
A Framework For Financial Botnet Analysis

Marco Riccardi, David Oro and Jesus Luna

eSecurity Research Group

Barcelona Digital Technology Centre

Barcelona, Spain

{mriccardi, doro, jluna}@bdigital.org

Marco Cremonini

Department of Information Technology

University of Milan

Milan, Italy

marco.cremonini@unimi.it

Marc Vilanova

CSIRT

La Caixa

Barcelona, Spain

mvilanova@lacaixa.es

Abstract—Financial botnets, those specifically aimed at car-
rying out financial fraud, represent a well-known threat for
banking institutions all around the globe. Unfortunately, these
malicious networks are responsible for huge economic losses
or for conducting money laundering operations. Contrary to
DDoS and spam malware, the stealthy nature of financial botnets
requires new techniques and novel research in order to detect,
analyze and even to take them down.

This paper presents a work-in-progress research aimed at
creating a system able to mitigate the financial botnet problem.
The proposed system is based on a novel architecture that has
been validated by one of the biggest savings banks in Spain.

Based on previous experiences with two of the proposed archi-
tecture building blocks -the Dorothy framework and a blacklist-
based IP reputation system-, we show that it is feasible to map
financial botnet networks and to provide a non-deterministic
score to its associated zombies. The proposed architecture also
promotes intelligence information sharing with involved parties
such as law enforcement authorities, ISPs and financial institu-
tions.

Our belief is that these functionalities will prove very useful
to fight financial cybercrime.

Index Terms—botnets; e-crime forensics framework; honeypots

I. INTRODUCTION

A botnet is a network of compromised computers (also

known as zombies) remotely controlled and instructed to

work in a coordinated fashion by one or more central hosts

(known as the command and control nodes or C&Cs). A

computer turned into a zombie has installed on it tools able to

compromise other computers; has remote control mechanisms

enabled, and has joined the botnet network by performing

coordinated actions. Botnets are responsible for severe Internet

threats such as Distributed Denial of Service (DDoS) attacks,

spam campaigns and phishing activities. To a great extent

the epidemic diffusion of malware has been caused by the

spreading activity of botnets as discussed in previous works

[1] [2] [3].

Recently, cybercriminals have begun to target online bank-

ing using botnets not only for DDoS and spam attacks, but

mainly with the purpose of committing financial fraud, like

stealing the credentials of customers. A typical example, is

the Zeus botnet [4] which has compromised around 3.6 million

computers only in the US.

Unfortunately, mitigation mechanisms against financial bot-

nets have been severely impaired by some relevant problems:

• Due to the stealthy nature of financial malwares, they

are difficult to identify and complex to analyze in an

automated way.

• It is difficult and sometimes illegal to obtain the IP

addresses of compromised computers due to existing

privacy legislation [5] [6].

• Many institutions and organizations are reluctant to share

intelligence information about cybercrime cases. This

makes it more difficult to coordinate activities among

ISPs and law enforcement agencies.

• Currently, there is a lack of supporting frameworks (such

as visualization and analysis tools) useful for tracking and

taking down financial botnets.

The aim of this paper is to present the architecture and major

strategic decisions taken during the design of our supporting

framework. The resulting system is based on contributions

from our previous research:

1) A heavily customized version of the open source

Dorothy Framework maintained by the Italian Chapter

of the Honeynet Project [7]. The architecture of Dorothy

[8] is built upon several software modules designed

from scratch and aimed at analyzing malware binaries,

visually representing their network behaviors and report-

ing an incident to the involved parties (i.e. ISPs, law

enforcement agencies and financial institutions) through

a community-oriented online service.

2) A low-latency reputation system [9] based on IP black-

listing. This system is able to provide a scoring mech-

anism for determining the trustworthiness of a given

IP address based on the quality of different blacklists

containing that IP address.

Both the Dorothy Framework and our IP reputation system

have been extended as depicted in Figure 1 with other mod-

ules and features in order to cope with the financial botnet

phenomenon.

Our belief is that the proposed framework will be able to

manage the whole workflow of identifying, analyzing, and

mitigating a financial botnet, ranging from an initial malware

analysis to the creation of specific feedback and knowledge

shared with interested parties cooperating to fight cybercrime.

