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a b s t r a c t

This paper focuses on a property of enriched functors reflecting the factorisation of mor-
phisms, used in concurrency semantics. According to Lawvere [F.W. Lawvere, State cat-
egories and response functors, 1986, Unpublished manuscript], a functor strictly reflect-
ing morphism factorisation induces a notion of state on its domain, when it is consid-
ered as a control functor. This intuition works both in case of physical and comput-
ing processes [M. Bunge, M.P. Fiore, Unique factorisation lifting functors and categories
of linearly-controlled processes, Math. Structures Comput. Sci. 10 (2) 2000 137–163;
M.P. Fiore, Fibered models of processes: Discrete, continuous and hybrid systems, in: Proc.
of IFIP TCS 2000, in: LNCS, vol. 1872, 2000, pp. 457–473]. In this note we investigate amore
general property in the family of models we proposed elsewhere for communicating pro-
cesses, and we assess their bisimulation relations [S. Kasangian, A. Labella, Observational
trees as models for concurrency, Math. Structures. Comput. Sci. 9 (1999) 687–718; R. De
Nicola, D. Gorla, A. Labella, Tree-Functors, determinacy and bisimulations, Technical Re-
port, 02/2006, Dip. di Informatica, Univ. di Roma ‘‘La Sapienza’’ (Italy), 2008 (submitted for
publication), http://www.dsi.uniroma1.it/%7Egorla/papers/DGL-TR0206.pdf]. Hence, we
adapt the notion of ‘‘Conduché condition’’ [F. Conduché, Au sujet de l’existence d’adjoints
à droîte aux foncteurs image reciproque dans la catégorie des catégories, C. R. Acad. Sci.
Paris 275 (1972) A891–894] to the context of enriched category theory. This notion, weaker
than the original ‘‘Moebius condition’’ used by Lawvere, seems to be more suitable for the
description of the concurrency models parametrised w.r.t. a base category via the mecha-
nism of change of base, actually. The base category is a monoidal 2-category; a category of
generalised trees, Tree, is obtained from it. We consider Conduché Tree-based categories,
where enrichment reflects factorisation of objects in the base category. We prove that a
form of Conduché’s theoremholds for Conduché Tree-functors.We also showhow the Con-
duché condition plays a crucial role in modelling concurrent processes and bisimulations
between them. The notions of ‘‘state preservation’’ and ‘‘determinacy’’ [R. Milner, Commu-
nication and Concurrency, Prentice Hall International, 1989] are formally characterised.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

At the beginning of July 1982, in Trieste, the first author attended to a lecture by Bill Lawvere [1] on ‘‘Thermodynamics of
deformations of continuous bodies, non homogeneous, withmemory, far from equilibrium’’, and heardwhatwas then called
the ‘‘Moebius functor’’ (now called UFL, unique factorisation lifting, functor, [2,3]) in connection with the notion of ‘‘state’’.

I To the memory of Max Kelly.
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Fig. 1. An A∗-labelled treeXwith six paths (representing computations or successful experiments).

Kasangian thought about the possibility of a weaker condition, where unicity is not required in a strict sense. Here, this
possibility goes under the name of the Conduché condition, because it was originally used to prove Conduché’s theorem [4].
In this paper we make the case that in Computer Science this weaker notion can play a relevant role. To explain this, we

base our argument on our approach to concurrency, as published in [5].
Following Milner (see [6]), we considered concurrent agents as black boxes whose behaviour can be detected through a

series of experiments. In order to do so, we needed to define a system of ‘‘observers’’ which perform ‘‘experiments’’. For the
sake of simplicity, observers can be represented as words in a free monoid (interleaving semantics) and agents as automata
whose states cannot be described. The observers ‘‘explore’’ the agents bymaking experiments on them: an experiment on an
agent consists of its interaction with a particular observer. This interaction can be viewed as a Hoare synchronisation between
observers and agents, in the sense that the observer and the agent are compatible, as long as they are ‘‘doing the same thing’’.
Given a system of observers, it is possible to explore and reconstruct the behaviour of an agent through experiments, as we
will immediately see. Agents, considered as described via their behaviour detected as above, are called processes.
In describing the behaviour of a process as the record of all possible successful experiments, we are not far away from

automata theory, where an automaton is described by the languages (sets of words on a given alphabet A) ‘‘operating the
transition from a state s to a state s′’’ (local behaviour), or the sets of words’’ accepted while going from s to s′’’, i.e.

Ls,s′ = {w ∈ A∗ | δ(s, w) = s′}.

Initial and terminal states can be specified when necessary. In this case, the language of words leading from the initial
state to the terminal ones describes the global behaviour of the automaton. This set Ls,s′ can be considered as the report of a
family of experiments made on the automaton in state s, trying to reach state s′, and using observers in the free monoid A∗.
We associate the ‘‘successful’’ word (or string) with a computation.
Formally, A-automata are modelled as categories enriched in the base 2-category [7] provided by the structure of the

languages [8], ℘(A∗). Accordingly, comparisons between automata are defined in terms of ‘‘change of base’’ [9], i.e. in terms
of the local structure. On the other hand, the usual (trace or language) equivalence introduced for automata is global, taking
into account the global behaviour only. Thus, it ‘‘forgets’’ the states that one passed through.
Whenmoving from essentially deterministic processes (like automata) to non-deterministic ones, greater attentionmust

be spent on the notion of state, because it is necessary to be careful with the possible choices offered at any specific state.
In this setting, ‘‘sets of strings’’ are no longer the best candidates to represent non-deterministic behaviours.
In the non-deterministic case, when we identify a state with its possible future (i.e., with the structure of its possible

computations), we get a tree-shaped labelled structure1 instead of a set of words; this is necessary to take all possible
choices into account. A tree can be naturally described as a set of labelled paths suitably glued together; such a gluing
provides information about the ramifications, distinguishing trees from languages (see Fig. 1).
The information (called the extent) about computation p, given by a successful experiment provided by a string w is

denoted by e(p) = w, while the relationship between two computations, p1 and p2, detected by two successful experiments
performed on a given agent, is called agreement and it is denoted by a(p1, p2). The agreement expresses how long two
computations cannot be distinguished through experiments and it will be a prefix of both the strings associated to the two
computations. Hence, the notion of agreement provides some information about the internal structure of the agents and
their evolution during the experiments. In Fig. 1 we show a graphical representation of the following data, reported by
experiments:

• e(x0) = cab
• e(x1) = cbcb
• e(x2) = cba
• e(x3) = ab
• e(x4) = caa
• e(x5) = cbca
• a(x0, x1) = a(x0, x2) = a(x0, x5) = c
• a(x0, x3) = ε

1 Algebraically, this is captured by the absence of right distributivity of concatenation over choice.
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Fig. 2. The three levels of our construction.

Fig. 3. The intermediate state Q after s.

• a(x0, x4) = ca
• . . .

Back to automata theory, we start with the free monoid A∗, then we consider the structure of languages ℘(A∗), i.e., the
set of possible subsets of A∗ and, finally, we describe automata as sets of states with an element of ℘(A∗) between any pair
of them. This procedure can be formally described as an enrichment of the set of states of an automaton in the monoidal
category ℘(A∗), where the Frobenius product of languages is the tensor product [8]. In the case of processes, wemust replace
℘(A∗) with the structure of A∗-labelled trees, with a suitable operation of concatenation defined among them. In fact, we
put a tree between two states.
We will perform a further step, because the relationship between the set of elementary labels L, suitably considered as a

2-category L, and L-labelled trees can be again thought in terms of an enrichment, though of a slightly different kind.2 This
3-level construction can be annoying, but it allows us to stress the fact that all the properties we are able to detect at the top
level, are essentially inherited from properties already present at the very basic level of L (see Fig. 2). Therefore, this level is
crucial in making choices.
Formally, a system of observers can be described as a symmetricmonoidal lp 2-category, whose objects are the observers

