindrical vessel equipped 

with an adjustable angled-mirror in order to position the touch probe below the target 

area of the paw and star keys to actuate a vertical movement of the filament. A 

controller allows the setting of the force exerted by the filament on the mouse paw 

and the reading (in grams) of the paw withdrawal threshold (PWT).  

An increasing force (ranging up to 10 grams in 10 seconds) starting below the 

threshold detection is applied on the mid plantar surface of the hind paw; when 

animals feel pain they remove their paw and the PWT recorded. PWT was measured 

three times on both hind paws and the mean of the values was calculated. 
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4.5 BIOCHEMICAL EVALUATION 
 

4.5.1 REAL TIME PCR 

 

Total RNA was isolated from sciatic nerves and the lumbar spinal cords (L4-L6) using 

Trizol® reagent (Trifast Eurogold®, Euroclone, Italy) according to manufacturer’s 

instructions and re-suspendend in 10-20 l of RNasi-free water. To achieve an 

adequate quantity of RNA, sciatic nerves were previously pooled from two mice 

belonging to the same experimental group.  

Before proceeding to RNA quantification, RNA samples underwent to DNase treatment 

(DNA-freeTM DNase kit Treatment and Removal Reagents, Ambion, Applied Biosystem, 

Italy) to avoid false-positive results due to contaminating DNA genomic amplification. 

Total RNA concentration was then determined from sample absorbance value at 260 

nm and an equal amount of RNA underwent to reverse-trascription (RT) using iScriptTM 

Reverse Transcription Supermix for RT-qPCR (Bio-Rad, Italy). cDNA was synthesized 

from 1000 ng of total RNA in a final volume of 20 l and was used as template in Real 

Time PCR for mRNA analysis.  

Real Time PCR was performed using ABI PRISM 7000 system (Applied Biosystems, 

Foster City, CA) and carried out in a final volume of 25 l consisting of 2 l of cDNA 

(corresponding to 100 ng of cDNA), 10 l of TaqMan Universal PCR Real Master Mix 

Rox (Eppendorf, Italy), 1.25 l of TaqMan probe/primers and 11.75 l of RNase-free 

water (Martucci et al, 2007). The reaction mixture without the cDNA was used as 

control. Specific TaqMan probe/primers for mouse Prokineticin 2 (Prok2 Mm 

01182450_g1), Prokineticin receptors (Prokr1 Mm00517546_m1; Prokr2 

Mm00769571_m1), interleukins (IL-1  Mm00434228_m1; IL-10 Mm00439616_m1) 

and glyceraldehydes-3-phosphate dehydrogenase (Gapdh Mm99999915_g1) were 

purchased from Applied Biosystems. 

All PCR assays were performed in triplicate. Before using the Ct method for relative 

quantification, we performed a validation experiment to demonstrate that the 

efficiencies of targets and reference were approximately equal.  

The reaction conditions were as follows: 95 °C for 2 minutes (Initial Denaturation) 

followed by 45 cycles at 95 °C for 15 seconds (Cycled Template Denaturation) and at 60 

°C for 60 seconds (Annealing and Extension). Relative quantification was performed 

using the comparative threshold method. Threshold cycle numbers (CT) of the specific 

gene of interest and the endogenous control gene GAPDH were determined by ABI 

PRISM 7000 Sequence Detection System and the amount of target gene was evaluated 

using the following formula 2- CT. Briefly, CT value of the specific target was 

normalized to the respective CT value of GAPDH subtracting GAPDH CT to target gene 

CT ( CT), while CT was calculated subtracting the GAPDH CT average of saline treated 
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sham (for CCI) or control (non-diabetic mice) group used as calibrator to CT value of 

every sample.  

 

4.5.2 ENZYME-LINKED IMMUNO-SORBENT ASSAY (ELISA) 

 

o Tissue preparation 

 

Sciatic nerves pooled from two mice belonging to the same experimental group and 

spinal cord samples were homogenized in 0.3 ml of ice-cold phosphate-buffered saline 

(lysis buffer) containing a protease inhibitor cocktail (Roche Diagnostics, Italy). 

Pancreatic tissues were homogenized in 2 ml of the same lysys buffer.  All samples 

were centrifuged at 13000 rpm for 15 at 4 °C. Supernatants were collected and used to 

measure IL-1  and IL-10 levels and total protein content (Lowry’s method).  

As previously described (see paragraph 4.3.3), culture media of macrophages and 

spleen cells were used for evaluating the production of IL-1  and IL-10, and IFN-γ, IL-2, 

IL-4 and IL-10, respectively. 

 

o Cytokine ELISA 

 

Cytokine concentration was determined by Enzyme-Linked Immuno-Sorbent Assay 

(ELISA) using ultra-sensitive ELISA kits according to the manufacturer’s instruction. 

DuoSet® ELISA development system for mouse IL-1 , IL-2, IFN-γ and IL-4 was purchased 

from R&D Systems (Minneapolis, USA) while mouse IL-10 ELISA Ready-SET-Go! from 

eBioscience (San Diego, CA). Sensitive of the method for IL-1 , IL-2 and IL-4 was 15.625 

pg/ml; for IFN-γ was 31.25 pg/ml; and for IL-10 32 pg/ml.  

The principle of all assays is a quantitative sandwich enzyme immunoassay technique. 

Cytokine concentrations were determined by interpolation with standard curves 

assayed on individual plates and normalized to protein content in each sample. 

 

o Plasmatic insulin assay 

 

Plasmatic insulin dosage was performed using a specific ELISA kit provided by 

Mercodia (Uppsala, Sweden). Sensitive of the method was 0.2 µg/L. The principle of 

assays is a quantitative sandwich enzyme immunoassay technique. Insulin 

concentrations was determined by interpolation with standard curves assayed on 

individual plate. 
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4.5.3 WESTERN BLOT 

 

o Homogenates preparation  

 

Lumbar spinal cords (L4-L6) from mice belonging to the same treatment groups, i.e. 

from non-diabetic controls animals and MLD-STZ injected mice treated with either PC1 

preventive administrations or saline, were pooled. 

Samples were homogenised using a potter in Tris-HCl buffer (50mM Tris, 120 mM 

NaCl, 5mM KCl, 2.5 mM, 1mM MgCl2, pH 7), washed once by centrifugation (1h; 

25000g) and then resuspended in the proper volume of the same buffer containing a 

20 µg/ml mixture of each of the following protease inhibitors: leupeptin, bestatin, 

pepstatin A, and aprotinin. 

Total protein content was evaluated by using BCA protein assay (Pierce Chemical, 

Rockford, IL) with bovine serum albumin as the standard. 

  

o Antibody production and characterization 

 

We used affinity-purified, subunit-specific polyclonal antibodies (Abs), produced in 

rabbit against peptides derived from the C-terminal (COOH), N-terminal (NH) of mouse 

and AMPAR GluA1 and GluA2/3 subunits. The Ab against the GluA2/3 subunit was 

directed against the C-terminus peptide (EGYNVYGIESVKI). The Ab against the GluA1 

subunit was directed against the extracellular domain peptides (RTSDSRDHTRVDWKR) 

corresponding to aminoacids 253-267 (271-285 if numbered from the signal peptide), 

this region is not conserved in GluA2-4, nor Kainate and NMDAR. GluA1 and GluA2/3 

sequences were the same as those reported by Chemicon International. The specificity 

of the affinity-purified Abs was previously tested by western blotting studies using cells 

transfected and non-transfected with GluA1 and GluA2/3. Our tests do not show 

crossreactivity between GluA1 and GluA2/3 Abs, as it has been reported in the 

specificity tests of Chemicon International. 

Anti GluN1 (clone 54.1) was from BD Pharmigen, anti GluN2A (clone A3-2D10) was 

from Invitrogen, anti-GluN2B (clone N59/20) was from Antibodies Incorporated, anti-

tubulin (clone B-5-1-2) was from Sigma-Aldrich and anti Na/K ATPase was described in 

(Pietrini et al., 1992). 

 

o Immunoblotting and densitometric quantification of Western blot bands 

 

The analysis of the GluR subunits by Western blotting was performed as described 

previously (Gotti et al., 2008). In brief, depending on the target subunit, 2.5,5, or 10 µg 

of total homogenates samples were diluted 1:1 (v/v) with Laemmli buffer and then 

underwent SDS-PAGE using 7.5% acrylamide gel. After SDS-PAGE, the proteins were 
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electrophoretically transferred to nitrocellulose membranes with 0.45-mm pores 

(Schleicher and Schu¨ ll, Dassel, Germany). The blots were blocked overnight in 4% 

non-fat milk in Tris-buffered saline, washed in a buffer containing 4% nonfat milk and 

0.3% Tween 20 in Tris-buffered saline, incubated for 2 h with the primary antibody at 

the following concentration (GluA1 and GluA2/3: 1–2.5 mg/ml; GluN1 1:1500; GluN2A 

1:1000; GluN2B 1:600; Na/K ATPase 1:1000; tubulin 1:10000) and then incubated for 

1h with the appropriate secondary antibody (anti-rabbit Ly-CorIRDye800RD: 1:10000 ; 

anti-mouse Ly-Cor IRDye680RD: 1:7500). Membranes were further washed in Tris-

buffered saline and dried overnight at RT in darkness. The IR signal was measured 

through the IR scanner Odyssey CL220x - Infrared Imaging System. 

The quantification of the signal intensity of the Western blot bands was performed 

with iStudio software. The optical density ratio was calculated by taking the optical 

density of the control as 100%. The values are the mean ± SEM of 7-8 separate 

experiments for each antibody.  

All the experiments were performed in the laboratory of Dr. Cecilia Gotti (CNR Institute 

of Neuroscience, Milan). 

 

4.6 HISTOCHEMICAL EVALUATION 
 

4.6.1 IMMUNOFLUORESCENCE 

 

Spinal cord sections (40 µm, free-floating) were incubated at 4°C for 48 h, whereas 

sciatic nerve sections (20 µm), mounted on slides, were incubated at 4°C overnight 

with the following primary antibodies diluted in PBS-0.3% Triton X-100: 1/200 rabbit 

polyclonal anti-PK2 (AbCam, Cambridge, UK), 1/200 rabbit polyclonal anti-PKR1 and 

PKR2 (Alomone Labs, Jerusalem, Israel), 1/500 mouse monoclonal anti-neuronal nuclei 

(NeuN), 1/400 mouse polyclonal antiglial  fibrillary acidic protein (GFAP) 

(Immunological Sciences, Rome, Italy), 1/300 mouse polyclonal anti-Synaptophysin 

(Sigma-Aldrich, Milan, Italy), 1/100 rat monoclonal anti-CD11 (BD Pharmigen, Milan, 

Italy). The sections were then incubated for 2 hours at room temperature in 1:200 

anti-species IgG antibodies coupled to Alexa Fluor®-488 or 555 (Immunological 

Sciences). Nuclei were stained with DAPI 1/500. The stained sections were examined at 

confocal laser scanning microscope (Leica SP5, Leica Microsystems, Wetzlar, Germany). 

