
UNIVERSITÀ DEGLI STUDI DI MILANO

SCUOLA DI DOTTORATO IN INFORMATICA

DIPARTIMENTO DI INFORMATICA

DOTTORATO DI RICERCA IN INFORMATICA, XXVI CICLO

SETTORE SCIENTIFICO DISCIPLINARE INF/01 INFORMATICA

EARLY ASSESSMENT OF SERVICE

PERFORMANCE USING SIMULATION

TESI DI DOTTORATO DI RICERCA DI:

SAGBO KOUESSI ARAFAT ROMARIC

Matr. R09066

RELATORE

Prof. Ernesto Damiani

Università degli Studi di Milano, Italy

CORRELATORI

Dr. Claudio A. Ardagna

Università degli Studi di Milano, Italy

Prof. Karl Reed

La Trobe University, Australia

DIRETTORE DELLA SCUOLA DI DOTTORATO

Prof. Ernesto Damiani

Anno Accademico 2012− 2013

To my parents for their support

since the beginning of my studies.

A toi, Oriane Graziella, la lueur qui a illuminé

ma vie durant cette rédaction et à mon épouse Pélagie

pour son infaillible soutien perpétuel et ses nombreux sacrifices.

Abstract

Early Assessment of Service Performance using Simulation

The success of web services is changing the way in which software is

designed, developed, and distributed. The increasing diffusion of software

in the form services, available as commodities over the Internet, has en-

abled business scenarios where processes are implemented by composing

loosely-coupled services chosen at runtime. Services are in fact continu-

ously re-designed and incrementally developed, released in heterogeneous

and distributed environments, and selected and integrated at runtime within

external business processes. In this dynamic context, there is the need of so-

lutions supporting the evaluation of service performance at an early stage of

the software development process, or even at design time, to support users

in an a priori evaluation of the impact, a given service might have when inte-

grated in their business process. A number of performance verification and

validation techniques are proposed to test and simulate web services, but

they assume the availability of service code or at least of reliable information

(e.g., collected by testing) on service behavior. Among these approaches,

simulation-based techniques are mostly used to assess the behavior of the

service and predict its behavior using historical data. Despite the benefits

of such solutions, few proposals have addressed the problem of how service

performance can be assessed at design time and how historical data can be

replaced by simulation data for performance evaluation at early stage of

development cycle.

In this thesis, the notion of simulation is fully integrated within early

phases of the software development process in order to predict the behavior

of services. We propose model-based approaches that rely on the amount of

iv

information available for the simulation of the performance of service opera-

tions. We distinguish full-knowledge, partial-knowledge and zero-knowledge

scenarios. In a full-knowledge scenario, the total execution times for each

operation and the internal distributions of delays are known and used for

performance evaluation. In a partial-knowledge scenario, partial testing re-

sults (i.e., the lower and upper bounds to the operation execution times)

are used to simulate a service performance. In the zero-knowledge scenario,

no testing results are considered; only simulation results are used for per-

formance evaluation.

The main contributions of this thesis can be summarized as follows.

Firstly, we proposed a model-based approach that relies on Symbolic

Transition System (STS) to describe the web services as finite state au-

tomata and evaluate their performance. This model was extended for test-

ing and simulation. The testing model annotates model transitions with

performance idioms, which allow to evaluate the behavior of the service.

The simulation model extends the standard STS-based model with transi-

tion probabilities and delay distributions. This model is used to generate a

simulation script that allows to simulate the service behavior. Our method-

ology used simulation along the design and pre-deployment phases of the

web service lifecycle to preliminarily assess web service performance using

coarse-grained information on the total execution time of each service opera-

tion derived by testing. We used testing results and provided some practical

examples to validate our methodology and the quality of the performance

measurements computed by simulation considering the full-knowledge and

partial-knowledge scenarios. The results obtained showed that our simula-

tion gives accurate estimation of the execution times.

Secondly, the thesis proposed an approach that permits service devel-

opers and software adopters to evaluate service performance in a zero-

knowledge scenario, where testing results and service code are not yet avail-

able. Our approach is built on expert knowledge to estimate the execution

time of the service operation. It evaluates the complexity of the service op-

v

eration using the input and output Simple Object Access Protocol (SOAP)

messages, and the Web Service Description Language (WSDL) interface of

the service. Then, the operation interval of execution times is estimated

based on profile tables providing the time overhead needed to parse and

build SOAP messages, and the performance inferred from the testing of

some reference service operations. Our simulation results showed that our

zero-knowledge approach gives an accurate approximation of the interval of

execution times when compared with the testing results at the end of the

development.

Thirdly, the thesis proposed an application of our previous approaches

to the definition of a framework that allows to negotiate and monitoring

the performance Service Level Agreement (SLA) of the web service based

on the simulation data. The solution for SLA monitoring is based on the

STS-based model for testing and the solution for SLA negotiation is based

on the service model for simulation. This work provides an idea about the

SLA of the service in advance and how to handle the violations of the SLA

on performance after the service deployment.

Keywords: SOA, web service, WSDL, STS model, Performance evalu-

ation, Early performance assessment, Zero-knowledge, Partial-knowledge,

Full-knowledge, Complexity

vi

Résumé

Evaluation précoce de service de performance en utilisant la

simulation

Le succès des services web est entrain de changer la façon dont le logi-

ciel est conçu, développé et distribué. La diffusion croissante des logiciels

sous forme de services, disponibles en tant que produits sur Internet, a

permis la définition de scénarios d’entreprise où les processus sont mis en

œuvre par la composition de services faiblement couplés, choisis au mo-

ment de l’exécution. Les services sont en effet en permanence re-conçus et

développés progressivement, publiés dans des environnements hétérogènes

et distribués, et sélectionnés et intégrés à l’exécution dans les processus ex-

ternes d’entreprise. Dans ce contexte dynamique, il est nécessaire d’avoir

des solutions permettant l’évaluation de la performance du service à un

stade précoce du processus de développement des logiciels, ou encore au

moment de la conception, afin de permettre aux utilisateurs de faire une

évaluation “a priori” de l’impact qu’un service donné peut avoir quand il est

intégré dans leur processus d’entreprise. Un certain nombre de techniques

de vérification et de validation des performances utiles sont proposées pour

tester et simuler les services web, mais elles requièrent la disponibilité du

code source du service ou au moins d’informations fiables (par exemple,

recueillies par test) sur le comportement du service. Parmi ces approches,

les techniques basées sur la simulation sont principalement utilisées pour

évaluer le comportement du service et prédire son comportement en util-

isant des données obtenues par test. Malgré les avantages de ces solutions,

peu de propositions ont abordé le problème lié à la manire dont la perfor-

mance du service peut être évaluée au moment de la conception et comment

vii

les données de test peuvent être remplacées par les données de simulation

en vue de l’évaluation de la performance à un stade précoce du cycle de

développement.

Dans cette thèse, la notion de simulation est entièrement intégrée dans

les premières phases du processus de développement des logiciels afin de

prédire le comportement des services. Nous proposons des approches basées

sur l’utilisation de modèles s’appuyant sur la quantité d’informations disponibles

pour la simulation de la performance des opérations du service web. Nous

distinguons les scénarios full-knowledge, partial-knowledge et zero-knowledge.

Dans un scénario full-knowledge, les temps d’exécution total de chaque

opération et les distributions internes des délais sont connus et utilisés

pour l’évaluation des performances. Dans un scénario partial-knowledge, les

résultats des tests partiels (par exemple, les bornes inférieures et supérieures

des temps d’exécution de l’opération) sont utilisés pour simuler la perfor-

mance du service web. Dans le scénario zero-knowledge, aucun résultat

de test n’est considéré, seuls les résultats de simulation sont utilisés pour

l’évaluation des performances.

Les principales contributions de cette thèse peuvent être résumées comme

suit.

Premièrement, nous avons proposé une approche basée sur l’utilisation

de modèle qui s’appuie sur le Système de Transition Symbolique (STS)

pour décrire les services web comme des automates à états finis et évaluer

leur performance. Ce modèle a été étendu pour les tests et la simulation.

Le modèle de test ajoute aux transitions du modèle STS standard des id-

iomes de performance, qui permettent d’évaluer le comportement du ser-

vice. Cependant, le modèle de simulation étend le modèle STS standard

avec des probabilités de transition et les distributions de délais. Ce modèle

est utilisé pour générer un script de simulation permettant de simuler le

comportement du service. Notre méthodologie utilise la simulation tout au

long des phases de conception et de pré-déploiement du cycle de vie des ser-

vices web pour une évaluation préliminaire de la performance des services

viii

web en utilisant les informations brutes sur le temps total d’exécution de

chaque opération du service web provenant des tests. Nous avons utilisé

les résultats des tests et fourni des exemples concrets pour valider notre

méthodologie et la qualité des mesures de performance obtenues par simu-

lation en considérant les scénarios full-knowledge et partial-knowledge. Les

résultats obtenus ont montré que notre simulation donne une estimation

précise des temps d’exécution.

Deuxièmement, notre thèse a proposé une approche qui permet aux

développeurs de services web et aux utilisateurs des logiciels d’évaluer la

performance des services en considérant le scénario zero-knowledge , où

les résultats des tests et le code source des services ne sont pas encore

disponibles. Notre approche est fondée sur les connaissances des experts

pour estimer le temps d’exécution de l’opération du service web. Il évalue

la complexité de l’opération en utilisant les messages SOAP (Simple Object

Access Protocol) d’entrée et de sortie et l’interface de description WSDL

(Web Service Description Language) du service. Ensuite, l’intervalle du

temps d’exécution de l’opération est estimé sur la base des tables de profils

fournissant le temps nécessaire pour parser et construire les messages SOAP,

et la performance déduite à partir du test de certaines opérations de web

services de référence. Nos résultats de simulation ont montré que notre

scénario zero-knowledge donne une bonne approximation de l’intervalle du

temps d’exécution par rapport aux résultats des tests obtenus à la fin du

développement.

Troisièmement, cette thèse propose une application de nos précédentes

approches pour la mise en place d’un framework qui permet de négocier et

de surveiller le contrat de niveau de service (SLA) sur la performance du

service web en se basant sur les données de simulation. La solution pour le

suivi du contrat de niveau de service est basée sur le modèle STS étendu

pour le test et la solution de négociation du niveau de service est basée

sur le modèle de service étendu pour la simulation. Ce travail fournit à

l’avance une idée sur le contrat de performance du service et la façon dont

ix

les violations du contrat sont traitées après le déploiement du service web.

Mots clés : SOA, service web, WSDL, Modèle STS, Evaluation de per-

formance, Evaluation précoce de la performance, Zero-knowledge, Partial-

knowledge, Full-knowledge, Complexité

x

Acknowledgments

I would like to thank all those who have helped, guided, and inspired

me throughout this process.

First of all, I would like to sincerely thank my supervisor, Ernesto Dami-

ani and co-supervisors Claudio A. Ardagna and Karl Reed. It has been

an honor for me to work with them on my research topic during my Ph.D

studies along these last three years in the University of Milan. Their con-

stant guidance helps me to reach the numerous goals initially defined for

my Ph.D thesis work.

I would like to thank Gabriele Gianini, for many useful discussion we have

during my work about the validation of my experimental results.

I would like to thank Stelvio Cimato and the other members of the SESAR

Lab in particular Fulvio Frati and Olga Scotti for their multiple help during

my stay.

I would like to thank Kokou Yetongnon for giving to me, the opportunity

to stay in the University of Burgundy (Université de Bourgogne) in France

for three months in the LE2I Laboratory. Thank for his numerous advices

to improve my work.

I would like to thank Patrick C. K. Hung (University of Ontario (Canada)),

Antonino Sabetta (SAP Labs (France) and Lionel Brunie (University of

Lyon (France)), for having dedicated their precious time to review the the-

sis, whose valuable feedback helped improving the presentation and the

scientific content of this work.

I would like to thank all the participants of the different editions of the

Multimedia Distributed Pervasive Systems (MDPS) workshops in Passau

(Germany), Lyon (France), Crema (Italy) and Sicily (Italy) for the inspir-

ing ideas and great discussions we have during these brainstorming weeks.

xi

Thanks to Harald Kosch, David Coquil and Nadia Bennani.

I would like to thank my wife for his constant support, guidance, help and

encouragement over the years, and the born of my daughter at the end of

this thesis which made my Ph.D experience so special and helped me to go

ahead.

Last, I would like to express my gratitude to my family for their teaching,

their support and their love which help me during this stay abroad. It was

really difficult to live far from them.

Merci à vous tous.

Grazie a tutti.

xii

Contents

Abstract iv

Résumé vii

Acknowledgments xi

List of abbreviations xx

Part I Introduction and State of art 1

Chapter I Introduction and research questions 3

I.1 Introduction . 3

I.2 Motivations . 5

I.3 Contributions . 6

I.3.1 Model-based early assessment of service performance: Full-knowledge

and Partial-knowledge scenarios 6

I.3.2 Model-based early assessment of service performance: Zero-knowledge

scenario . 6

I.3.3 Services SLA on performance negotiation and/or monitoring using

simulated data . 7

I.4 Structure of the thesis or Overview of the thesis 7

Chapter II State of the art 9

II.1 Web Services and related technologies 9

II.1.1 Service-Oriented Architecture (SOA) 9

II.1.2 Web Service . 10

II.1.3 Simple Object Access Protocol (SOAP) 10

II.1.4 Representational State Transfer (REST) 11

II.1.5 Web Services Description Language (WSDL) 11

II.1.6 Universal Description, Discovery and Integration (UDDI) 12

II.2 Web service QoS guarantees: Service Level Agreement (SLA) 12

II.2.1 SLAs components . 14

xiii

II.2.2 SLAs Life Cycle . 14

II.2.3 SLAs definition languages . 15

II.3 Service Development . 16

II.3.1 Service Development Life Cycle 16

II.3.2 Service Development Models . 17

II.3.2.1 Model-Driven Development (MDD) 17

II.3.2.2 Modeling techniques . 18

II.4 Previous works . 20

II.5 Conclusions . 24

Part II Early Assessment of Web Services Performance via Simulation 25

Chapter III Early Assessment of Service Performance: Full-knowledge and Partial-

knowledge Scenarios 27

III.1 Introduction . 28

III.2 Model of service and framework . 29

III.2.1 Model of service . 29

III.2.2 Framework for performance evaluation 29

III.3 Extended service development life cycle with simulation 30

III.4 Reference scenario . 31

III.4.1 Overview on the IFX Standard . 31

III.4.2 Presentation of the service . 32

III.5 Performance modeling . 33

III.5.1 STS-based model extended for testing 33

III.5.2 STS-based model extended for simulation 34

III.5.3 Loops unroll technique for the STS-based model for simulation . 36

III.5.4 XML encoding of the STS-based models 37

III.6 Implementation . 38

III.6.1 Implementation of the performance interceptors 38

III.6.2 Implementation of the simulation scripts generator 41

III.6.3 Implementation of our solutions 44

III.6.3.1Framework STS2Java . 44

III.6.3.2Simulation Plugin STS2Java for Eclipse 46

III.6.3.3Simulation plugin STS2Java for Netbeans 47

III.7 Experimental evaluation of our methodology 49

III.7.1 Testing and simulation results . 49

III.7.2 Comparison of testing and simulation results 52

III.8 Conclusions . 53

Chapter IV Early Assessment of Service Performance: Zero-knowledge Scenario 55

xiv

IV.1 Introduction . 56

IV.2 Working Assumptions and our Framework 57

IV.2.1 Working Assumptions . 57

IV.2.2 Performance Evaluation Framework 57

IV.3 Operation Complexity Assessment . 59

IV.3.1 Building Blocks . 59

IV.3.1.1Operation Types Processing Complexity (OTPC) 59

IV.3.1.2Resource Complexity (RC) . 60

IV.3.2 Operation Complexity (OC) . 61

IV.3.3 Example of complexity evaluation 62

IV.4 Execution Time Estimation . 64

IV.4.1 Parsing and Construction Profile Tables 65

IV.4.2 Execution Time Interval Estimation 66

IV.4.3 Execution Time Adjustment: Data-Intensive Factor 68

IV.4.4 Generic algorithm for simulation script generation 68

IV.4.5 Example of evaluation of the complexity classes parameters 69

IV.5 Experimental Results and Validation of our approach 71

IV.6 Conclusions . 75

Part III Applications 76

Chapter V Applications of our approaches for SLA negotiation and monitoring 77

V.1 Introduction . 77

V.2 Framework for service SLA negotiation 78

V.3 Framework for service SLA monitoring 79

V.4 SLA negotiation and monitoring: a real use case based on SLA∗ 81

V.4.1 Overview on SLA∗ . 81

V.4.2 SLA generation using SLA∗ abstract syntax 81

V.4.3 SLA negotiation solution with SLA∗ 83

V.4.4 SLA monitoring solution with SLA∗ 85

V.5 Conclusions . 85

Part IV Conclusions and future work 87

Chapter VI Conclusions and future work 89

VI.1 Summary of the contributions . 89

VI.2 Future work . 90

VI.2.1 Service composition framework using simulation data 90

VI.2.2 Using Simulation as Part of Service Development Cycle 91

VI.2.3 Application of our approach for services certification 92

xv

VI.2.4 Services performance prediction 92

VI.2.5 Extension to other service models 92

VI.2.6 Simulation scripts generation according to the load 92

VI.2.7 Solution for the interference problem in service composition 92

VI.2.8 Move our solution to Cloud . 92

Publications 93

Bibliography 96

Random number generator WSDL file 107

Medical Meeting Management WSDL file 109

Standard STS Model for Medical Meeting Management service 115

Complete Java Class for operation CreditAdd performance simulation 121

xvi

List of Figures

Figure II.1 An example of SOAP message 11

Figure II.2 An example of WSDL description 13

Figure II.3 Basic example of service discovering process 14

Figure II.4 Service Level Agreement Life Cycle in six steps 15

Figure II.5 Traditional waterfall software development life cycle 17

Figure II.6 Basic continuous improvements software development life cycle . 17

Figure III.1 Performance evaluation framework 30

Figure III.2 Traditional waterfall software development life cycle extended

with simulation step . 31

Figure III.3 Basic continuous improvements software development life cycle

extended with simulation step . 31

Figure III.4 An example of STS-based model for the IFX Reverse ATM service 33

Figure III.5 An example of STS-based model for testing (STSt) 35

Figure III.6 An example of STS-based model for simulation (STSs) 36

Figure III.7 Fragment of STS-based model for simulation with loop 37

Figure III.8 Fragment of STS-based model for simulation after loop unroll . 37

Figure III.9 A fragment of the XML encoding for STSt in Figure III.5 39

Figure III.10 A fragment of the XML encoding for STSs in Figure III.6 40

Figure III.11 An example of performance interceptor annotation 41

Figure III.12 An example of performance interceptor class 42

Figure III.13 Algorithm for simulation script generation 43

Figure III.14 Java-based simulation script for operation DebitAdd 44

Figure III.15 Java-based simulation script for operation CreditAdd 45

Figure III.16 Interface of the framework STS2Java 46

Figure III.17 Interface for STS-based simulation model selection 47

Figure III.18 Interface for simulation script generation 47

Figure III.19 Interface of the Plugin STS2Java for Netbeans 48

Figure III.20 Interface for STS-based simulation model selection 48

Figure III.21 Interface for simulation script generation 49

Figure III.22 Test-based execution times for tc1 varying rps 50

Figure III.23 Test-based execution times for tc2 varying rps 51

Figure III.24 Test-based execution times for tc3 varying rps 51

xvii

Figure IV.1 Performance evaluation framework 58

Figure IV.2 Response times and service complexities evolution for the web

service StadiumTransaction operations 63

Figure IV.3 Algorithm for simulation script generation 69

Figure IV.4 Standard STS-based model of the service AskDoc 71

Figure IV.5 Comparison of simulation and testing results 73

Figure IV.6 Chi-Square variation for different tests on WS1 and WS2 74

Figure V.1 Framework for SLA negotiation 78

Figure V.2 Framework for SLA monitoring 80

Figure V.3 Example of SLA template generated for operation CreditAdd . . 82

Figure V.4 Example of the final SLA template updated for operation CreditAdd 84

Figure V.5 Example of final SLA template used to monitor operation CreditAdd 86

xviii

List of Tables

Table III.1 Performance Idioms . 34

Table III.2 Mean and standard deviation of execution times 52

Table IV.1 Classification of XML datatypes 60

Table IV.2 Scores associated to datatypes complexity 60

Table IV.3 Scores associated to resources complexity 61

Table IV.4 Class of complexity and factor γ based on OC 62

Table IV.5 Characteristics of our sample web services 63

Table IV.6 Complexity evaluation for web service 1 operations 64

Table IV.7 Profile tables for DOM APIs . 65

Table IV.8 Values defined for the data-intensive factor 68

Table IV.9 Parameters for the basic and middle classes of complexity 70

Table IV.10 Interval of execution times computed for operations in WS 1 and

WS 2 . 72

Table IV.11 Intervals of execution times estimated for other service operations 73

Table IV.12 Statistical analysis of the results 74

xix

xx

Abbreviations and Meaning

ATM Automatic Teller Machine

BPEL4WS Business Process Execution Language for Web Services

BPMN Business Process Modeling Notation

EJB Enterprise Java Bean

FSA Finite State Automaton

FSM Finite State Machine

HMM Hidden Markov Model

IFX Interactive Financial Exchange

KLAPER Kernel LAnguage for PErformance and Reliability

LTS Labelled Transition Systems

MDA Model Driven Architecture

MDD Model-Driven Development

MOF Meta Object Facility

OMG Object Management Group

PN Petri Nets

PUMA Performance by Unified Model Analysis

PUPPET Pick UP Performance Evaluation Test-bed

QN Queuing Network

QoS Quality of Service

REST Representational State Transfer

RFC Request for Comments

SLA Service Level Agreement

xxi

SLC Software Life Cycle

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

STS Symbolic Transition System

TA Timed Automata

TPN Time Petri Nets

UDDI Universal Description, Discovery and Integration

UML Unified Modeling Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WSCL Web Service Conversation Language

WSDL Web Service Description Language

XML eXtensible Markup Language

xxii

Part I

Introduction and State of art

T his part of the thesis is composed of two chapters. Chapter I defines the motiva-

tions and research questions tackled by the thesis and underlines the original contributions

presented in it. Subsequently, it outlines the thesis structure. Chapter II introduces the

background of our work and presents an overview of the relevant approaches related to

our work and summaries the current state of the research on methods used to assess the

performance of the software/service.

Chapter I

Introduction and research questions

Contents

I.1 Introduction . 3

I.2 Motivations . 5

I.3 Contributions . 6

I.3.1 Model-based early assessment of service performance: Full-knowledge and

Partial-knowledge scenarios . 6

I.3.2 Model-based early assessment of service performance: Zero-knowledge sce-

nario . 6

I.3.3 Services SLA on performance negotiation and/or monitoring using simu-

lated data . 7

I.4 Structure of the thesis or Overview of the thesis . 7

I.1 Introduction

T he increasing diffusion of web services is changing the way in which software is

designed, developed, and distributed. Despite the success of web services, there are still

some open issues that highly affect their widespread adoption especially in critical scenarios

where services, supplied by potentially unknown providers, are selected at runtime. Effec-

tive and easy to use methodologies should be provided to increase the trustworthiness of

services and to guarantee their non-functional properties such as performance, reliability,

scalability and security.

In this context, the need of techniques for making accurate the estimation of service

performance at design time has become crucial [1], since poor performance discovered after

service deployment, can have catastrophic implications. Customers are in fact concerned

about the performance of the services they integrate as part of their system, while de-

velopers would like to evaluate the performance of their services at an early stage of the

service lifecycle. Then, with the emergence of model-driven development, a performance

analysis step can be added early to the software development cycle [2, 3] to analyse the

non-functional properties and better evaluate the software/services behavior.

3

I. INTRODUCTION AND RESEARCH QUESTIONS

Existing approaches for performance evaluation [4, 5, 6, 7] assume the availability of

service code or at least of reliable information (e.g., collected by testing) on service behav-

ior. As a consequence, these approaches do not support design time evaluation of service

performance without the use of historical data. Based on the amount of information avail-

able at design time, we refer to these scenarios as “full-knowledge” and “partial-knowledge”

scenarios.

Although model-driven development may support some degree of performance analy-

sis during development, the problem of evaluating service performance is exacerbated by

the fact that service code may not be available to or under the control of the party re-

sponsible for the evaluation. We refer to this scenario as “zero-knowledge” scenario, where

performance evaluation relies on estimation of service behavior and characteristics. Exist-

ing estimation models to forecast the cost, size, resource effort, duration or performance

of software projects [8, 9, 10, 11, 12] are mainly based on expert analysis, and rely on

analogy and statistical methods using historical data. Performance analysis can be carried

out by measurement or by modeling techniques, but at early stages, modeling approches

are preferable to develop better abstractions for a model and then permit to study the be-

havior of the software or the service, using analytical and/or simulation techniques. Most

of the existing research activities are based on analytical models [13, 14]. These works only

simplify the real service and are not then suitable when we want to assess the behavior

of the real service. The performance evaluation approach developed in this thesis allows

a more detailed model to be constructed and is less restrictive than existing approaches

[9, 10, 11, 12, 14]. The authors of the PUPPET (Pick UP Performance Evaluation Test-bed)

approach [15] propose similar model-based solution for functional testing and performance

testing. They provide a tool for services integration that support the QoS evaluation of

services which are still under development. In order to overcome the drawbacks of existing

solutions, we first propose a model-based solution to integrate an early performance anal-

ysis steps into the development cycle. This methodology uses simulation during the design

and pre-deployment phases of the web service lifecycle to preliminarily assess web service

performance. Our technique relies on coarse-grained information on the total execution

time of each service operation which is derived by testing, followed by random guesses on

the delay introduced by each internal task composing the operation. This solution refers

to a full-knowledge and partial-knowledge scenarios.

Secondly, we extend our previous solution to consider the performance evaluation in

the zero-knowledge scenario. In particular, our approach is aimed at simulating service

performance when no information on real service/operation execution time is available.

Our approach estimates the interval of operation execution times for the service from

the characteristics of the XML (eXtensible Markup Language) encoding of its input and

output parameters and the WSDL interface of the service by using expert knowledge. This

information is used to simulate the performance of a given service.

The model-based approaches proposed in this thesis rely on Symbolic Transition Sys-

4

I. INTRODUCTION AND RESEARCH QUESTIONS

tems (STSs) [16] to describe web services as finite state automata and evaluate their per-

formance. From the standard STS-based model of the service, we generate two extended

models: i) a testing model, which is used to automatically generate monitoring code (i.e.,

performance interceptors) for the evaluation of the service performance; ii) a simulation

model, which is used to generate a simulation script to forecast the service behavior. Our

solutions are however not limited to STS-based models and are suitable for any service

modeling approach that supports the enrichment of state transitions with annotations.

In this thesis, we provide experimental evaluation of our approaches using both services

obtained from the Internet and services developed in-house. We also show the application

of our solutions to negotiate and/or evaluate SLAs on service performance, and to select

services at runtime on the basis of their claimed performance in the service compositions

process.

The following sections present our motivation and research questions, and describe

briefly our contributions for early integration of performance analysis into the development

cycle of the services via simulation.

I.2 Motivations

Since the emergence of model-driven engineering, there has been a significant effort

to include analysis in the software development process. This need arises since the in-

clusion of tractable performance analysis techniques into existing software development

approaches, improves the analysis of non-functional properties such as performance, reli-

ability, scalability and security. With the increasing realisation of software and business

process development and distribution as web services, it is important to evaluate their

performance using simulation and testing at an early stage of the development process. In

the Service-Oriented Architecture (SOA) management, the web service performance is a

well-know problem and our aim is to propose model-based solutions that allow to study

the behavior of the services.