(generalisedwords), whose 1-cells are ‘‘common prefixes’’ in a rather general sense [11] andwhose 2-cells are usually given
by the prefix relation. The set of all possible computations between two ‘‘states’’ of the system (or two agents, in the usual
interleaving terminology) turns out to be structured by the chosen agreement between the corresponding successful experiments.
Such a structured set is called a structure of computations, and is modelled as a category based on the 2-category of observers,
in the sense of [7].
Trees of computations (viewed as enriched categories) are gathered in a monoidal category Tree, like the one described

in [5], in which categories of processes are enriched.
The morphisms in the monoidal category of trees of computations can be thought of as simulations, because every

computation in the domain is mapped into a similar one in the codomain, while agreement can increase, making the
behaviour more deterministic, in correspondence with a possibly better knowledge about it. By varying the base 2-category
L, different kinds of semantics can be modelled; our results about categorical characterisations of bisimulations apply to
those different models [12].
Let us now address the problem of ‘‘finding out’’ states in a processwhenwe know about its behaviour. Themost intuitive

idea is the following: given an instance of our semantics, wheneverwe can factorise a path x of the (local or global) behaviour
of a process P , that iswheneverwe can stop along a computation, say after performing a prefix s of e(x), we find a newprocess
Q (made out of the residual part of P after that prefix), such that the part of computation already performed leads from P to
Q . The process Q will represent an intermediate state along the given computation (see Fig. 3).
Conduché property amounts to requiring that a factorisation at the level of the base category can be properly lifted to

the level of the category of trees and then to the level of the category of processes.

2 The two kinds of enrichment are instances of the same notion of B-category, where B is a general 2-category, as defined in [10].
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We will see that in the more interesting cases of tree-semantics, the enriched categories of involved processes enjoy
a sort of Conduché property with respect to the 2-category L. That is, factorisation of objects in the base category can be
suitably lifted to the level of trees and then to the level of processes, producing a proper factorisation of the corresponding
computation. This also allows us to detect a state in the process, or something quite near to a state. Moreover, if we impose
equivalence relations corresponding to the more common bisimulations to these categories of trees [13], we get that they
are related to the existence of enriched functors enjoying variants of a lifting factorisation property [12]. In particular,
determinacy [6], that is the preservation of states by an equivalence associated with an enriched endofunctor, is guaranteed
if and only if it enjoys the analogues of the Conduché property in this enriched context.
Coupling this result with Lawvere’s position about states and determinism in physics, mentioned above, we decided

to study in a systematic way the possible extension of Conduché’s result to the Tree-enriched case. What we have called
‘‘Conduché property’’ has a nice consequence for an ordinary functor, namely the existence of a right adjoint to the
corresponding inverse-image functor [4]. The main result of this paper is the extension of this result to Tree-based functors.
As a consequence, it follows that a Tree-functor enjoying the Conduché property, and sending a behaviour to its minimal
representative w.r.t. a given equivalence (as is the case for some very common bisimulations – see Section 4), induces
an inverse image functor on the semantics that preserves limits and colimits. In other words, we can indifferently make
canonical constructions on original behaviours or on their minimal representatives for such a kind of bisimulation.
As suggested by the construction of our semantics involving a two-level enrichment [14], we will proceed by defining

and proving properties, bottom up through enrichments, starting from the base 2-category.
Section 2 will be devoted to formally describing the category of trees with its properties, while Section 3, the core of

this paper, will deal with the problem of lifting factorisation, and will contain the main mathematical results. Section 4
presents results through examples coming from process semantics and bisimulations, and Section 5 will provide some
final considerations on the relationships to other research about lifting factorisation properties and its possible future
developments.
Our general references, besides [5], are Max Kelly’s book [15] and Bob Walters paper [7].

2. Generalized trees

We now take from [5] the notion of a category of labelled trees, intended there to provide models for the process
behaviours and some of its properties. A (generalised) tree, as the ones described in the introduction, is a symmetric L-
category, where L is a meet-semilattice monoid enjoying the left-cancellation property, thought as a locally posetal 2-
category. This approach allows us to define morphisms between trees as L-functors, which turn out to be simulations
between behaviours, and to move from a kind of model to another by simply considering a 2-functor from a base category
L to L′, and the associated change of base. For example Milner’s processes are A∗-categories, where A∗ is the 2-category
associated with the free monoid on the alphabet of labels A, while T -categories are event structures of a certain kind, when
T is the 2-category associated with the monoid of Mazurkiewicz traces [16]. A typical 2-functor between base categories is
del from Lτ to L, which deletes silent moves (denoted by τ ) from processes.
We will now recall the construction in the general case, and state the properties enjoyed by the structures involved

(see [5]).

Definition 1. A complete meet-semilattice L = (L,≤,∧,⊥) is a partial order with greatest lower bound for any non-empty
family of elements, ∧. The bottom element is denoted by⊥.
A complete meet-semilattice monoid is a monoid (L, •, 1) such that the prefix relation between its elements (as usual

defined as s ≤ t iff there exists u ∈ L such that s • u = t) is an order and induces a complete meet-semilattice structure.
A complete meet-semilattice monoid enjoys the left-cancellation property if, for every s, t, u ∈ L such that s • t = s • u, it

holds that t = u.

Remark 1. Due to the definition of the order in L,⊥ is provably equal to 1. Moreover, a complete semilattice has a join for
every family that has an upper bound. From now on, we shall only consider complete meet-semilattice monoids enjoying
the left-cancellation property.
Please notice that≤ is a partial order – not simply a preorder – and, for this reason, the monoid (L, •, 1) lacks non-trivial

invertible elements.

Proposition 1. 1. A meet-semilattice L can be thought of as a symmetric lp 2-category [7], that we will still denote by L.
2. Composition in the meet-semilattice monoid (L, •, 1) induces a tensor product : L × L → L with 1 as unit. is also
a 2-functor.

Proof. 1. Objects are elements of L, 1-cells are common prefixes composable via the meet operation. 2-cells are provided
by the order relation.

2. is defined as • on objects, while on 1-cells it gives the first one of them - unless this is the identity of the first two
objects. In that case it operates as • between them. With this definition 2-cells (order) are automatically respected. is
associative and its neutral element is 1. �

Please cite this article in press as: S. Kasangian, A. Labella, Conduché property and Tree-based categories, Journal of Pure and Applied Algebra (2009),
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Remark 2. The idea of considering a meet-semilattice as a locally posetal 2-category is due to R.F.C. Walters [7]. Here we
are in the particular case where the order is induced by the particular monoid structure, and, therefore, L also becomes a
monoidal 2-category.

Let L-SymCat be the category of symmetric L-categories and L-functors between them. Let us call it TreeL and call its
objects (generalised) trees, because they turn out to be trees in the sense of the Introduction. We shall illustrate TreeL in
more detail:
A symmetric L-category, i.e. a L-tree,X is a triple (X, eX , aX ) where X is the set of paths, eX : X → L is the extent map

and aX : X × X → L is the agreement between paths such that, for every x, y, z ∈ X , it holds that:
1. aX (x, x) = eX (x)
2. aX (x, y) ≤ eX (x) ∧ eX (y)
3. aX (x, y) ∧ aX (y, z) ≤ aX (x, z)
4. aX (x, y) = aX (y, x).

A L-functor f : X → Y, is a function mapping paths into paths, strictly preserving labelling and non-decreasing the
agreement between them, i.e.:
1. eX (x) = eY (f (x))
2. aX (x, y) ≤ aY (f (x), f (y)).

TreeL has sums, products, initial and terminal objects. The tree (L, idL,∧), i.e. L itself, is the terminal object in TreeL. Hence,
there is a unique TreeL-functor from every TreeL-category C to L.

Example 1. In particular, if A∗ is the free monoid generated by the alphabet A, an A∗-category X will yield an A∗-labelled
tree.

Let us notice that a 2-functor between meet-semilattices is actually a meet-preserving monotonic function.
If it is also a monoid homomorphism between meet-semilattice monoids, it is a monoidal 2-functor between the

associated monoidal 2-categories.