Immunofluorescence intensity or immunoreactive area was measured in five fields 

(300 µm2) for every section in at least 10 sections for every experimental group 

(http://imagej.nih.gov/ij/index.html, free software). 

To assess the specificity of the anti-PK2 antibody, we pre-adsorbed it with the protein 

PK2 (500 ng) overnight at  4°C prior to incubation with tissue. To assess the specificity 

of the anti-PKR1 and anti-PKR2 antibody, we pre-adsorbed them with the respective 

blocking peptides (Alomone Labs) overnight. 
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4.6.2 SCIATIC NERVE IMMUNOHISTOCHEMISTRY 

 

Paraffin-embedded sciatic nerve sections (5 µm), deparaffinized and rehydrated, were 

incubated with normal horse serum (3%, 1 h, 37°C) then with goat polyclonal anti-PK2 

(1:100, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA, overnight, 4°C), washed 

and incubated with biotinylated secondary antibody (Vector Laboratories, Burlingame, 

CA, USA) and avidin-biotin-horseradish peroxidase complex (Vectastain ABC kit; Vector 

Laboratories), stained with 3,3N-diaminobenzidine tetrahydrochloride (DAB, Sigma-

Aldrich). 

All slides were counterstained with Mayer’s haematoxylin, visualized and 

photographed with an Olympus DP12 microscope equipped with a digital camera. PK2-

staining intensity was computed as integrated optical density (IOD) for arbitrary areas 

and measured in six samples for each experimental group (Image Pro-Plus, 4.5.1, 

Milan, Italy). 

All the experiments for PK2, PKR1 and PKR2 localization in spinal cord and sciatic nerve 

were conducted in the laboratory of Prof. Lucia Negri (Department of Physiology and 

Pharmacology “Vittorio Erspamer”, University of Rome, La Sapienza). 

 

4.7 DATA ANALYSIS 
 

Results are presented as means ± SEM. Statistical analyses were performed using one-

way or two-way ANOVA for parametric results. Follow-up analysis was performed 

using the Tukey’s test or Bonferroni’s post tests for multiple comparisons, respectively. 

T Student test was used for the comparison between two groups. In the case of non-

parametric results, Kruskal-Wallis ANOVA was applied, followed by Dunn’s test.  

All the statistical analysis was performed using GraphPad Prism 5 Software (San Diego, 

CA, U.S.A) Differences were considered significant at p < 0.05. 
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In order to understand if PK2, PKR1 and PKR2 activities were necessary for the onset, 

development and resolution of experimental neuropathic pain, we performed in vivo 

and ex-vivo studies blocking PKR signalling with the antagonist PC1. PKs system was 

characterized in two different models of painful neuropathy: a mononeuropathy 

induced by the chronic constriction injury (CCI) of sciatic nerve and a diabetic 

polyneuropathy induced by the injection of a pancreatic  cell toxin, streptozotocin 

(STZ). 

The major findings of this study are that (i) PK2 acts as a pro-nociceptive/pro-

inflammatory mediator in the pathological cross-talk between neuronal and immune 

cell in neuropathic pain, (ii) painful manifestations were close related to the up-

regulation of PK2 and PKRs in the main anatomical stations of pain transmission, i.e. in 

spinal cord and in sciatic nerve, (iii) repeated administrations of PC1 efficaciously 

contrasted neuropathic pain in CCI nerve injured and diabetic mice without producing 

tolerance. Independently from the etiology, the antagonist PC1 counteracted 

neuropathy-induced pain hypersensitivity blocking PK2 up-regulation in spinal cord 

and in the peripheral nervous system and reducing the neuro-inflammatory 

component related to neuropathic pain development. In addition, (iv) the anti-

inflammatory properties of PC1 also ameliorated the course of diabetic neuropathy 

contrasting the strong inflammatory status associated to the presence of diabetes 

suggesting a potential role of PK2 also as “modifier” of the pathology.  

 

 

5.1 PERIPHERAL NERVE INJURY (CCI) MODEL   
 

5.1.1 Effect of PKR blocking on CCI-induced thermal hyperalgesia and mechanical 

allodynia 

 

Before surgery, baseline thresholds to noxious heat (paw withdrawal latency, PWL) 

and mechanical stimuli (paw withdrawal threshold, PWT) were similar in all animal 

groups as well as for the right and left paw.  

Chronic constriction injury (CCI) of sciatic nerve induced in animals a precocious 

establishment of neuropathic pain syndrome. As depicted in figure 1, a marked 

reduction of the ipsilateral PWL and PWT appeared within few days after surgery 

reaching the maximal values on day 3 after CCI. Thermal and mechanical sensitivity of 

the contra-lateral paw remained unchanged, i.e. comparable to the basal level of non-

neuropathic animals, for the entire period of the study (data not shown). 

On day 3 after surgery, time point corresponding to full development of thermal 

hyperalgesia and mechanical allodynia, a group of CCI mice was subcutaneously 

injected with PC1 (150 µg/kg, twice-daily) or saline for 7 days. As controls, a group of 

sham mice was treated with either PC1 or saline. PC1 dose was chosen as it was the 
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most effective in order to abolish complete Freund’s adjuvant (CFA)-induced thermal 

hyperalgesia (Giannini et al., 2009).  

Repeated administrations of PC1 from day 3 to 9 efficaciously contrasted neuropathic 

pain. The efficacy of the antagonist to counteract the CCI-induced thermal 

hyperalgesia and mechanical allodynia was already noticeable 4 days after treatment 

initiation and was even more evident 3 days later.  

Indeed, 7 days of treatment with the antagonist produced a total recovery in the 

decrease of PWL completely reverting thermal hyperalgesia (panel A). Mechanical 

allodynia was also significantly reduced in CCI/PC1 treated mice but not abolished. In 

fact at the end of treatment, the PWT of CCI/PC1 treated mice were significantly 

higher than the pain thresholds of CCI/saline animals, but not yet comparable to those 

of controls (panel B).  

No differences on the PWL and PWT of sham animals treated with PC1 were observed 

throughout the experiment.  

As thermal and mechanical sensitivity of sham animals were not affected by PC1 

administrations and considering the recent European guidelines regulating animal 

research which prompt to minimize the number of animals, this group of study was not 

repeated for the successive biochemical evaluations. 

 

 

 
 

Figure 1. Effect of PC1 (150 µg/kg, twice-daily) s.c. administered to CCI-operated animals for 7 days, starting from 3 

days after surgery, on thermal hyperalgesia (A) and mechanical allodynia (B). PWL and PWT were measured by 

using Plantar Test and Von Frey Test, respectively. Data represent mean  SEM of 8-10 mice per group. Two way 

ANOVA was used for statistical evaluation, followed by Bonferroni’s test. **p<0.01, ***p<0.001 vs sham/saline; 

°°°p<0.001 vs CCI/saline. 
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5.1.2 Prokineticin system localization and CCI-induced modulation 

The fact that repeated administrations of PC1 were effective in alleviating painful 

symptoms clearly indicated the involvement of the PKs system in the development of 

neuropathic pain. In order to compare the expression of the PKs system in PC1- and 

saline-treated CCI mice with sham animals injected with only saline, on day 10 after 

CCI surgery, when the anti-hyperalgesic and anti-allodynic effect of PC1 were greatest, 

we performed Real Time PCR analysis to evaluate the mRNA levels of PK2, PKR1 and 

PKR2 in spinal cord and in the sciatic nerve. In the same tissues, immunocytochemistry 

experiments were conducted to identify the cellular localization of PK2 and its 

receptors PKR1 and PKR2. 

 

o PK2, PKR1 and PKR2: mRNA expression and localization in spinal cord 

  

As shown in figure 2, 10 days after surgery, the mRNA levels of PK2 (panel A) and PKR2 

(panel C) were markedly higher in L4-L6 spinal cord of CCI-operated mice than sham, 

whereas no significant difference of PKR1 expression (panel B) was evident in the three 

groups of study. Repeated PC1 administrations didn’t affect PKR1 and PKR2 mRNA 

levels but succeeded in decreasing the up-regulation of PK2 induced by nerve ligation.  

 

 
 

Figure 2. PK2 (A), PKR1 (B), PKR2 (C) mRNA expression in spinal cord (L4-L6) 10 days after CCI surgery, at the end of 

therapeutic PC1 treatment (s.c. 150 µg/kg, twice-daily for 7 days). The mRNA levels, determined by Real Time PCR, 

were expressed in relation to glyceraldehydes 3-phosphate dehydrogenase (GAPDH) and presented as fold-

increases over the levels in sham animals. Data represent mean  SEM of 4-6 mice per group. One way ANOVA was 

used for statistical evaluation, followed by Tukey’s test for multiple comparisons. *p<0.05 vs sham/saline; °p<0.05 

vs CCI/saline. 

Figure 3 reports the results obtained with PK2 immunofluorescence analysis. PK2 

immunofluorescence, localized in superficial layers (I and II) of the spinal cord in sham 

animals, strongly increased in the ipsilateral dorsal horn 10 days after CCI, staining also 

the deeper layers. Therapeutic PC1 treatment from day 3 to 9 prevented this increase 

in immunofluorescence. Indeed, the PK2 signal in CCI/PC1 mice resembled that 

observed in sham animals (fig.3A, panels a, d and g) mirroring the results of PK2 mRNA 

evaluation (fig.2, panel A). In spinal cord, sensory primary neurons and astrocytes 
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appeared to be the main cells involved in CCI-induced PKs system activation. Diffuse 

punctuate pattern PK2 immunoreactivity partially colocalized with synaptophysin, a 

presynaptic marker, mainly in superficial laminae of dorsal horn (fig.3B). In CCI/saline 

animals ipsilateral dorsal horn PK2/GFAP immunoreactivity also increased compared to 

sham (fig.3A, panel f), indicating that PK2 is associated to GFAP-positive proliferating 

and activated astrocytes.  

As illustrated in figure 3A, panel g, we observed a lower PK2 immunofluorescence 

induced by 7 days of PC1 treatment in the ipsilateral dorsal horn of  CCI/PC1 mice in 

respect to that of CCI/saline mice (fig.3A, panel d). Moreover, PK2 immunoreactivity 

too was strongly reduced in the activated astrocytes (fig.3A, panels f and i). 