Besides highlighting the importance of tracking and vi-

sualizing a botnet’s activity, the proposed framework also

contributes a methodology to identify malware that targets

Fig. 1. Overview of the Financial Botnet Framework

financial institutions. It is worth mentioning that very often

commercial solutions offered to financial institutions still

rely on repositories such as ZeusTracker [10] for gathering

information about a botnet, rather than running malware in a

controlled environment and analyzing its actual behavior.

The rest of this paper is structured as follows: Sections

from II to V describe the architecture of the framework and

show the early performance results obtained. Finally, we draw

conclusions and discuss our future work in Section VI.

II. MALWARE ANALYSIS MODULE

The goal of the Malware Analysis Module (MAM) is to

analyze malware and to discover if it affects a specific financial

institution. If the analyzed malware represents a threat for a

financial institution, then it will be classified as a banking

trojan. Therefore the malware analysis module could also

identify banking trojans that might represent a threat for

several financial institutions.

The framework presented in this paper proposes a new

architecture for analyzing and classifying malware acting as

banking trojans. The rest of this Section explains in more detail

the overall architecture.

A. Characterizing the behavior of a banking trojan

Since configuration files of banking trojans are usually

encrypted with different symmetric algorithms in different

versions of the malware (i.e. this is the case with Zeus), a

manual reverse engineering process of the malware must be

performed in order to find its respective encryption key.

Inspecting the actual configuration of a banking trojan is

useful to verify if it explicitly targets the customers of a

specific financial institution by stealing their online banking

credentials. For example, a Zeus sample could be defined as a

critical banking trojan for the institution X if its configuration

file contains a reference to X (i.e. the URL of the online

banking site of institution X).

Label Description

∆td t3 - t1
∆tu t5 - t3
∆te t5 - t1

TABLE I
TIME PERIODS THAT CHARACTERIZE A BANKING TROJAN

Although this technique may improve the accuracy of anal-

ysis by allowing the content of the encrypted communication

between the infected host and the C&C to be discovered, it

often requires a long time to complete and could be difficult

to achieve. For this reason, we propose an alternative method

that avoids debugging or reverse engineering for determining

if a banking trojan could be reasonably identified as a critical

threat for a specific financial institution. The proposed analysis

technique has been designed in such a way that it might be

executed automatically. A banking trojan behavior could be

summarized by the time flow diagram shown in Figure 2.

t₀ t₁ t₂ t₃ t₄

Infection

Data download

Trigger action execution

Stolen data uploadOriginal state

∆td

t₅

System

turn off∆tu

∆te

Fig. 2. Banking Trojan Behavior

We define the zombified timeframe ∆te as the interval ∆t

between the time of the computer infection by the banking

trojan and the time of the disconnection of the system (or

any other action that makes the system unable to operate as

a zombie). During the zombified timeframe ∆te, two typical

phases of a banking trojan can be recognized: the downloading

phase, whose timeframe is labeled ∆td and the uploading

phase, labeled as ∆tu.

The banking trojan under analysis can then be activated in

a testing environment by either executing a login operation

into a specific online bank or simply when the C&C issues a

special command to it. If the malware is activated during the

time window∆td, it will download the resources needed for its

subsequent activities. In our preliminary experiments, we have

analyzed the Zeus malware by downloading its configuration

files during ∆td.

Next, in the time window ∆tu the banking trojan will send

the stolen data to its pre-configured drop site (i.e. a remote

site connected to the botnet used for storing data collected by

zombies). Table I summarizes the flow with downloading and

uploading phases.

Fig. 3. Malware Analysis Flow

B. Banking trojan analysis process

The overall process for analyzing malware with the purpose

of determining if it is a banking trojan is shown in Figure 3

and starts when generic malware is downloaded (step 1 in

Figure 3). We propose the use of different virtual machines

(with different OS and versions) to execute the malware and

to track its network activity using a different instance of a

network analyzer for each VM.

Since the VM’s local DNS is configured to resolve the real

bank’s domain name to our local server infrastructure (step

2), all the VMs are then automatically directed to a copy of

the original bank web site that has been configured inside the

local network (steps 3 and 4).

The malware is then allowed to execute in the controlled

environment and, after a preset period of time, the virtual

host is stopped and reverted to its original state by loading

a saved snapshot. According to the the description of banking

trojan behavior given in Subsection II-A, during the ∆td time

window, the infected VM will try to connect to the botnet

infrastructure for downloading supporting files (if needed) and,

during ∆tu for uploading data stolen from the local copy of

the original bank web site (step 5 in Figure 3).