Proposition 2. Given two meet-semilattice monoids and a 2-functor between them φ : L′ → L, φ induces a functor Φ :
TreeL′ → TreeL.
Proof. Given a 2-functor φ : L′ → L and aX′ = (X, e′X , a

′

X ) in TreeL′ ,Φ(X
′) = (X, eX , aX ), where

• eX (x) = φ(e′X (x))
• aX (x, y) = φ(a′X (x, y))
Φ(X′) is an object of TreeL because φ, being a 2-functor, preserves meets. The map from X to Y , defining a morphism from
X′ = (X, e′X , a

′

X ) to Y′ = (Y , e′Y , a
′

Y ), defines a morphism from X = (X, eX , aX ) to Y = (Y , eY , aY ) of TreeL as well. The
preservation of identities and of composition byΦ is straightforward. �

Given a meet-semilattice monoid L and two L-trees X and Y, we can form the sequential composition of X and Y,
X⊗ Y = (Z, eZ , aZ ), as follows:
– Z = X × Y
– eZ (x, y) = eX (x) • eY (y)
– aZ ((x, y), (x′, y′)) is aX (x, x′), if x 6= x′, and eX (x) • aY (y, y′), otherwise.

In the sequel, we will denote the path (x, y) inX⊗ Y by x;y.
This operation is a functor.

Proposition 3. In analogy with the tensor product : L × L → L, the operation ⊗ can be extended to a tensor product
⊗ : TreeL× TreeL → TreeL, making (TreeL,⊗, I) a (non-symmetric) monoidal category where I is the one-path tree with trivial
labelling.

⊗ corresponds to Frobenius product in language theory, and, as in language theory, we can define the derivative of X
reached after an s ∈ L along a given path x.
Being TreeL a monoidal category, we can consider the category TreeL-Cat of TreeL-categories and TreeL-functors. The meet

semilattice monoid L is the terminal TreeL-category, with only one object and the terminal tree L as hom-object.

Definition 2. LetX = (X, eX , aX ) be a tree. The derivative reached inX along the path x (∈ X) after s (≤ eX (x)) – written
D(X, x, s) – is the trivial tree ({x}, 1, 1), if eX (x) = s, otherwise it is the tree (Y , eY , aY )where
• Y = {x′ ∈ X | aX (x, x′) ≥ s},
• eY (x′) = eX (x′)− s,
•

aY (x′, x′′) = aX (x′, x′′)− s,
where by the symbol ‘‘−’’ we mean the truncation of a prefix.

Fig. 4 illustrates the terminology. The construction of the derivative yields an adjoint to the tensor product.

Please cite this article in press as: S. Kasangian, A. Labella, Conduché property and Tree-based categories, Journal of Pure and Applied Algebra (2009),
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Fig. 4. The derivative ofX along x after s.

Proposition 4 ([5]). (TreeL,⊗, I) is left-closed, i.e. the functor −⊗ Y has a right adjoint TreeL(Y,−) for every Y.

Proof. Let us sketch the proof of the assertion. TreeL(Y,X) consists of the part ofX containing all the paths from the root
ofX to a homomorphic copy of Y. Formally, it is the tree TreeL(Y,X) = (T , e, a), where:

• T = {πs,x : Y → D(X, x, s)} with πs,x a TreeL-morphism, s ≤ eX (x). πs,x = πs,x′ if a(x, x′) ≥ s and they are equal as
morphisms Y→ D(X, x, s) = D(X, x′, s)
• e(πs,x) = s,
• a(πs1,x1 , πs2,x2) = s1 ∧ s2 ∧ aX (x1, x2), for any pair of morphisms πs1,x1 , πs2,x2 in T .

The definition of TreeL(Y,−) onmorphisms is obtained via themorphism composition as usual. All the other required
verifications are routine. �

Remark 3. Wewill often call elements of TreeL(Y,X) paths fromX to Y. The composition of such paths – a πs,x fromX to
Y and a πt,y from Y to Z denoted by πs,xπt,y – is the morphism obtained by composition Z→ D(Y, y, t)→ D(X, x, st),
where πs,x(t) = y and the second morphism is the restriction of πs,x toD(Y, y, t). Notice that there is always a 1-labelled
path in TreeL(Y,X), if Y is homomorphic toX.

Left-closedness is a consequence of the left-cancellation property enjoyed by themeet-semilatticemonoid L. Left-closedness
provides an internal hom for TreeL, so thatwe cannowput an arrow-object of TreeL between twoobjects in TreeL in a canonical
way. The resulting TreeL-category will be denoted by TreeL.
TreeL-categories (in particular TreeL) can also be thought as ordinary categorieswith extra structure. In fact, the hom-tree

between two given objects consist in a ‘‘set of paths’’ that can be considered as a set of morphisms with extra information
about extent and agreement. Analogously, TreeL-functors are ordinary functors preserving extent and agreement of paths,
i.e. their tree-structure. This can be formally seen by considering the forgetfulmonoidal functor Supp : TreeL → Setmapping
every tree into the set of its paths. The corresponding change of base turns a TreeL-category into an ordinary category.

Remark 4. There is also a semiforgetful functor SuppL : TreeL → Set|Lmapping every tree to the set of its paths, but keeping
the labelling. In this casewe do not obtainmonoidalityw.r.t. the product functor in Set|L, butw.r.t. a ‘‘concatenation’’ functor
easily definable in Set|L. The semiforgetful functor SuppL : TreeL → Set|Lhas both a left and a right adjoint [5]. The left adjoint
to a labelled set is given by the corresponding tree with trivial minimal agreement, while the right adjoint of a labelled set
is given by the corresponding tree with maximal agreement.

Proposition 5. Given the forgetful monoidal functor Supp : TreeL → Set

1. it induces a functor Supp : TreeL –Cat → Cat
2. and for every TreeL-category B, a functor SuppB : TreeL –Cat|B → Cat|B, where B is obtained from B by applying functor

Supp. There are also functors RB : Cat|B→ TreeL –Cat|B right adjoint to SuppB and left adjoint LB : TreeL –Cat|B→ Cat|B.

Proof. 1. This part is an instance of the change of base device, as observed above.
2. (sketch) The interesting part is the definition of the ‘‘reconstruction’’ functor RB: it introduces extent and agreement on
a set of morphisms of φ : X → B by simply reflecting them along the map – due to φ – sending them into a hom-object
in B. The functor LB reconstructs a tree by always choosing the trivial agreement. �

Proposition 6. 1. A monoidal 2-functor φ : L′ → L induces a monoidal functor Φ : TreeL′ → TreeL.
2. A monoidal functor Φ : TreeL′ → TreeL induces a TreeL-functor Φ : TreeL′ → TreeL, its effect [9].

Proof. 1. Given a monoidal 2-functor φ : L′ → L, by Proposition 2, a functorΦ : TreeL′ → TreeL is also given. Monoidality
ofΦ is assured by the monoidality of φ.

2. Due to the monoidality ofΦ , TreeL′-category TreeL′ can be considered as a TreeL-category by applyingΦ to TreeL′ [X′,Y′]
for every X′,Y′. It will still be denoted by TreeL′ . Now, we define a TreeL-functor Φ : TreeL′ → TreeL sending
X′ = (X, e′X , a

′

X ) intoΦ(X
′) = (X, φ(eX ), φ(aX )) andΦ(TreeL′ [X′,Y′]) in itself as TreeL[Φ(X′),Φ(Y′)]. �

Example 2. Suppose L′ is given by the free monoid (A ] {τ })∗ (where τ is a special label) and L by the free monoid A∗.
We can define a monoidal 2-functor del between them by simply defining a function on words deleting τ ’s as follows

Please cite this article in press as: S. Kasangian, A. Labella, Conduché property and Tree-based categories, Journal of Pure and Applied Algebra (2009),
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(see Proposition 6):

δ(s) =

{
ε if s = ε
µ • δ(s′) if s = µ • s′ and µ 6= τ
δ(s′) if s = τ • s′

del can be lifted to a monoidal functor – still called del – from A ] {τ }-labelled trees to A∗-labelled trees which deletes
τ ’s on paths. DEL can be used to transform Tree(A]{τ })∗-categories into TreeA∗-categories mapping the tree structure into a
corresponding one, where τ ’s are deleted.