Our work is motivated by the fact that today there is currently no method which

provides a quick and precise approach for web service performance evaluation. Most of

the existing model-based approaches do not support performance analysis of services in

term of execution times during the design time. Moreover, the testing phases can face two

problems which are time-overhead and costs. Furthermore, it is not easy to predict the

behavior of the web service before the end of the development process because there is no

appropriate framework that helps to study the behavior of the web service. Hence, our

research is intended to solve the following research questions:

1. How can the performance of a Web service be estimated at early stage of the devel-

opment cycle using model-based approaches and simulations ?

2. How can the performance of services be predicted without historical or testing data ?

5

I. INTRODUCTION AND RESEARCH QUESTIONS

3. How can we effectively monitor and/or negotiate the performance SLA of service ?

The next section summarizes original contributions of this thesis.

I.3 Contributions

As argued in the previous section, this thesis mainly aims to provide solution to

integrate the performance analysis step into the development cycle of the software/services

using simulation. From our work, the following contributions can be highlighted.

I.3.1 Model-based early assessment of service performance: Full-knowledge

and Partial-knowledge scenarios

In order to assess the behavior of the service in a full-knowledge and partial-knowledge

scenarios, we use a Symbolic Transition Systems based models [16] to describe web services

as finite state automata and evaluate their performance. The basic STS-based model is

extended for simulation and testing. The first extension for testing allows the automatic

integration of some performance monitoring code in order to record the performance of the

service (e.g., execution time). The second extension for simulation allows to generate a

simulation scripts in order to simulate the behavior of the service. This model extends the

state transitions of the standard STS-based model with transition probabilities and delay

distributions. Transition probabilities model the behavior of the service and the frequency

of moving between two states which can be inferred from the executions of similar services.

However, delay distributions model the distribution of waiting times that represent the

time needed to complete the task associated to the transition. In a full-knowledge sce-

nario, the total execution times for each operation and the internal distributions of delays

are known and used for performance evaluation. In a partial-knowledge scenario, coarse-

grained partial testing results (i.e., the lower and upper bounds to the operation execution

times) are used to simulate a service performance. This contribution includes a methodol-

ogy that uses simulation during the design and pre-deployment phases of the web service

lifecycle to preliminarily assess web service performance using coarse-grained information

on the total execution time of each service operation derived by testing. We use testing

results and provide some practical examples to validate our methodology and the quality

of the performance measurements computed by simulation considering the full-knowledge

and partial-knowledge scenarios.

I.3.2 Model-based early assessment of service performance: Zero-knowledge

scenario

This contribution allows service developers and software adopters to evaluate service

performance in a zero-knowledge scenario, where no testing results on service execution

times are considered and only simulation results are used for performance evaluation. Our

6

I. INTRODUCTION AND RESEARCH QUESTIONS

approach builds on expert knowledge to estimate the execution time of each service opera-

tion and, in turn, the overall service performance. This approach evaluates the complexity

of each service operation using the XML encoding of its input and output parameters, and

the Web Service Description Language (WSDL) interface of the service. Then, based on

profile tables providing the time overhead needed to parse and build SOAP messages with

different depths and cardinalities, and the performance inferred by testing some reference

service operations, the operation execution times are estimated. We finally experimentally

evaluate our approach by using the measured operation execution times to simulate the

service performance. These results, compared with the service performance obtained by

testing after the development show an accurate approximation.

I.3.3 Services SLA on performance negotiation and/or monitoring using sim-

ulated data

This contribution shows how performance information assessed using our approach

can be exploited to evaluate and/or negotiate Service Level Agreements (SLAs) on the

service. In fact, when the performance analysis step is integrated into the development

cycle, the performance measured is used to negotiate the SLA of the service. This part

of our thesis presents a complete framework that first allows to negotiate the SLA on the

performance from the estimation performed using our approaches and second to monitor

the performance of the service after deployment and report the SLA violations.

I.4 Structure of the thesis or Overview of the thesis

The thesis is structured in several parts organized as follows.

The remainder of Part I includes Chapter II which gives the overall background and the

related work of the thesis. This chapter presents the background on web service technologies

and the most widely used service models in the literature such as STS [16], Petri nets [17],

UML, Timed Automata (TA) [18, 19, 20]. Some estimation models and performance models

are also presented followed by a description of model-driven engineering followed by the

performance measurements tools such as SoapUI, LoadUI, Membrane [21, 22, 23].

Part II includes two chapters and presents our methodologies for early assessment of

the service performance. Chapter III presents our model-based approach for evaluating

service performance in a full-knowledge and partial-knowledge scenarios in which coarse-

grained test-based information on the total execution time interval of each service operation

is produced by real testing. Chapter IV outlines our proposed solution for estimating

performance of the service in a zero-knowledge scenario, where the testing data are not

available and only simulation results are used for performance evaluation. This method

relies on the characteristics of the XML encoding of the input and output messages of the

service, the WSDL interface of the service and the profiles tables that provide the parsing

7

I. INTRODUCTION AND RESEARCH QUESTIONS

and construction times of the input and output messages to approximate the performance

of the service.

Part III includes Chapter V that shows the applications of our performance evaluation

solutions. It presents our framework that aims i) to negotiate the SLA for the service

from the performance estimated using the simulation techniques proposed in Part II, ii)

to evaluate and monitor the SLA of the service in order to report the violations after

deployment.

Part IV includes Chapter VI which concludes the thesis and outlines our future work.

8

Chapter II

State of the art

Contents

II.1 Web Services and related technologies . 9

II.1.1 Service-Oriented Architecture (SOA) . 9

II.1.2 Web Service . 10

II.1.3 Simple Object Access Protocol (SOAP) . 10

II.1.4 Representational State Transfer (REST) 11

II.1.5 Web Services Description Language (WSDL) 11

II.1.6 Universal Description, Discovery and Integration (UDDI) 12

II.2 Web service QoS guarantees: Service Level Agreement (SLA) 12

II.2.1 SLAs components . 14

II.2.2 SLAs Life Cycle . 14

II.2.3 SLAs definition languages . 15

II.3 Service Development . 16

II.3.1 Service Development Life Cycle . 16

II.3.2 Service Development Models . 17

II.4 Previous works . 20

II.5 Conclusions . 24

T his chapter provides some background to our research and presents relevant related

work.

II.1 Web Services and related technologies

This section presents the general background on web services and related technologies

and terms such as SOA, SOAP, WSDL.

II.1.1 Service-Oriented Architecture (SOA)

Service-Oriented Architecture (SOA) represents an architectural model that aims

to enhance the agility and cost-effectiveness of an enterprise while reducing the overall

9

II. STATE OF THE ART

burden of IT on an organization [24]. It is a framework that supports discovery, message

exchange, and integration between loosely coupled services using industry standards. Each

party complies with agreed-upon protocols and carries out its part in the overall execution

of processes involving services from diverse organizations. SOA framework can use a service

and integrate it within an application while at the same time it is not aware of the details

of the service’s implementation language, platform, location, or status. Its implementation

can consist of a combination of technologies, products, APIs, supporting infrastructure

extensions, and many other parts.

II.1.2 Web Service

Web service is defined by the World Wide Web consortium (W3C) [25] as follows: “A

web service is a software system identified by a URI [RFC 2396], whose public interfaces

and bindings are defined and described using XML. Its definition can be discovered by

other software systems. These systems may then interact with the web service in a manner

prescribed by its definition, using XML based messages conveyed by Internet protocols.”

In software architecture and engineering, the web services paradigm is often depicted

as the step that allows the development of distributed applications through combinations

of services that are located in different places over the Web. It is a piece of business logic,

located somewhere on the Internet, that is accessible through standard-based Internet

protocols. A web service can be seen as a function, which has an input and an output. The

services implemented as web services are commonly described by the following documents:

the WSDL definition, XML schema definition, and WS-Policy definition. Service-Oriented

Architectures (SOA) refer to software architectures based on web services paradigms [24,

26]. Web services are commonly based on the use of two communication protocols: SOAP

and REST.

II.1.3 Simple Object Access Protocol (SOAP)

The interactions with web services which are the requests and responses are based

on the Simple Object Access Protocol (SOAP) [27]. SOAP defines a standardized XML-

based framework for exchanging structured and typed information between services. SOAP

provides the envelope for sending web services messages, which contains an optional header

and a body. It is a protocol for messages exchange which defines both a format for messages

and a processing model. It defines in addition, how a receiver should process a SOAP

message [24, 28]. Figure II.1 shows an example of SOAP message for a web service which

implements the sum of two integers. The header of a soap message typically contains

information regarding the processing of the message. The body contains the input or

output information of the web service to be transferred to the application. In the example,

add is the name of the service which is invoked with two values.

10

II. STATE OF THE ART

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <S : Envelope xmlns :S=” http :// schemas . xmlsoap . org / soap / enve lope /”>
3 <S : Header />
4 <S :Body>
5 <ns2 : add xmlns : ns2=” http :// c a l c u l a t o r .me . org /”>
6 <i>9</ i>
7 <j>30</ j>
8 </ns2 : add>
9 </S :Body>

10 </S : Envelope>

Figure II.1: An example of SOAP message

II.1.4 Representational State Transfer (REST)

The Representational State Transfer (REST) is a web architectural style presented

by Roy Fielding in 2000 [29, 30]. The basic idea of REST is the full exploitation of the

HTTP protocol, in particular:

• It focuses on Resources, that is, each service should be designed as an action on a

resource.

• It takes full advantage of all HTTP methods: GET, POST, PUT and DELETE.

The GET method is used for requests that are not intended to modify the state of a

resource.

The POST method is used to request that the server accepts the entity enclosed in

the request as a new subordinate of the resource identified by the URI named in the

request.

The PUT method is used to send the modified representation of a resource.

The DELETE method can be used to request the removal of a resource.

The web services implemented with the REST communication protocol are called RESTful

web services.

REST components communicate by transferring a representation of a resource in a

format matching one of an evolving set of standard data types, selected dynamically based

on the capabilities or desires of the recipient and the nature of the resource. REST is really

just an abstract architectural style, not a specific architecture, network protocol, or software

system. While no existing system exactly adheres to the full set of REST principles, the

World Wide Web is probably the most well-known and successful implementation of them.

II.1.5 Web Services Description Language (WSDL)

The Web Services Description Language WSDL [24, 28, 31] is an XML language that

is used to describe web services interface in terms of its inputs and outputs. The messages

exchanged are described abstractly and associated with a concrete network protocol and

11

II. STATE OF THE ART

message format. The abstract part of a WSDL contains i) the types, which are the kinds

of messages, the service will send or receive and ii) the interfaces, which describe the func-

tionalities provided by the web service as a set of operations. An operation is defined as

a sequence of input and output messages. Usually, an operation has a name, a message

exchange pattern, and the inputs and outputs types. The concrete part contains i) the

bindings describing how the service can be accessed and ii) the services, which describe

where the service can be accessed and consist of a reference to an interface and the end-

points. For every operation in the interface, a binding specifies the message format and

the transmission protocol to be used to access the service. WSDL provides specific support

for bindings using SOAP and HTTP. Each endpoint contains a reference to a binding and

the address of the service, which is typically a URI.

Figure II.2 shows an example of WSDL description for a web service implementing

the sum of two numbers.

II.1.6 Universal Description, Discovery and Integration (UDDI)

In the previous section, we described how the WSDL describes the service by in-

dicating how the service can be invoked, the protocol and the format of the message to

be used for the invocation and the location of the service. However, the service needs

to be found, before been selected and finally invoked. These steps are known as “service

discovery” and are performed using the Universal Description, Discovery and Integration

(UDDI) standard [24, 32]. UDDI provides standardized descriptions of web services and

records them in a catalog called a registry . The registry is queried by the client in order to

find the services needed. UDDI defines a set of standard services allowing the description

and discovery of the web services providers, the services they publish in the registry and

the technical interfaces needed by the service requestors to access those services. UDDI is

based on a common set of industry standards, including HTTP, XML, XML Schema, and

SOAP. UDDI contains data and metadata about web services, their location and the infor-

mation needed to invoke them. A UDDI registry supports the discovery-find-use pattern

described in Figure II.3.

II.2 Web service QoS guarantees: Service Level Agreement (SLA)

In order to guarantee a good level of service, they is a need to have an agreement

between the service providers and the customers. In SOA environment, the conditions

under which services can be delivered are specified in the Service Level Agreements (SLAs)

[33, 34]. SLAs are the contracts between the service providers and the customers, and

contain a set of Quality of Service (QoS) requirements for the services. SLAs need to be

defined, negotiated, established, deployed and monitored [35, 36]. The monitoring of the

SLAs is important in order to verify whether the service delivered complies with the terms

of SLA agreed between the two parties [37].

12

II. STATE OF THE ART

1 <?xml version = ’1.0 ’ encoding=’UTF−8 ’?>
2 <definit ions name=” CalculatorWSService ”>
3 <types>
4 <xs : schema>
5 <xs : element name=”add” type=” tns : add” />
6 <xs : element name=”addResponse” type=” tns : addResponse” />
7 <xs : complexType name=”add”>
8 <xs : sequence>
9 <xs : element name=” i ” type=” xs : i n t ” />

10 <xs : element name=” j ” type=” xs : i n t ” />
11 </xs : sequence>
12 </xs : complexType>
13 <xs : complexType name=”addResponse”>
14 <xs : sequence>
15 <xs : element name=” return ” type=” xs : i n t ” />
16 </xs : sequence>
17 </xs : complexType>
18 </xs : schema>
19 </types>
20 <message name=”add”>
21 <part name=” parameters ” element=” tns : add”/>
22 </message>
23 <message name=”addResponse”>
24 <part name=” parameters ” element=” tns : addResponse”/>
25 </message>
26 <portType name=”CalculatorWS”>
27 <operation name=”add”>
28 <input wsam: Action=” http :// c a l c u l a t o r .me . org /CalculatorWS/addRequest

” message=” tns : add”/>
29 <output wsam: Action=” http :// c a l c u l a t o r .me . org /CalculatorWS/

addResponse” message=” tns : addResponse”/>
30 </operation>
31 </portType>
32 <binding name=” CalculatorWSPortBinding ” type=” tns : CalculatorWS”>
33 <soap : binding transport=” http :// schemas . xmlsoap . org / soap / http ” style=”

document”/>
34 <operation name=”add”>
35 <soap : operation soapAction=””/>
36 <input>
37 <soap :body use=” l i t e r a l ”/>
38 </ input>
39 <output>
40 <soap :body use=” l i t e r a l ”/>
41 </output>
42 </operation>
43 </binding>
44 <service name=” CalculatorWSService ”>
45 <port name=”CalculatorWSPort” binding=” tns : CalculatorWSPortBinding ”>
46 <soap : address location=” http :// l o c a l h o s t :8080/ CalculatorApp /

CalculatorWSService ”/>
47 </port>
48 </ service>
49 </ definit ions>

Figure II.2: An example of WSDL description

13

II. STATE OF THE ART

Figure II.3: Basic example of service discovering process

II.2.1 SLAs components

Many specifications are defined in order to represent the SLAs. These specifications allow

to specify the different conditions on which the services can be delivered and the parties

which are concerned [37, 38]. In most of the specifications, the SLAs definition includes

three important parts which are:

• The Parties part defines the parties involved in the agreement. Here, they are the

service providers and the customers.

• The Service Description part describes the service concerned by the agreement and

specifies its characteristics.

• The Obligations part specifies the obligations of the two parties and the actions to be

executed when there is a violation.

II.2.2 SLAs Life Cycle

The SLA defined for a service has a life cycle. Sun Microsystems Internet Data Center

Group [36] detailed the SLA life cycle into six steps which are defined as follows.

1. Discover Service Providers: where service providers are located according to customers

requirements.

2. Define SLA: this includes definition of services, parties involved in the SLA, penalty

policies and QoS parameters. This step includes also a negotiation in order to reach

a mutual agreement between the parties.

3. Establish Agreement: where an SLA template is established and filled in by specific

agreement, and parties involved are starting to commit it.

4. Monitor SLA Violation: in which the performance delivered for the service by the

provider is measured in order to handle the violation of the contract.

5. Terminate SLA: in which SLA terminates due to timeout or any party’s violation.

14

II. STATE OF THE ART

6. Enforce Penalties for SLA Violation: where, if there is any party violating contract

terms, the corresponding penalty clauses are invoked and executed.

Figure II.4 illustrates these steps.

Figure II.4: Service Level Agreement Life Cycle in six steps

II.2.3 SLAs definition languages

In this section, we give a short list and the description of the most popular SLA manage-

ment languages and frameworks.

• WS-Agreement (Web Service Agreement) [39] is a web service protocol for agreement

establishment between the service provider and the consumer. It is an XML-based

language that allows to establish and manage dynamically the service SLA.

• WSLA (Web Service Level Agreement) [37, 40] is a framework defined for SLA man-

agement. It provides a flexible and extensible language based on XML schema for

SLA definition and monitoring. WSLA enables service customers and providers to

define different variety of SLAs. The proposed framework configures automatically

the SLA, and starts its monitoring to handle the violations.

• SLAng (SLA definition language) [41] is an XML-based language for SLA definition

and management. It allows to describe technical and non-technical characteristics of

service with the details on QoS requirements and the related set of metrics. SLAng

15

II. STATE OF THE ART

provides solution for the negotiation and the monitoring of the agreement between

the customers and the service providers.

• QML (Quality of service Modeling Language) [42] is a language for quality of service

specification for software components. It allows to define the QoS requirements as

agreement between the different parties. QML provides solution allowing contract

definition in order to monitor the fulfilment of the QoS conditions at runtime for

distributed systems.

• SLA∗ [43] is a rich, comprehensive, extensible and format independent SLA model

proposed for SLA definition and monitoring. It defines a solution for SLA management

which specifies the parties involved in the agreement, the service description and the

terms of the agreement which include the actions to be executed when there is a

violation.

II.3 Service Development

In this section, we provide a short overview on software development life cycle and

the service models with a particular summary on the Symbolic Transition Systems (STS)

which are used in this thesis to model the web services.

II.3.1 Service Development Life Cycle

The software life-cycle (SLC) is the process structure describing the development of

a software product [44, 45]. Basically, it starts from the definition of the requirements

and finishes with the deployment. The traditional software development life cycle is the

waterfall model [46, 47] described in Figure II.5 which begins with requirements and pro-

ceeds through the major phases of analysis, design, implementation, and deployment. The

drawbacks of this model are that usually the requirement, analysis, and design phases are

too long and the performance analysis is performed after the deployment.

Since software and services need continuous improvements during their life cycle, there

is another model of development called continuous improvement development life cycle [48,

49, 50] represented in Figure II.6, which allows to continuously improve the software and

services from the analyze phase through the design, implement and monitor phases. The

current modern methodologies such as Rational Unified Process or Extreme Programming

[51, 52, 53] are iterative and use continuous improvements. Depending of the specifics of

the methodology, implementations are performed through iteration phases. Whatever the

development methodology, during the different phases, the service is modeled using many

kinds of model of service and it could be better to analyse also the behavior of the software

or service at design time to assess the service performance.

16

II. STATE OF THE ART

Figure II.5: Traditional waterfall software development life cycle

Figure II.6: Basic continuous improvements software development life cycle

II.3.2 Service Development Models

II.3.2.1 Model-Driven Development (MDD)

Models are mainly used as support in the development process in order to organize

and conceptualize the perspectives and the abstractions of the software and service. The

Model-Driven Development (MDD) allows to build systems with various levels of modeling

abstractions [2, 3, 12]. MDD uses metamodels to capture the concepts and layers of

abstraction, and to give service descriptions, service directories, business processes, and

information models. The models can be transformed into code or in other models depending

of the goal of the modeling. The standard for model-driven engineering defined by the

Object Management Group (OMG) is commonly used with the meta-language MOF (Meta

Object Facility) [54].

Model-Driven Development supports the different activities performed during the de-

velopment process of the software or service. It permits the determination of the quality

and the behavior of the software or service which include more complex tasks such as per-

17

II. STATE OF THE ART

formance analysis in term of response time, execution time, throughput and availability.

Since MDD allows to analyse the non-functional properties of software/service, the perfor-

mance analysis is the scope of our work. Our aim is to integrate it at the design phase of

the waterfall and continuous improvements model of software development life cycle.

Many modeling languages or notations are used to represent the business logic of

a service such as Unified Modeling Language (UML) [55] or Business Process Modeling

Notation (BPMN) [56]. Other models such as Queuing Network, Petri-nets, Stochastic

Process Algebra and Automaton [12, 57, 58, 59] are also used to add more abstraction

in the modeling, to increase the level of abstraction, and to provide a basis for analysis.

These models are commonly used to study more complex features of the service, such as

performance. They are used to represent the behavior and the performance model of the

software/service and can be derived from the extension of the UML and BPMN models.

Popular modeling languages like UML and BPMN are routinely used to describe service

behavior and extended with some annotations in order to be converted into performance

models which can be used to simulate the behavior of the service [3, 5, 45, 60, 61, 62].

II.3.2.2 Modeling techniques

Performance evaluation of software and service can be performed by measurement or

by modeling techniques. Measurement technique provides an accurate assessment of the

performance but requires that the service be implemented before measurement can take

place. In practice, however, we want to assess the behavior of the software or service before

the implementation, the development of complex services may be time consuming. The

performance of a service can be evaluated early using analytical model, simulation model

or a hybrid model, allowing the responsiveness, throughput, reliability, and/or scalability

of a service under a given workload to be determined.

In order to model the performance models of the software, services and business pro-

cesses, many languages and notations have been proposed. Among the most popular, we

can mention UML and BPMN for which many extensions are proposed in order to integrate

the performance analysis. Additional notations and representations are used to retrieve

the behavior of the service and are based on the use of Queuing Network (QN), Petri-nets

(PN), Stochastic Process Algebra (SPA) and Finite State Automaton (FSA) [12, 57, 58, 59]

such as Symbolic transition systems (STS) techniques.

In our work, we use automaton-based representations to describe the web service. The

detail of the Symbolic Transition Systems (STS)-based models used are described below.

The specification of the other models can be found in the literature. The review in Section

II.4 takes into account most of existing techniques.

• Finite State Automaton (FSA): Symbolic Transition Systems (STS)

Modeling a software/service as a transition system is a traditional approach used to

18

II. STATE OF THE ART

test functional properties of systems for which the real implementation is not available,

and to prove that a software/service respects its specifications [63]. In our work, we

choose to use Symbolic Transition Systems (STS) [16, 64] which are derived from the

Labelled Transition Systems (LTS) [65] in order to overcome its drawbacks.

An LTS consists of states and transitions labelled with actions between them [65]. The

states represent the states of the modelling system and the actions on the transitions

model the actions which can be performed by the system. It is formally defined as

follows.

Definition II.3.1 (LTS)

A Labelled Transition System (LTS) is a tuple <S,s1,I,O,→> where:

– S=<s1, ..., sn> is a set of states;

– s1 ∈ S is the initial state;

– I is a set of input action labels;

– O is a set of output action labels with I ∩ O = ∅;

– → is a transition relation. Each transition (s,d)∈→ is of the form s
µ−→d, where:

∗ s ∈ S is the source state;

∗ µ ∈ (I ∪ O) is the label on the transition;

∗ d ∈ S is the destination state.

An LTS allows limited possibility of modelling data values and variables which are

mapped in concrete values (actions) to avoid state space explosion problem when the

number of state is important. Also, it is not possible to specify additional information

on the transition such as the constraints. Then, in order to overcome these disad-

vantages, Symbolic Transition Systems (STSs) have been introduced by Frantzen et

al. [16, 64] and allow to treat symbolically the data values and variables instead of

mapping them in concrete values on the model.

A Symbolic Transition System (STS) [16] is a finite state automaton that describes

the behavior and evolution of a software/service, and is formally defined as follows.

Definition II.3.2 (STS)

A Symbolic Transition System (STS) is a tuple <S,s1,V,I,A,→> where:

– S=<s1, ..., sn> is a set of states;

– s1 ∈ S is the initial state;

– V is a set of location (internal) variables;

– I is a set of interaction variables representing operation inputs and outputs;

– A is a set of actions (operations);

– → is a transition relation. Each transition (s,d)∈→ is of the form s
α,γ,µ−−−→d, where:

19

II. STATE OF THE ART

∗ s ∈ S is the source state;

∗ α ∈ A is an action;

∗ γ is a guard, that is, a first order formula over variables in V ∪ I;

∗ µ is an update mapping on variables in V;

∗ d ∈ S is the destination state.

We note that actions in A trigger state transitions and can be of two types:

– input actions, denoted as ?function<parameters>, where an operation call is re-

ceived;

– output actions, denoted as !function<results>, where the output of an operation

call is returned.

In addition, we note that guards represent conditions on transitions and the update

mapping represents new assignments to internal variables.

For performance evaluation, this work extended the STS-based model for testing and

simulation as described in Chapter III.

II.4 Previous works

This section presents relevant existing work related to our topic. It covers the perfor-

mance models, the different approaches proposed to assess the performance of service and

other topics discussed along this thesis to provide solution to assess the behavior of the

web services at early stage of the development process when historical data is available or

not.

The problem of guaranteeing and measuring service performance, and managing QoS

from different perspectives has been researched extensively. Some researches consider the

challenges of managing QoS to improve service quality and to support QoS-based service

selection [66, 67, 68, 69]. Other approaches propose SLA-based solutions to monitor the

performance of services [37], to determine the degree of SLA fulfillment by the services [70],

and to evaluate the impact of security on service time [4, 71, 72], and to manage cloud

service performance [73, 74]. The authors of [37, 39, 40, 42, 43] define languages and

frameworks for SLA definition in order to better handle the SLA violations. They provide

solutions that allow an easy and extensible definition of SLA that can be used for automatic

establishment and management of the agreement between the service providers and the

customers. In particular, [43] proposes a solution for SLA definition that contributes in a

good monitoring of the terms of the agreement between the parties.

The work of [75] is based on the solution proposed by [43] and analyses the link

between SLA negotiation and SLA monitoring. This work presents a novel architecture for

establishing and monitoring SLA hierarchies spanning through multiple domains and layers

of a service economy. The proposed architecture satisfies the requirements introduced by

20

II. STATE OF THE ART

SLA establishment which are the availability of historical data for the SLA offers evaluation

contrarily to our approach that uses simulation data and the assessment of the capability

to monitor the terms of the agreement.

Much in line with our work, other researchers propose simulation techniques that build

on fine-grained test data extracted from services to predict behavior for untested inputs

or behavior of a composite service integrating these services [2, 76]. The authors of [76]

propose a tool that allows the workflow of the service to be described. This description is

then used to generate a test code for performance evaluation and a simulation model which

is used for intensive performance evaluation. The authors of [77] propose to use simulation

to evaluate the performance of the web services in order to have enough information on

the behavior of the services and compose efficient web processes.

Other researchers use a model-based approach to analyze different non-functional prop-

erties of services/software and to show that performance analysis can be integrated early

in the development process [3, 5, 78]. The authors showed that instrumented code can

be generated from the extended models for monitoring purposes, but most of the existing

works are based on the use of extended UML diagrams, Petri nets, probabilistic time au-

tomata, etc. Sometimes, such approaches require the development of expensive and time

consuming prototypes, on which representative benchmarks of the system in operation can

be run. A detailed survey on model-based performance prediction approaches is given by

[79].

The authors of [80] proposes a model-driven approach to integrate the performance

prediction into the service composition scenario. The approach is based on performance-

enabled WSDL called P-WSDL that allows to add some performance data in the WSDL

standard which can be used to predict the behavior of a composite service.

The authors of [81] propose to extend the model-driven engineering with performance

engineering in order to perform a performance evaluation process during the different de-

velopment phases. They extend a UML activity diagram with performance information

and transformed it into a simulation model for early performance prediction. They pro-

posed to obtain the performance information used for the prediction from the developers

experience and/or the collected performance data on existing systems or similar service.

In the same direction, the authors of [82, 83] propose to predict the performance of web

service modeled using UML diagrams.