The original Dorothy Framework was developed to ana-

lyze generic malware by using the workstation version of

VMWare [11] virtualization platform. One improvement is

the migration to a Kernel-based Virtual Machine. Unlike the

standard VMWare solution, the proposed architecture does not

run on top of a third-party operating system but is based

on a customized Linux Kernel with an integrated hypervisor

module. This hypervisor is designed to guarantee high levels

of performance for the most resource-intensive applications

and thus sharply reduces the total analysis time of the mal-

ware analysis module. Preliminary tests have shown that the

proposed analysis architecture is capable of analyzing up to

850 malware samples per day.

In the following Subsection we present the Data Extraction

Module (DEM), which is invoked as the next analysis tool with

the purpose of parsing network dump traces obtained during

malware execution.

C. Data Extraction Module

Dorothy’s Data Extraction Module (DEM) was developed to

process the network dump traces recorded during the execution

time of each malware sample. In preliminary versions, specific

focus was devoted to track IRC-based botnets; however, since

most banking trojans use the HTTP/S protocol to communicate

with their C&C servers, the original DEM has been modified to

detect financial botnet C&Cs, drop sites, and Support Delivery

Servers (SDSs) communicating over HTTP/S.

According to the banking trojan flow diagram already

presented in Figure 2, the DEM identifies a drop site by

searching for any POST request performed during the ∆tu
period of time. Some classes of banking trojans use FTP or

emails to send stolen user credentials to drop sites. To detect

them, the customized DEM was also modified to look for these

communication mechanisms.

Financial botnet SDSs are identified by filtering all the target

hosts reached during the∆td period, in particular by searching

for HTTP GET requests or FTP communications performed by

the infected machine. A C&C usually checks the availability of

a zombie by exchanging with it an echo response verification

packet with variable frequency of transmission. However, this

communication could be exchanged at any time while the

machine is infected and could be encrypted, thus making it

difficult to profile a signature based on its content or time

frequency. Because of this difficulty, C&C identification is

hard to achieve and false positives are likely to occur.

Regarding C&C identification, two strategies have been

used. The first one, relies on an observation we made during

our preliminary tests that show that a C&C is often co-located

with the drop site or the SDS component.

Therefore, IP addresses of identified drop sites and SDSs

may match with those of a C&C.

The second strategy is to consider hosts contacted during

∆te but which have not already been categorized as a drop

site or SDS. In this particular case, we will rely on the IP

reputation module (described in the following Section IV) to

figure out their membership of any available blacklist.

At the end of the data extraction process, the results are

stored in a relational database that is accessed by the following

analysis phases and system modules. The Dorothy Drone for

example retrieves the C&C information from the database

and mimics the behavior of a real zombie by producing the

corresponding replies to all commands received. In this way, it

is possible to establish a stateful connection with the C&C and

to monitor its activity and behavior, such as issued commands

and instructions for downloading binary updates.

Finally, IP addresses associated with botnet components

found by the DEM are also used by the IP reputation system

to feed its own database. The whole collected data can also

be included into a new incident report created via the newly

developed Ticketing System Module presented in Section V.

III. VISUALIZATION MODULE

Previous research with Dorothy [8] proved that displaying

information about the activity of a botnet through link graphs

and geographic maps is a powerful technique to quickly

understand and share knowledge among all the parties involved

in botnet takedown actions.

The framework proposed in this paper relies on a cus-

tomized version of Dorothy’s Data Visualization Module

(DVM) to visualize the information gathered by previous

modules. The goal of the newly customized DVM is to

offer a global picture that summarizes all the information

needed to investigate a financial botnet case (i.e. by law

enforcement agencies). The visualization process has been

modeled according to methodologies described in previous

works [12].

For the purpose of this research, we have designed the

visualization engine based on the following questions:

• Who has been contacted by a zombie machine?

• What communication flow occurred between hosts that

are members of a botnet?

• What has been downloaded or uploaded?

Let us introduce some examples of how advanced visual-

ization features may enhance the analysis and management of

a botnet threat:

• By highlighting the target of HTTP GET/POST requests

performed by the infected machine during ∆tu and ∆td,

it might be possible to intuitively identify both an SDS

and a drop site.