3. Reflecting factorisation

The original Conduché’s result [4] concerned ordinary categories, i.e. Set-categories, and stated that a functor F : B→ C
has a certain lifting factorisation property iff its inverse image functor F∗ : Cat|C → Cat|B has a right adjoint. The existence
of an inverse image functor is due to the existence of pullbacks in Set . We are going to reproduce the original theory by
Conduché in the TreeL-enriched context, exploiting the fact that TreeL has pullbacks and its objects are sets with additional
structure, as shown above (see Remark 4). For the sake of simplicity, in the sequel bold-face typed names, as B, C, F, . . . ,
will denote enriched categories and functors, while normally typed names, as B, C , F , . . . , will denote ordinary categories
and functors, obtained by applying the functor Supp (see Proposition 5.1) to the previous ones. As noticed above, every
TreeL-functor is also an ordinary functor preserving the tree-structure of homs, hence, in this line, it is possible to extend
Conduché property to this kind of enriched functors.
In the sequel by T we will mean a generic concrete monoidal category.

Definition 3. Given a T -category C, we say that (k, f1, f2) is a factorisation of C[c ′, c] for (t1 ⊗ t2, f ), where t1 is a singleton
supported object and f : t1 ⊗ t2 → C[c ′, c] is a morphism in T , if there are an object k and two arrows f1 : t1 → C[k, c] and
f2 : t2 → C[c ′, k] such that the following diagram commutes (m is the multiplication morphism in C):

t1 ⊗ t2 -f1 ⊗ f2 C[k, c] ⊗ C[c ′, k]

?

mc′,k,c

H
HHH

HHH
HHj

f

C[c ′, c]

Definition 4. Given a T -functor F : B→ C, F is Conduché iff
• given a pathπ in C[F(b′), F(b)] and an inverse image of it, say p ∈ (Fb′,b)−1(π) in B[b′, b], for every factorisation (k, f1, f2)
of C[F(b′), F(b)] for (t1 ⊗ t2, f ), with π ∈ Im(f ), and f ′ s. t. Fb′,bf ′ = f and p ∈ Im(f ′), there is a factorisation (h, f ′1, f

′

2) of
B[b′, b], such that F(h) = k and the following diagram commutes

-
Fh,b ⊗ Fb′,h

-
Fb′,b

B[h, b] ⊗ B[b′, h]

B[b′, b]

HH
H

HH
H

HHY
f ′1 ⊗ f

′

2

���
���

���
f ′?

mb′,h,b

C[k, F(b)] ⊗ C[F(b′), k]

t1 ⊗ t2

C[F(b′), F(b)]

��
�
��

�
��*

f1 ⊗ f2

HHH
HHH

HHj
f ?

mF(b′),k,F(b)

• If two such factorisations (h, f ′1, f
′

2) and (h
′, f ′′1 , f

′′

2 ) exist for p, they are connected, i.e. there exists a family of factorisations
and a zig-zag of paths connecting the intermediate objects in B,3 making the resulting diagrams commute and becoming
trivial when mapped by F.

Definition 5. Given a TreeL-category C, we say that C is a Conduché TreeL-category iff the unique TreeL-functor from C to the
terminal object L is Conduché.

3 This means that there exist a family of factorisations (hi, f i1, f
i
2), 0 ≤ i ≤ k, with (h, f

′

1, f
′

2) = (h0, f
0
1 , f

0
2 ) and (h

′, f ′′1 , f
′′

2 ) = (hk+1, f
k+1
1 , f k+12 ), and paths

p1, . . . , pk , where pi belongs to either B[hi, hi+1] or B[hi+1, hi].

Please cite this article in press as: S. Kasangian, A. Labella, Conduché property and Tree-based categories, Journal of Pure and Applied Algebra (2009),
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The Conduché condition on a TreeL-category C amounts to say that, whenever there is in TreeL a morphism f : t1 ⊗ t2 →
C[c ′, c] – with t1 a one-path tree – then there is an object k in C and two arrows f1 : t1 → C[k, c] and f2 : t2 → C[c ′, k] such
that (k, f1, f2) is a factorisation for t1 ⊗ t2 included in L.
If two such factorisations exist for the same p, say (k, f1, f2) and (k′, f ′1, f

′

2), we can connect k and k
′ by a finite zig-zag of

paths labelled by 1. 4
As we anticipated in the introduction, such a Conduché property for TreeL-categories indicates the possibility of defining

a good notion of state for the processes modelled thereby. Conduché property for TreeL-functors between them implies
preservation of this notion of state as we will see in the following sections.

Proposition 7. TreeL is a Conduché TreeL-category.

Proof. It is an immediate consequence of the definition of TreeL[Y,X] as TreeL(Y,X), since the TreeL-functor in the
terminal object is the labelling function. �

Notice that in ordinary categories this condition is trivially satisfied. In fact, Set is a category of trees on the trivial meet-
semilattice monoid I, freely generated by the empty set [17]. There, no factorisation in the sense of Definition 5 is possible.

Proposition 8. Let T be a monoidal category with pullbacks. Let F be a T-functor between two T-categories B and C, then
an inverse image functor F∗ from T –Cat|C to T –Cat|B is defined.

Proof. Let ψ : Y → C be a T -functor, F−1(Y) is the T -category with pairs (b, y) s.t. F(b) = ψ(y) as objects and enriched
on T as follows: F−1(Y)[(b, y), (b′, y′)] is the pullback B[b, b′] × Y[y, y′] over C[F(b) = ψ(y), F(b′) = ψ(y′)]. Now, F∗ψ is
the T -functor from F−1(Y) to B corresponding to the first projection. Given ψ ′ : Z → C and a T -functor α : Y → Z s.t.
ψ ′α = ψ , then F∗(α) is defined from F−1(Y) to F−1(Z) as follows: F∗(α)(b, y) = (b, α(y)) and F∗(α) induces a morphism
from F−1(Y)[(b, y), (b′, y′)] to F−1(Z)[(b, α(y)), (b′, α(y′))], exploiting the morphism going from Y[y, y′] to Z[α(y), α(y′)]
and the pullback property. �

F∗ has always a left adjoint ΣF, given by composition. Let us now restrict to the base category TreeL and prove the
analogues of Conduché’s Theorem in the enriched case, i.e. we state a necessary and sufficient condition to guarantee the
existence of a right adjoint5F to F∗.
The general enriched form of such a result does not exist because, in general, we are not able – at the moment – to speak

about factorisations in an enriched context.
The proof of the main result will amount simply to make sure that the tree structure of the set of morphisms (paths) is

preserved in the construction of the right adjoint.

Lemma 1. Given a Conduché TreeL-functor F : B → C, between TreeL-categories, given π, π ′ ∈ Fb′,b(B[b′, b]), for every
p ∈ F−1b′,b(π) there exists a p

′
∈ F−1b′,b(π

′) such that aB[b′, b](p, p′) = aC[Fb′, Fb](π, π ′).

Proof. Suppose aC[Fb′, Fb](π, π ′) = s and let us take the subobject d of C[Fb′, Fb] made out of the set {π, π ′} with their
extent and agreement s. ThenI⊗d represents a trivial factorisation forπ (that always does exist) and since F is a Conduché T -
functor, there is a corresponding factorisation of p in B[b′, b]. Hence, there is a T -morphism from d to B[b′, b] sending π to
p. The image of π ′ in this morphism will be the one required to be p′. �

Theorem 1. Let F : B → C be a TreeL-functor between two TreeL-categories, then the inverse image functor F∗ has a right
adjoint 5F : TreeL –Cat|B→ TreeL –Cat|C if F is Conduché.