  

 

Figure 3. Representative images showing PK2 localization in the mouse L4–L5 spinal cord dorsal horn. (A) PK2-

positive profiles (green) in sham (a), CCI/saline (d) and CCI/PC1 (g) mice. GFAP (astrocyte marker) positive profiles 

(red) in sham (b), CCI/saline (e) and CCI/PC1 (h) mice. Sciatic nerve ligation induced a substantial increase in PK2 and 

in GFAP signal 10 days after ligation. Double staining reveals a colocalization of PK2 with the astrocyte marker GFAP 

(f). Scale bar: 50 m. (B) Representative images showing colocalization (c) of PK2 (green, a) with synaptophysin (red, 

b). Scale bar: 10 m. Cell nuclei were counterstained with DAPI (blue). 

 

Spinal cord localization of PKR1 and PKR2 is depicted in figure 4. The PKR1 signal in the 

spinal cord sections was very faint and was unaffected by CCI or by PC1 treatment. This 

receptor clearly colocalized only with GFAP-positive astrocytes (fig.4, panels D-F) 

whereas we never detected PKR1 signals in NeuN (neuronal marker)-positive cells 

(fig.4, panel H).  

In sham animals, PKR2 signal was clearly evident in superficial laminae of the dorsal 

horn, localized with positive neuronal cell bodies (fig.4, panel A, arrows and insert) and 
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some astrocytes (fig.4, panel A, arrowheads). 10 days after CCI, PKR2 positive neuronal 

cell bodies were more evident also in deeper layers of the dorsal horn (panel B, arrows 

and insert) as illustrated in the panel 4 G, showing the colocalization of PKR2 with the 

NeuN positive cells. As PK2, the PKR2 signal clearly increased after nerve ligation in the 

activated astrocytes (panel B, arrowheads and insert) and also in the diffuse punctuate 

pattern. Repeated PC1 administrations didn’t induce any variations in PKR2 

immunoreactivity (panel C). 
 

 
Figure 4. Representative images showing PKR2 and PKR1 localization in the mouse L4–L5 spinal cord dorsal horns 

from 10 days-sham (A, D), CCI/saline (B, E) and CCI/PC1 (C, F) mice. PKR2 immunofluorescence (green) is clearly 

evident in sham animals, localized in some neuronal cells (A, arrows and insert), and in some astrocytes (A, 

arrowheads). 10 days after CCI (B), PKR2 positive neuronal cell bodies were more evident also in deeper layers of 

the dorsal horn (B, arrow) as demonstrated by colocalization with the neuronal marker NeuN (G). The localization of 

PKR2 in activated astrocytes is demonstrated by the double staining of PKR2 (green) with the astrocytes marker 

GFAP (B, arrowheads and insert). The diffuse punctuate pattern PKR2 signal appeared clearly increased. Therapeutic 

PC1 treatment (s.c. 150 µg/kg, twice-daily for 7 days) did not modify the PKR2 immunofluorescence intensity. In the 

spinal cord, the PKR1 signal was very faint and was not affected by nerve injury nor by PC1 treatment. PKR1  

immunoreactivity was clearly evident in GFAP-positive resting and activated astrocytes (D, E) and was not modified 

by PC1 treatment. We never detected PKR1 signal in NeuN-positive cells. Cell nuclei were counterstained with DAPI 

(blue fluorescence). Scale bar, 50 m in A to F; 30 m in G, H and 10 m inserts. 

 

o PK2, PKR1 and PKR2: mRNA expression and localization in sciatic nerve 

 

Ten days after surgery, a general activation of the PKs system took place in the sciatic 

nerve (fig.5). In CCI mice the mRNA levels of PK2 (panel A), PKR1 (panel B) and PKR2 

(panel C) were significantly increased in respect to the basal levels of the respective 

controls. PKR2 up-regulation appeared particularly evident, since the receptor 

expression was about 150 folds higher than in sham mice. Repeated administrations of 

PC1 from day 3 to 9 markedly reduced the overexpression of PK2, without affecting 

the expression levels of the receptors.  
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Immunohistochemical staining using anti-PK2 antibody failed to demonstrate any PK2 

immunoreactivity in the sciatic nerve of sham mice whereas, 10 days after CCI, a heavy 

infiltration of PK2-positive cells (brown colour) was evident in the neuroma in the 

immediate proximity of the injury, as illustrated in figure 6 (panel A). Systemic PC1 

administrations significantly reduced PK2 immunoreactivity in the cytoplasm of these 

cells (panel A, insert) as demonstrated in panel B by quantitative analysis of PK2 signal 

computed as integrated optical density (IOD), reflecting the lower levels of PK2 mRNA 

measured in the injured nerve of CCI/PC1 mice at the end of 7 days of treatment (fig.5, 

panel A). Immunofluorescence staining of the neuroma in CCI/saline mice 

demonstrated that PK2 signal was associated with GFAP-positive Schwann cells (panel 

C) and with CD11b-positive neutrophils and macrophages (panel D). PKR1 (panel E) 

was mainly associated with CD11b-positive cells, suggesting that the PKR1 mRNA 

increase depends on the high number of infiltrating cells (Giannini et al., 2009), 

whereas PKR2 was mainly associated with GFAP-positive cells (panel F). As shown in 

figure 7, panels B and E, a dramatic increase of PK2 and PKR2 immunofluorescence was 

observed in nerve fibres and GFAP-positive structures 10 days after nerve ligation. 

Accordingly with the PK2- and PKR2- mRNA analysis, in CCI/PC1 mice 7 days of 

treatment with the PKR antagonist strongly reduced PK2 signal (panel C), but was 

ineffective against PKR2 up-regulation (panel F). 

 

 
 

Figure 5. PK2 (A), PKR1 (B), PKR2 (C) mRNA expression in ipsilateral sciatic nerve 10 days after CCI surgery, at the 

end of therapeutic PC1 treatment (s.c. 150 µg/kg, twice-daily for 7 days). The mRNA levels, determined by Real 

Time PCR, were expressed in relation to glyceraldehydes 3-phosphate dehydrogenase (GAPDH) and presented as 

fold-increases over the levels in sham animals. Data represent mean  SEM of 8-10 samples per group. One way 

ANOVA was used for statistical evaluation, followed by Tukey’s test for multiple comparisons. *p<0.05, ***p<0.001 

vs sham/saline; °p<0.05 vs CCI/saline. 
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Figure 6. Representative images of sciatic nerve in the immediate proximity of the injury. (A) Immunohistochemical 

staining of ipsilateral sciatic nerve, on day 10 after CCI, from sham, CCI/saline and CCI/PC1 mice with anti-PK2 

antibody and haematoxylin. Scale bar = 30 m. Arrowheads indicate the infiltrating cells expressing the PK2 protein. 

A sustained infiltration of PK2-positive cells was evident 10 days after CCI. Therapeutic PC1 treatment (s.c. 150 

µg/kg, twice-daily for 7 days) significantly reduced the PK2 immunoreactivity (brown colour) in the cytoplasm of 

these cells (insert) as demonstrated in (B) by quantitative analysis of PK2 signal computed as integrated optical 

density for arbitrary areas (six sections per animal, six animals). Data are means ± SEM of 4-6 animals. One way 

ANOVA was used for statistical evaluation, followed by Tukey’s test for multiple comparisons *p<0.05, ***p<0.001 

vs sham; °p<0.05 CCI/saline.  

(C and D) Immunofluorescence double staining showing colocalization (yellow, arrowheads) of PK2 (green) with 

GFAP (Schwann cell marker, red) and CD11b (macrophage marker, red) in the immediate proximity of the injury in 

the sciatic nerve of CCI/saline mice. (E and F) Representative images showing the localization (arrowheads) of the 

receptor PKR1 (green) in CD11b-positive macrophages (red) and of the receptor PKR2 (green) in GFAP-positive 

Schwann cells (red) in the immediate proximity of the injury of the sciatic nerve in CCI/saline mice. Cell nuclei were 

counterstained with DAPI (blue fluorescence). Scale bar, 20 m. 

 

 

 

Figure 7. Representative images of CCI-induced up-regulation of PK2 and PKR2 in the longitudinally sliced sciatic 

nerve proximal to the lesion. PK2 immunofluorescence was never found in uninjured nerve (A). Only a very faint 

PKR2 signal was evident in the non-activated Schwann cells (GFAP-positive cells, red) (D). A dramatic increase of PK2 

and PKR2 signal (B and E, green) in fibres and in GFAP-positive structures was evident 10 days after nerve ligation. 

PC1 treatment prevented the injury-induced PK2 up-regulation (C) but was ineffective against PKR2 up-

regulation(F). Cell nuclei were counterstained with DAPI (blue fluorescence). Scale bar: 20 m. 
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5.1.3 Effect of therapeutic PKR blocking on cytokines levels in spinal cord and sciatic 

nerve  

It is well known that pro- and anti-inflammatory cytokines play an important role in 

CCI-induced neuropathic pain (Martucci et al., 2008). We therefore evaluated the 

ability of PC1 treatment to modulate neuroinflammation in this model. As cytokines 

are regulated at several post-transcriptional and post-translational levels, we 

measured both mRNA and protein levels. As illustrated in figures 8 and 9, 10 days after 

CCI surgery, mRNA and protein levels of IL-1β were increased in spinal cord (fig.8, 

panels A and B) and in the injured sciatic nerve (fig.9, panels A and B). Repeated PC1 

administrations efficaciously contrasted the IL-1β increase, restoring cytokine levels to 

basal values in the spinal cord (fig.8, panels A and B) and significantly reducing them in 

the sciatic nerve (fig.9, panels A and B). 

In our experimental setting, we did’t find any modulation of IL-10 in the spinal cord, 

neither after CCI nor PC1 treatment (fig.8, panels C and D). On the contrary, a clear 

alteration of IL-10 expression pattern was observed in the sciatic nerve. Ten days after 

surgery, the concentration of IL-10 protein decreased in injured nerve (fig.9, panel C), 

whereas its mRNA expression increased (fig.9, panel D). These modifications are 

probably due to the activation of the synthetic machinery of IL-10 in order to 

counteract the proinflammatory cascade induced by the lesion (Sacerdote et al., 2013). 

PC1 treatment was effective in augmenting the level of IL-10 protein, which was 

significantly reduced in the sciatic nerve of CCI/saline mice (fig.9, panel C).  