• Based on our practical experience with financial CSIRT1

operations, we have concluded how visualizing informa-

tion about the size of the exchanged data could help the

analyst to identify suspicious communications and focus

on them for further investigations.

• By showing all the hosts contacted during ∆tu we can

also determine which protocols were used by the infected

machine to send stolen data.

The DVM uses the criteria shown in Table II for identifying

the different entities related to a financial botnet.

Finally, the rest of this section presents visualization tech-

niques implemented in the proposed DVM architecture.

1Computer Security Incident Response Team

Entity Detection Method Time

C&C Blacklist Matching ∆te

SDS HTTP GET/FTP Parsing ∆td

Drop site HTTP POST/FTP/SMTP ∆tu

TABLE II
DETECTION METHODS USED FOR ENTITY CATEGORIZATION

A. Link graph

When the DVM accesses data stored in the database through

the MAM (as explained in Section II), it also perfoms parsing

and filtering operations with the purpose of generating a 3-

tuple of the form (source, service, target).

1.1.1.2 1.1.1.1 1.1.1.3

/config/update.php /config/config.bin

Bank Website

80/tcp
443/tcp

53/udp

GETPOST

VM DNS

zeus-bot.com thebank.com

Fig. 4. Link Graph

The graph depicted in Figure 4 is built using visual trans-

formations from Table III. Size of nodes are proportional

to the number of corresponding entries in the data source.

So the more entries are found, the larger the node size is.

The generated link graph summarizes all the connections

established by the financial zombie under analysis.

Entity Color Shape

C&C Purple Red Circle
Fake Bank Server Dark Blue Triangle

Drop Zone Red Circle
SDS Purple Circle

Services Green Square
Infected VM Light Blue Triangle
Local DNS Light Blue Inverted Triangle

TABLE III
VISUAL TRANSFORMATION GRAPH PROPERTIES

In our preliminary tests, we downloaded several banking

trojans, analyzed all the traffic generated by their respective

zombies using our framework and categorized each zombie

Fig. 5. Heat Map

according to the C&C being contacted. In this way, it was

possible to merge traffic dumps from zombies that were

referring to the same C&C, so the DVM could process it. The

overall outcome of this activity was a graph of the analyzed

botnet, useful in investigation processes related to a particular

financial botnet architecture.

B. Heat maps

In order to visualize the huge amount of IP addresses

gathered by the IP Reputation Module (see Section IV), we

focused our efforts on providing a method for displaying

information that is geographically dispersed (i.e. using heat

maps). A typical heat map generated by our framework is

depicted in Figure 5.

C. Map graph

The original Dorothy Web GUI was customized to allow a

financial CSIRT to easily visualize financial botnets that are

targeting its customers. Our belief is that visualizing C&Cs,

SDSs and drop sites through a geographical map could be an

intuitive and immediate way to show how the financial botnet

network is distributed, which may help in the analysis (as

shown in Figure 6).

For instance, by showing the C&Cs geographical distribu-

tion, a bank’s CSIRT could be helped in defining a strategy

aimed at stopping the botnet’s activity by considering that

different countries have different laws about cybercrime. The

geographical representation could also suggest possible geopo-

litical motivations in operating a financial botnet, apart from

traditional online fraud.

In addition, the interactive map we have contributed offers

the possibility to represent data through different visualization

layers by displaying the information about a selected C&C

such as its own link graph (Section III-A).

Finally, apart from Dorothy Web GUI original panels (Gen-

eral, Charts, and Malware), a Status Panel was added to show

information regarding the Ticketing System Module such as

the first notification that was sent, the recipient of a particular

notification and the status of the related ticket. The Ticketing

System Module will be further described in Section V.

Fig. 6. Geographical Map

IV. IP REPUTATION MODULE

In previous research [9] we proved that it might be possible

to discover IP addresses related to a financial botnet, by com-

bining the information coming from well-known IP blacklists

providers. In order to do so, we developed a set of metrics

(i.e. infection latency) that are able to quantify the quality of a

particular IP blacklist (score or reputation). Formally speaking:

• Let B be a set of all trusted blacklist providers and M a

set of bitmaps.

• Let Mi encode whether a specific IP address was found

inside the blacklist Bi (0 ≤ i ≤ |B|) or not.