Proof. • Let us give first a definition of5F , in analogy with the non-enriched case, taking into account that it has to be the
candidate to be the right adjoint to F∗. Given the TreeL-functor φ : X→ B, we have to construct5F (φ) : 5F (X)→ C.
If it does exist, the TreeL-category5F(X)must have TreeL-functors in X from inverse images of objects of C as objects,

TreeL-functors into X from the inverse images of paths between objects of C as morphisms, taking care of the agreement
structure between them; concatenations of paths must also be obtained by pulling back along F the ones in C and then
mapping the result into X.
1. More formally, an object c in C is a TreeL-functor from the trivial one-object TreeL-category 1 to C. 1 has only one
object ∗ and 1[∗, ∗] is the unit tree I. F∗(c) is a TreeL-functor from F−1(1) to B. Analogously, an object in5F (X) will
be a TreeL-functor from 1 to5F (X). By the property of the adjunction objects in5F (X)must be TreeL-functors θ from
F−1(1) to X s.t. φθ = F∗(c) for some c.

2. An arrow π ∈ C[c ′, c] is a TreeL-functor π from the TreeL-category 2π with two objects ∗ and ∗∗ and only one non-
trivial path in 2π [∗, ∗∗] labelled like π is, into C.

4 Again, this means that there exist paths p1, . . . , pk and objects k0, . . . , kn such that k0 = k, kn = k′ in a family of analogous factorisations, and pi
belongs to either C[ki, ki+1] or C[ki+1, ki], making the resulting diagrams commute.

Please cite this article in press as: S. Kasangian, A. Labella, Conduché property and Tree-based categories, Journal of Pure and Applied Algebra (2009),
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F∗(π) is a TreeL-functor from F−1(2π ) to B. Analogously, an arrow in 5F (X) will be a TreeL-functor from 2π to
5F (X). By the property of the adjunction, arrow-objects 5F (X)[θ ′, θ] must be constructed from TreeL-functors κπ
from F−1(2π ) to X s.t. φκπ = F∗(π) if θ = F−1(dom)κπ and θ ′ = F−1(cod)κπ . dom and cod are the obvious functors
from 1 to 2π sending the unique object in 1 to the first and the second object in 2π , respectively. The set of such
functors κπ , π ∈ C[c ′, c], bears a tree structure:
e(κπ ) = e(π) and a(κπ , κπ ′) =

∧
a(κπ (π, pi), κπ ′(π ′, p′j)) for pi ∈ F−1(π), p′j ∈ F−1(π ′) and a(pi, p′j) = a(π, π

′).
This definition makes sense, because of Lemma 1.

3. A concatenation of paths π; ρ, labelled by s • t , in C is a TreeL-functor from a three-object TreeL-category 3π,ρ into C.
3π,ρ has three objects ∗, ∗∗ and ∗ ∗ ∗ and 3π,ρ[∗, ∗∗], 3π,ρ[∗∗, ∗ ∗ ∗], 3π,ρ[∗, ∗ ∗ ∗] are the one path trees labelled by
s, t and s • t , respectively.
If5F is supposed to be a right adjoint to F∗, compositions in5F (X)must be defined as the TreeL-functors λ from

F−1(3π,ρ) to X s.t. φλ = F∗(π; ρ) for some π and ρ. Now, such a condition defines the composition, i.e. just the
‘‘commutative triangles of paths’’ in 5F (X) making it a TreeL-category, iff the ‘‘resulting’’ path cannot be present
without its components, and those are uniquely determined up to trivially labelled subpaths.
Thismeans that every path in F∗(π; ρ)must factorise into a path in F∗(π) concatenatedwith a path in F∗(ρ); if two

such factorisations do exist, then the intermediate objects must be connected through trivially labelled paths. This is
not always the case, but this is implied by the fact that F is Conduché.
The fact that these compositions aremorphisms in TreeL, and not only set-theoretical functions, easily follows from

the properties of the tensor product on TreeL.
5F (φ)will be defined mapping every TreeL-functor above in its original object (resp. arrow) in C.
• We will now verify the adjointness condition. As in the non-enriched case, the very definition of 5F (X) implies the
assertion. We have just to prove that pairs of maps corresponding to each other in the adjunction do preserve agreement
if one of them does. Please, observe that, by Lemma 1, given ψ : Y → C and a pair of paths η, η′ in Y[y′, y], there are
always pairs of inverse images in F∗(Y, ψ) such that their agreement will reach the agreement in (Y, ψ) between them.
Given α : F∗(Y, ψ)→ (X, φ), we have that a((pi, η), (p′i, η

′)) = a(η, η′) ∧ a(pi, p′i).
If a(pi, p′i) = a(π, π

′), where π is the common image of pi and η and π ′ is the common image of p′i and η
′, then

a((pi, η), (p′i, η
′)) = a(η, η′).

Since α a TreeL–Cat|B-functor, a((pi, η), (p′i, η
′, )) ≤ a(α(pi, η), α(p′i, η

′)).
We have to prove that its transpose α′ : (Y, ψ)→ 5F (X, φ) preserves agreement. In fact,

α′(η) : F−1(2π )→ X
α′(η′) : F−1(2′π )→ X

where ψ(η) = π and ψ(η′) = π ′. As usual, we define

α′(η)(pi) = α(pi, η)
α′(η′)(p′j) = α(p

′

j, η
′).

We have to prove that

a(η, η′) ≤ a(α′(η), α′(η′)).

By definition,

a(α′(η), α′(η′)) =
∧
a(α′(η)(pi), α′(η′)(p′j))

for all pairs (pi, p′j) such that a(pi, p
′

j) = a(π, π
′). But, for all such pairs, we know

a(η, η′) = a((pi, η), (p′j, η
′)) ≤ a(α(pi, η), α(p′j, η

′)).

Given β : (Y, ψ) → 5F (X, φ) (commuting the suitable diagram), by TreeL–Cat|C functoriality, we have a(η, η′) ≤
a(β(η), β(η′))where

β(η) : F−1(2π )→ X
β(η′) : F−1(2′π)→ X.

Its transposed β ′ : F∗(Y, ψ)→ (X, φ), defined as follows:

β ′(pi, η) = β(η)(pi)
β ′(p′j, η

′) = β(η′)(p′j)

preserves agreement of arrow-objects in F∗Y. In fact, if a((pi, η), (p′j, η
′)) does make sense, i.e. if pi and p′j have the same

domain and the same codomain, we can consider two cases:
– a(pi, p′j) = a(π, π

′), then
a((pi, η), (p′j, η

′)) = a(η, η′) ≤ a(β(η), β(η′)) ≤ a(β ′(pi, η), β ′(p′j, η
′))

by the definition of agreement between elements of5F (X, φ).

Please cite this article in press as: S. Kasangian, A. Labella, Conduché property and Tree-based categories, Journal of Pure and Applied Algebra (2009),
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Fig. 5. The doctrinal diagram.

– a(pi, p′j) = s ≤ a(π, π
′), then

a((pi, η), (p′j, η
′)) = a(η, η′) ∧ a(pi, p′j) ≤ a(β(η), β(η

′)) ∧ a(pi, p′j).
It is left to prove that

a(β(η), β(η′)) ∧ a(pi, p′j) ≤ a(β
′(pi, η), β ′(p′j, η

′)).

From Lemma 1 there exist p′i ∈ F−1(π ′) and pj ∈ F−1(π) such that a(pi, p′i) = a(pj, p
′

j) = a(π, π
′). By the definition of

a tree, it results a(p′i, p
′

j) ≥ s, hence, being β(η
′) a TreeL–Cat|B-functor,

a(β(η′)(p′i), β(η
′)(p′j)) ≥ s.

Now,
a(β(η), β(η′)) ∧ a(pi, p′j) ≤ a(β(η)(pi), β(η

′)(p′i)) ∧ a(pi, p
′

j).
By what we have just proved,

a(β(η)(pi), β(η′)(p′i)) ∧ a(pi, p
′

j) ≤ a(β(η)(pi), β(η
′)(p′i)) ∧ a(β(η

′)(p′i), β(η
′)(p′j))

and, by the definition of a tree, using point 3 in the definition of L-category,
a(β(η)(pi), β(η′)(p′i)) ∧ a(β(η

′)(p′i), β(η
′)(p′j)) ≤ a(β

′(pi, η), β ′(p′j, η
′)). �

Proposition 9. Let F : B → C be a TreeL-functor between two TreeL-categories and F : B → C the ordinary functor obtained
from F by applying the functor Supp to it. If F is Conduché according to Definition 4, then F is Conduché in the ordinary sense.