Another relevant aspect of the work in this thesis is the modeling of services as finite

state automata for testing and for performance analysis [84, 85].

The authors of [84] propose to generate a test case for web services using the extended

Finite State Machine (FSM) of the service which is built from the WSDL specification. This

extended FSM model allows the addition of the dynamic behavior of the service specified

in the WSDL which is not available on the FSM standard. This work was restricted to

extend the standard automaton for test cases generation and did not take into account the

use of the extension for performance evaluation of the service.

21

II. STATE OF THE ART

Schwarzl et al [85] proposed to extend the STS-based model by adding other pa-

rameters on the state transitions. The extended STS called ESTS proposed to add on

transitions, timed behaviors like transition execution times and delay transitions. Each

transition has a priority, a traversal probability and an execution duration. They used the

timing groups to put together the states that have an outgoing delay transition with the

same timeout. This work showed that the STS-based models can be extended by adding

some features in order to measure some parameters. The transition probabilities and delay

transition are used for model composition and for test cases generation like the previous

works. The use of the extension for performance evaluation is not done.

The use of Team Automata, an extended automata-based model used to specify and

evaluate software architectural design is proposed by Sharafi [86]. This work highlights

the benefits of this model and its extension to evaluate non-functional properties such

as security and performance at the software architectures level. Instead of using STS-

based model as in our work, the author proposes to use UML diagrams describing the

software architecture behavior to generate the extended Team Automata used to study

the performance of the web service software architecture. The results obtained show that

their framework can be used to estimate the performance aspects of an architecture but it

focuses only on the architectural level.

Since the security aspects are important in the business processes definition, and the

work of [61] proposed to integrate security requirements into business process modeling.

This work extended the BPMN notation and define a business process metamodel in order

to define secure business process. Based on Model Driven Architecture (MDA) approach,

the business process diagram was augmented with security requirements at early develop-

ment stages from the business analysts perspective.

The work of [45, 62] extended UML definition to specify temporal restrictions and

resource usage and their automatic evaluation. They defined solution that extends UML

notation to consider some types of constraints definition on the UML activity diagrams for

real-time systems.

Recent work proposed STS-based modeling approaches for the certification of non-

functional properties of services and for testing service orchestrations [87, 88]. Finally,

some approaches rely on Timed Automata (TA) and Time Petri Nets (TPN) [18, 89]

which are also widely-used for workflows modeling and analysis of real-time systems. They

are used to model the temporal behavior of workflows sytems to achieve different goals

such as testing and simulation of business processes [90]. The authors of [19, 91] use timed

automata for test cases generation, while [20, 92] propose to use them for web service

verification, fault monitoring and diagnosis of systems. TA are also used by [93, 94] for

monitoring the SLAs. The authors of [95] present an approach to verify web services with

time restrictions which are defined by BPEL4WS using model checking techniques. They

used a formalism based on Timed Automata to translate the description of web service

written in BPEL4WS into automata which is used to simulate and verify the correctness

22

II. STATE OF THE ART

of the service.

The authors of [17, 96] used TPN for timed modeling and verification of BPEL pro-

cesses by presenting an approach that verifies the time constraints during service compo-

sition processes. Different to the approach we present in this thesis, they did not applied

TA and TPN for performance evaluation of web service.

Taking a different line of research to the above-mentioned works, we propose an STS-

based approach for an early assessment of service perfomance, which builds on coarse-

grained test data. An STS-based service modeling has been used since it provides a modular

and flexible solution that can be extended with new features.

Similar to our method, there are several works that, while not specifically targeted web

services, propose service-based or component-based solutions for systems evaluation. The

authors of the PUMA (Performance by Unified Model Analysis) method [97], the Palladio

framework [98] and the KLAPER (Kernel LAnguage for PErformance and Reliability)

approach [99] reduce the system under evaluation to a stochastic state model in order to

assess service time distributions and transition probabilities. Their solutions are also based

on simulation.

More related to web service domain, the work in [15] proposes the PUPPET (Pick

UP Performance Evaluation Test-bed) approach which mock-services concept is close to

our notion of simulation scripts. The authors built their solution to assess functional

model-based testing and performance testing. PUPPET is used to automatically generate

a test-bed environment for a service, in order to check if the specified QoS properties will be

respected by the service under development after its deployment in the final environment.

Focusing on design time evaluation, some evaluation models use historical data and

expert knowledge [11, 12]. In this thesis, we propose to assess the complexity of the

web service in order to estimate their performance without historical data. Some works

propose different methods for assessing the complexity of software, web services, processes,

workflows, and systems [100, 101, 102, 103]. They define a set of metrics to evaluate the

quality of the XML structure of the WSDL in terms of web service maintainability, and to

prevent any potential quality issue in the service interfaces. Unlike the solution proposed

in this thesis, the above approaches are mostly focused on service complexity analysis, and

do not consider performance evaluation. In [104], the authors propose a solution based

on queuing theory for an early assessment of the performance of software components.

They describe architectural behavior of software systems using UML diagrams, which are

then converted into Interface Automata to evaluate software performance at design time

based on queuing methods. This solution focuses only on software components and is

consequently not applicable to our service-based scenario presented in this thesis.

23

II. STATE OF THE ART

II.5 Conclusions

This chapter presents the main concepts behind web services, and related technologies

and protocols. This chapter also describes the relevant work proposed in the literature

about the performance evaluation of software/web services in order to allow a better eval-

uation of the contributions we will describe in this thesis. In Part II, we present our

approaches for early assessment of web service performance using simulation, the imple-

mentation of our solutions, and the experimental results.

24

Part II

Early Assessment of Service
Performance via Simulation

T est-based performance evaluation of web services is a type of testing aiming to

quantify the responsiveness, throughput, reliability, and/or scalability of a service/soft-

ware under a given workload. This part of the thesis describes our techniques to achieve

comparable results via simulation.

First, in Chapter III, we propose a model-based approach that allows to study the behavior

of the service from historical data using simulation. Secondly, in Chapter IV, we propose

a complete solution that extends the previous work and allows to estimate the behavior of

the web services when historical data are not yet available.

Chapter III

Early Assessment of Service

Performance: Full-knowledge and

Partial-knowledge Scenarios

Contents

III.1 Introduction . 28

III.2 Model of service and framework . 29

III.2.1 Model of service . 29

III.2.2 Framework for performance evaluation . 29

III.3 Extended service development life cycle with simulation 30

III.4 Reference scenario . 31

III.4.1 Overview on the IFX Standard . 31

III.4.2 Presentation of the service . 32

III.5 Performance modeling . 33

III.5.1 STS-based model extended for testing . 33

III.5.2 STS-based model extended for simulation 34

III.5.3 Loops unroll technique for the STS-based model for simulation 36

III.5.4 XML encoding of the STS-based models 37

III.6 Implementation . 38

III.6.1 Implementation of the performance interceptors 38

III.6.2 Implementation of the simulation scripts generator 41

III.6.3 Implementation of our solutions . 44

III.7 Experimental evaluation of our methodology . 49

III.7.1 Testing and simulation results . 49

III.7.2 Comparison of testing and simulation results 52

III.8 Conclusions . 53

O btaining an accurate and rapid evaluation of web service performance is a key

problem of Service-Oriented Architecture (SOA). It is not possible to evaluate service

performance at both design time and runtime. As a result, the performance of the service

is accessed later after deployment. This chapter proposes a model-based methodology that

27

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

generates a simulation script to be used for an early assessment of service performance,

and to negotiate and evaluate SLAs on service performance at runtime. In the following,

we present our model-based approach for early assessment of web service performance.

III.1 Introduction

In order to increase the trustworthiness of services and guarantee their non-functional

properties (e.g., security, performance, reliability), effective and easy to use methodologies

should be provided to facilitate their evaluation. In this scenario, the evaluation of service

performance is fundamental for current service-based infrastructures [1]. Customers are

in fact concerned about the performance of the services they integrate into their systems,

while developers would like to evaluate the performance of their services at the earliest

possible stage of the service lifecycle. Most of the current solutions (e.g., [4, 5, 6, 7]),

however, are based on interface testing. These do not support early assessment of end to

end service performance, including execution of the service itself. Instead, they mainly

evaluate the overhead of service protocols and specifications. Also, since such techniques

require access to the service code, if the client is to be able to simulate runtime service

performance during the selection process.

In this thesis, we propose a model-based approach that relies on Symbolic Transition

Systems (STSs) to describe web services as finite state automata and evaluate their per-

formance. From the standard STS-based model of the service, we generate two extended

models:

i) a testing model, which is used to automatically generate some monitoring code (i.e.,

performance interceptors) for the evaluation of the service performance;

ii) a simulation model, which is used to generate a simulation script to forecast the service

behavior.

The main contribution of this chapter is a methodology that uses simulation during the

design and pre-deployment phases of the web service lifecycle to preliminarily assess web

service performance. Our technique relies on coarse-grained information on the total exe-

cution time of each service operation derived by testing, followed by statistically generated

estimates on the delay introduced by each internal task composing the operation. We con-

sider two scenarios according to the amount of information on the performance of service

used in the evaluation process. In a full-knowledge scenario, it is available for the per-

formance evaluation process, the total execution times of each operation and the internal

distributions of delays on the transitions. In a partial-knowledge scenario, partial testing

results are available for the performance evaluation process. Only, the bounds of the op-

eration execution times interval are know and used to simulate a service performance. We

use testing results and provide some practical examples referring to standard IFX [105] fi-

nancial services’ interfaces to validate our methodology and the quality of the performance

28

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

measurements computed by simulation. Our solution to performance evaluation can also

be used to negotiate and/or evaluate SLAs on service performance, and select services at

runtime on the basis of their claimed performance. To this aim, we assume service provider

claims to be reliable and trustworthy.

III.2 Model of service and framework

This section presents an overview on our model of service already defined in Section

II.3.2.2 and our framework proposed to evaluate web service performance.

III.2.1 Model of service

Modeling a software/service as a transition system is a traditional approach used to test

functional properties of systems for which the real implementation is not available, and to

prove that a software/service conforms to its specifications [63]. A Symbolic Transition

System (STS)-based [16] model is already formally defined in Definition II.3.2 as a tuple

<S,s1,V ,I,A,→> where: S is a set of states, s1 the initial state, V is a set of location

(internal) variables, I is a set of interaction variables, A is a set of actions and → is a

transition relation.

In this thesis, we use STSs to also model the service implementation. In this case,

S includes both interface and implementation states, and A, which usually includes only

operations in the WSDL interface of the service, is extended to consider the service internal

operations.

The STS-based model of service is chosen in this thesis because of its flexibility to

allow an easy extension of the transitions between the states by adding some annotations

on them. The extensions of the STS-based models for testing and simulation are detailed

in the following sections.

III.2.2 Framework for performance evaluation

We propose a framework that evaluates the performance of a service by measuring some

performance indicators like service time and response time.

Figure III.1 shows our framework that is composed by a testing and simulation layers works

as follows. The model of the service STSo defined in Definition II.3.2 is first built from the

service interface and code, and given as input to the testing and simulation layers.

The testing layer then produces a testing model STSt by adding performance idioms to

STSo. STSt is used to automatically generate the code needed to monitor the performance

of services.

The simulation layer, instead, produces a simulation model STSs by adding transition

probabilities and delay (waiting time) distributions to transitions representing internal

service operation tasks in STSo. Transition probabilities model the normal execution flow

29

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Figure III.1: Performance evaluation framework

of the service. A delay distribution represents the distribution of the times needed to

complete the task represented by a state transition. STSs is used to generate a simulation

script that measures performance indicators of the service, when the service code is not

available.

The outputs produced by the execution of the test cases (testing layer) are used to verify if

the simulation script (simulation layer) provides accurate information to forecast the service

performance. If not, training data can be used to refine STSs. They include information

on the total execution time of each service operation, and can be produced by our testing

approach or by observations on the performance of similar services.

III.3 Extended service development life cycle with simulation

In order to allow an early assessment of service performance by simulation, we propose

to modify the traditional development cycle presented in Chapter II and add a simulation

step along the development flow. Our solution uses a model-based approach to simulate

the behavior of the service. In the traditional development cycle, we proposed to extend

the purposes of the design step of the development cycle with simulation. This allows

to have more details about the service specification from the analysis step. These details

help to build the standard model of the service, which is extended in our work for test

and simulation. During the design and simulation step, the performance of the service is

simulated using simulation scripts which are generated as discussed in Section III.5.2.

Figure III.2 shows the extended development cycle for the basic waterfall development

cycle, whereas Figure III.3 shows the extended continuous development cycle. The sim-

ulation step is added at the design step of these cycles and allows to perform an early

assessment of the service/software performance. For any other software development life

cycle, the simulation phase can be added also in the design phase or after the design phase,

where more information is available on the functionalities of the service.

30

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Figure III.2: Traditional waterfall software development life cycle extended with simulation step

Figure III.3: Basic continuous improvements software development life cycle extended with simulation step

III.4 Reference scenario

In this section, we present an overview of the IFX standard and the reference scenario

based on it.

III.4.1 Overview on the IFX Standard

The Interactive Financial Exchange (IFX) standard (http://www.ifxforum.org/) is a

content rich, well-designed financial messaging protocol initially defined in the 1997 by fi-

nancial industry and technology leaders. It is a global, open, and multi-channel messaging

protocol developed and maintained by a consortium of financial and information technol-

ogy companies, which regulates the electronic exchange of financial data between financial

institutions, business, and consumers through Internet. IFX provides an XML specifi-

cation, supporting technical principles of SOA and web services, for electronic financial

transactions.

IFX is built with the recognition that no single financial transaction stands on its

own, but is an integral part of the relationship among all of the communicating parties.

31

http://www.ifxforum.org/

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Currently the standard IFX provides content-rich conversations in the areas of:

• Electronic bill delivery and payment

• Business to Business Payments

• Business to Business Banking (such as balance and transaction reporting, remittance

information)

• Automated Teller Machine (ATM) communications

• Branch Banking Services

• Consumer to Business Payments

• Consumer to Business Banking

• Card Management and Services

III.4.2 Presentation of the service

Our reference scenario considers an IFX-based service implementing a deposit and with-

drawal service using a Reverse ATM. This service implements the following operations:

• Signon, which authenticates users by checking the validity of their credentials;

• CreditAdd, which allows authenticated users to deposit funds;

• DebitAdd, which allows authenticated users to withdraw funds.

Users rely on a reverse ATM device to connect to the bank via the implemented reverse

ATM service.

Figure III.4 shows the STS-based model of the reverse ATM service, where guards

are presented within squared brackets, and interface and implementation states are de-

noted as circles and squares, respectively. The service handles the request of a user

by first authenticating her using function ?Signon<login,pwd>. After a successful au-

thentication, the user can deposit or withdraw a given amount of money using functions

?CreditAdd<amount,token> or ?DebitAdd<amount,token>. We note that token represents

a one-time security token returned as a result of a successful Signon operation. When the

user chooses to deposit funds, the credit is accepted if the amount does not exceed the

maximum allowed amount. In case of fund withdraw, the debit is accepted if the amount

does not exceed the account balance and the maximum allowed amount. Internal oper-

ations ?Check Money<amount,token> and ?Check Balance<amount,token> are used to

perform the above checks, and return result=ok if the amount and token are accepted

as valid, failure otherwise. For simplicity, Figure III.4 does not present states model-

ing the real CreditAdd/DebitAdd implementations, which are traversed after successful

Check Money/Check Balance.

32

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Figure III.4: An example of STS-based model for the IFX Reverse ATM service

III.5 Performance modeling

This section describes how a standard STS-based model can be extended for the

service performance testing (Section III.5.1) and simulation (Section III.5.2).

III.5.1 STS-based model extended for testing

According to Figure III.1, we define an STS-based model for testing (STSt) by extending

the standard STS-based model STSo with idioms. Idioms express commands to be exe-

cuted at testing time by a test driver to measure the service performance (i.e., monitoring

of execution and service times), as well as for logging and security checks. Our idioms

are expressed as annotations to the transitions of the standard model STSo. Table III.1

shows some performance idioms defined in our work. The Time idioms, startclock(t) and

stopclock(t) allow to measure the execution times of the service. The clock is started at the

beginning of the execution and stopped at the end of the execution. The Logging idioms,

logevent(e) and readevent(e) allow to write and read the notifications sent by the service

during its execution. The Security idiom, checkinput(i) allows to check the parameters

33

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Table III.1: Performance Idioms
Idiom Name Description

Time startclock(t) Start time counter t
stopclock(t) Stop time counter t

Logging logevent(e) Write an event e in the log file
readevent(e) Read an event e from the log file

Security checkinput(i) Check input parameters i

provided to the service.

An STS-based model for testing is defined starting from Definition II.3.2 of the stan-

dard STS-based model as follows.

Definition III.5.1 (STSt)

An STS-based model for testing STSt is a tuple <S,s1,V,I,A,ID,
id−→> where:

• ID is the set of performance idioms;

• id−→, with id∈ID, extends the transition relation in Definition II.3.2 with idioms.

We note that
id−→ =

α,γ,µ,id−−−−→, with α, γ, and µ defined as in Definition II.3.2.

Figure III.5 shows an example of testing model STSt for the model in Figure III.4.

Idiom startclock(t1) is added to transition (1,2) to start counter t1, which measures the

execution time of operation Signon. Counter t1 is ended, using idiom stopclock(t1), in

transition (2,3) or (2,4). After function stopclock is called, counter t1 contains the execution

time of operation Signon. Similarly, idiom startclock(t2) (startclock(t3), resp.) is added to

transition (4,5) (transition (4,7), resp.) to start the counter measuring the execution time

for operation CreditAdd (DebitAdd, resp.). Counter t2 (t3, resp.) is ended in transition

(5,6) (transition (7,8), resp.), using idiom stopclock(t2) (stopclock(t3), resp.) and contains

the execution time of operations CreditAdd (DebitAdd, resp).

The testing model STSt is used to monitor the real performance of the service, which

in turn is used to refine the simulation model.

III.5.2 STS-based model extended for simulation

According to Figure III.1, we define an STS-based model for simulation (STSs) by ex-

tending the standard STS-based model STSo with transition probabilities and delay dis-

tributions. Transition probabilities model the behavior of the service and the frequency of

moving between two states. Here, we assume probabilities to be derived by the frequencies

of the service execution paths under real load conditions, while a priori estimates of such

probabilities can be inferred by observations on the executions of similar services in the

considered environment. Delay distributions model the distribution of waiting times that

represent the time needed to complete a given task, such as, the time necessary to execute

an operation, to parse an XML input message, or to build a SOAP output message. Dis-

tributions of waiting times are specified using the results of the service testing on the total

34

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Figure III.5: An example of STS-based model for testing (STSt)

operation execution time. In general, they can also be estimated by considering top-level

execution times of similar services and/or by building a performance library, where each

service operation/programming language function (e.g., a Java function) is associated with

a performance profile [7, 106].

An STS-based model for simulation is defined starting from Definition II.3.2 as follows.

Definition III.5.2 (STSs)

An STS-based model for simulation STSs is a tuple <S,s1,V,I,A,
prob,distr−−−−−→> where:

• prob∈[0,1] is a transition probability;

• distr is a probability distribution of waiting times;

• prob,distr−−−−−→ extends the transition relation in Definition II.3.2 using probabilities and

delay distributions.

We note that
prob,distr−−−−−→ =

α,γ,µ,prob,distr−−−−−−−−−→, with α, γ, and µ defined as in Definition II.3.2.

We also note that STSs can contain loops that have no number of iterations set a priori.

In Section III.5.3, we present our technique to unroll such loops.

35

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Figure III.6: An example of STS-based model for simulation (STSs)

Figure III.6 shows an example of the simulation model STSs for the model in Fig-

ure III.4. Probabilities take values in [0,1], while delays are uniformly distributed between

a lower and an upper bound, corresponding to the min and max times needed to complete

a task, and represent a random guess based on service operation testing. For instance,

transition (7b,7c) takes delay values in [1ms,1ms] and has probability equal to 0.1 and

transition (7b,7d) has probability 0.9 and takes delay values in [4ms,7ms]. We note that,

for each state, the sum of the probabilities of outgoing edges is equal to 1.

The simulation model STSs permits to generate a simulation script for measuring the

performance of a service.

III.5.3 Loops unroll technique for the STS-based model for simulation

Since the STS-based models for simulation can contain loops, we propose a technique that

allows designers to unfold these into an equivalent sequential structure according to the

number of iterations allowed. In this case, the probability of each iteration will be lower

than the probability of the previous one. This means that, assuming entering each iteration

is independent, given p as the probability of a loop iteration and (1-p) as the probability

of exiting the loop, the probability of the i-th iteration is pi. We therefore propose to

unroll such loops in the simulation model by defining a probability threshold pt that limits

36

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Figure III.7: Fragment of STS-based model for simulation with loop

Figure III.8: Fragment of STS-based model for simulation after loop unroll

the number of iterations to i, such that pi≥pt and pi+1<pt. After the loops unroll, a new

sequential structure is obtained with new transition probabilities.

Figure III.7 shows a fragment of STS-based model for simulation that contains a loop

between States 2 and 3. We simplify this model by adding only the probabilities on the

transitions. If we set the probability threshold pt at 0.01, the loop can be exited at the third

iteration when the probability of exiting loop will be lower than pt. This simulation model

is equivalent to the structure in Figure III.8 after the existing loop is unfolded after the

second iteration. We can observe that at the second iteration, the probability of exiting the

loop is reduced and becomes 0.01 instead of 0.1 at the first iteration. At the third iteration,

the loop is exited because the probability of exiting the loop is lower than the probability

threshold pt (transition between States 3” and 4”). The new sequential structure obtained

after the loops unroll is used to generate the simulation script.

III.5.4 XML encoding of the STS-based models

We encode standard STS-based models (Definition II.3.2) as XML files following the ap-

proach in [107]. In particular, an STS-based model includes a set of elements location

specifying the model states, element initialLocation containing the initial state, ele-

ment locationVars and element interactionVars defining the location and the interac-

tion variables, respectively, element messages specifying the set of operations and their

input/output parameters, and element switches modeling the state transitions. Element

locationVars (interactionVars, resp.) includes one or more elements locationVar

(interactionVar, resp.) each one with its name (element name) and type (element type).

37

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Element messages includes one or more elements message, each one defining an operation

name (element name), the direction of the operation (element kind), and one or more pa-

rameters (element param). Element kind takes either value input or value output. Element

switches consists of one or more elements switch, each one including a source location

(element from), a destination location (element to), a message (element message) and

its direction (element kind), a guard (element restriction), and an update of location

variables (element update).

To define the STS-based models for testing and simulation, we extend the XML en-

coding in [107] with the following additional elements included within element switch:

• <idiom>idiom1; idiom2;</idiom> to annotate the model with the performance id-

ioms;

• <probability>value</probability> to define the probability associated with state

transitions;

• <distribution>value</distribution> to define the delay distribution associated

with state transitions.

Figure III.9 shows a fragment of the XML encoding for the STS-based model for testing

in Figure III.5 and Figure III.10 shows a fragment of the XML encoding for the STS-based

model for simulation in Figure III.6.

III.6 Implementation

This section presents the implementation of performance interceptors and simulation scripts

generator based on the STS-based models for testing STSt and for simulation STSs dis-

cussed in Section III.5. We note that the interceptors are used to provide reliable values for

the total execution time of each service operation. As we shall discuss in Section III.7, in

fact, when based on “good” educated guesses, the simulation script provides results whose

quality is comparable to the testing ones.

III.6.1 Implementation of the performance interceptors

Performance interceptors consist of performance monitoring code that is automatically

integrated within the service code on the basis of the performance idioms added on the

transitions of testing model STSt as annotations. They are implemented using the Enter-

prise Java Bean (EJB) interceptors, since EJB interceptors allow the use of separate com-

mon code for logging, auditing, performance monitoring, and security checks from business

methods [108, 109]. The approach in this chapter considers interceptors for performance

monitoring, and is based on the simple idea of using them to monitor the execution time

of a single operation from its call to the return of its results. As discussed in [3, 109, 110],

a solution based on interceptors is a suitable approach to monitor the service performance.

38

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

1 <STS>
2 <location>1</ location>
3 . . .
4 <location>4</ location>
5 . . .
6 <location>7</ location>
7 . . .
8 <location>8</ location>
9 <initialLocation>1</ initialLocation>

10 <locationVars/>
11 <interactionVars>
12 <interactionVar>
13 <name>amount</name>
14 <type>Double</type>
15 </ interactionVar>
16 <interactionVar>
17 <name>token</name>
18 <type>St r ing</type>
19 </ interactionVar>
20 . . .
21 </ interactionVars>
22 <messages>
23 <message>
24 <name>DebitAdd</name>
25 <kind>input</kind>
26 <param>amount</param>
27 <param>token</param>
28 </message>
29 . . .
30 </messages>
31 <switches>
32 <switch>
33 <from>4</from>
34 <to>7</to>
35 <message>DebitAdd</message>
36 <kind>input</kind>
37 <restrict ion>
38 amount> ; 0 && ; token != n u l l
39 </ restrict ion>
40 <update/>
41 <idiom>s t a r t c l o c k (t3) ;</idiom>
42 </switch>
43 <switch>
44 <from>7</from>
45 <to>8</to>
46 <message>DebitAdd</message>
47 <kind>output</kind>
48 <restrict ion />
49 <update/>
50 <idiom>s t opc l o ck (t3) ;</idiom>
51 </switch>
52 . . .
53 </switches>
54 </STS>

Figure III.9: A fragment of the XML encoding for STSt in Figure III.5

39

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

1 <STS>
2 <location>1</ location>
3 <location>2</ location>
4 <location>3</ location>
5 <location>4</ location>
6 <location>5</ location>
7 <location>5a</ location>
8 . . .
9 <location>6</ location>

10 <location>7</ location>
11 <location>7a</ location>
12 . . .
13 <location>8</ location>
14 <initialLocation>1</ initialLocation>
15 <locationVars/>
16 <interactionVars>
17 <interactionVar>
18 <name>amount</name>
19 <type>Double</type>
20 </ interactionVar>
21 <interactionVar>
22 <name>token</name>
23 <type>St r ing</type>
24 </ interactionVar>
25 . . .
26 </ interactionVars>
27 <messages>
28 <message>
29 <name>DebitAdd</name>
30 <kind>input</kind>
31 <param>amount</param>
32 <param>token</param>
33 </message>
34 . . .
35 </messages>
36 <switches>
37 <switch>
38 <from>7</from>
39 <to>7a</to>
40 <message>DebitAdd</message>
41 <kind>input</kind>
42 <restrict ion>
43 amount> ; 0 && ; token != n u l l
44 </ restrict ion>
45 <update/>
46 <probability>1</probability>
47 <distribution>delay in [0ms , 4ms]</distribution>
48 </switch>
49 . . .
50 </switches>
51 </STS>

Figure III.10: A fragment of the XML encoding for STSs in Figure III.6

The use of interceptors in fact guarantees a level of synchronization with the real code

execution, providing a good approach for a close evaluation of execution and service times.

40

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

1 @Interceptor s (ExecutionTimeMeasure . class)
2 public St r ing DebitAdd (Double amount , S t r ing token) {
3 // Your code here
4

5 }

Figure III.11: An example of performance interceptor annotation

In this chapter, we assume service-specific XML serialization/de-serialization and parsing

times to be approximated with high accuracy [7, 106] and to not influence the quality of

our methodology. Therefore, we do not take them into account neither in testing nor in

simulation.