Mi =

{

1 if IP ∈ Bi

0 otherwise

• Let δ(IP) be a reputation function defined as:

δ(IP) =

{

{∅} if ∄Bi ∈ B : IP ∈ Bi

{M} otherwise

With the δ function we obtain the reputation of a given IP

address. In summary, the more bits are set as “1” in a bitmap,

the more likely it is that an IP address corresponds to a zombie

host that is a member of a financial botnet.

The following new features are required by the original

IP reputation system in order to use it within the framework

proposed in this paper:

• Storage. All the collected information needs to be sum-

marized inside an AVL tree [13], then it is indexed by

IP address and finally it is stored inside nodes with its

corresponding bitmap M . For our first implementation

(see Figure 7), each node was populated with a 40-

bit tuple 〈IP,M〉 due to the fact that we were only

fetching IP blacklists from 8 different providers. Since

IPv4 addresses are only 32 bits long, it was possible

to store the whole IP address space (up to 4 billion

addresses) in RAM memory with a minimal effort (8 GB

of RAM or even less).

• Performance. The proposed framework should be able

to feed in near real-time anti-fraud systems of financial

institutions. For this reason, we decided not to rely on a

RDBMS for storing IP addresses from malicious hosts.

As shown later in this section, without performing disk

Fig. 7. IP Reputation System Architecture

accesses low-latency is guaranteed at (Θ logn) cost in

the worst-case scenario –lookup operations–.

• Security. The reputation system proposed in [9] needs

to be further extended in order to meet some minimum

trust and security guarantees. If it is meant to be used

outside financial institution boundaries (i.e. by an external

ticketing system), then the IP reputation system responses

should be digitally signed by a trusted third party (just

as happens with protocols such as OCSP [14]).

• Detection rate. It is important to invest more research

in order to improve the IP reputation system detection

rate. As mentioned in [9], future work should take into

account better reputation algorithms along with the effect

of dynamic IP addresses –DHCP–.

The above-mentioned features allow us to use the IP repu-

tation system with other modules of the proposed framework

(i.e. to feed the Ticketing System Module). As a result of this,

ISPs could be able to apply long-term filters to IP addresses

with bad reputation. As has been mentioned in Section II,

the IP reputation system would be able to receive and send

information to the Malware Analysis Module (see Section II).

So far our research has demonstrated the performance of

our first IP reputation system implementation. As expected,

RAM memory is extremely unlikely to be accessed and for

this reason if we discard overhead latencies such as I/O

interrupt handling or the code parsing performed inside the

Linux Kernel, the average obtained lookup latency is roughly

8µs. If we consider workloads that are less than 50 million IP

addresses, it is possible to achieve a 99% hit rate in caches. In

order to prove this hypothesis, we have made measurements

with the OProfile [15] Linux Kernel module and the CPU

performance counters. Table IV shows the obtained results for

a 50 million IPv4 address workload.

V. TICKETING SYSTEM MODULE

Once a financial botnet has been automatically discovered

by the analysis performed during the Malware Analysis Mod-

ule (see Section II), it is necessary to send notifications to

all the involved parties such as banks, ISPs, ccTLD registrars,

antivirus software companies and law enforcement agencies.

Total Accesses Read Write

DCache Refs. 50.9M 36.2M 14.7M
DCache Misses 0.52M 0.39M 0.13M

L2 Misses 0.24M 0.12M 0.12M

DCache Miss Rate 1% 1% 0.8%
L2 Miss Rate 0.4% 0.3% 0.1%

L2 Refs. 0.53M 0.4M 0.13M
L2 Misses 0.25M 0.13M 0.12M

L2 Miss Rate 0.1% 0% 0.8%

TABLE IV
CACHE BEHAVIOR FOR 50 MILLION IP ADDRESSES

Since each entity has a different role, the only way to be suc-

cessful in neutralizing botnet infrastructures and arresting the

criminals who are running them is by promoting an efficient

coordination among the different authorities. For this purpose,

an email-based notification system has been developed inside

the Ticketing System Module (TSM).

Fig. 8. Ticket Workflow

As depicted in Figure 8, the bank’s CSIRT starts the

workflow by requesting a new malware analysis from the

MAM (see Section II). Malware samples sent by e-mail are

then automatically analyzed (steps 2 and 3 in Figure 8) and a

preliminary report is attached for later revision. This report is

encoded in XML [16] following the rules defined by the IEEE-

SA Industry Connections Malware Working Group (ICSG).