Proof. It is immediate that the Conduché property for F implies Conduché property for F . �

By combining the adjunctions of Proposition 5 with those for F∗ and F∗, due to Propositions 8 and 9 and ordinary
Conduché’s theorem, we have for a Conduché TreeL-functor F a sort of ‘‘doctrinal diagram’’ (see Fig. 5).
As usual in this paper, we will also see that the Conduché property can be lifted from the meet-semilattice level to the

processes level.

Definition 6. Given a monoidal 2-functor φ : L′ → L, φ is Conduché iff, when u = s • t in L and φ(u′) = u, then
– there are s′ and t ′ in L′ s.t. u′ = s′ • t ′, φ(s′) = s, φ(t ′) = t
– if there are s′′ and t ′′ in L′ s.t. u′ = s′′ • t ′′, φ(s′′) = s, φ(t ′′) = t , then we can find a finite chain of analogous factorisations
of u′, say (si, t i), 0 ≤ i ≤ k, with (s′, t ′) = (s0, t0) and (s′′, t ′′) = (sk+1, tk+1), and elements v1, . . . , vk, s.t.
– sivi = si+1 and vit i+1 = t i
– or si+1vi = si and vit i = t i+1, with
– and φ(vi) = 1.

Remark 5. Let us observe that the original Conduché property [4] concernedmorphisms,whilewe are looking at objects. The
reason is that we are going to consider objects in amonoidal category, which are due to becomemorphisms in the categories
enriched therein. If L and L′ are freemonoids andφ is non-cancellative, ‘‘enjoying Conduché property’’ is equivalent to ‘‘being
a coding’’, i.e. a letter to letter morphism.

Theorem 2. Given a Conduché monoidal 2-functor φ : L′ → L (see Definition 6), and a factorisation in TreeL, we can recover
a factorisation in TreeL′ thought as enriched on TreeL. When two such corresponding factorisations exist, they are connected by a
zig-zag of paths – as usual – labelled by elements of L′ mapped by φ into the identity of L.

Proof. The first statement is trivial, because a u-labelled path x from Φ(X′) to Φ(Y′) factorises for (t1 ⊗ t2, f ) if there is a
path x ∈ TreeL[D(8(X′), x, s),8(X′)] labelled by a prefix s of u equal to the extent of the only path in t1, and a morphism
f2 : t2 → TreeL[8(Y′),D(8(X′), x, s)]. Given the same x inX′, by f ′, we will have the same factorisation in TreeL′ . As for
the second one, whenwe think TreeL′ as enriched on TreeL′ , wemight consider a corresponding factorisation, an element of a
family of possible objectsD(X′, x, si), with si as in Definition 6. By Conduché condition on φ, all these objects are connected
via a zig-zag of paths labelled by the vjs. �

This last theorem means that a ‘‘state’’ in TreeL′ can be recovered from a state in TreeL, but only ‘‘up to zig-zag’’ of not
important steps. As an instance, one can think of del in Example 2.
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4. Bisimulations: An application

We now consider some instances of our theory. In the sequel we will deal with a TreeL-subcategory of TreeL, namely
BehL, where the ‘‘set of paths’’ going from the second one to an isomorphic copy of the first one (instead of a homomorphic
one, as it is implied by Proposition 4) is put between two objects of TreeL. Our interest in BehL is due to its capability of
modelling process behaviours, because its hom objects correspond to operational semantics. It will be denoted by Beh,
when the subscript Lwill be obvious.

Definition 7. BehL is the TreeL-category with the same objects as TreeL and with BehL[Y,X] =< T , e, a >, where:

• T = {πs,x : Y→ D(X, x, s)}with πs,x a TreeL-isomorphism, s ≤ eX (x). πs,x = πs,x′ if a(x, x′) ≥ s.
• e(πs,x) = s,
• a(πs1,x1 , πs2,x2) = s1 ∧ s2 ∧ aX (x1, x2), for any pair of isomorphisms πs1,x1 , πs2,x2 in T .

Proposition 10. BehL is a Conduché TreeL-category.

Proof. Also in this case the TreeL-functor into the terminal TreeL-category is given by the labelling function. Given f :
t1⊗t2 → BehL[Y,X], with t1 a one-path tree, thenwe putZ asD(X, x, s) if x ∈ Im(f ).Z is determined up to isomorphisms
and it makes the appropriate diagram commute. �

This fact means that, given a factorisation of a path in the behaviour of a process, we can find a unique ‘‘state’’ reached after
the first part of the path.

Proposition 11. Let F be a TreeL-functor from Beh to Beh, then it is Conduché. In fact, it enjoys a stronger property (UFL), because
the factorisation is, in this case, unique (up to isos).

Proof. Given a pathπ inBeh[F(Y), F(X)] and an inverse image of it, say p ∈ (FY,X)
−1(π) inBeh[Y,X], given a factorisation

(K, f1, f2) of Beh[F(Y), F(X)], and f ′ s. t. FY,Xf ′ = f , and π ∈ Im(f ), there is a unique (up to isos) factorisation (Z, f ′1, f
′

2) of
B[Y,X], where p ∈ (f ′1 ⊗ f

′

2)mY,Z,X, such that F(Z) = K and the proper diagram commutes. In fact, by Proposition 10, Z
isD(X, p, s) if s is the extent of the only element in t1, hence it is unique. �

Definition 8. Given a TreeL-functor F : B → C, F reflects paths iff for every b ∈ Ob(B) and for every path π ∈ C[c, F(b)]
there are b′ and p ∈ B[b′, b] s.t. F(b′) = c , F(p) = π .

Remark 6. Let F : B→ C be a path reflecting, Conduché TreeL-functor between two TreeL-categories. Then, if a(π1, π2) = s
in C[c ′, c], for every pi1 ∈ F∗(π1), we can find pi2 ∈ F∗(π2) s.t. a(pi1 , pi2) = s. (See Lemma 1).

From now on, for the sake of simplicity, we will restrict ourselves to the case where L is the free monoid A∗. In this case,
our structure Beh strictly corresponds to operational semantics for labelled transition systems (LTS).

Definition 9. A symmetric relation R between trees is a strong bisimulation (see [6]) if, for every (X,Y) ∈ R, it holds that
∀x ∈ X∃y ∈ Y such that eY (y) = eX (x) and ∀s ≤ eX (x)∀X′ ∼= D(X, x, s)∃Y′ ∼= D(Y, y, s) such that (X′,Y′) ∈ R.
Two trees are strongly bisimilar, writtenX'S Y, if and only if it exists a strong bisimulation relating them.

Proposition 12 (See [12]). Let F : Beh→ Beh be a path reflecting TreeL-functor, then it induces a strong bisimulation relation
on Beh.

The proof depends on path reflection and Conduché property.
In order to model a stronger non-determinism in computing processes, a special element τ , mimicking a ‘‘silent move’’,

was introduced by Milner in the labelling alphabet. Hence, we will consider the free monoid generated by the alphabet A
extended with the new label τ . Let us call it A∗τ .
As we have seen in Example 2, the function δ can be canonically extended to amorphism of semilatticemonoids between

A∗τ and A
∗. Again, this function can be considered as a monoidal 2-functor del from A∗τ to A

∗, and can be lifted to a functor
from TreeA∗τ to TreeA∗ . Simplifying the notation, wewill denote by Treeτ the category of treeswith silent actions, i.e.A

∗

τ -trees,
and by Tree the category TreeA∗ .

del : Treeτ → Tree is the monoidal functor such that del (X, eX , aX ) = (Y , eY , aY )where

– Y = X ,
– eY (x) = del (eX (x)),
– aY (x, y) = del (aX (x, y)).

Morphisms remain unchanged under del (functions defining morphisms fromX to Y define morphisms from del (X)
to del (Y) as well, indeed).
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Fig. 6. Two derivatives (X and Y) along x in the presence of τ ’s.