Our approach can be summarized as follows. After the STS-based model for testing

STSt has been released, our solution iterates through the XML file encoding it, search-

ing for idioms startclock. For each idiom, we automatically annotate the relevant service

operation with annotation @Interceptors that specifies the interceptor to be used for per-

formance monitoring. Then, each call to the annotated operation triggers the execution

of the interceptor (i.e., the method/Java class within the interceptor and annotated with

@Aroundinvoke). As an example, consider STSt in Figure III.5. The model specifies id-

ioms startclock and stopclock, for operations Signon, DebitAdd, and CreditAdd. Using the

idioms, we extend all operations with annotation @Interceptors, as showed in Figure III.11

for operation DebitAdd. We note that the annotation forces the execution of class Execu-

tionTimeMeasure implementing the interceptor shown in Figure III.12 at each operation

call. We also note that the same annotation and interceptor are used for operations Signon

and CreditAdd. Interceptor ExecutionTimeMeasure includes method ServiceTime, which

is annotated with @AroundInvoke and handles the operation time monitoring. As an ex-

ample, upon a call to DebitAdd in Figure III.12, the interceptor is executed and first starts

the clock (line 4). Then, it calls method proceed (line 7) that monitors the service oper-

ation until the result of the operation is returned. After the return of method proceed,

the instruction in clause finally is executed to stop the clock and compute the operation

(DebitAdd in our example) time (line 12).

The proposed approach is generic, that is, it can be used for programming languages

other than Java, and is extensible, meaning that additional interceptors can be integrated

by simply extending the set of idioms.

III.6.2 Implementation of the simulation scripts generator

Simulation scripts provide an estimate of service performance. They are automatically

produced by a script generator that takes as input an STSs and generates as output a

Java-based simulation script. Figure III.13 describes the algorithm of our script generator

that works as follows. First, as discussed in Section III.5.2, it unrolls all loops in STSs

using threshold pt (function loop unroll in main). All loops are converted into a finite

41

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

1 public class ExecutionTimeMeasure {
2 @AroundInvoke
3 public Object ServiceTime (Invocat ionContext ctx) throws Exception {
4 long s t a r t c l o c k = System . cur rentT imeMi l l i s () ;
5 Object [] parameters = ctx . getParameters () ;
6 try {
7 return ctx . proceed () ;
8 } catch (Exception e) {
9 l o g g e r . warning (” Error c a l l i n g ctx . proceed method”) ;

10 return null ;
11 } f ina l ly {
12 long s t opc l o ck = System . cur r entT imeMi l l i s () − s t a r t c l o c k ;
13 }
14 }
15 }

Figure III.12: An example of performance interceptor class

sequence of switches, all having an alternative corresponding to the backward “stay-in-

loop” selection, but with decreasing probability. Then, the generation process visits the

XML tree encoding of the “unrolled” STSs, using a foreach cycle, to set flag Not visited

for all transitions of the STS-based model. Subsequently, it calls procedure process state

that receives as input initial state s1, and recursively visits each state of the model. For

each state s, it checks if s has children (|children(s)|≥1). If that is the case, procedure

add delay is called with s as input. According to the delay distribution and probabil-

ity annotations in STSs, procedure add delay performs the script code generation for

all transitions between s and its children by i) producing the delay distribution and ii)

generating the code that simulates the service flow using probabilities. To this aim, the

procedure searches in the XML file of STSs all tags switch such that the source state is

the state given as input to add delay. If current state s has a single child, procedure

add delay generates the script code according to the delay distribution of the STS transi-

tion between s and its child, using method generate delay. As an example, let us consider

transition (7,7a) in Figure III.6 labeled with distr=“delay in [0ms,4ms]”. As presented in

Figure III.14, method generate delay adds the instruction Delay(Uniform(0,4)) to the

simulation script (line 6), where function Uniform denotes a uniform distribution in the

specified interval. We note that, at simulation time, the delay is chosen as a random value

in interval [0,4].

When state s has more than one child, procedure generate prob delay is called

with the set of transitions originating at s as input. generate prob delay first adds

an instruction that generates a random number to select the next execution step (i.e.,

one of the multiple transitions); then, it generates a switch case conditional statement

modeling all transitions, using the probabilities in STSs. For each of such transitions an

instruction Delay is added using generate delay and the corresponding delay distribu-

tion in STSs. As an example, let us consider transitions (7b,7c) and (7b,7d) in Figure III.6

labeled with p=0.1 and p=0.9, respectively. As presented in Figure III.14, method gener-

42

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

1 INPUT : STSs
2 OUTPUT : S imulat ion s c r i p t
3

4 MAIN
5 Let e=(si ,sj) be a t r a n s i t i o n between s t a t e s si and sj and pt the

p r o b a b i l i t y th r e sho ld

6 STSs = <S,s1,V,I,A,
prob,distr−−−−−−→>=loop unroll(STSs ,pt)

7 foreach ei∈
prob,distr−−−−−−→ do

8 f l a g (ei) :=”Not v i s i t e d ”
9 process state(s1)

10

11 PROCESS STATE(s)
12 if | c h i l d r e n (s) | ≥1
13 add delay(s)
14 foreach si∈children(s) do
15 process state(si)
16

17 ADD DELAY(s)
18 if | c h i l d r e n (s) |=1
19 if e.distr 6=null with e=(s , c h i l d r e n (s))
20 generate delay({e})
21 else
22 generate prob delay ({ (s ,si) |si∈ c h i l d r e n (s) })

Figure III.13: Algorithm for simulation script generation

ate prob delay first adds a random number generator (line 9) and then a switch case

statement following the probabilities and delay distributions in the model (lines 10–19).

The script generation ends when all transitions have been visited using generate delay

and generate prob delay (i.e., flag set to Visited for all transitions).

Figure III.14 shows the Java-based simulation script that computes the execution time

for operation DebitAdd in Figure III.6, generated by applying the algorithm in Figure III.13

to the implementation states of DebitAdd. Method EvaluateServiceTime first starts a

counter (line 2) and calls for each state with a single transition instruction Delay. This

operation i) randomly selects a waiting time (ms) using the probability distribution given

as input, and ii) implements a Java thread that sleeps for the generated waiting time.

A switch case statement is then generated for each state with more than one outgoing

transitions (lines 14–31). Instructions in lines 3 and 13 permit to generate a random

number that is used to select a given transition (conditional statement) and, in turn, the

delay associated with this transition. At the end of the simulation the counter contains

the sum of the delays generated for each transition. The value of the variable SimulationT

is the execution time computed by simulation (line 33).

Similarly, Figure III.14 shows the simulation script generated for operation DebitAdd

in Figure III.6.

We note that our solutions for performance interceptor generation and integration and

for simulation script generation are developed as part of our framework and also proposed

43

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

1 public long EvaluateServiceTime () {
2 long SimulationT =0;
3 D i s t r i b u t i o n event = new GenerateRandomEvent () ;
4

5 // t r a n s i t i o n (7 ,7 a)
6 de layva lue = Uniform (0 , 4) ;
7 Delay (de layva lue) ;
8 SimulationT += de layva lue
9 // t r a n s i t i o n (7a ,7 b)

10 de layva lue = Uniform (1 , 4) ;
11 Delay (de layva lue) ;
12 SimulationT += de layva lue
13 Double pevent = event . nextRandom () ;
14 switch (pevent) {
15 // t r a n s i t i o n (7b ,7 c) and (7c , 7)
16 case pevent <= 0 . 1 :
17 de layva lue = Uniform (1 , 1) ;
18 Delay (de layva lue) ;
19 SimulationT += de layva lue
20 de layva lue = Uniform (1 , 1) ;
21 Delay (de layva lue) ;
22 SimulationT += de layva lue
23 // t r a n s i t i o n (7b ,7 d) and (7d , 7)
24 case pevent > 0 . 1 :
25 de layva lue = Uniform (4 , 7) ;
26 Delay (de layva lue) ;
27 SimulationT += de layva lue
28 de layva lue = Uniform (2 , 9) ;
29 Delay (de layva lue) ;
30 SimulationT += de layva lue
31 }
32

33 return SimulationT ;
34 }

Figure III.14: Java-based simulation script for operation DebitAdd

as plugin to be integrated within existing web service development tools Netbeans1 and

Eclipse2. The framework which integrates the functionalities presented in this section and

the derived plugins are shown in Section III.6.3.

III.6.3 Implementation of our solutions

III.6.3.1 Framework STS2Java

The solutions presented in this chapter are proposed as part of our framework called

“STS2Java” [111]. This framework provides the functionalities implemented in Section

III.6.1 and SectionIII.6.2 [112] such as:

• Automatic integration of the performance interceptors within the service code based

on the STS-based models for testing;

1www.netbeans.org
2www.eclipse.org

44

www.netbeans.org
www.eclipse.org

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

1 public long EvaluateServiceTime () {
2 long SimulationT =0;
3 D i s t r i b u t i o n event = new GenerateRandomEvent () ;
4

5 // t r a n s i t i o n (5 ,5 a)
6 de layva lue = Uniform (0 , 4) ;
7 Delay (de layva lue) ;
8 SimulationT += de layva lue
9 // t r a n s i t i o n (5a ,5 b)

10 de layva lue = Uniform (1 , 4) ;
11 Delay (de layva lue) ;
12 SimulationT += de layva lue
13 Double pevent = event . nextRandom () ;
14 switch (pevent) {
15 // t r a n s i t i o n (5b ,5 c) and (5c , 5)
16 case pevent <= 0 . 1 :
17 de layva lue = Uniform (1 , 1) ;
18 Delay (de layva lue) ;
19 SimulationT += de layva lue
20 de layva lue = Uniform (1 , 1) ;
21 Delay (de layva lue) ;
22 SimulationT += de layva lue
23 // t r a n s i t i o n (5b ,5 d) and (5d , 5)
24 case pevent > 0 . 1 :
25 de layva lue = Uniform (4 , 7) ;
26 Delay (de layva lue) ;
27 SimulationT += de layva lue
28 de layva lue = Uniform (2 , 9) ;
29 Delay (de layva lue) ;
30 SimulationT += de layva lue
31 }
32

33 return SimulationT ;
34 }

Figure III.15: Java-based simulation script for operation CreditAdd

• Automatic generation of the performance interceptor code;

• Automatic simulation script generation based on the STS-based models for simulation.

The framework is developed in Java and allows to generate a Java-based code for the

performance idioms and the simulation scripts. Figure III.16 shows the interface of our

framework STS2Java. Button “Open STS Model” allows to choose the STS-based models

and Button “Generate Code” allows to generate the performance interceptors code from

the testing model of service encoded in XML. Button “Generate Script” allows to generate

the simulation script from the model of service extended for simulation. The functionalities

associated to the remaining buttons visible on this interface are under development and

will allow to add more features to our framework.

The framework is provided as plugin for Eclipse and Netbeans to support developers

and expert users in the generation of ready-to-use Java-based simulation scripts, starting

from an XML-based encoding of the STS-based model of the services.

45

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Figure III.16: Interface of the framework STS2Java

III.6.3.2 Simulation Plugin STS2Java for Eclipse

This section presents the plugin STS2Java for simulation script generation developed for

Eclipse IDE.

Eclipse plugin STS2Java (available at http://sesar.dti.unimi.it/sts2java/) helps

developers and expert users in assessing the behavior of a service at design time, via sim-

ulation. It is compatible with Eclipse 3.4 and JavaSE-1.6, and implements two main

components:

• a parser that checks the validity of the XML encoding of the STS-based simulation

model before the generation of the script;

• a generator that generates a Java-based simulation script from a valid STS-based

model for simulation.

After the plugin STS2Java has been installed following a traditional Eclipse instal-

lation procedure, entry “STS2Java” is added to the Eclipse main menu. Upon starting

STS2Java by clicking on the new entry in the menu, the interface in Figure III.17 is shown

to the user. The user can then choose the STS-based model for simulation representing the

service to be evaluated, and click on button “Next” to reach the interface for simulation

script generation shown in Figure III.18. At this point, the user clicks on button “Gener-

ate script” to generate the simulation script and on button “Save” to save the script for

46

http://sesar.dti.unimi.it/sts2java/

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Figure III.17: Interface for STS-based simulation model selection

Figure III.18: Interface for simulation script generation

execution. Figure III.18 shows a fragment of a simulation script (i.e., Method Evaluate-

ServiceTime) that has been generated by our plugin. We note that the generated script

is integrated within Java class STS2Java and can be executed within Eclipse IDE or any

Java IDE to show the service performance and its trend of execution times.

III.6.3.3 Simulation plugin STS2Java for Netbeans

Similarly to the previous plugin, we provide the same plugin STS2Java for Netbeans IDE.

The plugin provides the same functionalities and allows to select the XML encoding of the

service models extended for simulation to generate the simulation scripts used to estimate

the execution time of the service. It is compatible with Netbeans 7.2.1 and JavaSE-1.6,

and is composed of an XML parser and a generator.

47

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Figure III.19: Interface of the Plugin STS2Java for Netbeans

Figure III.20: Interface for STS-based simulation model selection

After the plugin STS2Java installation in Netbeans, a new entry “STS2Java” is added

as submenu of the Netbeans menu ”Tools”. After clicking on this entry, the main interface

of our plugin appears as shown in Figure III.19. After a click on button “Next”, the

interface in Figure III.20 allows to select the service model for simulation, which is used at

the next step to generate the simulation script (Figure III.21), and save it for execution.

48

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Figure III.21: Interface for simulation script generation

III.7 Experimental evaluation of our methodology

In this section, we experimentally evaluate our simulation approach using the IFX

Reverse ATM service (IFX service below) presented in Section III.4. We set up an experi-

mental environment that consists of:

• a workstation (server) containing Apache Tomcat 7 integrated with Axis 2 and a

relational database Apache Derby DB 10.9, and equipped with two Intel Core 3 GHz,

4GB RAM, and 200GB of disc storage running Linux Ubuntu 12.04 server;

• a workstation (client) containing SOAP testing tool soapUI (http://www.soapui.

org/), and equipped with two Intel Core 2.66 GHz and 4GB of RAM running Mac

OS 10.6.8.

Our IFX service was deployed on the server and its performance is tested and simulated

using our methodology and the client software in Section III.7.1. The testing and simulation

results are compared in Section III.7.2.

III.7.1 Testing and simulation results

We present in the following the performance results obtained for operations SignOn, Deb-

itAdd, and CreditAdd using the following three test case scenarios:

• Test case 1 (tc1): The operation SignOn is invoked with valid credentials, or invalid

credentials;

49

http://www.soapui.org/
http://www.soapui.org/

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

 8
 16
 24
 32

 0 20 40 60 80 100 120 140

T
im

e
 (

m
s
)â

��

Request IDâ��

SignOn

(a) 5 rps

 8
 16
 24
 32

 0 20 40 60 80 100 120 140

T
im

e
 (

m
s
)â

��

Request IDâ��

SignOn

(b) 25 rps

 0
 8

 16
 24
 32
 40

 0 20 40 60 80 100 120 140

T
im

e
 (

m
s
)â

��

Request IDâ��

SignOn

(c) 100 rps

Figure III.22: Test-based execution times for tc1 varying rps

• Test case 2 (tc2): The operation CreditAdd is invoked with a positive amount that

does not exceed the maximum allowed amount, or a positive amount that exceeds it;

• Test case 3 (tc3): DebitAdd is invoked with a positive amount that does not exceed

the account balance and the maximum allowed amount, or a positive amount that

exceeds at least one of them.

Each test case and simulation consists of 1500 requests where we assume that we have a

probability equal to 0.1 to have an amount that exceeds the limits and equal to 0.9 for the

case where the amount does not exceed the maximum allowed. For clarity, the Figures in

this section present the execution time of the first 150 requests, while the discussion refers

to the whole set of 1500 requests.

We first used soapUI to send different loads of requests and test the service operation

performance at server side using our interceptors. In particular, based on real data provided

by Rototype (http://www.rototype.com/) [113], an important player in the area of self-

service kiosks, we selected a baseline load of 5 requests per second (rps), and increased it

to 25rps and 100rps to monitor the behavior of the service in case of stressful conditions.

Figures III.22, III.23 and III.24 show the results of the execution of tc1 (operation SignOn),

tc2 (operation CreditAdd), and tc3 (operation DebitAdd), respectively. The execution times

computed for tc1 are between 3.19ms and 22.61ms for 5rps, 3.25ms and 23.06ms for 25rps,

and increase up to 37.88ms for 100rps. The execution times computed for tc2 are between

3.02ms and 24.2ms for 5rps, 3.03ms and 25.11ms for 25rps, and increase up to 43.31ms

for 100rps. The execution times computed for tc3 are between 3ms and 23.7ms for 5rps,

3.07ms and 24.78ms for 25rps, and increase up to 41.67ms for 100rps. We note that the

peaks retrieved for 100rps are due to exceeding thread pools on the server side. We also

50

http://www.rototype.com/

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

 8
 16
 24
 32
 40

 0 20 40 60 80 100 120 140

T
im

e
 (

m
s
)â

��

Request IDâ��

CreditAdd

(a) 5 rps

 8
 16
 24
 32
 40

 0 20 40 60 80 100 120 140

T
im

e
 (

m
s
)â

��

Request IDâ��

CreditAdd

(b) 25 rps

 8
 16
 24
 32
 40

 0 20 40 60 80 100 120 140

T
im

e
 (

m
s
)â

��

Request IDâ��

CreditAdd

(c) 100 rps

Figure III.23: Test-based execution times for tc2 varying rps

 0
 8

 16
 24
 32
 40

 0 20 40 60 80 100 120 140

T
im

e
 (

m
s
)â

��

Request IDâ��

DebitAdd

(a) 5 rps

 0
 8

 16
 24
 32
 40

 0 20 40 60 80 100 120 140

T
im

e
 (

m
s
)â

��

Request IDâ��

DebitAdd

(b) 25 rps

 0
 8

 16
 24
 32
 40

 0 20 40 60 80 100 120 140

T
im

e
 (

m
s
)â

��

Request IDâ��

DebitAdd

(c) 100 rps

Figure III.24: Test-based execution times for tc3 varying rps

note that execution times less than 10ms usually correspond to execution failures, that is,

an amount exceeding the limits is given as input to the operations.

We then used the simulation scripts generated for the different operations. For opera-

tions DebitAdd and CreditAdd, Figures III.14 and III.15 show respectively the simulation

scripts used to simulate the IFX service performance. The scripts have been generated

following the baseline load (5rps) and their results compared with the test results obtained

for the test cases tc1, tc2 and tc3 for the same load. We note that probabilities associated

51

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

Table III.2: Mean and standard deviation of execution times

Testing results Simulation results Simulation results
Test Case (full-knowledge) (partial-knowledge)

Mean STD Mean STD Mean of means Mean of STDs

tc1 10.09 ms 1.373 10.72 ms 1.75 11.09 ms 2.54
tc2 10.97 ms 1.985 11.93 ms 2.43 13.91 ms 3.30
tc3 11.25 ms 1.923 11.97 ms 2.2 13.46 ms 3.14

with transitions in the STS-based model for simulation STSs are derived by the frequen-

cies of the service execution paths used in the testing phase, while delays of internal tasks

are taken from uniform distributions and consider the total operation execution time ob-

tained by testing. Uniform distributions have been used just to evaluate our methodology,

while they can be substituted by more complex, even empirical, distributions. To make

our simulation independent by a specific set of uniform delay distributions, we produced

100 simulation scripts for SignOn, 100 for CreditAdd and 100 for DebitAdd, where for each

script the delay distributions in STSs are produced as follows. Given the states of a single

operation implementation in STSs (e.g., states 7, 7a, 7b, 7c in Figure III.6) and test-based

lower lb and upper ub bounds of the execution times for this operation, we randomly asso-

ciated a uniform delay distribution with each of the corresponding transitions, such that,

for each linearly independent path (e.g., path 7-7a-7b-7c-7 in Figure III.6), the sum of

the lower (upper, resp.) bounds of all distributions in the path is equal to lb (ub, resp.)

obtained by testing.

III.7.2 Comparison of testing and simulation results

We evaluated the quality of our simulation approach by comparing testing and simulation

results on the basis of the amount of knowledge available on the operation execution times.

First, a full-knowledge scenario has been assumed, where the total operation execution

times and the internal distributions of delays are known and used in the generation of a

single simulation script for SignOn, CreditAdd and DebitAdd ; then, a partial-knowledge

scenario has been considered, where only lb and ub are known and 100 simulation scripts

randomly generated for SignOn, CreditAdd and DebitAdd. The full knowledge scenario

provides a baseline for the partial knowledge one, which is closer to the “educated guess”

of an expert user.

Table III.2 summarizes the mean and standard deviation of the execution times gener-

ated by testing and by simulation in the full-knowledge scenario, and the mean of the means

and standard deviations generated by the 100 simulation scripts in the partial-knowledge

scenario. To better evaluate the quality of our simulation results, we statistically compared

the similarity between testing and simulation distributions using a Chi-square test [114].

Chi-square estimates the degree of confidence with which we can claim that two data sam-

ples derive from the same distribution. The χ2 distance is computed for our testing dtest

52

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

and simulation dsim data using the standard formula:

Dχ2(dtest, dsim)= 1
n
(
n∑
i=1

[
(dtest(i)−dsim(i))2

dsim(i)

]
).

Using this formula and table Chi-square, our experiments evaluated the probability

that the distributions behind testing and simulation are the same, with 8 degrees of free-

dom. Degrees of freedom have been estimated using cardinality value of the test data. In

the full-knowledge scenario, this probability is higher than 0.96 for the scripts generated

from STSs in Figure III.6. In the partial-knowledge scenario, the probability is higher than

0.91 for all simulation scripts.

Our experiments show that simulation scripts can represent a suitable solution for

an early assessment of service performance, when only coarse-grained information on the

total execution time of each service operation is available. Our approach can then be used

at design and development time to evaluate the potential impact of a service on system

performance, and at deployment and selection time to support negotiation and evaluation

of performance SLAs between the service and its customers as discussed in Chapter V.

III.8 Conclusions

This chapter presented our methodology based on simulation to preliminary assess

web service performance. Differently from the previous works presented in the literature

such as [4, 66, 67, 37, 70, 73, 74, 15], the proposed solution models services as STSs, much

in the same line with some model-based testing works [63, 87], and extends them to gain

an early understanding of the service performance. Our methodology builds on coarse-

grained measurements of operation execution times to generate a simulation script that

well approximate the results obtained by real testing. We experimentally evaluated our

approach by comparing testing and simulation results on an IFX Reverse ATM service and

we obtained good estimation of the execution times using the simulation scripts generated

from the STS-based model extended for simulation. The proposed solution represents a

significant step towards the definition of a more general approach that permits to generate

a simulation script when the service code and the results of real service executions are not

yet available (zero-knowledge scenario). In the next chapter (Chapter IV), we present a

solution for the early estimation of service performance assuming a zero-knowledge scenario.

53

III. EARLY ASSESSMENT OF SERVICE PERFORMANCE: FULL-KNOWLEDGE AND
PARTIAL-KNOWLEDGE SCENARIOS

54

Chapter IV

Early Assessment of Service

Performance: Zero-knowledge

Scenario

Contents

IV.1 Introduction . 56

IV.2 Working Assumptions and our Framework . 57

IV.2.1 Working Assumptions . 57

IV.2.2 Performance Evaluation Framework . 57

IV.3 Operation Complexity Assessment . 59

IV.3.1 Building Blocks . 59

IV.3.2 Operation Complexity (OC) . 61

IV.3.3 Example of complexity evaluation . 62

IV.4 Execution Time Estimation . 64

IV.4.1 Parsing and Construction Profile Tables 65

IV.4.2 Execution Time Interval Estimation . 66

IV.4.3 Execution Time Adjustment: Data-Intensive Factor 68

IV.4.4 Generic algorithm for simulation script generation 68

IV.4.5 Example of evaluation of the complexity classes parameters 69

IV.5 Experimental Results and Validation of our approach 71

IV.6 Conclusions . 75

I n this chapter, we present our approach that allows service developers and software

adopters to evaluate service performance in a zero-knowledge scenario, where neither the

service code nor (test-based) information on service execution times are available. Our

approach is built on using expert knowledge to estimate the execution time of each service

operation and from this, deriving the overall service performance. To achieve this, we first

evaluate the complexity of each operation based upon the XML encoding of its input and

output parameters, and the Web Service Description Language (WSDL) interface of the

service. We then use profile tables providing the time overhead needed to parse and build

SOAP messages with different depths and cardinalities, and the performance (retrieved by

55

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

testing) of some reference service operations to estimate the operation execution times. We

finally experimentally evaluate our approach by using the measured operation execution

times to simulate the service performance.

IV.1 Introduction

In the context of early assessment of service performance, it has become crucial to de-

velop techniques capable of using educated guesses of service performance at design time [1],

since poor performance, discovered after service deployment, can have catastrophic impli-

cations. These techniques will allow designers to make a priori evaluations of the impact a

given service might have when integrated in their business process. Although model-driven

approaches may support some degree of performance analysis during development [2, 3],

the problem is exacerbated by the fact that service code may be not available to or under

the control of the party responsible for the evaluation.

Existing approaches to performance evaluation (e.g., [4, 5, 6]) assume the availability of

service code or at least of reliable information (e.g., collected by testing) on service behav-

ior. As a consequence, these approaches do not support design-time evaluation of service

performance. Our work was inspired by existing estimation models for forecasting the cost,

size, resource effort, duration or performance of software projects [8, 9, 10, 11, 12, 115, 116].

These approaches are mainly based on expert analysis, and rely on analogy and statistical

methods using historical data. We refer to the scenario in which a priori execution data

cannot be either extracted or derived from the testing data as zero-knowledge scenario,

where performance evaluation relies on guessing of service behavior and characteristics. In

Chapter III, we proposed a model-based approach to evaluate service performance when

coarse-grained information on the total execution time interval of each service operation is

produced by real testing [112].

In this chapter, we extend the previous solution proposed in order to consider the

performance evaluation in the zero-knowledge scenario. In particular, our approach is

aimed at simulating service performance when no information on real service/operation

execution time is available. As we have said, our approach estimates a range of operation

execution times by using expert knowledge, and uses this information to simulate the

performance of a given service. In particular, our method first evaluates the complexity

of each operation using the XML encoding of its input and output parameters and the

WSDL interface of the service. The estimated service complexity together with i) profile

tables providing the time overhead needed to parse and build SOAP messages with different

depths and cardinalities, and ii) the performance of some reference service operations, are

used to generate execution time interval estimations for each operation. The produced

estimations are then fed into the solution in Chapter III to evaluate service performance.

An experimental evaluation is provided along two lines. First, we validate our methodology

computing operation complexity using some services crawled on the Internet. Second, we

56

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

validate our entire approach to performance simulation using many services developed

in-house.

IV.2 Working Assumptions and our Framework

This section presents our working assumptions and an overview of our performance

evaluation framework.

IV.2.1 Working Assumptions

Our work is based on the following three working assumptions about the information

available for performance evaluation as follows.

Framework knowledge. We assume that no real (e.g., measured by testing) information

on service performance is available. The framework has access to the WSDL interface

of the service, which contains descriptions of service operations, and to the Web Service

Conversation Language (WSCL) document specifying the communications between the

client and the service in the form of the service operation workflow.

Expert knowledge. Along with many existing estimation models (e.g., COCOMO [9]),

our framework relies on expert knowledge to tune the simulation results and improve their

accuracy. Our framework in fact is targeted at expert users (e.g., service developers, soft-

ware adopters), who can provide some information on the service under evaluation, as

for instance, an estimation of the amount of accesses to internal/external resources (e.g.,

database, files) required by service operations, and the volume of requested input/out-

put tasks. We note that the more precise the expert knowledge, the more accurate the

simulation results.

Service model. As described in Chapter III, we assume a model of the service under

evaluation as a state automaton that specifies, for each operation, the execution flows with

the quickest and longest execution time. We note that the execution time measured in our

work is the time needed to serve a request at the server side.

IV.2.2 Performance Evaluation Framework

In addition to our zero-knowledge scenario, evaluation of service performance may involve

other scenarios used in Chapter III, called full-knowledge and partial-knowledge, depending

on the amount of performance information about the real service used in the evaluation

process [112]. In the zero-knowledge scenario, no testing results are considered; only sim-

ulation results are used for performance evaluation.