 

 
 

Figure 8. Effect of PC1 on IL-1β and IL-10 protein content (A and C) and mRNA expression (B and D) in spinal cord 10 

days after CCI surgery, at the end of therapeutic PC1 treatment (s.c. 150 µg/kg, twice-daily for 7 days). Cytokine 

protein content, evaluated by ELISA, was reported as pg/mg of protein. Citokine mRNA levels, determined by Real 

Time PCR, were expressed in relation to glyceraldehydes 3-phosphate dehydrogenase (GAPDH) and presented as 

fold-increases over the levels in sham animals. Data represent mean  SEM of 4-6 mice per group. One way ANOVA 

was used for statistical evaluation, followed by Tukey’s test for multiple comparisons. *p<0.05 vs sham/saline; 

°p<0.05 vs CCI/saline. 
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Figure 9. Effect of PC1 on IL-1β and IL-10 protein content (A and C) and mRNA expression (B and D) in ipsilateral 

sciatic nerve 10 days after CCI surgery, at the end of therapeutic PC1 treatment (s.c. 150 µg/kg, twice-daily for 7 

days). Cytokine protein content, evaluated by ELISA, was reported as pg/mg of protein. Citokine mRNA levels, 

determined by Real Time PCR, were expressed in relation to glyceraldehydes 3-phosphate dehydrogenase (GAPDH) 

and presented as fold-increases over the levels in sham animals. Data represent mean  SEM of 4-6 samples per 

group. One way ANOVA was used for statistical evaluation, followed by Tukey’s test for multiple comparisons. 

*p<0.05, **p<0.01, ***p<0.001 vs sham/saline; °p<0.05, °°p<0.01, °°°p<0.001 vs CCI/saline. 

 

5.2 DIABETES-INDUCED NEUROPATHIC PAIN MODEL  

 

Numerous conditions leading to neuropathic pain syndrome have been identified in 

human. Among these, one of the most frequent cause is the presence of diabetes. 

Nowadays, diabetes is considered to be a challenging health problem as it affects 

million people in the world and its prevalence has been projected to increase twofold 

in the next twenty years.  

Since diabetes incidence is rapidly growing, the identification of new molecular targets 

for treating neuropathic pain is of central importance. In this direction and supported 

by the results obtained from CCI model, we have considered of great interest to 

investigate the role of the PKs system also in neuropathic pain induced by diabetes. 

 

5.2.1 Effect of therapeutic PKR blocking on hyperglycaemia, mechanical allodynia and 

body weight loss in experimental diabetic model induced by the administration of a 

single high dose or repeated multi-lower doses of STZ: similarities and differences. 

 

In order to study whether the blocking of PKR was effective in alleviating diabetic 

neuropathic pain we have performed a series of experiments using a mouse model of 

diabetes induced by chemical destruction of pancreatic insulin-secreting β-cells. We 
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first tested the effect of PC1 in mice injected with a single high dose of β-cell toxin, 

streptozotocin (STZ, 200 mg/kg).  

A single STZ administration induced in animals a rapid establishment of 

hyperglycaemic state associated to the development of painful symptoms. As depicted 

in figure 10 (panel A), blood glucose levels of STZ mice strongly increased after 7 days 

from diabetes induction and were still significantly higher on day 35 compared to 

normo-glycaemic values of controls. A marked reduction of the PWT of mice appeared 

within few days after diabetes induction reaching the maximal values on day 14 after 

STZ injection (fig.10, panel B). Pain thresholds to mechanical stimuli of STZ mice 

remained significantly lower than that of the controls, i.e. non-diabetic mice, for the 

entire period of observation.  

 

 
 
Figure 10. Effect of PC1 (150 µg/kg, twice-daily) s.c. administered to mice injected with a single high dose of 

streptozotocin (STZ, 200 mg/kg) (A-C) or with multiple low-dose of streptozotocin (MLD-STZ, 80 mg/kg for 3 

consecutive days) (D-F) for 14 days, starting from 21 days after diabetes induction (therapeutic treatment), on 

glycaemic values (A, D), mechanical allodynia (B, E) and body weight increase (C, F). Data represent mean  SEM of 

4-6 mice per group. Two way ANOVA was used for statistical evaluation, followed by Bonferroni’s test. *p<0.05, 

***p<0.001 vs CTR/saline; °p<0.05, °°p<0.01, °°°p<0.001 vs STZ/saline. 

Allodynia is known to be a characteristic symptom of the diabetic painful neuropathy. 

On the contrary, the sensitivity of animals to thermal stimuli changes during the 

progression of the diabetes. Indeed, in the early stage of the disease mice exhibit 

thermal hypersensitivity, while advanced stage of diabetes is typically characterized by 
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thermal hypoalgesia caused by sensory loss (Ulugol et al., 2012). For this reason, we 

decided to evaluate only the sensitivity to mechanical stimuli.  

The antagonist PC1 was s.c. administered to STZ animals twice-daily for 14 days, 

starting on day 21 after diabetes induction when neuropathic pain and hyperglycaemia 

were fully developed. PC1 was given to animals at the dose of 150 µg/kg, the same 

dosage used in order to counteract CCI-induced pain hypersensitivity (see figure 1). As 

controls, a group of STZ mice treated with saline and non-diabetic mice treated with 

either PC1 or saline were used.  

Repeated administrations of PC1 from day 21 to 34 didn’t affect blood glucose levels 

(fig.10, panel A). Glucose concentration of non-diabetic control mice treated either 

PC1 or saline remained unchanged and was normal throughout the study. However, 

blocking PKRs contrasted neuropathic pain. Therapeutic PC1 treatment significantly 

reduced mechanical allodynia in STZ mice without abolishing it. As shown in panel B 

(fig.10), 14 days after treatment initiation, the PWT of STZ/PC1 treated mice were 

significantly higher than PWT of STZ mice treated with only saline, but not yet 

comparable to those of controls. PWT of non-diabetic animals treated with PC1 

remained unchanged and similar to basal thresholds of controls throughout the 

experiment.  

Unfortunately, high dose of STZ dramatically compromised the health status of the 

animals. As illustrated in panel C (fig.10), STZ administration rapidly produced in 

animals a marked reduction of the body weight. Moreover, an exacerbation of other 

classical symptoms associated to chronic hyperglycaemia, including blindness, 

polyuria, polydipsia, loss of appetite, was evident leading us to doubt about the 

reliability of the results. 

As the final aim of this study was the characterization of new target for the 

development of an alternative strategy for contrasting neuropathic pain in human we 

have planned a new series of experiments replacing the single high dose of STZ-

induced diabetes model, which is ultimately considered to be inappropriate for 

resembling the clinical manifestations of diabetic neuropathy, with that induced by 

multi-lower doses of streptozotocin (MLD-STZ, 80 mg/kg).  

In this model blood glucose levels gradually increased after STZ injections reaching the 

maximal values 35 days after diabetes induction and, similarly to what observed in the 

first model used, hyperglycaemia was already present 7 days after STZ injections, as 

shown in panel D (fig.10). In parallel, a consistent development of mechanical allodynia 

occurred within few days after diabetes induction (fig.10, panel E). On day 14 after 

MLD-STZ injection the PWT of diabetic mice were markedly reduced than that of the 

controls and remained significantly lower for the entire period of the study.  

As shown in panels D and E, therapeutic PC1 administration from day 21 to 34 was not 

able to modify blood glucose levels of either MLD-STZ or control mice, while it was 

effective in contrasting neuropathic pain, significantly enhancing the PWT of MLD-STZ 
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mice after chronic treatment in respect to diabetic mice administered with saline only. 

PWT of control animals were never affected by chronic treatment with PC1, remaining 

similar to basal thresholds of saline treated-controls mice throughout the experiment.  

MLD-STZ administrations produced in mice the classical features of diabetes without 

drastically compromising their general well-being status. In respect to non-diabetic 

control animals, a significant body weight loss was still observed in diabetic mice 

(panel F). However, this loss was milder in comparison to the effect induced by a single 

high STZ dose (panel C).  

Therapeutic PC1 treatment did not influence body weight in mice injected with either 

a single high dose of STZ or MLD-STZ, or in the respective non-diabetic controls, as 

illustrated in panels C and F.  

MLD-STZ model was used in all subsequent experiments and, as explained for the CCI 

model (see chapter 5.1.1), the group of control mice treated with the antagonist 

(CTR/PC1 group) was excluded from the successive studies.  
 

5.2.2 Prokineticin system and diabetic neuropathic pain-modulation  

 

o Parallelism between PKs system activation and development of diabetes 

induced-mechanical allodynia.  

 

Mechanical allodynia induced by MLD-STZ was clearly evident 7 days after diabetes 

induction. It reached full development on day 14 and was still significant on day 56 

compared to controls, as illustrated in figure 11, panel A.   

A single bolus systemic injection of PC1 (150 µg/kg) on day 21 after diabetes induction, 

when the neuropathic pain syndrome was overt, produced a total recovery in the 

decreased PWT of MLD-STZ mice abolishing the established mechanical allodynia in 30 

minutes. The anti-allodynic effect lasted for about 2 hours and gradually disappeared 

within 4 hours after the PC1 administration (fig.11, panel B). 

As previously described (fig.10, panel E), therapeutic PC1 administration from day 21 

to 34 after diabetes induction was effective in alleviating diabetes-induced mechanical 

allodynia. Interestingly, this treatment schedule delayed painful symptom 

reappearance after PC1 suspension, leading us to suppose that blocking PK2 signalling 

could induce permanent changes in neuronal circuits involved in the maintenance of 

neuropathic pain. As shown in panel A in fact, at the end of the chronic treatment with 

PC1, the PWT of MLD-STZ mice were markedly higher in respect to the PWT of diabetic 

mice treated with only saline; after treatment discontinuation the PWT remained 

significantly elevated although a progressive decrease of the thresholds started to be 

evident. 

In order to correlate the activation of the PKs system with the development of diabetic 

neuropathic pain we performed Real-Time PCR analysis for determining PK2 mRNA 
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expression levels in the spinal cord of MLD-STZ mice at different time from diabetes 

induction. The time-course of PK2 mRNA expression is depicted in figure 11, panel C. A 

noticeable increase of PK2 mRNA expression appeared in the spinal cord of diabetic 

mice 7 days after the first STZ administration, time point corresponding to clear 

manifestation of painful symptoms. The augmentation of PK2 mRNA level was even 

more evident 7 days later and was still significant on day 56, demonstrating a close 

parallelism between the changes in pain behaviour and the PKs system activation 

(panels A and C).  

 
 

Figure 11. Long-lasting effect of therapeutic PC1 administrations (s.c. 150 µg/kg, twice-daily for 14 days, from day 

21 to 34 after diabetes induction) in mice injected with MLD-STZ (80 mg/kg for 3 consecutive days) on mechanical 

allodynia (A). Anti-allodynic effect of PC1 administration as a single bolus (B). Data represent mean  SEM of 4 mice 

per group. Two way ANOVA was used for statistical evaluation, followed by Bonferroni’s test. ***p<0.001 vs 

CTR/saline; °°p<0.01, °°°p<0.001 vs STZ/saline. Time-course of mRNA expression levels of PK2 in spinal cord (L4-L6) 

of mice injected with MLD-STZ (80 mg/kg for 3 consecutive days) at different times after diabetes induction (C). The 

mRNA levels, determined by Real Time PCR, were expressed in relation to glyceraldehydes 3-phosphate 

dehydrogenase (GAPDH) and presented as fold-increases over the levels in CTR animals. Data represent mean  

SEM of 4-6 mice per group. Student T Test was used for statistical evaluation *p<0.05, **p<0.01 vs CTR. 