Accordingly, we could define a Treeτ -category Behτ in the same way as Beh was defined over Tree, but we can deal
with it also as a Tree-category. The functor del is monoidal; hence, we can consider the effect on Behτ of the change of
base obtained by applying del to its hom-objects, while the objects remain unchanged. In the sequel we will call Behτ this
Tree-category.
Notation. By s 4 eX (x)wemean that s = del (t), for some t ≤ eX (x) (where ‘≤’ is the prefix relation in themeet-semilattice
monoid A∗τ ).
Having ignored τ ’s in Treeτ , as we can do using the functor del above, a derivative is no longer uniquely determined by

its access path after a given visible prefix s. To see this, examine Fig. 6: the same path, viz. x, leads to both the derivative
X + τY and to Y along del (s) or del (s • τ). It is however important to notice that there is always the largest of such
trees (X + τY here) and any other tree accessed this (like Y) is a τ -summand of this one. Hence, Dτ (X, x, s) = {Z ∈
D(X, x, t), for every t s.t. del (t) = s} is a finite chain w.r.t. the order induced by+.

Proposition 13. Behτ is a Conduché Tree-category.

Proof (Sketch). Behτ is a Conduché Tree-category in its general form, becausewe can proceed in the proof aswe did forBeh,
but, in analogy with Theorem 2, nowDτ (X, p, s) is no longer a unique tree, i.e. in Behτ we get a chain of trees connected by
the originally τ -labelled paths. τ ’s have disappeared in the morphisms because of the effect of functor del . Hence we can
go between two such trees via a zig-zag of trivial paths. �

Definition 10. A symmetric relation R on trees is a branching bisimulation (see [18]) if, for every (X,Y) ∈ R, it holds that
∀x ∈ X∃y ∈ Y : del (eY (y)) = del (eX (x)) and

1. ∀s 4 eX (x) ∀X′ ∈ Dτ (X, x, s) ∃Y′ ∈ Dτ (Y, y, s) such that (X′,Y′) ∈ R;
2. ∀s′ 4 eY (y) ∀Y′ ∈ Dτ (Y, y, s′) ∃X′ ∈ Dτ (X, x, s′) such that (X′,Y′) ∈ R.

Two treesX and Y are branching bisimilar, writtenX'B Y, if and only if there is a branching bisimulation relating them.

Proposition 14 (See [12]). If F be a path reflecting Conduché Tree-functor from Behτ to Behτ , then it induces a branching
bisimulation relation on Behτ .

The paper [12] characterising bisimulations provides an example of a Tree-endofunctor on Behτ not enjoying the
Conduché property, but only a weak form of it.

Definition 11. A TreeL-functor F : B→ C, F is weak-Conduché iff
• given a path π in C[F(b′), F(b)], for every factorisation (k, f1, f2) of C[F(b′), F(b)] for (t1 ⊗ t2, f ), with π ∈ Im(f ), and f ′
s. t. Fb′,bf ′ = f , there is an inverse image of π , say p ∈ (Fb′,b)−1(π) in B[b′, b] and a factorisation (h, f ′1, f

′

2) of B[b
′, b],

where p ∈ Im(f ′), such that F(h) = k and the same diagram of Definition 4 commutes.
• If two such factorisations (h, f ′1, f

′

2) and (h
′, f ′′1 , f

′′

2 ) exist, then they are connected in B via a zig-zag of τ -labelled paths
commuting with the given factorisations.

Though weaker than Conduché property – in the presence of path reflection – the weak-Conduché property implies the
reflection of paths, because of the different position of quantifiers.

Definition 12. A symmetric relation R on trees is a weak bisimulation (see [6]) if, for every (X,Y) ∈ R, it holds that
∀x ∈ X∃y ∈ Y s.t. del (eY (y)) = del (eX (x)) and ∀s 4 eX (x) ∀X′ ∈ Dτ (X, x, s) ∃Y′ ∈ Dτ (Y, y, s) such that (X′,Y′) ∈ R.
Two treesX and Y are weakly bisimilar, writtenX'W Y, if and only if a weak bisimulation exists relating them.

It is interesting to observe that Definition 10 differs from Definition 12 only for an extra symmetry requirement.

Proposition 15. If F is a weak Conduché Tree-functor from Behτ to Behτ , then it induces a weak bisimulation relation on Behτ .

Summing up, Conduché property is enjoyed by all Tree-functors from Beh to Beh. This is not the case for Behτ , due to
the presence of τ . Nevertheless, the Tree-functor characterising branching equivalence still enjoys the property, while the
Tree-functor characterising weak equivalence does not.
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A Tree-functor F enjoying weak Conduché property also satisfies that F(I) ∼= I, therefore all our functors satisfy this
second property.
In this waywe are able to get a true characterisation of our Tree-functors (at least in the case of regular trees), because it is

possible to prove an inverse result: in fact, we can find a Tree-functor inducing any of the three equivalences mentioned and
enjoying the required property. The proof of this proposition is achieved through the definition of standard representatives,
in the three cases (see [12]).

Definition 13. 1. Let≡S be the equivalence relation on paths of a treeX defined by x≡S x′ if and only if eX (x) = eX (x′) and,
for every s ≤ eX (x),D(X, x, s) is strongly bisimilar toD(X, x′, s). Let |x|S denote the≡S-class of x. The standard strong
representative of a treeX = (X, eX , aX ) is the tree SX = (SX, eSX , aSX ), where
– SX = {|x|S | x ∈ X};
– eSX (|x|S) = eX (x);
– aSX (|x|S, |y|S) =

∨
x′∈|x|S ,y′∈|y|S

aX (x′, y′).
2. Let≡B be the equivalence relation on paths of a given treeX defined by x≡B x′ if and only if del (eX (x)) = del (eX (x′))
and, for every s 4 eX (x),DS(X, x, s) is in a bijective correspondence withDS(X, x′, s), such that corresponding trees are
isomorphic. The standard branching representative of a treeX = (X, eX , aX ) is the tree BX = (BX, eBX , aBX ), where
– BX = {|x|B | x ∈ X};
– eBX (|x|B) = τ i1s1τ i2s2 . . . τ insnτ in+1 , with ik = |DS(X, x, s1 . . . sk−1)| − 1, for 1 ≤ k ≤ n + 1 and eX (x) =
τ k1s1τ k2s2 . . . τ knsnτ kn+1 ;

– aBX (|x|B, |y|B) = τ i1s1τ i2s2 . . . smτ im+1 , with
* ik = |DS(X, x, s1 . . . sk−1)| − 1, for 1 ≤ k ≤ m, and
* im+1 = |DS(X, x, s1s2 . . . sm) ∧DS(X, y, s1s2 . . . sm)| − 1, 5
whenever

∨
x′∈|x|B,y′∈|y|B

aX (x′, y′) = τ k1s1τ k2s2 . . . τ kmsmτ km+1 .
(DS(X, x, s) denotes the familyDτ (X, x, s)where all the trees are replaced by their strong standard representatives.)

3. Let≤B be the preorder relation on paths of a given treeX defined by x≤B x′ if and only if del (eX (x)) = del (eX (x′)) and,
for every s 4 eX (x), there is a monotonic injective function fromDS(X, x, s) toDS(X, x′, s) such that the corresponding
trees are isomorphic.
When considered on ≡B-classes of paths, ≤B becomes a partial order with finite chains (recall that finiteness is

guaranteed by the fact that we restricted ourselves to regular trees), hence with maximal elements; representatives
of maximal classes will be calledmaximal paths in the original tree. In the sequel, |x|W will denote the equivalence class
|x′|B of a maximal path x′ such that |x|B≤B |x′|B. The standard weak representative of a tree X = (X, eX , aX ) is the tree
WX = (WX, eWX , aWX ), where
– WX = {|x|W , | x ∈ X, x maximal};
– eWX (|x|W ) = eBX (|x|B);
– aWX (|x|W , |y|W ) = aBX (|x|B, |y|B).

We can extend functions S, B,W to Tree-functors. Let us fix a choice of the standard representative in the three cases.