Our framework for the zero-knowledge scenario aims to provide an estimate of service

performance by simulation at design time. Our framework defines the relationship between

execution time of service operations and parsing and construction times of SOAP messages.

57

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Complexity
Evaluator

Simulation Script
Generator

Service
Model

ExecutionResults

Input/output
SOAP Messages

Profile Tables

Service Model
Annotated with

Probabilities and
Delay Distributions

Execution Time
Interval Estimator

Monte Carlo
Procedure for

Execution Time
Splitting

WSDL

Execution Time Generator (ETG)

Reference
Web Service
Operations

Performance Simulator (PS)

Figure IV.1: Performance evaluation framework

It relies on the WSDL interface, the operation input/output, and the model of the service.

It classifies service operations by classes of complexity on the basis of some reference

operations.

Figure IV.1 shows our performance evaluation framework that consists of two main

parts:

• Execution Time Generator (ETG) estimates the interval of execution times for each

service operation;

• Performance Simulator (PS) receives as input the interval of execution times and

returns as output the simulation results.

We note that the part PS implements the framework proposed in the previous chapter

(Chapter III), which generates simulation scripts for performance simulation in a partial-

knowledge scenario.

The part ETG which is the main contribution of this chapter extends the solution in

Chapter III to the zero-knowledge scenario, that is, by providing PS with reliable simula-

tion information in place of test results. In particular, Complexity Evaluator receives as

input the WSDL interface and the model of the service to determine the class of complexity

of each service operation to be simulated (Section IV.3). Based on the class of complexity,

Execution Time Interval Estimator uses the structure of the input/output SOAP messages

of the operation, a reference service operation (i.e., an operation at the same class of com-

plexity over which an extensive testing has been conducted), and profile tables measuring

SOAP message parsing and construction times, to estimate the execution time interval of

the operation (Section IV.4.2). A Monte Carlo procedure [117, 118] is then applied to the

produced intervals to generate different random extractions of the delay distributions. The

delay distributions model the distribution of the execution times among the tasks of an op-

eration and are used, together with task execution probabilities, to annotate the transitions

58

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

in the service model representing such tasks.1 The service model annotated with probabil-

ities and delay distributions in PS represents the simulation model used to evaluate service

performance, and is given as input to Simulation Script Generator. Simulation Script

Generator generates simulation scripts, which are executed (Execution in Figure IV.1) to

predict the behavior of the operation (Result in Figure IV.1). The simulation results are

finally compared with real testing results to evaluate their accuracy.

IV.3 Operation Complexity Assessment

This section presents our approach to the evaluation of service operation complexity,

which is then used to estimate the interval of execution times and in turn simulate operation

performance in the zero-knowledge scenario.

IV.3.1 Building Blocks

Complexity assessment is performed for each operation according to the following building

blocks: i) the type of operation input/output parameters in the WSDL interface and ii)

the access to internal and/or external resources required by the operation (expert guess).

IV.3.1.1 Operation Types Processing Complexity (OTPC)

It considers the types of the input/output parameters used by the operation under eval-

uation. To compute the operation types processing complexity OTPC, the primitive and

complex datatypes are classified into three classes based on their processing time:

i) easy for the logic, binary, and number datatypes,

ii) medium for date and time datatypes,

iii) difficult for text and XML complex types.

Table IV.1 shows our classification of the datatypes.

A weight is associated with each class according to the datatype processing times we

retrieved by testing: 1 for the easy class, 2 for the medium class, and 4 for the difficult

class. OTPC is defined as follows.

Definition IV.3.1 (OTPC) Given the WSDL of the service, OTPC of operation oi, de-

noted OTPC(oi), is the weighted sum of the number of input/output datatypes used by oi

and is computed as

OTPC(oi) = Ne + 2 ∗Nm + 4 ∗Nd (IV.1)

1 In our previous solution, we used Symbolic Transition System (STS) to describe the behavior and evolution of a
service [16], however our solution is not limited to STS-based models and is suitable for any service modeling approach that
allows to enrich state transitions with annotations.

59

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Table IV.1: Classification of XML datatypes
Class Easy Medium Difficult

weight=1 weight=2 weight=4

boolean date-datetime anyURI-language
base64Binary-hexBinary duration-gDay normalizedString

decimal-double-float gMonth string-token
integer-negativeInteger gMonthDay Name-NCName

Datatypes nonNegativeInteger gYear NOTATION-QName
positiveInteger gYearMonth ENTITIES-ENTITY

nonPositiveInteger time ID-IDREF-IDREFS
byte-unsignedByte NMTOKEN

int-unsignedInt NMTOKENS
long-unsignedLong

short-unsignedShort

Table IV.2: Scores associated to datatypes complexity
Score 0 1 2 3 4 5

OTPC 0 1-12 13-32 33-64 65-100 101+

where Ne, Nm, and Nd are the number of input/output datatypes in the easy, medium, and

difficult classes, respectively.

We note that there is a non-linear relationship between OTPC and its impact on

the overall complexity of a service operation. To reduce errors due to our estimations,

Table IV.2 maps OTCP onto the ordinal scale 0 to 5 of scores, ranking the operations from

the least to the most complex. We denote with SOTPC(oi), the score of operation oi.

IV.3.1.2 Resource Complexity (RC)

Operation complexity is affected by the amount of resources (i.e., computational resources,

information/components) accessed during operation execution, such as databases, files/-

documents, and applications/services. We distinguish between internal and external re-

sources, where internal resources are inside the perimeter of the service under evaluation,

while external resources are outside that perimeter. Resource Complexity (RC) is com-

puted by a weighted sum of the number of internal/external accesses to resources. We

assign 1 unit as weight for the internal resources (e.g., access to a local database) and 5

units for each access to the external resources accessible through the network (e.g., call to

another web service). The choice of the weights is based on experimental results showing

that accesses to local resources are around 5 times faster than accesses to external re-

sources of the same type. The number of internal/external accesses is an estimation given

by our expert users. In practice, expert users might give more detailed estimates of the

amount of internal/external accesses distinguishing them by type (e.g., number of accesses

to databases, files, services); in this case, different weights should be defined for different

types of accesses. We assume an internal/external coarse-grained classification to reduce

the impact of expert knowledge on our approach. RC is defined as follows.

60

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Table IV.3: Scores associated to resources complexity
Score 0 1 2 3 4 5

RC 0 1-6 7-15 16-25 26-40 41+

Definition IV.3.2 (RC) Given the WSDL of the service, RC of operation oi, denoted

RC(oi), is the weighted sum of the number of accesses to internal and external resources

required by oi and is computed as

RC(oi) = Nint + 5 ∗Next (IV.2)

where Nint and Next are the number of accesses to internal and external resources, respec-

tively.

Similarly to OTPC, Table IV.3 maps each RC on scores between 0 and 5. We denote

with SRC(oi), the score of operation oi.

IV.3.2 Operation Complexity (OC)

Operation Complexity (OC) is the sum of scores SOTPC and SRC associated with OTPC

(Definition IV.3.1) and RC (Definition IV.3.2), and takes values in [0,10]. Based on OC, we

calculate a class of complexity for the operation and produce a complexity factor, denoted

γ, used to predict the interval of execution times for such operation. OC is defined as

follows.

Definition IV.3.3 (OC) OC of an operation oi, denoted OC(oi), estimates the overall

complexity of oi, and is calculated as

OC(oi) = SOTPC(oi) + SRC(oi) (IV.3)

where SOTPC(oi) and SRC(oi) are the scores assigned to OTCP (oi) and RC(oi) in Equa-

tions (IV.1) and (IV.2), respectively.

OC is used to assign an operation to a class of complexity in {Basic,Middle,High,Extra

High}. Table IV.4 shows an example of this assignment. Complexity factor γ (γ ≥ 1) is

then defined, according to the computed complexity OC and the number n of classes of

complexity, to predict the behavior of the operation. γ is calculated as

γ = 1 +

(
OC

1 +OC

)n
(IV.4)

We note that in our case, given the above equation and n=4, γ assumes values between 1

(less complex operation) and 1.68 (most complex operation). We also note that different

γ can be defined within the same class of complexity.

61

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Table IV.4: Class of complexity and factor γ based on OC
Class Operation Factor γ

Complexity (OC) γ = 1 +
(

OC
1+OC

)4
0 1

Basic 1 1.063
2 1.2
3 1.32

Middle 4 1.41
5 1.48
6 1.54

High 7 1.59
8 1.62
9 1.66

Extra High 10 1.68

IV.3.3 Example of complexity evaluation

What follows is an example on the use of our methodology for the evaluation of operation

complexity. We obtained from the Internet a sample of 8 web services supplied by the same

provider. These services, which provides a total of 67 operations defined in their WSDL

files are presented in Table IV.5. A short definition of each of them can be given as follows.

• Service StadiumTransaction contains 12 operations which are used for selling stadium

and theater tickets.

• Service CinemaTransaction contains 24 operations which are used for selling cinema

tickets.

• Service StadiumData has 7 operations providing users with data about Events and

Performances currently available at particular Stadiums and Theaters.

• Service CinemaData has 9 operations providing users with details of current Films

and Performances for all available cinemas.

• Service BuyerData provides 5 operations from which you can obtain data about buyers

that have been registered.

• Service CinemaSinchronization provides 3 operations which provide synchronization

of external applications with the data providers.

• Service StadiumSinchronization provides 3 operations which provide synchronization

of external applications with the data providers.

• Service CinemaReservation exposes 4 operations which are used for cinema ticket

reservation.

We performed our analysis on the first five services. Then, Table IV.6 shows the

results obtained for services StadiumTransaction, CinemaTransaction, StadiumData, Cin-

emaData and BuyerData. Since the selected services are not under our control, we cannot

62

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Table IV.5: Characteristics of our sample web services
Id Address Operations

1 http://186.109.80.109/ECallws/StadiumTransaction.asmx?WSDL 12
2 http://186.109.80.109/ECallws/CinemaTransaction.asmx?WSDL 24
3 http://186.109.80.109/ECallws/StadiumData.asmx?WSDL 7
4 http://186.109.80.109/ECallws/CinemaData.asmx?WSDL 9
5 http://186.109.80.109/ECallws/BuyerData.asmx?WSDL 5
6 http://186.109.80.109/ECallws/CinemaSinchronization.asmx?WSDL 3
7 http://186.109.80.109/ECallws/StadiumSinchronization.asmx?WSDL 3
8 http://186.109.80.109/ECallws/CinemaReservation.asmx?WSDL 4

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 1 2 3 4 5 6 7 8 9 10 11 12
 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

C
o
m

p
le

x
it
y
â�
�

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Web Service Operation IDâ��

Complexity
Response Time

Figure IV.2: Response times and service complexities evolution for the web service StadiumTransaction
operations

evaluate the exact operation execution time at the server side. As a consequence, we used

the response times (last column in Table IV.6) measured for each operation as the means to

evaluate the correctness of an operation complexity estimation. We note that, by choosing

a set of services/operations provided by a unique provider, the additional time introduced

by client-server communications can be assumed constant and therefore to not substan-

tially influence the comparative complexity evaluation. For these services, we estimate the

resources complexity RC by counting the number of tables that involves in the execution

of the service operation using the specification in the WSDL.

Our results show that classes of complexity are consistent with response times for

the majority of the evaluated operations, meaning that operation response times increase

with an increase in complexity. Some inconsistencies can be observed when OC is near to

the border between two classes of complexity, where small errors in the expert knowledge

can have a huge impact on the complexity estimation. As an example, while operations

GetAvailablePerformances and GetRetainSet shows response times that are typical of basic

operations, a middle complexity class is associated with both of them. The technique used

to estimate the resources complexity may also explain the inconsistencies observed in the

overall complexity computed for each service operation. We note that these inconsistencies

can also be influenced by client-side network conditions, which can partially affect the

calculated response times.

Figure IV.2 shows an example of the evolution of the response times measured with

the complexities for the operations proposed by the web service StadiumTransaction.

63

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Table IV.6: Complexity evaluation for web service 1 operations
Complexity Class Factor Resp.

WS Operation Name OTPC RC OC of γ Time
Value Score Value Score Compl. (ms)

CheckPerformanceSeats 3 1 2 1 2 Basic 1.2 304
CheckPerformanceSectionAreaSeats 8 1 4 1 2 Basic 1.2 306
CancelTransaction 10 1 2 1 2 Basic 1.2 305
GetAvailablePerformances 14 2 3 1 3 Middle 1.32 305
GetRetainSeat 15 2 4 1 3 Middle 1.32 303

S
ta

d
iu

m
T

ra
n
sa

ct
io

n

CalculateServiceCharge 22 2 6 1 3 Middle 1.32 762
CloseTransaction 20 2 3 1 3 Middle 1.32 774
GetPerformanceSectionAreaPrices 28 2 5 1 3 Middle 1.32 766
GetPerformanceSectionAreaMap 27 2 6 1 3 Middle 1.32 776
RetainSeats 32 2 8 2 4 Middle 1.41 778
GetDeliveryOptions 32 2 8 2 4 Middle 1.41 779
CloseTransactionAndGetData 116 5 5 1 6 High 1.54 943

GetSeasonTicketPerformances 19 2 3 1 3 Middle 1.32 301
GetAvailablePerformances 22 2 3 1 3 Middle 1.32 301
CheckPerformanceSeats 3 1 2 1 2 Basic 1.2 300
CheckPerformanceAreaSeats 7 1 3 1 2 Basic 1.2 300
GetPerformanceAreaDetail 16 2 3 1 3 Middle 1.32 301

C
in

em
a
T

ra
n

sa
ct

io
n

GetPerformancePrices 15 2 4 1 3 Middle 1.32 302
GetPerformancePromotions 18 2 5 1 3 Middle 1.32 321
GetPerformanceSupersavers 17 2 5 1 3 Middle 1.32 317
GetSeasonTicketPrices 15 2 4 1 3 Middle 1.32 303
GetPerformanceSections 8 1 4 1 2 Basic 1.2 296
GetPerformanceSectionMap 27 2 6 1 3 Middle 1.32 778
GetSeasonTicketMap 25 2 5 1 3 Middle 1.32 777
CalculateServiceCharge 21 2 5 1 3 Middle 1.32 776
CalculateServiceChargeForAnythingRetention 70 4 10 2 6 High 1.54 877
RetainSeats 28 2 7 2 4 Middle 1.41 785
RetainProducts 21 2 4 1 3 Middle 1.32 780
RetainSeatsAndProducts 34 3 8 2 5 Middle 1.48 614
RetainAnything 75 4 10 2 6 High 1.54 816
GetRetainSeat 15 2 5 1 3 Middle 1.32 602
CloseTransaction 20 2 3 1 3 Middle 1.32 781
CloseTransactionAndGetData 116 5 7 2 7 High 1.59 916
CloseTransactionAndMarkPrintedOk 116 5 8 2 7 High 1.59 931
CancelTransaction 10 1 3 1 2 Basic 1.2 305
RefundTransaction 15 2 4 1 3 Middle 1.32 606

GetVersion 4 1 0 0 1 Basic 1.063 308
IsStadiumActive 2 1 0 0 1 Basic 1.063 308
GetAllStadiums 5 1 1 1 2 Basic 1.2 308

S
ta

d
iu

m
D

at
a

GetAllEvents 14 2 2 1 3 Middle 1.32 309
GetStadiumInfo 33 3 2 1 4 Middle 1.41 310
GetEventsByStadium 15 2 2 1 3 Middle 1.32 309
GetPerformances 14 2 3 1 3 Middle 1.32 308

GetVersion 4 1 0 0 1 Basic 1.063 306
IsCinemaActive 2 1 0 1 1 Basic 1.063 307
GetAllCinemas 5 1 1 1 2 Basic 1.2 310
GetAllShows 8 1 1 1 2 Basic 1.2 308
GetCinemasInfo 33 3 1 1 4 Middle 1.41 314

C
in

em
aD

at
a

GetShowsByCinema 11 1 2 1 2 Basic 1.2 308
GetCinemasByShow 11 1 2 1 2 Basic 1.2 309
GetShowInfo 29 2 2 1 3 Middle 1.32 310
GetPerformances 22 2 3 1 3 Middle 1.32 310

GetVersion 4 1 0 0 1 Basic 1.063 305
GetByEmail 57 3 4 1 4 Middle 1.41 708
GetByExternalId 57 3 4 1 4 Middle 1.41 793

B
u

ye
rD

at
a

Update 53 3 5 1 4 Middle 1.41 788
AddNew 54 3 4 1 4 Middle 1.41 798

IV.4 Execution Time Estimation

The use of complexity assessment in Section IV.3 and the profile tables providing

SOAP message parsing and construction times to predict the interval of execution times

of a single operation can now be discussed.

64

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Table IV.7: Profile tables for DOM APIsXXXXXXXXXXDepth
Card

4 5 6 7 8 9 10 11

1 0.097 0.096 0.098 0.102 0.104 0.104 0.105 0.106
2 0.1 0.099 0.099 0.102 0.106 0.107 0.112 0.112
3 0.097 0.098 0.103 0.105 0.105 0.105 0.106 0.111
4 – 0.101 0.105 0.106 0.108 0.107 0.112 0.112
5 – – 0.103 0.106 0.106 0.107 0.109 0.113

(a) Parsing time (ms)

XXXXXXXXXXDepth
Card

4 5 6 7 8 9 10 11

1 1.455 1.44 1.47 1.53 1.56 1.56 1.575 1.59
2 1.5 1.485 1.485 1.53 1.59 1.605 1.68 1.68
3 1.455 1.47 1.545 1.575 1.575 1.575 1.59 1.65
4 – 1.515 1.575 1.59 1.62 1.605 1.68 1.68
5 – – 1.545 1.59 1.59 1.605 1.635 1.695

(b) Construction time (ms)

IV.4.1 Parsing and Construction Profile Tables

Profile tables are used to provide an estimation of the time overhead introduced by parsing

and building of SOAP messages with different depths and cardinalities. The depth of a

SOAP message is the depth of its XML tree encoding, while the cardinality represents

its number of nodes. The overhead depends on and varies according to the type of APIs

(i.e., DOM, SAX) used to parse and construct the XML-based SOAP messages. In the

following, we consider DOM APIs and build two profile tables, one for the parsing times

and one for the construction times. We note that the same approach is used to generate

the profile tables for SAX APIs.

To build the parsing profile table for DOM APIs, we write a Java code that receives

as input SOAP messages with different depths and cardinalities. For each message, we

perform 1500 trials and take the mean parse time for each message. The value obtained for

each SOAP message is used to populate the parsing profile table presented as example in

Table IV.7(a)), which associates a parsing time with a depth and cardinality. Cells denoted

with− represent invalid combinations of depths and cardinalities, that is, scenarios in which

the cardinality of an XML message is lower than/equal to its depth.

Starting from the parsing table, we build the construction table for DOM-APIs us-

ing approximation. This approach reduces the impact of biased results due to particular

structures of SOAP messages, and the generation of a profile table with an estimation

of construction times for each combination of depths and cardinalities.2 Assuming a lin-

ear relation between parsing and construction times, our goal is to find the ratio between

construction and parsing times; this ratio is then applied to the parsing profile table to

generate the construction profile table. Then, we take two examples of SOAP messages

2For small scenarios, SOAP constructions times can be measured rather than approximated.

65

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

and write a Java program to build them, and measure the individual construction times.

The first SOAP message has depth equal to 2 and cardinality equal to 7, while the second

5 and 11. The measured construction times are 1.57ms for the first message and 1.715ms

for the second one. If we consider the parsing times for the same depths and cardinalities

(0.102ms and 0.113ms in Table IV.7(a)), we note that, as expected, the ratio between con-

struction and parsing times is approximatively the same, that is, the construction times

are 15 times slower than the parsing times. We then generate the construction profile table

by multiplying each cell in the parsing table by our ratio. Table IV.7(b) shows the con-

struction profile table for DOM APIs. We note that given the ratio between construction

and parsing times, we can generate the construction time for a SOAP message with any

depth and cardinality, given the corresponding parsing time.

IV.4.2 Execution Time Interval Estimation

We use the profile tables (Section IV.4.1) and factor γ (Section IV.3) to estimate the

execution time interval of service operations. In particular, we start from the assumption

that the execution times of a particular operation can be approximated by applying a

degradation factor α∈[0,1] to parsing and construction times. Let us then denote ET the

execution time of an operation, PT the parsing time of input SOAP messages, and CT

the construction time of output SOAP messages. Our goal is to find factor α that well

approximate the operation execution time ET according to the following equation:

ET =
PT + CT

α
(IV.5)

where PT+CT represents the XML management execution time. Since ET is equal to the

sum of the XML management execution time and the Business Logic execution time BL.

Equation (IV.5) can be rewritten as follows:

α =
PT + CT

PT + CT +BL
(IV.6)

We rewrite Equation (IV.6) as:

α = β ∗ (PT + CT) (IV.7)

where β = 1
PT+CT+BL

is called Business Logic Complexity (BLC). While PT and CT are

independent from the considered domain and class of complexity, BL changes with them.

To calculate α for a given service operation, we use reference service operations under

our control that can be fully tested and validated. One such operation is implemented

for each class of complexity specified in Table IV.4. As an example, for the basic class,

we use operation add of a calculator service that implements the sum of two numbers; as

another example, for the middle class, we use operation CreditAdd of a reverse ATM service

based on the Interactive Financial Exchange (IFX) standard, which allows authenticated

66

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

users to deposit funds presented in Chapter III. Given the reference operation having the

same class of complexity as that estimated for the operation under evaluation using the

approach presented in Section IV.3, we calculate αREF for the reference operation according

to Equation (IV.5) as follows:

αREF =
[PT + CT]REF

[ET]REF
(IV.8)

Then, using an approach similar to that used in the COCOMO model [8, 9] and

the value obtained for the complexity assessment for the operation under evaluation, we

calculate the value of α by applying operation complexity factor γ to the factor αREF of

the reference operation as follows:

α = [αREF]γ (IV.9)

Now, in order to produce the execution time interval of the operation, we need to

compute two values for α, denoted αmin and αmax, which represents the factor for the

quickest and longest operation execution times. Then, following our approach we first

calculate αREFmin
and αREFmax , which consider the minimum ([ET]REFmin

) and maximum

([ET]REFmax) execution times for the reference operation. Clearly, αREFmin
and αREFmax

are computed from Equation (IV.8) as follows:

αREFmin
=

[PT + CT]REF
[ET]REFmin

(IV.10)

αREFmax =
[PT + CT]REF

[ET]REFmax

(IV.11)

and αmin and αmax are finally given by:

αmin = [αREFmin
]γ (IV.12)

αmax = [αREFmax]γ (IV.13)

The execution times associated to the quickest and longest execution flow for the

operation under evaluation are finally obtained from Equation (IV.5) as follows:

ETmin =
PT + CT

αmin
=
PT + CT

[αREFmin
]γ

(IV.14)

ETmax =
PT + CT

αmax
=

PT + CT

[αREFmax]γ
(IV.15)

ETmin and ETmax are the outputs of component ETG of our framework in Figure IV.1

and used by component PS to generate the simulation script and estimate the operation

performance.

67

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Table IV.8: Values defined for the data-intensive factor
Level (l) 1 2 3 4 5

Data-intensive Weight 0 1-5 6-15 16-30 31+
Factor FDI

FDI = 1 +
(

l
1+l

)5
1.03 1.13 1.24 1.33 1.4

IV.4.3 Execution Time Adjustment: Data-Intensive Factor

To further refine the execution time interval [ETmin,ETmax] computed in Section IV.4.2, we

evaluate the impact of input/output tasks performed by the operation during its execution

flow. We therefore define the data-intensive factor, FDI that takes into account how the

use of resources impacts the operation performance. FDI is calculated according to the ex-

pert knowledge used to estimate the amount of input/output tasks (data-intensive weight)

performed by the operation. Data intensive weights are classified in five different levels l

(from 1 to 5), which are then used to calculate the adjustment factor to be applied to the

execution times ETmin and ETmax. In particular, given level l calculated according to the

data-intensive weight in the expert knowledge and the number of levels n, data-intensive

factor FDI is calculated as follows:

FDI = 1 +

(
l

1 + l

)n
(IV.16)

Table IV.8 presents the different values computed for FDI according to levels l of data-

intensive weights. We note that FDI > 1. We also note that in our case the number n

of levels is equal to 5, while they can be extended to increase the impact of FDI on the

estimation of the execution time interval. We finally note that in case no adjustment is

needed (i.e., the data-intensive weight is not specified), l=0 and FDI=1.

Adjustment factor FDI is applied to Equations (IV.14) and (IV.15), to compute the

adjusted bounds for the interval of execution times, as follows.

ETmin =
PT + CT

αmin
∗ FDI =

PT + CT

[αREFmin
]γ
∗ FDI (IV.17)

ETmax =
PT + CT

αmax
∗ FDI =

PT + CT

[αREFmax]γ
∗ FDI (IV.18)

The new bounds are then used in the simulation script generation process.

IV.4.4 Generic algorithm for simulation script generation

The simulation scripts allow us to estimate the behavior of a given web service. As we have

described earlier, in our zero-knowledge scenario, the simulation scripts are generated by

an algorithm that takes as inputs, the SOAP message, the STS-based model describing the

simulation, the different values of αREF associated to the reference web service, αREFmin

and αREFmax , the degree γ associated to the class of complexity and the data-intensive

68

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

1 INPUT : S Msg : SOAP Message
2 STSs : STS−based model for s imu la t i on
3 αREFmin , αREFmax : the va lue s o f αREF
4 γ : degree a s s o c i a t e d to the class o f the s e r v i c e
5 FDI : Data−i n t e n s i v e f a c t o r
6 OUTPUT : S imulat ion s c r i p t
7

8 MAIN
9 // Ret r i eve the depth and the c a r d i n a l i t y from the XML SOAP message

10 d = getdepth(S Msg)
11 c = getcard(S Msg)
12 // Read the pars ing and cons t ruc t i on t imes in the p r o f i l e t a b l e s
13 pct = read ProfileTable(d , c)
14 // Compute the bounds o f the execu t i on time i n t e r v a l
15 STmin = pct

[αREFmin]
γ ∗ FDI

16

17 STmax = pct
[αREFmax]

γ ∗ FDI
18 // Use the bounds to run a Monte Carlo proces s and annotate the model

wi th one random ex t r a c t i on
19 annotateSTS(STSs , STmin , STmax)
20 // Generate the s imu la t i on s c r i p t us ing the a l gor i thm presen ted in [112]
21 generatescript(STSs)

Figure IV.3: Algorithm for simulation script generation

factor FDI , and gives as output a Java-based simulation script. The factor γ is computed

as explained in Section IV.3 and the factor FDI is chosen by the developer. The algorithm

presented in Figure IV.3, is the extension of our algorithm for simulation script generation

presented in Chapter III (Section III.6.2). The proposed algorithm works as follows. First,

it retrieves the depth and the cardinality of the SOAP message using functions getdepth

and getcard (lines 10–11), respectively. The depth and the cardinality are used by function

read ProfileTable to get in the profile table the value of parsing and construction times

(PT+CT) associated to the given SOAP message (line 13). This value denoted pct is

used to compute the lower and upper bounds of service times interval (lines 15–17). The

bounds of the interval are used by function annotateSTS which uses a Monte Carlo

process to generate randomly many extractions of delay distributions and choose one to

annotate the STS-based model for simulation (line 19). The updated STS-based model is

given to function generatescript, which is implemented in the simulation script generator

presented in Section III.6.2, to generate automatically the Java-based simulation script (line

21). Then, the simulation script is executed and the behavior of the web service obtained

can be compared subsequently with the real performance of the service at the end of the

development cycle.