 

o Effect of therapeutic PKR blocking on PK2-, PKR1- and PKR2-mRNA expression in 

spinal cord and sciatic nerve 

 

At the end of therapeutic PC1 administrations, when the anti-allodynic effect of the 

antagonist was maximal (i.e. 35 days after STZ), we performed Real Time PCR analysis 

in diabetic neuropathic mice treated with either PC1 or saline and in non-diabetic 
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control animals to compare mRNA levels of PK2, PKR1 and PKR2 at the main central 

and peripheral sites of pain transmission, i.e. in spinal cord and in the sciatic nerve. As 

shown in figure 12, panel A (a-c), a clear activation of the PKs system took place in the 

spinal cord of diabetic mice 35 days after MLD-STZ injections. The mRNA levels of PK2 

(a) as well as PKR2 (c) were markedly higher in L4-L6 spinal cord of MLD-STZ injected 

mice than values measured in non-diabetic controls, whereas no significant difference 

of PKR1 expression (b) was evident in the three groups of study. A reduction of PK2 

and PKR2 up-regulation was evident in MLD-STZ animals administered with PC1 

compared to diabetic mice treated with saline. Indeed PK2 and PKR2 up-regulation was 

no more statistically significant in comparison to normal animals, although PK2 and 

PKR2 expression were not yet statistically different from diabetic mice. 

We also analysed the mRNA expression levels of PK2 in spinal cord 56 days after 

diabetes induction, 21 days after PC1 treatment discontinuation, when a significant 

anti-allodynic effect of the antagonist was still evident in MLD-STZ mice. As illustrated 

in panel d (fig. 12), in presence of an overt mechanical allodynia, the level of PK2 

mRNA expression was higher in spinal cord of MLD-STZ in respect to basal levels of the 

controls. Chronic PC1 administrations from day 21 to 34 after diabetes, prevented the 

up-regulation of PK2 in spinal cord of diabetic mice also at later times.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. (A) PK2 (a), PKR1 (b), PKR2 (c) mRNA expression in spinal cord (L4-L6) 35 days after diabetes induction 

with MLD-STZ (80 mg/kg for 3 consecutive days), at the end of therapeutic PC1 treatment (s.c. 150 µg/kg, twice-

daily for 14 days) and (d) PK2 mRNA expression in spinal cord (L4-L6) 56 days after diabetes induction with MLD-

STZ, 21 days after the discontinuation of the therapeutic PC1 treatment. (B) mRNA expression in sciatic nerve 35 

days after diabetes induction with MLD-STZ (80 mg/kg for 3 consecutive days), at the end of therapeutic PC1 

treatment (s.c. 150 µg/kg, twice-daily for 14 days).  The mRNA levels, determined by Real Time PCR, were expressed 

in relation to glyceraldehydes 3-phosphate dehydrogenase (GAPDH) and presented as fold-increases over the levels 

in CTR animals. Data represent mean  SEM of 4-6 mice per group. One way ANOVA was used for statistical 

evaluation, followed by Tukey’s test for multiple comparisons. *p<0.05 vs CTR; °p<0.05 vs STZ/saline. 
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Thirty-five days after diabetes induction, in the sciatic nerve of MLD-STZ we also 

observed a significant increase of PKR1 mRNA levels. Repeated PC1 administrations 

were effective in reducing the neuropathy-induced PKR1 up-regulation, bringing its 

levels to basal (fig.12, panel B).  Real-Time PCR analysis for PK2 and PKR2 mRNA 

evaluation failed to determine the expression levels of PK2 and PKR2 in the sciatic 

nerve. Amplification signal for PK2 and PKR2 was detected too late (CT>38) in samples 

from MLD-STZ injected mice treated with PC1 and non-diabetic animals, impeding to 

compare their expression among the three groups of study (data not shown).   

 

 

 

 

 

 

 

 

 

o Effect of preventive PKR blocking on diabetes-induced mechanical allodynia and 

PK2 up-regulation in spinal cord. 

 

Data above described clearly demonstrated the involvement of the PKs system in 

diabetic neuropathic pain leading us to suppose a possible implication of the system 

not only in the maintenance but also in the onset of painful syndrome. In order to 

check this hypothesis, we performed a precocious blocking of the PKRs in MLD-STZ 

mice not yet neuropathic. 

A group of animals was s.c. administered with the antagonist PC1 for 14 days, starting 

on day 0, time point corresponding to the first STZ injection. As controls mice injected 

with MLD-STZ treated with only saline and non-diabetic mice were used. 

 

 
 

Figure 13. Effect of PC1 (150 µg/kg, twice-daily) s.c. administered to mice injected with MLD-STZ (80 mg/kg for 3 

consecutive days) for 14 days, starting from day 0, time point corresponding to the first STZ administration 

(preventive treatment), on mechanical allodynia (A). Data represent mean  SEM of 5 mice per group. Two way 

ANOVA was used for statistical evaluation, followed by Bonferroni’s test. *p<0.05, ***p<0.001 vs CTR/saline; 

°°°p<0.001 vs STZ/saline. PK2 mRNA expression in spinal cord (L4-L6) 14 days after the initiation of preventive PC1 

treatment/the first MLD-STZ (80 mg/kg for 3 consecutive days) injection (B). The mRNA levels, determined by Real 

Time PCR, were expressed in relation to glyceraldehydes 3-phosphate dehydrogenase (GAPDH) and presented as 

fold-increases over the levels in CTR animals. Data represent mean  SEM of 6-8 mice per group. One way ANOVA 

was used for statistical evaluation, followed by Tukey’s test for multiple comparisons. *p<0.05 vs CTR; °p<0.05 vs 

STZ/saline. 
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As depicted in figure 13, panel A, early PC1 administrations from day 0 to 13 after 

diabetes induction significantly counteracted diabetes-induced neuropathic pain, 

preventing the development of painful symptoms in MLD-STZ mice. On day 7 after 

diabetes induction, when mechanical allodynia was fully developed in MLD-STZ mice, 

the PWT of diabetic mice precociously treated with the antagonist PC1 appeared 

significantly higher respect to MLD-STZ animals and this difference of mechanical 

sensitivity was even more evident 7 days later. Indeed, at the end of preventive 

treatment, mechanical nociceptive thresholds of mice treated with chronic PC1 were 

almost comparable to those evaluated in non-diabetic control mice.  

To correlate the changes in pain behaviour with the PKs system activation, we 

performed Real-Time PCR analysis to compare the mRNA expression level of PK2 in 

spinal cord of MLD-STZ mice treated either with preventive PC1 administrations or 

saline, 14 days after the first STZ injection. 

Precocious treatment with PC1 efficaciously contrasted neuropathy-induced PK2 up-

regulation, significantly preventing the augmentation of PK2 expression, which 

strongly increased in spinal cord of MLD-STZ mice 14 days after diabetes induction, as 

reported in panel B. 

 

o Spinal cord glutamate receptor modulation by diabetes and preventive PC1 

treatment 

 

Glutamate is one of the main mediator in pain processing and it is known to participate 

in the alteration of the synaptic transmission during neuropathic pain (Iwata et al., 

2007; Daulhac et., 2011). 

In order to further support the anti-allodynic effect of PC1, we also analyzed the 

expression of glutamate NMDA receptor subunits N1, N2A and N2B and the glutamate 

AMPA receptor subunits A1 and A2/3 in spinal cord of MLD-STZ mice treated with 

preventive PC1 administrations. 

As illustrated in figure 14, spinal cord N1, N2A and N2B (panels A-C) and A1 and A2/3 

(panels D and E) are shown as grey density percentages of non-diabetic control mice 

(normalized on tubulin) and in the form of a representative western blot. Subunit 

content was also normalized on Na/K ATPase, endogenous control for the integrity of 

plasma membrane proteins. As depicted in panel F, protein levels of both tubulin and 

Na/K ATPase were comparable in spinal cord of MLD-STZ injected mice treated either 

with PC1 or saline and non-diabetic animals indicating that tubulin and Na/K ATPase 

protein content was not altered neither after PC1 administrations nor STZ injections. 

Fourteen days after diabetes induction, an alteration of the expression pattern of the 

subunits N2A and N2B was clearly evident in spinal cord of MLD-STZ mice. As reported 

in panels B and C, in presence of fully developed mechanical allodynia, a decrease of 

the NMDA receptor subunit N2A was present, while the expression of the N2B subunit 
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significantly increased compared to basal levels of controls. Early PC1 administrations 

from day 0 to 13 after diabetes induction was effective in preventing N2B up-

regulation in spinal cord of diabetic mice (panel C), without affecting the levels of the 

subunit N2A (panel B). In our experimental setting, we did’t find any modulation of the 

subunit N1, A1 and A2/3 expression in the spinal cord, neither after diabetes induction 

nor preventive PC1 treatment (panels A, D and E). 

 

 
Figure 14. Effect of preventive PC1 administrations (s.c. 150 µg/kg, twice-daily for 14 days) on GluN1 (A), GluN2A 

(B), GluN2B (C), GluA1 (D) and GluA2/3 (E) subunit content and representative Western blot bands in spinal cord 

(L4-L6) of mice injected with MLD-STZ (80 mg/kg for 3 consecutive days) 14 days after diabetes induction, at the end 

of PC1 treatment. Lanes 1 are extracts of CTR non-diabetic mice, lanes 2 from diabetic STZ/saline mice and lanes 3 

from diabetic STZ/PC1 mice. Grey levels of glutamate receptor subunits were normalized on tubulin and expressed 

as optical density ratio calculated by taking the optical density of the control as 100%. Na/K ATPase was used as 

controls for the integrity of plasma membrane proteins (F). The values are the mean ± S.E.M. of 7-8 separate 

experiments for each antibody. Kruskal-Wallis non parametric ANOVA was used for statistical evaluation, followed 

by Dunn’s test for multiple comparisons. *p<0.05, ***p<0.01 vs CTR. 

 

5.2.3 Effect of therapeutic PKR blocking on cytokines levels in spinal cord and sciatic 

nerve.  