Proposition 16. • there is a path reflecting Tree-functor S such that, if X'S Y, then S(X) = S(Y)
• there is a path reflecting, Conduché Tree-functor B such that, if X'B Y, then B(X) = B(Y)
• there is a weak Conduché TreeL-functor W such that, if X'W Y, thenW(X) = W(Y)
(see [12]).

Corollary 1. Inverse image functors of S and B, (and of course S∗ and B∗), from Tree-Cat |Beh to TreeL-Cat |Beh, from TreeL-Cat
|Behτ to TreeL-Cat |Behτ , respectively, do have a right adjoint.

This fact is an immediate consequence of the enriched form of Conduché property enjoyed by S and B.
One could try to describe these right adjoints, but it seems more interesting to observe that, due to these adjunctions,

S∗ and B∗ preserve both limits and colimits. These functors map a TreeL-Cat over Beh or Behτ into a similar category. These
categories are possiblemodels for concurrent systems, since their hom-objects are tree-like local behaviours. Preservation of
limits and colimits in this frameworkmeans that universal constructions amongmodels using only standard representatives
w.r.t. strong and branching bisimulations can be transferred tomodels using non-standard local behaviours, stillmaintaining
their properties. This is not the case for weak bisimulation.
Our Tree-functors S, B andW are characterisable also as those ones which produce the ‘‘maximal quotient’’ among those

which enjoy their properties.

5. Conclusions and related work

We have investigated the world of TreeL-categories, where L is a meet-semilattice monoid, with particular attention to
lifting factorisation properties for TreeL-functors.

5 By ∧we mean the maximal common prefix of the two chains.
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Ourmethod consisted of lifting constructions as far as possible through the different levels of our structures, namely: the
lp 2-category L, the monoidal category TreeL of symmetric L-categories, and TreeL-Cat. We applied the same method to the
factorisation reflection property in order to extend Conduché’s theorem to this enriched setting. In this context, we proved
that the factorisation reflection property guarantees the existence of a right adjoint to the inverse image functor.
TreeL-categories are particularly useful in modelling non-deterministic concurrent processes; in particular BehL is a

powerful tool to represent operational semantics, in the case of both interleaving and true concurrent approaches.
As we saw before, BehL is a Conduché TreeL-category where all TreeL-endofunctors are Conduché or, better, UFL (see

Proposition 11), because all the ‘‘states’’ of its objects are completely determined via their access path and the label. In this
context the UFL property together with the path reflection completely characterises (strong) bisimulation.
When we move to Behτ the ‘‘states’’ of its objects are no longer completely determined via their access path and the

label. Hence, if we want to characterise some kind of bisimulation, we have to add a condition about preservation of states.
This condition may be, as we saw, more or less cogent for B andW, respectively (see Propositions 14 and 15).
Lawvere’s statement [19,1] about the preservation of states by functors enjoying the Conduché property in the physical

control theory can be formally extended to Computer Science, because the latter corresponds to determinism in physical
systems. In fact, Lawvere’s remark deals with a property – that he named theMoebius property – stronger than Conduché’s.
We proved that this is the property enjoyed by the TreeL-functors inducing strong equivalence, i.e, UFL. TreeL-functors
inducing weak equivalence enjoy only a weak form of the Conduché property, according to the fact that they partially forget
about states. These two facts perfectly correspond toMilners’ formulation of the problem [6]: strong bisimulation preserves
determinacy, while weak bisimulation does not. On the other hand, we found the discriminant point in the branching
bisimulation [12]: TreeL-functors inducing such an equivalence still enjoy the Conduché property. Indeed, they preserve
states, though in a non-deterministic context, because in the presence of a silent move τ mimicking non-determinism in
the behaviours, TreeL-functors keep track of the states, though forgetting the redundant ones.
Summing it all up, we can say that Lawvere’s determinism is strictly related to unique factorisation lifting, while the

weaker Milners determinacy is strictly related to the Conduché property.
Notice that, in the case of automata theory, states are completely neglectedwhen trace (language) equivalence is imposed

on their behaviour: the minimalisation theorem is a proof of this fact.
Let us now consider more closely how the Conduché property is also somewhat implicitly assumed in the construction

of our models. A languageM , i.e., a subset of A∗, is a sheaf over the space defined by its monoid A∗ as follows:

M : A∗ → Set.

It sends a wordw into the set of words u ∈ M such thatw ≤ u (definition of restrictions is immediate).
In the same way, a treeX could also be considered as a sheaf

X : A∗ → Set

sending a wordw into the set of paths x ∈ X such thatw ≤ e(x), but in this way, every information about bifurcation points,
i.e., states of our non-deterministic processes, would be lost.Xwould be simply considered as a multilanguage.
On the contrary, our definition of a tree amounts to say that it is a function

X : A∗ → Set

sending a word w into the set of paths x ∈ X such that w = e(x). In this way we get only a presentation of a sheaf over the
space defined by its labelling monoid. Anyway, we are able to complete it by defining:

X : A∗ → Set

as the map sending a word w into the set of derivatives along the paths x ∈ X after w,D(X, x, s), such that w ≤ e(x). This
corresponds to the fact that the labelling function e, i.e. the TreeL-functor in the terminal TreeL-category L, is UFL. Restrictions
are defined by sending a derivativeD(X, x, s′) to its ancestorD(X, x, s) for s ≤ s′.
In completing our presentations of sheaves we used the fact that in L-SymCat we can define derivatives, or, equivalently,

states. This is due to the left-cancellation property that did reconstruct operational semantics as the internal structure. A
single treeX with its operational semantics is a full subcategory of Beh together with a functor into L (its control) which
assigns to every derivative ofX,D(X, x, s) the unique object in themonoid L and, to aw-transition between the derivatives,
the wordw.
Analogously, trees with silent moves are presentations of sheaves with the Conduché property only. This corresponds

to the fact that, while there is a UFL Tree-functor from Beh to L, there is only a Conduché Tree-functor from Behτ to L. In
this perspective, the fact that bisimulations can be characterised in terms of UFL Tree-functors and Conduché Tree-functors,
respectively, seems particularly meaningful. In fact our result could be rephrased as: the ‘‘good’’ bisimulations preserve the
intrinsic reflection properties of the models. From this point of view, weak bisimulation seems to be not so good.
The strong form of the Conduché property (UFL) has already been used by Bunge and Fiore [2] to define sheaf models for

processes, exploiting Lawvere’s point of viewabout its relationshipwith a determinacy on states. Bunge and Fiore considered
processes as categories of states equipped with a control functor on a category of paths (a free monoid actually), over
which the UFL property is imposed. Hence, the two approaches, though using different mathematical devices, can be easily
translated into each other. On the other hand, the two approaches are also quite different in defining bisimulations and, in a
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sense, they are dual. Fiore et al. [20] define bisimulations in terms of spans of openmaps [21]; moreover, they capture weak
bisimulation by starting from the τ -less case, i.e., by saturating their processes via the unit of a monad (that introduces as
many τ s as possible) and by comparing the resulting models using open maps. Nonetheless, the path reflection condition
on our Tree-functors on BehL also corresponds to an openness property for the maps when it is stated in the form (see
Proposition 1 in [21]):

if σ(s)
a
−→ s′ in T ′ then s

a
−→ u in T and σ(u) = s′ for some u of T .

This can be rephrased in our context: if the image through S of an objectX can perform an action along a path and go into
another object Y, than the original object can perform the same action and go into an object Z in the fibre of Y. In the case
of Beh every path reflective functor is also Conduché and UFL (see Remark 6).
On the other hand, differently from [20], we consider strong bisimulation as a quotient induced on the model by a Tree-

functor enjoying UFL and construct the ‘‘minimal’’ strong representative for every process. Moving to the τ -insensitive
case, we make a change of base to obtain the model, where we induce branching and weak bisimulation via Tree-functors
enjoying different reflecting factorisation properties. This catches the different degrees of nondeterminacy underlying such
equivalences. Also, in this case we produce ‘‘minimal’’ representatives.
The use of the same categorical notions both for the construction of models and for defining equivalences, paves the way

to fascinating directions for future work.
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