IV.4.5 Example of evaluation of the complexity classes parameters

What follows is an example on the use of our methodology to the computation of parameters

α and FDI for the different classes of complexity. These parameters are then used in

69

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Table IV.9: Parameters for the basic and middle classes of complexity
Class of Reference Service Parameters
Service

Operation Add of Calculator WS γ ∈ {1, 1.063, 1.2}
[ST]REFmin = 3 ms

BASIC [ST]REFmax = 15 ms αmin = (0.523)γ

[PT + CT]REF = 1.568 ms αmin ∈ {0.523, 0.502, 0.46}
αREFmin = 0.523 αmax = (0.105)γ

αREFmax = 0.105 αmax ∈ {0.105, 0.091, 0.067}
Operation CreditAdd of IFX-based WS γ ∈ {1.32, 1.41, 1.48}
[ET]REFmin = 3ms αmin = (0.976)γ

MIDDLE [ET]REFmax = 24ms αmin ∈ {0.969, 0.966, 0.965}
[PT + CT]REF = 2.928ms αmax = (0.122)γ

αREFmin = 0.976 αmax ∈ {0.063, 0.052, 0.044}
αREFmax = 0.122

Section IV.5 to estimate the interval of execution times of an operation that belongs to the

same class of complexity and to validate our approach.

As explained before in this section, our methodology relies on profile tables and refer-

ence service operations to compute parameters α and FDI . In the following, these param-

eters are evaluated for the class Basic and Middle.

In particular, the reference web service for the class Basic is a simple calculator web

service that makes the sum of two numbers and has only one operation, operation add which

sends the request of computation and returns the response. For this reference web service,

the service times vary between 3 and 15 ms, then [ST]REFmin
= 3 ms and [ST]REFmax = 15

ms. The SOAP message used to query this web service has depth equal to 3 and cardinality

equal to 5. Using our profile tables, we obtain 0.098ms for the parsing time and estimate

the construction time at 1.47ms, yielding that [PT + CT]REF=1.568ms. An example of a

SOAP message for this service was shown in Figure II.1.

The reference service operation for class Middle is the IFX-based web service operation

CreditAdd with execution times varying between 3ms and 24ms, that is, [ET]REFmin
=3ms

and [ET]REFmax=24ms. Its input SOAP message has depth equal to 9 and cardinality

equal to 32 and its output message depth 10 and cardinality 48. Using our profile tables,

we obtain 0.183ms for the parsing time and estimate 2.745ms for the construction time,

with the result that [PT +CT]REF=2.928ms. According to Equations (IV.10) and (IV.11),

αREFmin
and αREFmax are calculated. Based on these values, and on γ, αmin and αmax are

computed for the operation under evaluation. Table IV.9 summarizes the parameters of

the basic and middle classes of complexity, according to the different values of γ presented

in Table IV.4.

To conclude, when αmin and αmax have been calculated according to γ of the oper-

ation under evaluation (see Table IV.9 for class of complexity middle), the lower bound

ETmin (the upper bound ETmax, resp.) of the execution time interval is computed using

Equation (IV.14) (Equation (IV.15), resp.). ETmin and ETmax can then be further refined

with adjustment factor FDI using Equations (IV.17) and (IV.18), respectively.

70

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Figure IV.4: Standard STS-based model of the service AskDoc

IV.5 Experimental Results and Validation of our approach

We evaluated our approach by setting an experimental environment composed by:

i) a server, which is a workstation containing Apache Tomcat 7 integrated with Axis 2

equipped with a two Intel Core 3 GHz and 4GB RAM running Linux Ubuntu 12.04

server;

ii) a client, which is a workstation containing SOAP testing tool soapUI [21], and equipped

with a two Intel Core 2.66 GHz and 4GB RAM running Mac OS 10.6.8.

The subject services were deployed on the server, while the client was used to test and

simulate their performance.

To validate our simulation approach, we developed many different services. This al-

lowed us to fully test them, and compare the measured execution times with the ones

obtained by simulation by using the approach in this chapter. In the following, we present

the detailed results retrieved by considering two of our most relevant services. The results

obtained for the remaining services are presented at the end of this section in Table IV.11.

The first web service, denoted WS 1, implements a single operation Generate that

produces a random number; its input/output SOAP messages have both depth equal to

3 and cardinality equal to 4. The second web service, denoted WS 2, implements a single

operation AskDoc that allows the users of a medical meeting management system to ask

for an appointment with the doctor; its input/output SOAP messages have both depth

equal to 3 and cardinality equal to 6. Its standard STS-based model is shown in Figure

IV.4. The WSDL files of the two services are provided in Appendix with the standard

STS-based model encoded in XML of the medical web service. All the information about

the rest of services are available at http://sesar.dti.unimi.it/hase2014.html.

To compute the execution time intervals for the two operations, we first evaluated

operation complexity OC. We obtained OC=1 for operation Generate of WS 1. This corre-

sponds to the basic class of complexity and implies γ=1.063. We then considered FDI=1.03,

71

http://sesar.dti.unimi.it/hase2014.html

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Table IV.10: Interval of execution times computed for operations in WS 1 and WS 2

Services Parameters Lower and Upper Bounds

Random Class: Basic
Number γ = 1.063 ETmin = ((PT + CT)/αmin) ∗ FDI

Generator αmin = 0.502 ETmin = 3.18ms
(WS 1) αmax = 0.091

Operation FDI = 1.03 ETmax = ((PT + CT)/αmax) ∗ FDI
Generate PT + CT = 1.552ms ETmax = 17.57ms

Medical Class: Middle
Meeting γ = 1.41 ETmin = ((PT + CT)/αmin) ∗ FDI

Management αmin = 0.966 ETmin = 2.12ms
(WS 2) αmax = 0.052

Operation FDI = 1.24 ETmax = ((PC + CT)/αmax) ∗ FDI
AskDoc PT + CT = 1.648ms ETmax = 39.3ms

because WS 1 does not make intensive access to data. For operation AskDoc of WS 2, OC=4,

which corresponds to the middle class of complexity and γ=1.41. This operation needs up

to 6 data accesses to perform its tasks, then we considered FDI=1.24. We then computed

execution time intervals taking into account information on shortest and longest execution

flows. As an example, the values associated with αmin and αmax of operation AskDoc were

taken from Table IV.9 for the middle class of complexity. Parsing PT and construction

CT times were read from the profile tables. Table IV.10 presents our results.

In particular, the interval of execution times [3.18ms,17.57ms] has been estimated

for operation Generate and [2.12ms,39.3ms] for operation AskDoc. To evaluate the accu-

racy of our estimation, we tested WS 1 and WS 2, and obtained an execution time interval

[3ms,18ms] for operation the Generate and [2.77ms,39.76ms] for the operation AskDoc.

These results, which are close to our estimation, show that our zero-knowledge approach

can contribute to assessing the overall behavior of an operation without any knowledge on

its performance. We note that, as discussed in Section IV.3.3, the quality of the complexity

estimation provided by our framework can be affected by the accuracy of the expert knowl-

edge for those cases in which the complexity of an operation lies in between two classes of

complexity. However, in any case, our solution can give a preliminary insight into the time

interval of a given operation, and in turn, as discussed in the remainder of this section, on

its performance.

Table IV.11 summarizes the results obtained for the two previous service operation and

additional results obtained for other service operations we used to validate our approach.

These results show also a good estimation of the interval of execution times for each service

operation compared with the real service operation.

The interval of execution times computed with our approach were then given as input

to a Monte Carlo procedure that generated a large number of delay distributions, used

by our tool introduced in Chapter III. In particular, our tool selected one of the delay

distributions and generated the script used to simulate the execution times of 1500 requests

for the operation under evaluation. At the same time, operation execution times were

72

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Table IV.11: Intervals of execution times estimated for other service operations
Web Service Operation Class Complexity Interval Predicted Interval Measured

(Simulation) (Testing)

Generate Number Generate Basic 1 [3.18ms, 17.57ms] [3ms, 18ms]

Medical Meeting AskDoc Middle 4 [2.12ms, 39.3ms] [2.77ms, 39.76ms]

Temperature Convertor Celsius2F Basic 1 [3.1ms, 17.05ms] [1.66ms, 15.25ms]
Temperature Convertor F2Celsius Basic 1 [3.1ms, 17.05ms] [1.81ms, 15.71ms]

Customer Manager CreateCustomer Middle 4 [1.83ms, 34.05ms] [3.07ms, 36.36ms]
Customer Manager PlaceOrder Middle 3 [1.82ms, 27.98ms] [2.80ms, 29.08ms]
Customer Manager ServeOrder Middle 5 [3.07ms, 59.6ms] [3.78ms, 58.37ms]

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140

T
im

e
 (

m
s
)â

��

Request IDâ��

Simulation
Testing

(a) Operation Generate (WS 1)

 0
 10
 20
 30
 40
 50

 0 20 40 60 80 100 120 140

Ti
m

e
(m

s)

Request ID

Simulation
Testing

(b) Operation AskDoc (WS 2)

Figure IV.5: Comparison of simulation and testing results

collected by testing the real operation with 1500 requests. We note that the probabilities of

executing the quickest and longest execution flows are known in advance, and used in testing

and simulation activities. We can extend the experiments using different distributions for

the delays which, in our work are assumed uniformly distributed in a range. Figures IV.5(a)

and IV.5(b) present the first 150 results obtained for operations Generate and AskDoc by

testing and simulation.

To compute the similarity between the distributions of testing and simulation results

and in turn the accuracy of our simulation approach, as in Chapter III, we used the

Chi-Square test [114]. The results presented in Table IV.12 show that execution times

obtained by simulation are similar to the testing results with a probability up to 0.94 for

operation Generate and up to 0.79 for operation AskDoc. These probabilities confirm for

both operations that the two distributions of execution times (testing and simulation) are

likely to come from the same population. Table IV.12 also shows the mean and standard

deviation of the Chi-Square probability value (P-value).

Figure IV.6 shows the similarity variations for the two examples of web service using

Chi-Square test for different random tests conducted on these services. The results are

73

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

Table IV.12: Statistical analysis of the results

Service Evaluation Intervals Mean STD Chi-Square (P-value)
operation type (ms) (ms) Best Mean STD

Generate Simulation [3.18 - 17.57] 11.94 3.51
WS 1 Testing [3 - 18] 12.3 3.07 0.94 0.76 0.077

AskDoc Simulation [2.12 - 39.3] 18.19 8.97
WS 2 Testing [2.77 - 39.76] 17.33 4.65 0.79 0.59 0.075

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14

P
ro

b
a

b
ili

ty
 o

f
s
im

ila
ri
ty

â�
�

Chi-Square Testâ��

Number Generator (WS1)
Medical Meeting (WS2)

Figure IV.6: Chi-Square variation for different tests on WS1 and WS2

higher than 0.5 in all cases.

In summary, as expected, the results in this chapter are less accurate than the one in

Chapter III, which considered full-knowledge and partial-knowledge scenarios and where the

similarity probabilities were greater than 0.91 in all cases. However, we can observe that

our solution to zero-knowledge performance evaluation provides a first estimation on the

performance of service operations that can be used for evaluating operation performance

at design time. Also, we note that given the WSCL conversation, we can use operation

performance obtained by simulation to give an estimation of the performance of the entire

service executions. This can be simply achieved by summing up the performance of each

operation in the considered service execution flow. Finally, the accuracy of our results can

be further refined by:

i) defining different reference services depending on the domain of the service under

evaluation (e.g., financial, shopping);

ii) tuning the classes of complexity and related factor γ;

iii) refining the definition of types of resource access.

Regarding point iii), currently we are only assuming that expert users can estimate the

number of required internal and external accesses to resources; in the future, we can assume

that expert users are able to estimate also the type (e.g., database, service) of internal and

external resources, which are accessed during operation execution.

74

IV. EARLY ASSESSMENT OF SERVICE PERFORMANCE: ZERO-KNOWLEDGE SCENARIO

IV.6 Conclusions

In this chapter, we presented a framework that supports early assessment of service

performance. This zero-knowledge scenario requires the definition of new solutions able

to guess service execution times at early steps of the service development process. Ex-

isting solutions use historical data and expert knowledge [11, 12] to assess the service

behavior and the methods methods for assessing the complexity of software, web services,

processes, workflows, and systems can not be used in our case [100, 101, 102, 103, 119].

The work in [104] proposes a solution based on queuing theory for an early assessment

of the performance of software components using UML diagrams, they focus only on soft-

ware components and therefore the solution proposed is not applicable to our service-based

scenario. Our approach integrates service performance analysis in the early phases of the

development process, by estimating the performance of each service operation, using infor-

mation in the WSDL interface, the input/output SOAP message structure, a model of the

service, and some expert knowledge on the complexity of service operations. Our approach

first defined a process to evaluate the complexity of a given service operation. Then, it

provided a process to estimate the execution time interval of the operation. Finally, it

has been integrated within the tool in [112] to produce operation performance estima-

tion by simulation. We experimentally evaluated our approach using different scenarios

of complexity. Our simulation results showed a good level of approximation of operation

performance; in turn, operation performance may be used to calculate the overall service

execution performance (e.g., using a WSCL description of the service conversation).

75

Part III

Applications

I n the previous chapters, we have proposed our approaches for early assessment of

web service performance. In this part of the thesis, we propose the application of our

approaches to real world scenarios. Chapter V presents our solutions for Service Level

Agreement (SLA) negotiation and monitoring based on performance estimated using our

zero-knowledge approach. A use case based on SLA∗ is proposed to show how this SLA

management model can be used to negotiate and monitor service SLAs.

Chapter V

Applications of our approaches for

SLA negotiation and monitoring

Contents

V.1 Introduction . 77

V.2 Framework for service SLA negotiation . 78

V.3 Framework for service SLA monitoring . 79

V.4 SLA negotiation and monitoring: a real use case based on SLA∗ 81

V.4.1 Overview on SLA∗ . 81

V.4.2 SLA generation using SLA∗ abstract syntax 81

V.4.3 SLA negotiation solution with SLA∗ . 83

V.4.4 SLA monitoring solution with SLA∗ . 85

V.5 Conclusions . 85

T his chapter presents how the solutions proposed in this thesis that aimed to as-

sess the service performance can be used to negotiate the performance SLAs with service

providers, and monitor the performance of the services.

V.1 Introduction

The methodology presented in this thesis aims to evaluate the performance of the

service at early stages of the development process using simulation. The simulation data

can be used i) to negotiate the preliminary performance SLA of the service between the

service providers and the customers searching for a given service with a given level of

performance, and ii) to monitor it. After the development of the service, the SLA can

be refined or updated to further match the real performance measured for the service by

testing.

For the performance SLA negotiation, the service model for simulation (STSs) de-

scribed in Chapter III, is used to estimate the interval of execution times for the service,

generate the simulation script, and study the service behavior before the negotiation.

77

V. APPLICATIONS OF OUR APPROACHES FOR SLA NEGOTIATION AND MONITORING

STS-based models
for simulation

Simulation Scripts

Framework STS2Java

SImulation Testing

Simulation
Data

SLA Negotiation
Module

Customers

SLAs

SLA
EstablishmentExecution SLA

Generation

Providers

Figure V.1: Framework for SLA negotiation

For the monitoring of the negotiated performance SLA for the service, we propose to

use its STS-based model for testing (STSt), which allows to measure the performance of the

service with performance interceptors. The real service implements the performance idioms

defined in the service model and uses them to record its performance of the service. Our

performance interceptors are the real monitoring probes and provide an accurate evaluation

of service performance.

Among existing solutions for SLA management [37, 41, 120, 70], which define the

language and describe how the SLA can be negotiated and established between the different

parties, we define in this chapter a solution based on SLA∗ [43]. SLA∗ allows a machine-

readable SLA definition for the service.

In the following of this chapter, we present our frameworks for SLA negotiation and

monitoring based on simulation results.

V.2 Framework for service SLA negotiation

Using our approach for service performance simulation, we estimate the performance

of the service under evaluation using the model of service extended for simulation. The

estimation results are used to generate the first template of the service performance SLA.

The SLA template can be used as the basis for advanced negotiation protocols because it

provides a starting point of comparison with the service providers proposals [37, 70, 43].

Figure V.1 shows our framework for SLA negotiation. It works as follows. The STS-

based models for simulation provided by the service providers are given to our framework

STS2Java (See Section III.6.3), which generates the simulation scripts. The Simulation

module of this framework is used for the generation. The simulation scripts are executed to

have the behavior of the services. This information is saved for each service evaluated in the

78

V. APPLICATIONS OF OUR APPROACHES FOR SLA NEGOTIATION AND MONITORING

database Simulation Data. The performance stored is used by the SLA Generation module

to generate a preliminary template for the service performance SLA. In the template, the

level of the execution time to be guaranteed is set using the bounds of the execution times

estimated by simulation. The generated SLA drives the SLA evaluation during the SLA

negotiation process with the customers in order to choose the most appropriate offer using

the SLA Negotiation module. For this, the SLA Negotiation Module works following three

possible scenarios:

• the customer receives a service with the generated SLA provided by the service

provider. The customer simulates the performance of the service and evaluates how

much the proposed SLA for the service is realistic and matches its performance require-

ments. In the case of positive evaluation, the service is selected, otherwise another

service is evaluated.

• The customer receives from the service provider a service with the SLA template

generated for the service with the related simulation script. The customer is then

able to evaluate the performance SLA of the service using the simulation script. This

kind of disclosure by the provider permits to increase the trust of the customer in the

service performance SLA.

• The service provider can give an a priori estimation of SLAs to customers using

our approach to simulate and discover the behavior of the service, when the service

is not still developed. Then, the customers can select the service that matches its

requirements, and can verify its behavior with the real performance retrieved after

development. The SLA generated for a given service can then be used as the basis in

the selection of the service.

After the selection of the service, the SLA is established between the two parties and saved

in a database.

The framework for SLA negotiation allows the customers of service to predict the per-

formance impact of the service before the selection according to the performance obtained

by simulation. The SLAs database is used as input for the SLA monitoring framework

(See Section V.3), after the service deployment and the SLA establishment to detect the

violations.

V.3 Framework for service SLA monitoring

To monitor the SLA of the service, the service model for testing is used to add to

the implementation of the service our performance interceptors that allow to measure the

performance and record all results in a database. The monitoring of the SLA allows to

check the non-functional properties of the service and to execute appropriate countermea-

sures when a problem occurs. The monitoring framework uses the real time information

79

V. APPLICATIONS OF OUR APPROACHES FOR SLA NEGOTIATION AND MONITORING

Service Unit

ResourcesServicesPerformance
Interceptors

Monitoring
Data

Providers
Unit

SLA
Module

Monitoring Unit

Qualitative
Measurement

Module

SLAs

Figure V.2: Framework for SLA monitoring

measured for the service performance with the interceptors. Figure V.2 presents our frame-

work for monitoring existing services, which implements our performance interceptors. This

framework is derived from our previous work presented in [121], where we defined a quality

architecture for resources allocation in Cloud. The monitoring framework works as follows.

• The Service Unit presents the services offered by the provider to the users and cus-

tomers. This unit manages also the resources available for the service. The services,

which implement the performance interceptors, send their performance to the mon-

itoring information database. The Service Unit communicates with the Monitoring

Unit and the Providers Unit by providing the information about the services and their

owners.

• The Monitoring Unit monitors the service in order to handle the SLA violations. It

collects information about the services and has two modules: Qualitative Measurement

Module and SLA Module.

The Qualitative Measurement Module manages all metrics which allow to measure

the performance of the service from the monitoring information. This information

is saved in the database and is compared with the information intercepted by our

performance interceptors in order to evaluate the SLA fulfilment. The metrics are

defined based on the information available in the SLAs negotiated for the different

80

V. APPLICATIONS OF OUR APPROACHES FOR SLA NEGOTIATION AND MONITORING

service operations. Our framework allows to measure the trustworthiness of the service

provider by checking the SLA violations using the performance intercepted by the

interceptors.

The SLA Module has access to the information about the SLAs negotiated for each

service contained in the SLAs database and provides these inputs to the Qualitative

Measurement Module to evaluate the metrics and handle the possible SLA violations.

This module is linked with the Providers Unit to keep information about each service

provider and its agreement.

• The Providers Unit manages the service providers. Each service provider is in relation

with its SLA and services in order to associate the SLA violations to the appropriate

provider and to know who refunds the customers in case of violations.

V.4 SLA negotiation and monitoring: a real use case based on

SLA∗

In this section, we propose to use SLA∗ [43], a solution defined for SLA definition and

management.

V.4.1 Overview on SLA∗

SLA∗ [43] is a rich, comprehensive, extensible and format independent SLA model

defined by the European project SLA@SOI1 for SLA management. It offers a language

for SLA definition using domain specific vocabularies. The syntax defined for SLA∗ in

[43] shows its expressivity for the definition in few statements of the SLAs for the service

operation.

An SLA∗-based template describes:

• the parties involved in the SLA agreement,

• the definition of the interface of the service concerned by the agreement,

• the specification of the terms of the agreement, which specifies the QoS requirements

guaranteed by the agreement.

An example of SLA∗-based template is given in the following sections, showing the expres-

siveness of the syntax defined to describe the service SLA.

V.4.2 SLA generation using SLA∗ abstract syntax

To allow our framework to have a machine-readable SLA definition that allows the

service providers to negotiate the SLA with the customers, we use SLA∗ abstract syntax

in order to generate our SLA templates based on BNF (Backus Naur Form) Grammar.

1http://sla-at-soi.eu/

81

http://sla-at-soi.eu/

V. APPLICATIONS OF OUR APPROACHES FOR SLA NEGOTIATION AND MONITORING

1 s l a t emp la t e {
2 ve r s i on : s l a−cred i tadd−v1
3 v o c a b u l a r i e s :
4 http : // s la−at−s o i . eu/ core
5 p a r t i e s :
6 Al i c e : party {
7 r o l e : p rov ide r
8 }
9 Bob : party {

10 r o l e : customer
11 }
12 i n t e r f a c e D e c l r s :
13 IF1 : i n t e r f a c e D e c l r {
14 prov ide r : A l i c e
15 endpoints :
16 E1 : endpoint {
17 l o c a t i o n : http : // i f x s e r v i c e . com/IFXService /CreditAdd
18 pro to co l : soap
19 }
20 interface : http : // i f x s e r v i c e . com/IFXService /CreditAdd
21 }
22 v a r i a b l e s :
23 REQ: var{
24 expr : IF1/ reques t
25 } ,
26 OPT: var{
27 expr : ba s i c
28 domain : one−o f { high , ba s i c }
29 }
30 terms :
31 AT1 : agreementTerm{
32 A1 : s t a t e {
33 pre : OPT == bas i c
34 post : completion−time (REQ) < 30 ms
35 } ,
36 A2 : s t a t e {
37 pre : OPT == high
38 post : completion−time (REQ) <= 24 ms
39 }
40 }
41 }

Figure V.3: Example of SLA template generated for operation CreditAdd

The SLA generated has different parts that specify the content of the agreement between

the parties and is used as the basis for the negotiation process. It is composed by the

description of the parties involved in the agreement, the information about the service

concerned by the agreement, and the terms of the agreement that define the performance

guarantees from the simulation results. The upper bound of the execution time interval is

used to specify that the execution time to be guaranteed for the service operation, needs

to be equal to or lower than that bound.

Using SLA∗, Figure V.3 shows an example of template generated for the IFX-based

web service operation CreditAdd, which execution times are between 3 and 24 ms. In this

82

V. APPLICATIONS OF OUR APPROACHES FOR SLA NEGOTIATION AND MONITORING

template, the completion time allowed for the service operation requests is set to 24 ms.

This template is defined by the service providers and provides information that allows the

customers to verify the performance requirements during the negotiation process. The

information available in the template is compared with the performance required by the

customers in order to find the service which can satisfy its expectations.

The SLA generated in Figure V.3 can be described as follows. First, the version of the

SLA template is specified (line 2), then the vocabulary used by the template is given (lines

3–4). Here, the core SLA∗ vocabulary is declared to be used in the template. Lines 5–11

define the parties concerned by the established agreement. Here, Alice is the provider of the

service and Bob is the customer of the service. Following these declarations, the interface

is specified (lines 12–21) and contained the information about the endpoint of the service

operation specifying the location of the operation and the protocol used. The url, where

the interface of the service is available, is also specified in the template. Lines 22–29 define

the variables used in the SLA. The first variable REQ, specifies the request to be sent to the

interface IF1 previously defined (lines 23–25). The expression associated to this variable

allows to send the request to the service interface and to get the response. The second

variable OPT specifies the option of the SLA. It defines two options, basic and high (line

28), and declares the option basic as the default option (line 27). The basic option is the

case where the service is executed without considering a strict execution time. The option

high is chosen for executions where we need more responsiveness and measures execution

times closer to the results obtained from simulation. The last component of the template

(lines 30–40) specifies the terms of the agreement decomposed into actions. Depending on

the option chosen in the execution of the SLA, the appropriate action is executed. The

first action A1 specifies for the option basic that the completion time guaranteed for the

service operation is less than 30 ms. The second action A2 sets the completion time equal

to or less than 24 ms. For monitoring purposes, another action will be added in Section

V.3 to handle the SLA violations and give penalties.

V.4.3 SLA negotiation solution with SLA∗

The selection of the service is based on the SLA definition generated for the service

operation which matches better the performance requirements specified by the customers.

We note that after the best SLA has been selected, its content can be refined through a

negotiation between the service provider and the customer. Initially, the customers send

their performance requirements to the negotiation module in Figure V.1. The performance

requirements are compared with the SLA template generated for the service operation. In

our case, the execution time guaranteed by each provider for the service and specified in

its SLA, is compared with the one specified by the customer. The SLA selected is the

one whose execution time is equal or near the one required by the customer. In the case

where no SLAs do not match the requirements, all of them are dropped. After selection,

the SLA of the service operation is updated as shown in Figure V.4. The completion time

83

V. APPLICATIONS OF OUR APPROACHES FOR SLA NEGOTIATION AND MONITORING

1 s l a t emp la t e {
2 ve r s i on : s l a−cred i tadd−v2
3 v o c a b u l a r i e s :
4 http : // s la−at−s o i . eu/ core
5 p a r t i e s :
6 Al i c e : party {
7 r o l e : p rov ide r
8 }
9 Bob : party {

10 r o l e : customer
11 }
12 i n t e r f a c e D e c l r s :
13 IF1 : i n t e r f a c e D e c l r {
14 prov ide r : A l i c e
15 endpoints :
16 E1 : endpoint {
17 l o c a t i o n : http : // i f x s e r v i c e . com/IFXService /CreditAdd
18 pro to co l : soap
19 }
20 interface : http : // i f x s e r v i c e . com/IFXService /CreditAdd
21 }
22 v a r i a b l e s :
23 REQ: var{
24 expr : IF1/ reques t
25 } ,
26 OPT: var{
27 expr : ba s i c
28 domain : one−o f { high , ba s i c }
29 }
30 terms :
31 AT1 : agreementTerm{
32 A1 : s t a t e {
33 pre : OPT == bas i c
34 post : completion−time (REQ) < 35 ms
35 } ,
36 A2 : s t a t e {
37 pre : OPT == high
38 post : completion−time (REQ) < 25 ms
39 }
40 }
41 }

Figure V.4: Example of the final SLA template updated for operation CreditAdd

is changed in the SLA and the selected provider guarantees less than 25 ms as execution

time when we need high responsiveness of the operation instead of 24 ms required by the

initial template (line 38). It guarantees also an execution time less than 35 ms instead of

30 ms when we select a basic responsiveness for the operation (line 34). The request of the

customers is not satisfied, but among the SLAs proposed by the service providers, it is the

one which values are closer to the customers requirements.

The updated SLA is used in the next section to monitor the SLA violations. Then,

in order to handle the SLA violations, a new action, that specifies the conditions and the

penalty associated to the violations is added to the SLA following SLA* standard definition

84

V. APPLICATIONS OF OUR APPROACHES FOR SLA NEGOTIATION AND MONITORING

(See Section V.4.4 and Figure V.5). The penalty associated to each violation is also taken

into account in the SLA selection criteria.