In order to determine the effect of therapeutic PKR blocking on the neuroinflammation 

associated to diabetic neuropathic pain development we evaluated the expression of 

IL-1β and IL-10 in spinal cord and sciatic nerve measuring both cytokine mRNA levels 

and protein content. As illustrated in figures 15 and 16, 35 days after MLD-STZ 

injections, mRNA and protein levels of IL-1β were increased in spinal cord (fig.15, 

panels A and B) and in the sciatic nerve (fig.16, panels A and B) of diabetic mice. 

Repeated PC1 administrations efficaciously contrasted IL-1β up-regulation, restoring 

cytokine levels to basal values in the spinal cord (fig.15, panels A and B) and 

significantly reducing them in the sciatic nerve (fig.16, panels A and B). 
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In spinal cord no modulation of IL-10 protein levels was ever observed, either after 

diabetes induction or PC1 treatment (Fig.15, panels C). On the contrary, the evaluation 

of mRNA expression revealed a slight decrease of IL-10 levels in spinal cord from MLD-

STZ mice which PC1 administrations completely prevented, as depicted in panel D (fig. 

15). 

Thirty-five days after diabetes induction, in sciatic nerve of MLD-STZ mice the protein 

content and the mRNA levels of IL-10 were decreased compared to the basal levels of 

the controls (fig.16, panels C and D). PC1 administrations contrasted the significant 

decrease of IL-10 protein, enhancing cytokine production, as illustrated in panel C. 

Interestingly, PC1 led the mRNA expression of IL-10 above the physiological levels of 

the controls, shifting the immunity of the nerve towards an anti-inflammatory profile 

(panel D).  

 

 
 

Figure 15. Effect of PC1 administrations on IL-1β and IL-10 protein content (A and C) and mRNA expression (B and 

D) in spinal cord 35 days after diabetes induction with MLD-STZ (80 mg/kg for 3 consecutive days) administration, at 

the end of therapeutic treatment with PC1 (s.c. 150 µg/kg, twice-daily for 14 days) starting on day 21 from the first 

STZ injection. Cytokine protein content, evaluated by ELISA, was reported as pg/mg of protein. Citokine mRNA 

levels, determined by Real Time PCR, were expressed in relation to glyceraldehydes 3-phosphate dehydrogenase 

(GAPDH) and presented as fold-increases over the levels in CTR animals. Data represent mean  SEM of 6-8 mice 

per group. One way ANOVA was used for statistical evaluation, followed by Tukey’s test for multiple comparisons. 

*p<0.05, **p<0.01 vs CTR; °p<0.05, °°p<0.01, °°°p<0.001 vs STZ/saline. 
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Figure 16. Effect of PC1 administrations on IL-1β and IL-10 protein content (A and C) and mRNA expression (B and 

D) in sciatic nerve 35 days after diabetes induction by MLD-STZ (80 mg/kg for 3 consecutive days), at the end of 

therapeutic treatment with PC1 (s.c. 150 µg/kg, twice-daily for 14 days) starting on day 21 from the first STZ 

injection. Cytokine protein content, evaluated by ELISA, was reported as pg/mg of protein. Citokine mRNA levels, 

determined by Real Time PCR, were expressed in relation to glyceraldehydes 3-phosphate dehydrogenase (GAPDH) 

and presented as fold-increases over the levels in CTR animals. Data represent mean  SEM of 4-6 mice per group. 

One way ANOVA was used for statistical evaluation, followed by Tukey’s test for multiple comparisons. *p<0.05, 

**p<0.01 vs CTR; °p<0.05, °°p<0.01 vs STZ/saline. 

 

5.2.4 Effect of PKR blocking on peripheral inflammatory status and immune dysfunction 

associated to the development of diabetes 

 

Considering the precocious involvement of the PKs system in the onset of the diabetic 

neuropathy it was interesting to investigate whether a preventive blocking of PKRs 

with the antagonist PC1 positively influenced also the course of the diabetic pathology 

itself, modulating the hyperglycaemic state of animals or reducing the peripheral 

inflammatory component which is known to be associated to diabetes status (Agrawal 

and Kant, 2014). Hence, we monitored over time blood glucose values in mice injected 

with MLD-STZ and, at the end of the preventive treatment with PC1, we measured by 

ELISA the plasmatic levels of insulin. Moreover, since it is known that in diabetes 

model that we used, the destruction of β-pancreatic cells induces an altered immune-

inflammatory response characterized by a dysregulation of cytokine expression 

pattern in pancreas (Cnop et., 2005; Amirshahrokhi and Ghazi-Khansari, 2012), we also 

compared the levels of IL-1β and IL-10 protein content in MLD-STZ mice treated with 

either PC1 or saline with control animals. 

As reported in figure 17, after MLD-STZ administration, diabetic mice exhibited 

significantly high blood glucose levels compared to control mice, which gradually 

increased reaching the maximal pick at the end of the period of observation, i.e. 14 

days after diabetes induction (panel A). Parallel, at this time point, the levels of 
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plasmatic insulin were drastically reduced in MLD-STZ mice respect to the basal levels 

of controls (panel C). Preventive PC1 administrations from day 0 to 13 after diabetes 

induction was not effective either in reducing high glucose levels in mice injected with 

MLD-STZ or in re-establishing the plasmatic insulin levels to physiological control 

values.  

As reported in panels B and D (fig.17), 14 days after diabetes induction, a marked 

dysregulation of the cytokine IL-1β and IL-10 levels was present in the pancreas of 

MLD-STZ mice; both cytokines appeared significantly diminished compared to the 

levels of controls.  

Early PC1 administrations were effective in preventing the alteration of IL-1β and IL-10 

levels which occurred in the pancreas of diabetic mice, contrasting the decrease of IL-

1β (panel B) levels and significantly avoiding the reduction of IL-10 protein content 

(panel D).  

 

 

 
 
Figure 17.  Time course of glycaemic values of mice injected with MLD-STZ (80 mg/kg for 3 consecutive days), s.c. 

administered with PC1 (150 µg/kg, twice-daily for 14 days) or saline (preventive treatment), starting from day 0 to 

13 after diabetes induction (A). Data represent mean  SEM of 5 mice per group. Two way ANOVA was used for 

statistical evaluation, followed by Bonferroni’s test. ***p<0.001 vs CTR. Effect of preventive PC1 administrations on 

plasma levels of insulin (C) and IL-1β and IL-10 protein content in pancreatic tissue (B, D) 14 days after diabetes 

induction, at the end of PC1 treatment. Plasma insulin levels and cytokine protein content, evaluated by ELISA, was 

reported as protein concentrations in plasma and and pg/mg of protein, respectively. Data represent mean  SEM 

of 4-6 mice per group. One way ANOVA was used for statistical evaluation, followed by Tukey’s test for multiple 

comparisons. *p<0.05, **p<0.01, ***p<0.001 vs CTR; °p<0.05 vs STZ/saline. 

 

Since inflammation and immune dysregulation are important mechanisms underlying 

type 1 diabetes pathogenesis we finally performed ex-vivo studies evaluating the 

functioning of peripheral immunity at the end of preventive PC1 treatment.  
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In order to evaluate the effects induced by preventive PC1 administration on innate 

immunity, we examined the production of the cytokines IL-1β and IL-10 by peritoneal 

macrophages, stimulated in vitro with 1 µg/ml LPS. Figure 18 reports the concentration 

measured in culture supernatant of the pro-inflammatory cytokine IL-1β and the anti-

inflammatory cytokine IL-10.  

The effects of the antagonist on acquired immunity were evaluated measuring Th1 and 

Th2 cytokine production by splenocytes, stimulated in vitro with 10 µg/ml ConA. The 

concentration of Th cytokines IFN-γ, IL-2, IL-4 and IL-10 measured in culture 

supernatant is reported in figure 19.  

Fourteen days after MLD-STZ injections, a significant alteration of both innate and 

acquired immunity was observed in diabetic mice, characterized by elevated levels of 

IL-1β produced by macrophages and a Th1 pro-inflammatory/pro-cytotoxic profile. 

Indeed at this time point, a significant increase of IL-1β production by macrophages 

obtained from MLD-STZ mice was present, while IL-10 levels were markedly decreased, 

as depicted in figure 18, panels A and B, respectively. Early PC1 administrations were 

effective in preventing this altered balance between pro- and anti-inflammatory 

cytokines in MLD-STZ macrophages, maintaining the levels of IL-1β at physiological 

values of controls and significantly contrasting the reduction of IL-10 (fig.18).  

The Th1/Th2 cytokine balance is reported in figure 19. Fourteen days after diabetes 

induction, the production of Th1 cytokines increased in diabetic animals. In particular 

we observed a marked augmentation of IFN-γ levels (panel A) and, even if not 

significant, higher concentration of the cytokine IL-2 compared to controls (panel B). A 

protective effect induced by precocious PC1 treatment was strongly evident on IFN-γ 

production. As shown in panels A and B, repeated administrations of the antagonist 

from day 0 to 13 significantly prevented the increase of Th1 cytokines in diabetic mice, 

maintaining cytokine levels to basal values of control animals. 

The production of IL-4 and IL-10 Th2 cytokines was not significant altered after either 

MLD-STZ administrations or chronic PC1 treatment, as illustrated in panels C and D 

(fig.19). 

IFN-γ/IL-4 ratio is frequently used as index for determining spleen cells profile. As 

shown in panel E (fig.19), PC1 administrations completely prevented the alteration of 

Th1/Th2 balance in diabetic mice, which was significantly shifted toward a Th1  

phenotype 14 days after MLD-STZ injections. 

Spontaneous production of cytokines by macrophages and spleen cells was always 

very low, at the limit of detection, and no effect of PC1 treatment was ever observed 

(data not shown). 
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Figure 18.  Effect of  preventive PC1 administrations (s.c. 150 µg/kg, twice-daily for 14 days) on IL-1β (A) and IL-10 

(B) production by peritoneal macrophages, obtained from mice injected with MLD-STZ (80 mg/kg for 3 consecutive 

days) 14 days after diabetes induction, at the end of PC1 treatment. Cytokine content, evaluated by ELISA, was 

reported as protein concentrations in culture media. Peritoneal macrophages obtained at the end of treatment 

were stimulate in vitro with 1 µg/ml LPS. Culture media were collected after 24 h. Data represent mean  SEM of 6-

8 replicates per group. One way ANOVA was used for statistical evaluation, followed by Tukey’s test for multiple 

comparisons. **p<0.01, ***p<0.001 vs CTR; °p<0.05, °°°p<0.001 vs STZ/saline. 