V.4.4 SLA monitoring solution with SLA∗

We propose in this section a solution based on SLA∗ to monitor SLAs. Our solution

extends the set of actions defined in the terms of the SLA in order to specify the action to

be performed when the SLA is violated. In particular, the violation condition is specified

and the penalty associated to it is given to the customer by the service provider. Initially,

the service operation SLA template generated for the negotiation process contains the

monitoring action. This is also used by the customers to classify the SLAs proposed by the

providers. But, we note that the most important criteria in the selection is the execution

time, since the goal of the service provider is to have less violations. Some providers can

propose a good execution time and an attractive penalty, when they are sure about the

quality of service they propose to the customers.

Figure V.5 shows the final SLA template used to monitor the performance delivered to

the users of the IFX-based web service operation CreditAdd. In our case, we add an action

A3 (lines 40–49), which monitors the SLA, handles the violations, and gives the penalties

to the service provider. Action A3 is mandatory (line 42) and has to be executed each

month by service provider Alice (line 44), in order to pay the penalties to the customer

which is the recipient in this case. This action triggers the violations of the conditions

specified for the two previous actions A1 or A2 according to the responsiveness option

chosen by the customer. A penalty of 0.1 euro is earned by the customer Bob for each

violation of the agreement by the service provider (line 47).

V.5 Conclusions

We presented our solutions for SLA negotiation and monitoring. The model of the

service extended for simulation allows to have an idea about the performance of a service

and can be used to negotiate the performance SLA for the service. Using our performance

interceptors inside the web service code, the performance of the service can be measured and

help to handle the SLA violations. To show the applicability of our approach, we defined

an SLA∗-based solution to negotiate and monitor the service SLA. The SLA template is

generated first after the simulation results are obtained and is updated after the selection of

the service by the customer following different scenarios. The SLA specified the conditions

on which it can be monitored and how the violations of the terms of the agreement are

handled and the penalties enforced.

85

V. APPLICATIONS OF OUR APPROACHES FOR SLA NEGOTIATION AND MONITORING

1 s l a t emp la t e {
2 ve r s i on : s l a−cred i tadd−v3
3 v o c a b u l a r i e s :
4 http : // s la−at−s o i . eu/ core
5 p a r t i e s :
6 Al i c e : party {
7 r o l e : p rov ide r
8 }
9 Bob : party {

10 r o l e : customer
11 }
12 i n t e r f a c e D e c l r s :
13 IF1 : i n t e r f a c e D e c l r {
14 prov ide r : A l i c e
15 endpoints :
16 E1 : endpoint {
17 l o c a t i o n : http : // i f x s e r v i c e . com/IFXService /CreditAdd
18 pro to co l : soap
19 }
20 interface : http : // i f x s e r v i c e . com/IFXService /CreditAdd
21 }
22 v a r i a b l e s :
23 REQ: var{
24 expr : IF1/ reques t
25 } ,
26 OPT: var{
27 expr : ba s i c
28 domain : one−o f { high , ba s i c }
29 }
30 terms :
31 AT1 : agreementTerm{
32 A1 : s t a t e {
33 pre : OPT == bas i c
34 post : completion−time (REQ) < 35 ms
35 } ,
36 A2 : s t a t e {
37 pre : OPT == high
38 post : completion−time (REQ) < 25 ms
39 } ,
40 A3 : ac t i on {
41 acto r : A l i c e
42 p o l i c y : mandatory
43 pre : v i o l a t e d [A1 . post and A2 . post]
44 l i m i t : 4 weeks
45 post : payment{
46 r e c i p i e n t : customer
47 value : 0 . 1 euro
48 }
49 }
50 }
51 }

Figure V.5: Example of final SLA template used to monitor operation CreditAdd

86

Part IV

Conclusions and future work

T his part presents the summary of our main contributions and the future work.

Chapter VI

Conclusions and future work

Contents

VI.1 Summary of the contributions . 89

VI.2 Future work . 90

VI.2.1 Service composition framework using simulation data 90

VI.2.2 Using Simulation as Part of Service Development Cycle 91

VI.2.3 Application of our approach for services certification 92

VI.2.4 Services performance prediction . 92

VI.2.5 Extension to other service models . 92

VI.2.6 Simulation scripts generation according to the load 92

VI.2.7 Solution for the interference problem in service composition 92

VI.2.8 Move our solution to Cloud . 92

T he goal of this thesis was to propose a methodology for early assessment of service

performance. To reach this aim, our methodology integrates the simulation step in the

development cycle of services. In this chapter, we provide the summary of our contributions

and discuss some possible research directions our work can consider in the future.

VI.1 Summary of the contributions

In this thesis, we proposed solutions for the early assessment of service performance.

We defined a set of techniques that allow to estimate the performance of the service when

historical data and source code are not yet available using model-based approach and

simulation. Our main contributions can be summarized as follows.

• Early assessment of service performance: Full-knowledge and Partial-

knowledge scenarios

We proposed a model-based approach that relies on STS to describe the web services

as finite state automata and evaluate their performance. This model was extended

for testing and simulation. The testing model annotates model transitions with per-

formance idioms, which allow to evaluate the behavior of the service. The simulation

model extends the standard STS-based model with transition probabilities and delay

89

VI. CONCLUSIONS AND FUTURE WORK

distributions. This model is used to generate a simulation script that allows to sim-

ulate the service behavior. Our methodology used simulation along the design and

pre-deployment phases of the web service lifecycle to preliminarily assess web service

performance using coarse-grained information on the total execution time of each ser-

vice operation derived by testing. We used testing results and provided some practical

examples to validate our methodology and the quality of the performance measure-

ments computed by simulation considering the full-knowledge and partial-knowledge

scenarios. The results obtained showed that our simulation gives accurate estimation

of the execution times.

• Early assessment of service performance: Zero-knowledge scenario

We proposed an approach that permits service developers and software adopters to

evaluate service performance in a zero-knowledge scenario, where testing results and

service code are not yet available. Our approach is built on expert knowledge to

estimate the execution time of the service operation. It evaluates the complexity of

the service operation using the input and output SOAP messages, and the Web Service

Description Language (WSDL) interface of the service. Then, the operation interval

of execution times is estimated based on profile tables providing the time overhead

needed to parse and build SOAP messages, and the performance inferred from the

testing of some reference service operations. Our simulation results showed that our

zero-knowledge approach gives an accurate approximation of the interval of execution

times when compared with the testing results at the end of the development.

• Application of simulation methodology to real world scenarios: Negotiation

and monitoring of service SLA on performance using simulated data

We proposed an application of our previous approaches to define frameworks that

allow to negotiate and monitor the performance SLA of the web service based on

the simulation data. The solution for SLA monitoring is based on the STS-based

model for testing and the solution for SLA negotiation is based on the service model

for simulation. This work allows to have an idea about the SLA of the service in

advance and after deployment to handle the SLA violations. An SLA∗-based solution

is proposed for SLA negotiation and monitoring.

VI.2 Future work

The work presented in this thesis leaves space for further improvements and exten-

sions, which are described in the remainder of this section.

VI.2.1 Service composition framework using simulation data

We propose to extend the application of our solutions to provide a service compo-

sition based on the performance information provided by the STS-based model extended

90

VI. CONCLUSIONS AND FUTURE WORK

for simulation STSs. Simulation-based approach is chosen because the performance of a

composite service cannot be evaluated a priori. The performance of a composite service

needs to be evaluated before integration and the code of the service is not available. The

simulation script generated from this model helps to guess the performance of the service

before its integration in the composed process.

Indeed, the composition scenario recruits the component of the composite service based

on the performance claimed by the STS-based model for simulation. Before the recruitment

of the component, we need to trust in the claimed performance of the component estimated

from the extended STS-based model. For that, a trusted third party will sign the service

model of the component used to evaluate its performance. The composition process takes

into account two different scenarios.

• First, the scenario where a component of the composite service falls down and there

is a need to recruit a new one to replace it following the initial conditions specified in

the SLA of the process.

• The second scenario allows to compose all of the process by recruiting the different

components compatible with the SLA of the composite service. These components

will be recruited in such a way that they satisfy the performance conditions specified

in the SLA.

In both scenarios, our work will show that if each of the different component provides a

trustworthy STS-based model extended for simulation of the performance, the resulting

composite service is compatible with the SLA.

VI.2.2 Using Simulation as Part of Service Development Cycle

In Service-Oriented Architectures (SOA), the quick and accurate evaluation of web

service performance is a fundamental problem. Despite the fact that the integration of the

simulation step into the development cycle of software/services can allow to evaluate in

advance the performance, the integration of simulation as part of service development cycle

is still a challenge [2, 3, 81, 112]. To show the application of our methodologies presented

along this thesis, we propose to use simulation as part of the development process to assess

the performance of a family of web services. The goal is to apply our technique to a family

of services in the same domain, which have some correlation and show how the performance

of the entire family can be guessed. For that, one of the services is chosen as reference,

developed and its performance results are used to estimate the performance of the other

services, members of the family. The estimation process uses our zero-knowledge scenario

presented in this thesis.

91

VI. CONCLUSIONS AND FUTURE WORK

VI.2.3 Application of our approach for services certification

We plan to extend the application of our approach to services certification. The goal is

to propose an approach that virtually certifies the model of services used in the evaluation

of the service performance in our approach for a given set of performance properties. This

can be also used in the case of service compositions.

VI.2.4 Services performance prediction

We plan to provide a solution that allows to predict the performance of services from

monitoring data in order to setup an auto-scaling technique. Our solution will use Hidden

Markov Models (HMM) and/or Time Series Models to predict the execution times of the

services based on the simulated data obtained. This prediction is used in order to reduce

the SLA violation by allocating more resources to the service when needed.

VI.2.5 Extension to other service models

The aim is to provide solutions for other service models that exist like UML, petri

nets and timed automata. This will allow to extend the usage of our solution to more

developers according to their familiarity with one model or another. This extension will

allow to generate also the simulation from these models.

VI.2.6 Simulation scripts generation according to the load

This extension will allow to generate simulation scripts according to the load of

requests on the service. We plan to use regression technique to estimate the load evolution

and to generate the interval of execution times as a function of that and then to generate

the load-based simulation scripts.

VI.2.7 Solution for the interference problem in service composition

This extension will propose solution for the interference problem during the composition.

It will study how different orders of the components of the composite service can impact

the overall performance.

VI.2.8 Move our solution to Cloud

Our goal is to apply our solution to Cloud, to allow an early evaluation of the service

performance used to monitor and negotiate the SLA with the cloud provider and also to

manage the resources allocation. The simulation model used to estimate the performance

of the service will help to predict the behavior of the service or composite service in order

to scale automatically the need of resources by the cloud infrastructure provider.

92

Publications

The works presented in this thesis is presented/submitted to many international con-

ferences. We give here the title and the abstract of the relevant publications.

1. Zero-Knowledge Evaluation of Service Performance Based on Simulation

(co-authors: Claudio A. Ardagna, Ernesto Damiani, Fulvio Frati) Accepted at the

15th IEEE International Symposium on High Assurance Systems Engineering (HASE

2014), Miami, Florida, USA, January 9–11, 2014.

Acceptance rate: 40%

Abstract: The success of web services is changing the way in which software is

designed, developed, and distributed. Services are in fact continuously re-designed

and incrementally developed, released in heterogeneous and distributed environments,

and selected and integrated at runtime within external business processes. In this

dynamic context, there is the need of solutions supporting the evaluation of service

performance at an early stage of the software development process, or even at design

time, to support users in an a priori evaluation of the impact a given service might

have when integrated in their business process.

In this paper, we provide an approach that permits service developers and software

adopters to evaluate service performance in a zero-knowledge scenario, where neither

the service code nor (test-based) information on service execution times are avail-

able. Our approach builds on expert knowledge to estimate the execution time of

each service operation and, in turn, the overall service performance. To this aim, we

first evaluate the complexity of each operation using the XML encoding of its input

and output parameters, and the Web Service Description Language (WSDL) inter-

face of the service. We then use profile tables providing the time overhead needed

to parse and build SOAP messages with different depths and cardinalities, and the

performance (retrieved by testing) of some reference service operations to estimate

the operation execution times. We finally experimentally evaluate our approach by

using the measured operation execution times to simulate the service performance.

2. STS2Java: An Eclipse Plugin for Early Assessment of Service Performance

Based on Simulation

(co-authors: Claudio A. Ardagna, Ernesto Damiani) in Proc. of 8th Workshop of the

Italian Eclipse Community (Eclipse-IT 2013), Crema, Italy, September 19–20, 2013.

Abstract: Since the emergence of the model-driven development paradigm, there

has been a significant effort towards the integration of solutions for the assessment

of software performance in the early phases of the software development process.

Along this line, we have proposed a framework based on simulation that estimates the

performance of web services modeled as Symbolic Transition Systems (STSs). Our

VI. CONCLUSIONS AND FUTURE WORK

framework uses the STS-based model of the service under evaluation to automatically

produce a simulation script for performance estimation. In this paper, we present

STS2Java, an implementation of the framework as a plugin for Eclipse IDE, which

produces Java-based simulation scripts.

3. Early Assessment of Service Performance Based on Simulation

(co-authors: Claudio A. Ardagna, Ernesto Damiani) in Proc. of 10th International

Conference on Services Computing (SCC 2013), Santa Clara, CA, USA, June 27–July

2, 2013.

Acceptance rate: 18%

Abstract: Accurate and rapid evaluation of web service performance is a key prob-

lem of Service-Oriented Architecture (SOA), where services are continuously being

(re-)designed and released, and integrated within heterogeneous environments. Un-

fortunately, pre-deployment testing of services is not suitable to evaluate service per-

formance at both design time and runtime. As a result, often process designers get

a reliable assessment of service performance only very late in the lifecycle, once ser-

vices have been deployed, while customers cannot evaluate service behavior at se-

lection time. In this paper we tackle these problems by proposing a methodology

that generates a simulation script that can be used for an early assessment of service

performance, and to negotiate and evaluate SLAs on service performance at runtime.

4. Quality architecture for resource allocation in cloud computing

(co-author: Pelagie Houngue) in Proc. of First European conference on Service-

Oriented and Cloud Computing (ESOCC 2012), Bertinoro, Italy, September 19–21,

2012.

Acceptance rate: 32%

Abstract: Quality features are important to be taken into account while allocating

resource in Cloud Computing, since it allows to provide to the users or customers,

high Quality of Service (QoS) with best response time as example and respects the

Service Level Agreement (SLA) established.

Indeed, it is not easy to handle efficiently resource allocation processes in Cloud, since,

the applications deployed on Cloud present non-uniform usage patterns, and the cloud

allocation architecture needs to provide different scenarios of resource allocation to

satisfy the demands and provide quality. In order to provide the measurement of

quality indexes, the Cloud resource allocation architecture needs to be proactive and

reactive.

The goal of this paper is to propose a resource allocation architecture for Cloud Com-

puting that provides the measurement of quality indicators identified between the Key

Performance Indicators (KPI) defined by the Cloud Services Measurement Initiative

94

VI. CONCLUSIONS AND FUTURE WORK

Consortium (CSMIC). Our architecture proposes different resource allocation poli-

cies: predictive and reactive. The allocation decisions are taken in this architecture,

according to the SLA. Finally, the preliminary experimental results show that our

proposed architecture can improve quality in Cloud.

5. Resources Provisioning in a Cloud Environment (Research plan)

(co-author: Ernesto Damiani) in Proc. of 2nd International Symposium on Data-

Driven Process Discovery and Analysis (SIMPDA 2012), Campione dItalia, Italy,

June 18–20, 2012.

Abstract: Efficient resources allocation is important in Cloud Computing to satisfy

the agreement the provider has with the users and customers. The virtual resources

need then to be available when need it. Our research activities will help to handle the

allocation of resources in Cloud Computing efficiently by ensuring high availability

and scalability. Our work aims to have a high Quality of Service in the Cloud. We

will use the most used allocation approaches to manage the resources by proposing

some algorithms following reactive and proactive models. The migration of resources

for server consolidation will also be used to provide the resources in the Cloud.

6. Study, Design, and Development of Architectural Patterns for Multitenant

Cloud (Research plan)

in Proc. of 1st International Symposium on Data-Driven Process Discovery and Anal-

ysis (SIMPDA 2011), Campione dItalia, Italy, June 29–July 1, 2011.

Abstract: Recent advent of cloud computing offers some tangible prospects of reduc-

ing the costs of hardware and software monitoring, management, and maintenance.

Multi-tenancy, which allows a single application to emulate multiple application in-

stances, has been proposed as a solution. Our research activities will focus on SOA-

as-a-service use case and will study and define architectural patterns based on virtu-

alization and models for dynamic improvements of resources that support reliability,

scalability and multi-tenancy at PaaS (Platform as a Service) level.

95

Bibliography

[1] Michael P Papazoglou, Vasilios Andrikopoulos, and Salima Benbernou. Managing

evolving services. IEEE Software, 28(3):49–55, 2011.

[2] Leslie Cheung, Leana Golubchik, and Fei Sha. A study of web services performance

prediction: A client’s perspective. In Proc. of MASCOTS 2011, Singapore, July 2011.

[3] Dorina C Petriu. Software model-based performance analysis. John Wiley & Sons,

2010.

[4] Matjaz B Juric, Ivan Rozman, Bostjan Brumen, Matjaz Colnaric, and Marjan Her-

icko. Comparison of performance of Web services, WS-Security, RMI, and RMI-SSL.

Journal of Systems and Software, 79:689–700, May 2006.

[5] Claus Pahl, Marko Boŝković, and Wilhelm Hasselbring. Model-driven performance

evaluation for service engineering. In Proc. of IEEE ECOWS 2007, Halle, Germany,

November 2007.

[6] Gerardo Canfora and Massimiliano Di Penta. Service-oriented architectures testing:

A survey. Software Engineering: International Summer Schools, ISSSE 2006-2008,

1:78–105, 2009.

[7] Shiping Chen, Bo Yan, John Zic, Ren Liu, and Alex Ng. Evaluation and modeling

of web services performance. In Proc. of IEEE ICWS 2006, Chicago, IL, USA,

September 2006.

[8] Barry W Boehm. Software engineering economics. Prentice-Hall, 1981.

[9] Barry W Boehm, Ray Madachy, Bert Steece, et al. Software Cost Estimation with

Cocomo II with Cdrom. Prentice Hall PTR, 2000.

[10] Alain Abran, Jean-Marc Desharnais, Serge Oligny, Denis St-Pierre, and Charles

Symons. The COSMIC Functional Size Measurement Method v3.0.1, Measurement

Manual, May 2009.

[11] Miroslaw Ochodek, J Nawrocki, and K Kwarciak. Simplifying effort estimation based

on use case points. Information and Software Technology, 53(3):200–213, 2011.

97

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-

based performance prediction in software development: A survey. IEEE Transactions

on Software Engineering, 30(5):295–310, 2004.

[13] Simonetta Balsamo and Marta Simeoni. Deriving performance models from software

architecture specifications. In European Simulation Multiconference, volume 2001,

2001.

[14] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Soft-

ware performance: state of the art and perspectives. Technical report, MIUR SA-

HARA Project TR SAH/04, 2002.

[15] Antonia Bertolino, Guglielmo De Angelis, and Andrea Polini. A qos test-bed gener-

ator for web services. In Web Engineering, pages 17–31. Springer, 2007.

[16] Lars Frantzen, Jan Tretmans, and Tim AC Willemse. Test generation based on

symbolic specifications. In Proc. of FATES 2004, Linz, Austria, September 2004.

[17] Wei Song, Xiaoxing Ma, Chunyang Ye, Wanchun Dou, and Jian Lu. Timed modeling

and verification of bpel processes using time petri nets. In Proc. of QSIC 2009, Jeju,

Korea, August 2009.

[18] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer

science, 126(2):183–235, 1994.

[19] Brian Nielsen and Arne Skou. Automated test generation from timed automata.

International Journal on Software Tools for Technology Transfer, 5(1):59–77, 2003.

[20] Gregorio Diaz, Juan-José Pardo, Maria-Emilia Cambronero, Valentin Valero, and

Fernando Cuartero. Verification of web services with timed automata. Electronic

Notes in Theoretical Computer Science, 157(2):19–34, 2006.

[21] SmartBear. soapUI Testing tool. http://www.soapui.org/, Accessed in date

September 2013.

[22] SmartBear. Load Testing tool. http://www.loadui.org/, Accessed in date Septem-

ber 2013.

[23] Predic8. Membrane SOAP monitor. http://www.membrane-soa.org/

soap-monitor/, Accessed in date September 2013.

[24] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web services.

Springer, 2004.

[25] W3C. W3C Web Services Activity. http://www.w3.org/2002/ws/.

[26] Dieter Fensel and Mick Kerrigan. Modeling semantic web services: the web service

modeling language. Springer, 2008.

98

http://www.soapui.org/
http://www.loadui.org/
http://www.membrane-soa.org/soap-monitor/
http://www.membrane-soa.org/soap-monitor/
http://www.w3.org/2002/ws/

BIBLIOGRAPHY BIBLIOGRAPHY

[27] W3C. W3C SOAP. http://www.w3.org/TR/soap/.

[28] Zahir Tari. On the performance of web services. Springer, 2011.

[29] Roy Thomas Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, University of California, 2000.

[30] Christudas A Binildas, Malhar Barai, and Vincenzo Caselli. Service Oriented Archi-

tecture with Java. Packt Pub., 2008.

[31] W3C. W3C Web Services Description Language (WSDL) Version 2.0. http://www.

w3.org/TR/wsdl20-primer/.

[32] Elisa Bertino, Lorenzo Martino, Federica Paci, and Anna Squicciarini. Security for

Web Services and Service-Oriented Architectures. Springer Publishing Company,

Incorporated, 2009.

[33] Dinesh Verma. Supporting service level agreements on an IP networks. Sams Pub-

lishing, 1999.

[34] Lundy Lewis. Managing business and service networks. Springer, 2001.

[35] Ron Sprenkels and Aiko Pras. Service level agreements. Internet NG D, 2:7, 2001.

[36] Edward Wustenhoff and Sun BluePrints. Service level agreement in the data center.

Sun Microsystems Professional Series, 2002.

[37] Alexander Keller and Heiko Ludwig. The WSLA framework: Specifying and mon-

itoring service level agreements for web services. Journal of Network and Systems

Management, 11(1):57–81, 2003.

[38] Linlin Wu and Rajkumar Buyya. Service level agreement (sla) in utility computing

systems. Performance and Dependability in Service Computing: Concepts, Tech-

niques and Research Directions, pages 1–25, 2011.

[39] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig, Toshiyuki

Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web services

agreement specification (ws-agreement). In Global Grid Forum, volume 2, 2004.

[40] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P King, and Richard Franck.

Web service level agreement (wsla) language specification. IBM Corporation, pages

815–824, 2003.

[41] D Davide Lamanna, James Skene, and Wolfgang Emmerich. Slang: a language for

service level agreements. 2003.

[42] Svend Frølund and Jari Koistinen. Qml: A language for quality of service specifica-

tion. Hewlett-Packard Laboratories, 1998.

99

http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl20-primer/
http://www.w3.org/TR/wsdl20-primer/

BIBLIOGRAPHY BIBLIOGRAPHY

[43] Keven T Kearney, Francesco Torelli, and Constantinos Kotsokalis. Sla∗: An ab-

stract syntax for service level agreements. In Grid Computing (GRID), 2010 11th

IEEE/ACM International Conference on, pages 217–224. IEEE, 2010.

[44] Setrag Khoshafian. Service oriented enterprises. CRC Press, 2006.

[45] Felix Bachmann, Michael Goedicke, Julio Leite, Robert Nord, Klaus Pohl, Balasubra-

maniam Ramesh, and Alexander Vilbig. A meta-model for representing variability in

product family development. In Software Product-Family Engineering, pages 66–80.

Springer, 2004.

[46] Winston W Royce. Managing the development of large software systems. In proceed-

ings of IEEE WESCON, volume 26. Los Angeles, 1970.

[47] Alan M. Davis, Edward H. Bersoff, and Edward R. Comer. A strategy for compar-

ing alternative software development life cycle models. Software Engineering, IEEE

Transactions on, 14(10):1453–1461, 1988.

[48] Kent Beck and Cynthia Andres. Extreme programming explained: embrace change.

Addison-Wesley Professional, 2004.

[49] Ping Zhang, Jane Carey, Dov Teeni, and Marilyn Tremaine. Integrating human-

computer interaction development into the systems development life cycle: a method-

ology. Communications of the Association for Information Systems (Volume 15,

2005), 512(543):543, 2005.

[50] David Avison and Guy Fitzgerald. Information systems development: methodologies,

techniques and tools. McGraw Hill, 2003.

[51] Scott Ambler. Agile modeling: effective practices for extreme programming and the

unified process. Wiley.com, 2002.

[52] Lowell Lindstrom and Ron Jeffries. Extreme programming and agile software devel-

opment methodologies. Information Systems Management, 21(3):41–52, 2004.

[53] Gary Pollice. Using the rational unified process for small projects: Expanding upon

extreme programming. Rational Software White Paper, 2001.

[54] OMG. OMG’s Meta-Object Facility. http://www.omg.org/mof/.

[55] OMG. Unified Modeling Language (UML). http://www.uml.org/.

[56] OMG. Business Process Management and Notation (BPMN). http://www.bpmn.

org/.

[57] D Kartson, Gianfranco Balbo, S Donatelli, G Franceschinis, and Giuseppe Conte.

Modelling with generalized stochastic Petri nets. John Wiley & Sons, Inc., 1994.

100

http://www.omg.org/mof/
http://www.uml.org/
http://www.bpmn.org/
http://www.bpmn.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[58] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. Process algebra for per-

formance evaluation. Theoretical computer science, 274(1):43–87, 2002.

[59] W David Kelton and Averill M Law. Simulation modeling and analysis. McGraw

Hill Boston, MA, 2000.

[60] Petia Wohed, Wil MP van der Aalst, Marlon Dumas, Arthur HM ter Hofstede, and

Nick Russell. On the suitability of bpmn for business process modelling. In Business

Process Management, pages 161–176. Springer, 2006.

[61] Alfonso Rodŕıguez, Eduardo Fernández-Medina, and Mario Piattini. A bpmn exten-

sion for the modeling of security requirements in business processes. IEICE transac-

tions on information and systems, 90(4):745–752, 2007.

[62] Miguel de Miguel, Thomas Lambolais, Mehdi Hannouz, Stéphane Betgé-Brezetz,

and Sophie Piekarec. Uml extensions for the specification and evaluation of latency

constraints in architectural models. In Proceedings of the 2nd international workshop

on Software and performance, pages 83–88. ACM, 2000.

[63] Jan Tretmans. Model-based testing and some steps towards test-based modelling. In

Proc. of SFM 2011, Bertinoro, Italy, June 2011.

[64] Lars Frantzen, Jan Tretmans, and Tim AC Willemse. A symbolic framework for

model-based testing. In Proc. of FATES/RV 2006, Seattle, USA, August 2006.

[65] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence.

Software—Concepts and Tools, (TR-CTIT-96-26), 1996.

[66] Yanan Hao, Yanchun Zhang, and Jinli Cao. A novel QoS model and computation

framework in web service selection. Springer World Wide Web, 15(5-6):663–684, May

2012.

[67] Zeinab Noorian, Michael Fleming, and Stephen Marsh. Preference-oriented QoS-

based service discovery with dynamic trust and reputation management. In Proc. of

ACM SAC 2012, Trento, Italy, March 2012.

[68] Eyhab Al-Masri and Qusay H Mahmoud. Discovering the best web service. In

Proceedings of the 16th international conference on World Wide Web, pages 1257–

1258. ACM, 2007.

[69] Eyhab Al-Masri and Qusay H Mahmoud. Qos-based discovery and ranking of web

services. In Proceedings of 16th International Conference on Computer Communica-

tions and Networks, 2007. ICCCN 2007., pages 529–534. IEEE, 2007.

[70] Frank Schulz. Towards measuring the degree of fulfillment of service level agreements.