 

 

 
 
Figure 19.  Effect of  preventive PC1 administrations (s.c. 150 µg/kg, twice-daily for 14 days) on IFN-γ (A), IL-2 (B), IL-

4 (C) and IL-10 (D) production by splenocytes, obtained from mice injected with MLD-STZ (80 mg/kg for 3 

consecutive days) 14 days after diabetes induction, at the end of PC1 treatment. (E) Change of Th1/Th2 balance in 

MLD-STZ mice at the end of preventive treatment with PC1. Cytokine content, evaluated by ELISA, was reported as 

protein concentrations in culture media. Splenocytes obtained at the end of PC1 treatment were stimulated in vitro 

with 10 µg/ml ConA. Culture media were collected after 24 h for Th1 (IL-2 and IFN-γ) and 48 h for Th2 (IL-4 and IL-

10) cytokine evaluation. Splenocytes profile was expressed as IFN-γ/IL-4 ratio and calculated by taking IFN-γ/IL-4 

ratio of the control as 100%. Data represent mean  SEM of 4-6 mice per group. One way ANOVA was used for 

statistical evaluation, followed by Tukey’s test for multiple comparisons. *p<0.05 vs CTR; °p<0.05 vs STZ/saline. 
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The functioning of peripheral immunity was ultimately investigated in MLD-STZ mice 

also at the end of therapeutic treatment with PC1, 35 days after diabetes induction. 

As parameters of innate and adaptive immunity, we always evaluated IL-1β and IL-10 

cytokine production by peritoneal macrophages stimulated in vitro with 1 µg/ml LPS, 

and Th1 and Th2 cytokine release by splenocytes stimulated in vitro with 10 µg/ml 

ConA, respectively. 

As depicted on figures 20 and 21, 35 days after MLD-STZ injections, both innate and 

acquired immunity were still altered in diabetic mice.  

Therapeutic PC1 administrations from day 21 to 34 after diabetes induction 

efficaciously contrasted the high levels of IL-1β produced by macrophages of diabetic 

mice, re-establishing cytokine production to physiological values (fig.20, panel A). IL-10 

production was not significantly altered after either MLD-STZ or PC1 administration 

compared to controls (fig.20, panel B). We did not find any statistically significant 

differences for Th1/Th2 cytokine in any of the groups studied (fig.21, panels A-D). 

However, when we calculated the IFN-γ/IL-4 ratio as indicator of Th1/Th2 balance a 

significant shift towards Th1 was evident (panel E). Once again chronic treatment with 

the antagonist was effective against the diabetes-induced peripheral inflammatory 

status.  

 
 

Figure 20.  Effect of therapeutic PC1 administrations (s.c. 150 µg/kg, twice-daily for 14 days) on IL-1β (A) and IL-10 

(B) production by peritoneal macrophages, obtained from mice injected with MLD-STZ (80 mg/kg for 3 consecutive 

days) 35 days after diabetes induction, at the end of PC1 treatment. Cytokine content, evaluated by ELISA, was 

reported as protein concentrations in culture media. Peritoneal macrophages obtained at the end of treatment 

were stimulate in vitro with 1 µg/ml LPS. Culture media were collected after 24 h. Data represent mean  SEM of 6-

8 replicates per group. One way ANOVA was used for statistical evaluation, followed by Tukey’s test for multiple 

comparisons. *p<0.05 vs CTR; °p<0.05 vs STZ/saline. 



RESULTS 
 

88 

 
 

Figure 21. Effect of therapeutic PC1 administrations (s.c. 150 µg/kg, twice-daily for 14 days) on IFN-γ (A), IL-2 (B), IL-

4 (C) and IL-10 (D) production by splenocytes, obtained from mice injected with MLD-STZ (80 mg/kg for 3 

consecutive days) 35 days after diabetes induction, at the end of PC1 treatment. (E) Change of Th1/Th2 balance in 

MLD-STZ mice at the end of therapeutic treatment with PC1. Cytokine content, evaluated by ELISA, was reported as 

protein concentrations in culture media. Splenocytes obtained at the end of PC1 treatment were stimulated in vitro 

with 10 µg/ml ConA. Culture media were collected after 24 h for Th1 (IL-2 and IFN-γ) and 48 h for Th2 (IL-4 and IL-

10) cytokine evaluation. Splenocytes profile was expressed as IFN-γ/IL-4 ratio and calculated by taking IFN-γ/IL-4 

ratio of the control as 100%. Data represent mean  SEM of 5 mice per group. One way ANOVA was used for 

statistical evaluation, followed by Tukey’s test for multiple comparisons. *p<0.05 vs CTR; °p<0.05 vs STZ/saline. 
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Neuropathic pain resulting from a damage or disease within the somatosensory 

system is a chronic pain largely resistant to treatment mainly because the underlying 

mechanisms are still poorly understood.  

Much of the initial research on the neuropathic pain pathogenesis focused on the 

properties of neurons following a nerve injury, leading to proposal of both peripheral 

and central sensitization as important disease mechanisms (Sacerdote et al., 2013). 

However, in the last years it has emerged that the development and maintenance of 

neuropathic pain is not confined to the altered activity of sensory neurons and the 

reorganization of central nociceptive circuits, but also involves pathological 

interactions between neurons, glia and inflammatory immune cells, as well as a wide 

cascade of pro- and anti-inflammatory cytokines (Austin and Moalem Taylor, 2010; 

Calvo et al., 2012).  

In the present work we provide evidences about the involvement of a recently 

discovered chemokine-like protein named prokineticin 2 (PK2) and its receptors PKR1 

and PKR2, in the inflammatory events-related to neuropathic pain development, which 

occurs in the peripheral and central nervous system following neuronal injury induced 

either directly through a peripheral nerve lesion or as a consequence of a persistent 

hyperglycaemic status (diabetic painful neuropathy).  

 

PERIPHERAL NERVE INJURY (CCI) MODEL   

 

We initially investigated the involvement of the PKs system in a mouse model of 

neuropathic pain induced by the chronic constriction injury (CCI) of the sciatic nerve. 

The implication of the PKs system in CCI-induced neuropathic pain was clearly 

confirmed by our behavioural results. In fact, blocking PK2/PKRs signalling with PC1 

was effective in controlling neuropathic painful manifestations, completely reverting 

thermal hyperalgesia and significantly reducing mechanical allodynia. The changes in 

pain behaviour well correlated with the expression and distribution of PK2 and PKRs at 

the peripheral and central sites of pain transmission. 

In fact, we found a general up-regulation of PKRs and their ligand PK2 both in 

periphery and in spinal cord of CCI neuropathic mice.  

Ten days after nerve ligation, we observed a strong increase of PK2 mRNA in the 

injured sciatic nerve. PK2 immunoreactivity was increased in neuroma and in nerve 

fibres proximal to the lesion and was associated to activated Schwann cells and 

infiltrating neutrophils and macrophages. In the same cells we detected high levels of 

both PKRs. In particular, immunofluorescence staining of the neuroma revealed a co-

localization of PKR2 signal with activated Schwann cells, whereas PKR1 signal was 

associated to infiltrating immune cells.  

The fact that few evidences indicate PKR2 as the only inducible receptor (Kisliouk et al., 

2005), led us to speculate that the augmentation of PKR1 mRNA expression measured 
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in the injured nerve of CCI mice could be attributed to infiltrating inflammatory cells 

expressing this receptor, i.e. invading granulocytes and macrophages. 

As previously reported in a model of inflammatory pain, the release of PK2 in the nerve 

contributes in lowering nociceptor activation thresholds and in recruiting neutrophils 

and macrophages (Giannini et al., 2009), which PK2 drive towards a pro-inflammatory 

phenotype increasing the release of IL-1β and reducing that of IL-10 (Martucci et al., 

2006).  

Inactivation of PKRs, particularly PKR1, which is known to be the major receptor 

implicated in the immunomodulatory activity of PK2, appeared to be of therapeutic 

benefit in controlling inflammatory process which occurred in the nerve following 

lesion. Indeed, in the injured sciatic nerve of neuropathic CCI/PC1 mice the PK2 mRNA 

levels and immunofluorescence were significantly lower compared to CCI/saline group. 

In particular, a significant reduction of PK2 signal was detected in invading immune 

cells. Repeated PC1 administrations significantly reduced the availability of a potent 

pro-nociceptive/pro-inflammatory agent as PK2 in the nerve and in infiltrating cells, 

consequently preventing/reducing the further recruitment of inflammatory cells as 

well as the activation of resident cells. This peculiar effect of PC1 to counteract the 

overexpression of PK2 seems to be exclusively mediated by the activation of the PKR1 

as it was demonstrated a specific involvement of this receptor in setting the enhanced 

PK2 levels during inflammation (Giannini et al., 2009; Negri and Lattanzi, 2011). 

The activation of PK2 in the injured nerve of neuropathic mice also well correlated with 

the stimulation of the pro-inflammatory cytokine IL-1β, an inflammatory mediator 

known to strongly contribute in enhanced pain transmission. Parallel with IL-1β 

augmentation we found a significant reduction of IL-10 protein levels, whereas its 

mRNA expression strongly increased.  

The mismatch between the mRNA and the protein levels of this anti-inflammatory 

cytokine is probably due to the activation of the synthetic machinery of IL-10 in order 

to supply the strong demand and consumption of IL-10 required for contrasting the 

pro-inflammatory cascade induced by the lesion (Sacerdote et al., 2013).  

These data suggest that upon PK2 exposure stimulated- Schwann and immune cells 

produce large quantity of inflammatory mediators, including the PK2 its self, 

perpetuating a vicious positive feedback loop for increasing further production of 

inflammatory mediators, thus potentiating nerve damage and contributing to 

enhanced pain transmission.  

Ten days after nerve ligation, PK2 signal also increased in the superficial and in some 

deeper layers of the spinal dorsal horns as well as in activated astrocytes. The 

particular increase of PK2 at the levels of the presynaptic terminals led us to suggest 

that PK2 may be transported to the central endings where it induces central 

sensitization through CGRP and SP synthesis and release (DeFelice et al., 2012), 
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activation of glutamate interneurons (Yuill et al., 2007) and reduction of GABAa 

receptor function (Ren et al., 2011). 

The expression of PKR1 was not altered in the spinal cord of CCI neuropathic mice and 

was restricted to resting and activated astrocytes; on the contrary neuronal injury 

induced a strong modulation of PKR2. As PK2, in fact the PKR2 signal clearly increased 

after nerve ligation in the activated astrocytes and in neuronal cell bodies, indicating a 

relevant role of PK2/PKR2 pair in spinal pain processing.  

The PK2 released in spinal cord by activated astrocytes and primary sensory neurons 

may activate the PKR2 constitutively expressed in the spinal cord neurons and up-

regulated after nerve injury.  PKR2 was in fact increased in all examined tissues 10 days 

after nerve damage. Moreover, as PKR2 is primarily expressed in medium-large DRG 

neurons which also contain TRPA1 channel, (Negri and Lattanzi, 2011) considered 

involved in allodynia, and in spinal neurons we hypothesize that the increased 

expression of PKR2 together with its agonist PK2 might have a role in the induction and 

maintenance of this painful symptom. 

PKR2 activation induced by PK2 may also contribute to astrocytosis and production of 

pro-inflammatory cytokines such as IL-1β, which in turn stimulate astrocytes to induce 

further PK2 production. Previous in vitro studies support the role of PK2 to promote 

astrocytes activation. The release of PK2 was in fact found to induce proliferation of 

astrocytes expressing both PKR1 and PKR2 so functioning as an astrocyte autocrine 

growth factor (Koyama et al., 2006). 

Repeated PC1 administration was effective in reducing the neuropathy-induced 

overexpression of the PK2 itself also in spinal cord. At this level, astrocytes appeared a 

preferential target for PC1. Indeed, in CCI/PC1 mice, astrocyte PK2 immunoreactivity 

was evidently reduced and the increase of IL-1β was reverted, indicating that chronic 

treatment with the antagonist PC1 directly controls astrogliosis. 

 

 DIABETES-INDUCED NEUROPATHIC PAIN MODEL 

 

Considering that in patients one of the most common causes of neuropathic pain is the 

presence of diabetes we have considered of great interest to investigate the role of the 

PKs system also in neuropathic pain induced by diabetes, using the diabetic painful 

neuropathy model induced by chemical pancreactomy (STZ). 

Allodynia is known to be a cardinal symptom of the diabetic painful neuropathy. In this 

model it appeared within few days after diabetes induction, reached full development 

14 days later and persisted until 56 days from the STZ administrations. 

Our data demonstrate that in diabetic mice spinal cord PK2 is implicated both in the 

early stage of neuropathic pain development as well as in its maintenance. An over 

expression of PK2 in spinal cord was in fact present since the appearance of painful 

symptom and for all the persistence of allodynia.  
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To deepen the knowledge about the timing of activation and the specific role of the 

PKs system in diabetic neuropathic pain evolution we performed two different 

pharmacological approaches using the PKR antagonist PC1. Mice were chronically 

treated with PC1 at different time points from diabetes induction, i.e. either starting 

on day 21 after diabetes induction, when animal exhibited an overt neuropathic pain 

(therapeutic treatment) or at the same time of STZ administrations (day 0), i.e. when 

hyperglycaemia and mechanical allodynia were not yet developed (preventive 

protocol).  

The antagonist PC1 was highly effective in alleviating diabetes-induced neuropathic 

pain. In fact repeated administrations of PC1 significantly reduced mechanical 

allodynia in STZ mice treated in presence of fully developed neuropathic pain, while 

completely prevented the development of painful symptoms, when it was given to 

animal not already neuropathic. Interestingly, therapeutic treatment schedule delayed 

painful symptom reappearance after PC1 suspension, leading us to suppose that 

blocking PK2 signalling could induce permanent changes in the neuronal circuits or in 

the neuroinflammatory phenomena involved in the maintenance of neuropathic pain. 

Moreover, a single bolus systemic injection of PC1 rapidly reduced the established STZ-

induced allodynia in mice with fully developed neuropathic pain, suggesting a direct 

action on nociceptor PKRs, whose blockade hinders the transmission of painful stimuli.  

The clear anti-allodynic effect observed after chronic PC1 treatment could be also 

ascribed to its ability to prevent or reduce the PK2 synthesis activation. Consistently, 

35 days after diabetes induction PK2 and PKR2 were significantly increased in spinal 

cord of STZ mice and therapeutic PC1 administrations reduced these augmentations; 

the counteraction of the PK2 overexpression was even more evident after the 

precocious treatment. In addition, the prevention of spinal cord PK2 up-regulation was 

long lasting and persisted after suspension of PC1 administrations. 

The observation that in mice precociously treated with PC1 administrations allodynia 

did not develop led us to hypothesize that when PC1 treatment started on day 0, i.e. 

when the unique plasticity of the central nervous system that underlies allodynia was 

not yet developed, the blocking of neuronal PKR2 and PK2 synthesis in spinal cord 

could prevent or slow this neuronal plasticity.  

In order to further support the anti-allodynic effect of PC1, we also analysed the 

expression of glutamate NMDA receptor subunits N1, N2A and N2B and the glutamate 

AMPA receptor subunits A1 and A2/3 in spinal cord of STZ mice treated with 

preventive PC1 administrations. 

As reported in literature, the development of abnormal pain perception in diabetic 

animals is associated with abnormal hyperactivity of glutamate receptors in spinal 

cord. In fact, it was found that hyperalgesia and allodynia exhibited by diabetic mice 

can be prevented by co-administrations of AMPA and NMDA receptors antagonists 

(Calcutt and Chaplan, 1997; Gupta et al., 2003; Malcangio and Tomlinson, 1998).  
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Further evidences indicate that the alterations in synaptic transmission associated to 

neuropathic pain development include phosphorylation of NMDA receptors, altered 

NMDA receptor subunit expression pattern and an increase in NMDA-mediated 

current (Guo et al., 2002; Zou et al., 2002; Gaunitz et al., 2002; Karlsson et al., 2002; 

Isaev et al., 2000). In particular pain hypersensitivity induced by peripheral injury or 

tissue inflammation is known to be mediated by the activation of N2B subunits 

distributed in spinal cord dorsal horns (Boyce et al., 1999; Sakurada et al., 1998; Tan et 

al., 2005; Taniguchi et al., 1997) Moreover, Iwata et al. (Iwata et al., 2007) 

demonstrated that on spinal neurons the incidence of N2A decreased while that of 

N2B increased after peripheral nerve injury. 

In agreement with this literature, in presence of fully developed mechanical allodynia a 

decrease of the spinal NMDA receptor subunit N2A was present, while the expression 

of the N2B subunit significantly increased. Early PC1 administrations were effective in 

preventing N2B up-regulation in spinal cord of diabetic mice, without affecting the 

levels of the subunit N2A.   

These data confirm that PC1 administration has a clear impact on neuronal processes 

that participate in the establishment of allodynia. 

As already discussed, the PKs system plays a pivotal role in modulating peripheral 

immune/inflammatory reactions as well as neuroinflammation. As further confirm, we 

demonstrated that PC1 treatment was able to significantly reduce IL-β overexpression 

in the spinal cord in STZ mice. As for the CCI results, it can be suggested that by 

reducing PK2 and PKR2 levels in spinal cord, the signalling leading to IL-1β production 

by astrocytes and microglia is significantly blunted.   

From our data, it also emerges an important control of PK2 on the balance of pro- and 

anti-inflammatory cytokines in the sciatic nerve. In the diabetic nerve, Schwann cells, 

resident and macrophages recruited from bloodstream present a clear pro-

inflammatory phenotype, characterized by high IL-1β and low IL-10 levels. The 

antagonism with PC1 was efficacious in reverting this pro-inflammatory phenotype; 

indeed after treatment we measured extremely high levels of sciatic nerve IL-10, 

suggesting that the blocking of PKRs drives nerve macrophages towards an anti-

inflammatory direction. As previously addressed for CCI, the augmentation of PKR1 

mRNA expression measured in the diabetic nerve could be attributed to infiltrating 

inflammatory cells expressing this receptor. Since PKR1 is the most implicated in the 

immune response and it was previously demonstrated to mediate macrophage 

chemotaxis (Martucci et al., 2006) it can be assumed that blocking it with PC1 could 

affect macrophage migration reducing or preventing the recruitment of further 

inflammatory cells expressing PKR1 in the nerve.  

Inflammation and immune activation have been recognized as fundamental 

mechanisms in the pathophysiology of diabetes as well as of its complications (Agrawal 

and Kant, 2014). An autoimmune reactivity characterized by a T helper 1 profile is 
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consistently present in diabetes, and elevated pro-inflammatory cytokines, such as 

IFN-γ, TNF-α, and IL-1β (Padgett et al., 2013) also participate in pancreatic β-cells 

destruction. In agreement with our and other groups’ studies about the potent 

immunomodulatory activity of PK2 (Martucci et al., 2006; Franchi et al., 2008, 

LeCouter et al., 2004), we now demonstrate that PK2 and its receptors appear to be 

involved also in modulating the altered peripheral immune response in the STZ model. 

In fact, in diabetic mice we observed a significant alteration of both innate and 

acquired immunity, characterized by elevated levels of IL-1β produced by circulating 

macrophages, and a Th1 pro-inflammatory/pro-cytotoxic profile. PC1 treatment 

reduced the peripheral inflammatory status, decreasing macrophagic IL-1β and 

switching Th1/Th2 balance towards Th2. Interestingly, blocking PKRs was also able to 

prevent cytokine alteration that we observed in pancreas. At the moment we do not 

know whether this effect is mediated by PKRs that have been shown to be present on 

pancreatic tissues (Jiang et al. 2009; Cline et al., 2011; Dormishian et al., 2013), or it 

depends on the general peripheral immunomodulation achieved with PC1.  

We can hypothesize that PK2 is involved in all the inflammatory processes that take 

place in diabetes, and the inactivation of its signalling might ameliorate the general 

well-being in the animals, as demonstrated by the reduction of painful symptoms. If 

this hypothesis is true, the blocking of PKRs could have beneficial effects also on other 

diabetic complications, such as retinopathy and nephropathy. Further experiments are 

needed in this direction.    

Although PC1 blocked the STZ-induced neuropathic pain, neuroinflammation and 

peripheral immune activation, it did not affect hyperglycaemia nor the body weight 

loss present in diabetic mice. However this is not uncommon, since other compounds, 

such cannabis extracts, buprenorphine and ghrelin, have beneficial action on diabetic 

alterations and tissue damage without affecting STZ-induced hyperglycaemia and body 

weight loss (Saini et al., 2007; Comelli et al., 2009; Canta et al., 2009; Kyoraku et al., 

2009). Interestingly, also the STZ diabetic rats treatment with low dose insulin 

normalizes tactile allodynia, without affecting hyperglycaemia (Hoybergs and Meert, 

2007). We believe that in the whole, PK2 has a role in the several inflammatory events 

that take place downstream of hyperglycaemia. 

 

 

CONCLUSIONS 

 

Blocking PK2 signalling with PC1 appears a winning strategy for controlling neuropathic 

pain as this molecule not only significantly reduces neuropathy-induced pain 

hypersensitivity directly targeting the receptors, but also suppresses the causes 

underlying disease progression as neuroinflammation, by controlling the synthesis and 

release of the pro-inflammatory/pro-nociceptive endogenous PK2.  
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In conclusion, we suggest the PKs system as a promising target for the development of 

novel pharmacological approaches to treat neuropathic pain as well as other 

pathological conditions characterized by a sustained inflammatory component.  
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