In Proc. of ICIC 2010, Changsha, China, August 2010.

101

BIBLIOGRAPHY BIBLIOGRAPHY

[71] Kassidy P Clark, ME Warnier, Frances MT Brazier, and Thomas B Quillinan. Secure

monitoring of service level agreements. In Availability, Reliability, and Security, 2010.

ARES’10 International Conference on, pages 454–461. IEEE, 2010.

[72] Florian Marienfeld, Edzard Höfig, Michele Bezzi, Matthias Flügge, Jonas Pattberg,

Gabriel Serme, Achim D Brucker, Philip Robinson, Stephen Dawson, and Wolfgang

Theilmann. Service levels, security, and trust. In Handbook of Service Description,

pages 295–326. Springer, 2012.

[73] Alexandru Iosup, Simon Ostermann, M Nezih Yigitbasi, Radu Prodan, Thomas

Fahringer, and Dick HJ Epema. Performance analysis of cloud computing services

for many-tasks scientific computing. IEEE TDPS, 22:931–945, June 2011.

[74] Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati, Davide Rebeccani, and

Marco Ughetti. Scalability patterns for platform-as-a-service. In Proc. of IEEE

CLOUD 2012, Honolulu, HI, USA, June 2012.

[75] Marco Comuzzi, Constantinos Kotsokalis, George Spanoudakis, and Ramin

Yahyapour. Establishing and monitoring slas in complex service based systems. In

Web Services, 2009. ICWS 2009. IEEE International Conference on, pages 783–790.

IEEE, 2009.

[76] Hyung Gi Song and Kangsun Lee. sPAC (web services performance analysis center):

Performance analysis and estimation tool of web services. In Proc. of BPM 2005,

Nancy, France, September 2005.

[77] Senthilanand Chandrasekaran, Gregory Silver, John A Miller, Jorge Cardoso, and

Amit P Sheth. Xml-based modeling and simulation: web service technologies and

their synergy with simulation. In Proceedings of the 34th conference on Winter simu-

lation: exploring new frontiers, pages 606–615. Winter Simulation Conference, 2002.

[78] Yan Liu and Ian Gorton. Accuracy of performance prediction for ejb applications:

A statistical analysis. In Software Engineering and Middleware, pages 185–198.

Springer, 2005.

[79] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-

based performance prediction in software development: A survey. IEEE TSE,

30(5):295–310, 2004.

[80] Andrea D’Ambrogio and Paolo Bocciarelli. A model-driven approach to describe and

predict the performance of composite services. In Proceedings of the 6th international

workshop on Software and performance, pages 78–89. ACM, 2007.

[81] Mathias Fritzsche and Jendrik Johannes. Putting performance engineering into

model-driven engineering: Model-driven performance engineering. Models in Soft-

ware Engineering, pages 164–175, 2008.

102

BIBLIOGRAPHY BIBLIOGRAPHY

[82] Ch Ram Mohan Reddy, D Evangelin Geetha, KG Srinivasa, TV Suresh Kumar, and

K Rajani Kanth. Predicting performance of web services using smtqa. International

Journal of Computer Science Information Technology, 1(2):58–66, 2011.

[83] Ch Ram Mohan Reddy, D Evangelin Geetha, KG Srinivasa, TV Kumar, and

K Rajani Kanth. Early performance prediction of web services. arXiv preprint

arXiv:1201.2034, 2012.

[84] ChangSup Keum, Sungwon Kang, In-Young Ko, Jongmoon Baik, and Young-Il Choi.

Generating test cases for web services using extended finite state machine. In Proc.

of IFIP TestCom 2006, New York, NY, USA, May 2006.

[85] Christian Schwarzl, Bernhard K Aichernig, and Franz Wotawa. Compositional ran-

dom testing using extended symbolic transition systems. In Proc. of IFIP ICTSS

2011, Paris, France, November 2011.

[86] Sayed Mehran Sharafi. Extending team automata to evaluate software architectural

design. In Proc. of COMPSAC 2008, Turku, Finland, July 2008.

[87] Marco Anisetti, Claudio A Ardagna, Ernesto Damiani, and Francesco Saonara. A

test-based security certification scheme for web services. ACM Transactions on the

Web (TWEB), 7(2):5, 2013.

[88] Lina Bentakouk, Pascal Poizat, and Fatiha Zäıdi. A formal framework for service

orchestration testing based on symbolic transition systems. In Proc. of TESTCOM/-

FATES 2009, Eindhoven, The Netherlands, November 2009.

[89] Davide D’Aprile, Susanna Donatelli, Arnaud Sangnier, and Jeremy Sproston. From

time petri nets to timed automata: An untimed approach. In Tools and Algorithms

for the Construction and Analysis of Systems, pages 216–230. Springer, 2007.

[90] Anne Rozinat, RS Mans, Minseok Song, and Wil MP van der Aalst. Discovering

simulation models. Information Systems, 34(3):305–327, 2009.

[91] Anders Hessel and Paul Pettersson. A test case generation algorithm for real-time

systems. In Proc. of QSIC 2004, Braunschweig, Germany, September 2004.

[92] M Emilia Cambronero, Gregorio Dı́az, Valent́ın Valero, and Enrique Mart́ınez. Val-

idation and verification of web services choreographies by using timed automata.

Journal of Logic and Algebraic Programming, 80(1):25–49, 2011.

[93] Franco Raimondi, James Skene, and Wolfgang Emmerich. Efficient online monitoring

of web-service slas. In Proc. of SIGSOFT 2008, Atlanta, GA, USA, November 2008.

[94] Alessio Lomuscio, M Solanki, W Penczek, and Maciej Szreter. Runtime monitoring

of contract regulated web services. In Proc. of AAMAS 2010, Toronto, Canada, May

2010.

103

BIBLIOGRAPHY BIBLIOGRAPHY

[95] Jia Mei, Huaikou Miao, Qingguo Xu, and Pan Liu. Modeling and verifying web

service applications with time constraints. In Proc. of 9th International Conference

onComputer and Information Science (ICIS 2010), pages 791–795, Yamagata, Japan,

August 2010.

[96] Pedro M Gonzalez del Foyo and José Reinaldo Silva. Using time petri nets for mod-

elling and verification of timed constrained workflow systems. In ABCM Symposium

Series in Mechatronics, volume 3, pages 471–478, 2008.

[97] Murray Woodside, Dorina C Petriu, Dorin B Petriu, Hui Shen, Toqeer Israr, and Jose

Merseguer. Performance by unified model analysis (puma). In Proceedings of the 5th

international workshop on Software and performance, pages 1–12. ACM, 2005.

[98] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The palladio component model for

model-driven performance prediction. Journal of Systems and Software, 82(1):3–22,

2009.

[99] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. From design to analysis

models: a kernel language for performance and reliability analysis of component-

based systems. In Proceedings of the 5th international workshop on Software and

performance, pages 25–36. ACM, 2005.

[100] Dilek Baski and Sanjay Misra. Metrics suite for maintainability of extensible markup

language web services. IET Software, 5(3):320–341, 2011.

[101] Quynh Pham Thi, Dung Ta Quang, and Thang Huynh Quyet. A complexity measure

for web service. In Proc. of KSE 2009., Hanoi, Vietnam, October 2009.

[102] José Luis Ordiales Coscia, Marco Crasso, Cristian Mateos, Alejandro Zunino, and

Sanjay Misra. Predicting web service maintainability via object-oriented metrics: A

statistics-based approach. In Proc. of ICCSA 2012, Salvador de Bahia, Brazil, June

2012.

[103] Jorge Cardoso. Complexity analysis of bpel web processes. Software Process: Im-

provement and Practice, 12(1):35–49, 2007.

[104] Jaber Karimpour, Ayaz Isazadeh, and Habib Izadkhah. Early performance assess-

ment in component-based software systems. IET Software, 7(2):118–128, 2013.

[105] IFX Forum. Interactive Financial Exchange. http://www.ifxforum.org/.

[106] Joe M Tekli, Ernesto Damiani, Richard Chbeir, and Gabriele Gianini. SOAP pro-

cessing performance and enhancement. IEEE TSC, 5(3):387–403, 2012.

[107] Lars Frantzen. Modeling Symbolic Transition Systems in XML. http://www.

frantzen.info/archives/P20.html, Accessed in Date January 2014.

104

http://www.ifxforum.org/
http://www.frantzen.info/archives/P20.html
http://www.frantzen.info/archives/P20.html

BIBLIOGRAPHY BIBLIOGRAPHY

[108] IBM Redbooks publication. Developing Enterprise JavaBeans Application. http:

//www.redbooks.ibm.com/redpieces/pdfs/redp4885.pdf.

[109] Wu Kehe, Wang Zhuo, Zhao Xing, and Ma Gang. Design and implementation of the

monitoring system for ejb applications based on interceptors. In Proc. of ICACTE

2010, Chengdu, China, August 2010.

[110] Serguei Roubtsov, Alexander Serebrenik, Aurélien Mazoyer, and Mark van den

Brand. I2sd: Reverse engineering sequence diagrams from enterprise java beans

with interceptors. In Proc. of SCAM 2011, Williamsburg VA, USA, September 2011.

[111] C.A. Ardagna, E. Damiani, and K.A.R. Sagbo. Sts2java: An eclipse plugin for early

assessment of service performance based on simulation. In Proc. of VIII Workshop

of the Italian Eclipse Community, Eclipse-IT 2013, Crema, Italy, September 2013.

Eclipse Italian Community.

[112] Claudio A. Ardagna, Ernesto Damiani, and Kouessi Arafat Romaric Sagbo. Early

assessment of service performance based on simulation. In Proc. of SCC 2013, Santa

Clara, CA, USA, June 2013.

[113] Claudio Santacesaria. Personal communication on the use of ATMs: load statistics.

Email received on 14th December 2012.

[114] Henry Oliver Lancaster and Eugene Seneta. Chi-Square Distribution. Wiley Online

Library, 2005.

[115] Lawrence H Putnam and Ware Myers. Measures for excellence: reliable software on

time, within budget. Prentice Hall Professional Technical Reference, 1991.

[116] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. Introduction to

linear regression analysis, volume 821. Wiley, 2012.

[117] Christian P Robert and George Casella. Monte Carlo statistical methods, volume

319. Citeseer, 2004.

[118] Malvin H Kalos and Paula A Whitlock. Monte carlo methods. John Wiley & Sons,

2008.

[119] José Luis Ordiales Coscia, Marco Crasso, Cristian Mateos, and Alejandro Zunino. Es-

timating web service interface quality through conventional object-oriented metrics.

CLEI ELECTRONIC JOURNAL, 16(1), 2013.

[120] Maria Grazia Buscemi and Ugo Montanari. Cc-pi: A constraint-based language for

specifying service level agreements. In Programming Languages and Systems, pages

18–32. Springer, 2007.

105

http://www.redbooks.ibm.com/redpieces/pdfs/redp4885.pdf
http://www.redbooks.ibm.com/redpieces/pdfs/redp4885.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[121] Kouessi Arafat Romaric Sagbo and Pélagie Houngue. Quality architecture for re-

source allocation in cloud computing. In Proc. of First European Conference on

Service-Oriented and Cloud Computing, (ESOCC 2012), Bertinoro, Italy, September

2012.

106

APPENDIX

Random number generator: WSDL file

This web service implements a single operation that generates a random number.

<definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401

-wss-wssecurity-utility-1.0.xsd" xmlns:wsp="http://www.w3.org/ns/ws-policy"

xmlns:wsp1_2="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://rsagbo.org/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/"

targetNamespace="http://rsagbo.org/" name="GenerateNumber">

<types>

<xsd:schema>

<xsd:import namespace="http://rsagbo.org/"

<xs:element name="generatenumber" type="tns:generatenumber"/>

<xs:element name="generatenumberResponse" type="tns:generatenumberResponse"/>

<xs:complexType name="generatenumber">

<xs:sequence>

<xs:element name="start" type="xs:int"/>

<xs:element name="end" type="xs:int"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="generatenumberResponse">

<xs:sequence>

<xs:element name="return" type="xs:int"/>

</xs:sequence>

</xs:complexType>

</xsd:schema>

</types>

<message name="generatenumber">

<part name="parameters" element="tns:generatenumber"/>

107

</message>

<message name="generatenumberResponse">

<part name="parameters" element="tns:generatenumberResponse"/>

</message>

<portType name="GenerateNumber">

<operation name="generatenumber">

<input wsam:Action="http://rsagbo.org/GenerateNumber/generatenumberRequest"

message="tns:generatenumber"/>

<output wsam:Action="http://rsagbo.org/GenerateNumber/generatenumberResponse"

message="tns:generatenumberResponse"/>

</operation>

</portType>

<binding name="GenerateNumberPortBinding" type="tns:GenerateNumber">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

<operation name="generatenumber">

<soap:operation soapAction=""/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

<service name="GenerateNumber">

<port name="GenerateNumberPort" binding="tns:GenerateNumberPortBinding">

<soap:address location="http://localhost:8080/Generate/GenerateNumber"/>

</port>

</service>

</definitions>

108

Medical Meeting Management: WSDL file
This web service allows the users of a medical meeting management system to ask for an

appointment with the doctor.

<definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401

-wss-wssecurity-utility-1.0.xsd" xmlns:wsp="http://www.w3.org/ns/ws-policy"

xmlns:wsp1_2="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://rsagbo.org/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/"

targetNamespace="http://rsagbo.org/" name="AskDocService">

<types>

<xsd:schema>

<xsd:import namespace="http://rsagbo.org/"

<xs:element name="AskDoc" type="tns:AskDoc"/>

<xs:element name="AskDocResponse" type="tns:AskDocResponse"/>

<xs:element name="AssignMeeting" type="tns:AssignMeeting"/>

<xs:element name="AssignMeetingResponse" type="tns:AssignMeetingResponse"/>

<xs:element name="CheckID" type="tns:CheckID"/>

<xs:element name="CheckIDResponse" type="tns:CheckIDResponse"/>

<xs:element name="CheckMeeting" type="tns:CheckMeeting"/>

<xs:element name="CheckMeetingResponse" type="tns:CheckMeetingResponse"/>

<xs:element name="generatenumber" type="tns:generatenumber"/>

<xs:element name="generatenumberResponse" type="tns:generatenumberResponse"/>

<xs:element name="searchId" type="tns:searchId"/>

<xs:element name="searchIdResponse" type="tns:searchIdResponse"/>

<xs:element name="searchMeeting" type="tns:searchMeeting"/>

<xs:element name="searchMeetingResponse" type="tns:searchMeetingResponse"/>

<xs:complexType name="CheckMeeting">

<xs:sequence>

<xs:element name="id" type="xs:string" minOccurs="0"/>

<xs:element name="token" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="CheckMeetingResponse">

<xs:sequence>

<xs:element name="return" type="xs:boolean"/>

</xs:sequence>

</xs:complexType>

109

<xs:complexType name="generatenumber">

<xs:sequence>

<xs:element name="start" type="xs:int"/>

<xs:element name="end" type="xs:int"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="generatenumberResponse">

<xs:sequence>

<xs:element name="return" type="xs:int"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="AskDoc">

<xs:sequence>

<xs:element name="id" type="xs:string" minOccurs="0"/>

<xs:element name="token" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="AskDocResponse">

<xs:sequence>

<xs:element name="return" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="AssignMeeting">

<xs:sequence>

<xs:element name="code" type="xs:string" minOccurs="0"/>

<xs:element name="isNew" type="xs:boolean"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="AssignMeetingResponse">

<xs:sequence>

<xs:element name="return" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="searchId">

<xs:sequence>

<xs:element name="id" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="searchIdResponse">

<xs:sequence>

110

<xs:element name="return" type="xs:boolean"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="CheckID">

<xs:sequence>

<xs:element name="id" type="xs:string" minOccurs="0"/>

<xs:element name="token" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="CheckIDResponse">

<xs:sequence>

<xs:element name="return" type="xs:boolean"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="searchMeeting">

<xs:sequence>

<xs:element name="id" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="searchMeetingResponse">

<xs:sequence>

<xs:element name="return" type="xs:boolean"/>

</xs:sequence>

</xs:complexType>

</xsd:schema>

</types>

<message name="generatenumber">

<part name="parameters" element="tns:generatenumber"/>

</message>

<message name="generatenumberResponse">

<part name="parameters" element="tns:generatenumberResponse"/>

</message>

<message name="searchId">

<part name="parameters" element="tns:searchId"/>

</message>

<message name="searchIdResponse">

<part name="parameters" element="tns:searchIdResponse"/>

</message>

<message name="searchMeeting">

<part name="parameters" element="tns:searchMeeting"/>

111

</message>

<message name="searchMeetingResponse">

<part name="parameters" element="tns:searchMeetingResponse"/>

</message>

<message name="CheckID">

<part name="parameters" element="tns:CheckID"/>

</message>

<message name="CheckIDResponse">

<part name="parameters" element="tns:CheckIDResponse"/>

</message>

<message name="CheckMeeting">

<part name="parameters" element="tns:CheckMeeting"/>

</message>

<message name="CheckMeetingResponse">

<part name="parameters" element="tns:CheckMeetingResponse"/>

</message>

<message name="AssignMeeting">

<part name="parameters" element="tns:AssignMeeting"/>

</message>

<message name="AssignMeetingResponse">

<part name="parameters" element="tns:AssignMeetingResponse"/>

</message>

<message name="AskDoc">

<part name="parameters" element="tns:AskDoc"/>

</message>

<message name="AskDocResponse">

<part name="parameters" element="tns:AskDocResponse"/>

</message>

<portType name="AskDocService">

<operation name="AskDoc">

<input wsam:Action="http://rsagbo.org/AskDocService/AskDocRequest"

message="tns:AskDoc"/>

<output wsam:Action="http://rsagbo.org/AskDocService/AskDocResponse"

message="tns:AskDocResponse"/>

</operation>

</portType>

<binding name="AskDocServicePortBinding" type="tns:AskDocService">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>

<operation name="generatenumber">

<soap:operation soapAction=""/>

112

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

<operation name="searchId">

<soap:operation soapAction=""/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

<operation name="searchMeeting">

<soap:operation soapAction=""/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

<operation name="CheckID">

<soap:operation soapAction=""/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

<operation name="CheckMeeting">

<soap:operation soapAction=""/>

<input>

<soap:body use="literal"/>

</input>

<output>

113

<soap:body use="literal"/>

</output>

</operation>

<operation name="AssignMeeting">

<soap:operation soapAction=""/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

<operation name="AskDoc">

<soap:operation soapAction=""/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

<service name="AskDocService">

<port name="AskDocServicePort" binding="tns:AskDocServicePortBinding">

<soap:address location="http://localhost:8080/MedicalMeeting/AskDocService"/>

</port>

</service>

</definitions>

114

Standard STS Model for Medical Meeting Management service
This is the XML encoding of the STS model that represents the Medical Meeting Manage-

ment web service as an automaton.

<STS>

<location>1</location>

<location>2</location>

<location>3</location>

<location>4</location>

<location>5</location>

<location>5a</location>

<location>5b</location>

<location>5c</location>

<location>5d</location>

<location>5e</location>

<location>5f</location>

<location>6</location>

<initialLocation>1</initialLocation>

<locationVars/>

<interactionVars>

<interactionVar>

<name>login</name>

<type>String</type>

</interactionVar>

<interactionVar>

<name>pwd</name>

<type>String</type>

</interactionVar>

<interactionVar>

<name>result</name>

<type>String</type>

</interactionVar>

<interactionVar>

<name>token</name>

<type>String</type>

</interactionVar>

<interactionVar>

<name>id</name>

<type>String</type>

</interactionVar>

</interactionVars>

115

<messages>

<message>

<name>Signon</name>

<kind>input</kind>

<param>login</param>

<param>pwd</param>

</message>

<message>

<name>Signon</name>

<kind>output</kind>

<param>result</param>

<param>token</param>

</message>

<message>

<name>AskDoc</name>

<kind>input</kind>

<param>id</param>

<param>token</param>

</message>

<message>

<name>AskDoc</name>

<kind>output</kind>

<param>result</param>

</message>

<message>

<name>CheckMeeting</name>

<kind>input</kind>

<param>id</param>

<param>token</param>

</message>

<message>

<name>CheckMeeting</name>

<kind>output</kind>

<param>result</param>

</message>

<message>

<name>AssignMeeting</name>

<kind>input</kind>

<param>result</param>

</message>

116

<message>

<name>AssignMeeting</name>

<kind>output</kind>

<param>result</param>

</message>

</messages>

<switches>

<switch>

<from>1</from>

<to>2</to>

<message>Signon</message>

<kind>input</kind>

<restriction>

login!=null && pwd!=null

</restriction>

<update/>

</switch>

<switch>

<from>2</from>

<to>3</to>

<message>Signon</message>

<kind>output</kind>

<restriction>

result==failure

</restriction>

<update/>

</switch>

<switch>

<from>2</from>

<to>4</to>

<message>Signon</message>

<kind>output</kind>

<restriction>

result==ok

</restriction>

<update/>

</switch>

<switch>

<from>4</from>

<to>5</to>

117

<message>AskDoc</message>

<kind>input</kind>

<restriction>

id!=null && token!=null

</restriction>

<update/>

</switch>

<switch>

<from>5</from>

<to>5a</to>

<message>AskDoc</message>

<kind>input</kind>

<restriction>

id!=null && token!=null

</restriction>

<update/>

</switch>

<switch>

<from>5a</from>

<to>5b</to>

<message>CheckMeeting</message>

<kind>input</kind>

<restriction/>

<update/>

</switch>

<switch>

<from>5b</from>

<to>5c</to>

<message>CheckMeeting</message>

<kind>output</kind>

<restriction>

result==failure

</restriction>

<update/>

</switch>

<switch>

<from>5b</from>

<to>5d</to>

<message>CheckMeeting</message>

<kind>output</kind>

118

<restriction>

result=new

</restriction>

<update/>

</switch>

<switch>

<from>5c</from>

<to>5</to>

<message>AskDoc</message>

<kind>output</kind>

<restriction/>

<update/>

</switch>

<switch>

<from>5d</from>

<to>5e</to>

<message>AssignMeeting</message>

<kind>input</kind>

<restriction/>

<update/>

</switch>

<switch>

<from>5e</from>

<to>5f</to>

<message>AssignMeeting</message>

<kind>output</kind>

<restriction>

result=ok

</restriction>

<update/>

</switch>

<switch>

<from>5f</from>

<to>5</to>

<message>AskDoc</message>

<kind>output</kind>

<restriction/>

<update/>

</switch>

<switch>

119

<from>5</from>

<to>6</to>

<message>AskDoc</message>

<kind>output</kind>

<restriction/>

<update/>

</switch>

</switches>

</STS>

120

Complete Java Class for operation CreditAdd performance
simulation
This is a Java code that allows to simulate the service execution time for the operation

CreditAdd of the IFX web service.

/*

* Template generated by STS2JAVA from your STS model ’STSModelIFXProba.sax’.

* @author romaric

*/

// Your package name

//package org.rsagbo;

// Add the import here

import java.util.Random;

import statistics.*;

public class STS2Java1 {

public long EvaluateServiceTime () {

long beginT = System.currentTimeMillis () ;

Distribution event = new GenerateRandomEvent () ;

// transition (5,5a)

Delay(Uniform(0,4));

// transition (5a,5b)

Delay(Uniform(1,4));

Double pevent = event.nextRandom() ;

switch (pevent) {

// transition (5b,5c) and (5c,5)

case pevent <= 0.1:

Delay(Uniform(1,1));

Delay(Uniform(1,1));

// transition (5b,5d) and (5d,5)

case pevent > 0.1:

Delay(Uniform(4,7));

Delay(Uniform(2,9));

}

121

return System.currentTimeMillis () - beginT ;

}

// Delay method that performs the waiting feature

public void Delay(int start, int end) {

int time = generatedelay(start, end);

try {

Thread.sleep(time);

} catch (InterruptedException ex) {

Thread.currentThread().interrupt();

}

}

public int generatedelay(int start, int end) {

Random randomGenerator = new Random();

int randomdelay;

int Start = start;

int End = end;

long range = (long) End - (long) Start + 1;

// compute a fraction of the range, 0 <= frac < range

long fraction = (long) (range * randomGenerator.nextDouble());

randomdelay = (int) (fraction + Start);

return randomdelay;

}

public static void main(String[] arg) {

// Your code here

STS2Java sts = new STS2Java();

long st = 0;

st = sts.EvaluateServiceTime();

System.out.println(" The simulated service time is: " + st);

}

}

122

	Abstract
	Résumé
	Acknowledgments
	List of abbreviations
	Part I Introduction and State of art
	Introduction and research questions
	Introduction
	Motivations
	Contributions
	Model-based early assessment of service performance: Full-knowledge and Partial-knowledge scenarios
	Model-based early assessment of service performance: Zero-knowledge scenario
	Services SLA on performance negotiation and/or monitoring using simulated data

	Structure of the thesis or Overview of the thesis

	State of the art
	Web Services and related technologies
	Service-Oriented Architecture (SOA)
	Web Service
	Simple Object Access Protocol (SOAP)
	Representational State Transfer (REST)
	Web Services Description Language (WSDL)
	Universal Description, Discovery and Integration (UDDI)

	Web service QoS guarantees: Service Level Agreement (SLA)
	SLAs components
	SLAs Life Cycle
	SLAs definition languages

	Service Development
	Service Development Life Cycle
	Service Development Models
	Model-Driven Development (MDD)
	Modeling techniques

	Previous works
	Conclusions
	Part II Early Assessment of Web Services Performance via Simulation
	Early Assessment of Service Performance: Full-knowledge and Partial-knowledge Scenarios
	Introduction
	Model of service and framework
	Model of service
	Framework for performance evaluation

	Extended service development life cycle with simulation
	Reference scenario
	Overview on the IFX Standard
	Presentation of the service

	Performance modeling
	STS-based model extended for testing
	STS-based model extended for simulation
	 Loops unroll technique for the STS-based model for simulation
	XML encoding of the STS-based models

	Implementation
	Implementation of the performance interceptors
	Implementation of the simulation scripts generator
	Implementation of our solutions
	Framework STS2Java
	Simulation Plugin STS2Java for Eclipse
	Simulation plugin STS2Java for Netbeans

	Experimental evaluation of our methodology
	Testing and simulation results
	Comparison of testing and simulation results

	Conclusions

	Early Assessment of Service Performance: Zero-knowledge Scenario
	Introduction
	Working Assumptions and our Framework
	Working Assumptions
	Performance Evaluation Framework

	Operation Complexity Assessment
	Building Blocks
	Operation Types Processing Complexity (OTPC)
	Resource Complexity (RC)

	Operation Complexity (OC)
	Example of complexity evaluation

	Execution Time Estimation
	Parsing and Construction Profile Tables
	Execution Time Interval Estimation
	Execution Time Adjustment: Data-Intensive Factor
	Generic algorithm for simulation script generation
	Example of evaluation of the complexity classes parameters

	Experimental Results and Validation of our approach
	Conclusions
	Part III Applications
	Applications of our approaches for SLA negotiation and monitoring
	Introduction
	Framework for service SLA negotiation
	Framework for service SLA monitoring
	SLA negotiation and monitoring: a real use case based on SLA*
	Overview on SLA*
	SLA generation using SLA* abstract syntax
	SLA negotiation solution with SLA*
	SLA monitoring solution with SLA*

	Conclusions
	Part IV Conclusions and future work
	Conclusions and future work
	Summary of the contributions
	Future work
	Service composition framework using simulation data
	Using Simulation as Part of Service Development Cycle
	Application of our approach for services certification
	Services performance prediction
	Extension to other service models
	Simulation scripts generation according to the load
	Solution for the interference problem in service composition
	Move our solution to Cloud

	Publications

	Bibliography
	Random number generator WSDL file
	Medical Meeting Management WSDL file
	Standard STS Model for Medical Meeting Management service
	Complete Java Class for operation CreditAdd performance simulation