Once all the intelligence information has been gathered, a

new ticket is created and returned to the bank’s CSIRT (step

5 in Figure 8).

If the malware analysis process has identified a banking

trojan as a real threat for several financial institutions (with

the methods described in II-A), then another set of tickets is

created (a newer one for each one of the newly discovered

C&C IP addresses and domains).

All tickets generated by the TSM after a C&C IP address has

been discovered, are sent to the security providers of financial

institutions who are in charge of mitigating financial malware

(steps 8-10 in Figure 8). This is a realistic assumption taking

into account our practical experience with financial CSIRTs.

In fact, we have learnt that in most cases, such security

providers are broadband and telecommunications companies

which are able to adopt an appropriate mitigation strategy (i.e.

sinkholing of botnet domains and blacklisting of C&C’s IP

addresses).

Since most of the DSL/Cable/FTTH equipment deployed

at subscribers’ homes are often configured by default with

DNS and gateway IP addresses provided by the broadband

companies, it is possible to quickly mitigate the impact of a

financial botnet just by blocking malicious IP addresses and

domains at the ISP level (steps 8-10 in Figure 8).

In parallel with this action, a notification email is automat-

ically sent to the affected ccTLD just by performing a query

at WHOIS servers with the purpose of obtaining contact email

addresses from the Abuse records (step 7).

Ensuring privacy when exchanging sensitive information

between financial instutions, the different law enforcement

agencies and ISPs have also been considered during the design

phase of the Ticketing System Module. All emails sent by the

TSM (with the expection of those sent to untrusted ccTLDs)

are encrypted and signed using public key cryptography

(OpenPGP [17]).

Finally, when an incident case has been solved (steps 10-

11 in Figure 8), closed tickets are stored in a database with

the purpose of building a solid knowledgebase for further

investigations and for producing statistics of the amount of

time employed in neutralizing botnet infrastructures.

At this point, all collected information can be used by the

law enforcement authorities for starting legal actions against

cybercriminals.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a novel framework to

detect, visualize and in general to share intelligence about

financial botnets. Such a system would greatly help to mitigate

this threat by sharing information among different parties,

ranging from financial institutions’ antifraud systems (IP Rep-

utation Module) to law enforcement authorities (i.e. via the

Visualization Module). This research contributed a new way

to automatically analyze generic malware and to categorize it

as a banking trojan.

Despite this being a work-in-progress research, our pre-

liminary implementation of the proposed modules proves the

usefulness of these tools for mitigating the threat posed by

financial botnets. Due to their stealthy nature and uncommon

behavior, financial botnets should be addressed differently

from traditional botnets characterized by DDoS and spam

activity.

Our future work will be focused on adding new features

to the system such as improving the different mechanisms

used for detecting compromised computers through new repu-

tation/scoring algorithms and fusing information provided by

both ISPs and blacklist providers.

In addition, the Ticketing Module will add support for the

new Instant Object Description Exchange Format (IODEF)

[18] extensions, recently released with the purpose of defining

a XML standard for reporting e-crime incidents [19].

We are also exploring new technologies that might allow us

to deploy this system in such a way that intelligence sharing

may be facilitated. In particular, we are referring to cloud-

based implementations whose scalability and dynamics may

let this system meet higher performance requirements that will

enable graphical representations of large botnets.

Finally, future enhancements of the Ticketing Module, will

involve the use of text-to-speech (TTS) technology for per-

forming automated voice calls to both Domain Registrars and

ccTLDs with the phone numbers retrieved from the WHOIS

records.

ACKNOWLEDGEMENTS

This work has been financially supported by La Caixa sav-

ings bank. We also would like to thank Richard Hayden, Toni

Felguera and David Hernando for their insightful comments

and suggestions during the development of the framework.

REFERENCES

[1] E. Cooke, F. Jahanian, and D. McPherson, “The zombie roundup:
Understanding, detecting, and disrupting botnets,” in Proceedings of the

USENIX SRUTI Workshop, 2005, pp. 39–44.

[2] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted
approach to understanding the botnet phenomenon,” in Proceedings of

the 6th ACM SIGCOMM Conference on Internet Measurement. ACM,
2006, p. 52.

[3] P. Bacher, T. Holz, M. Kotter, and G. Wicherski, “Know your enemy:
Tracking botnets,” The Honeynet Project, 2005.

[4] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef,
M. Debbabi, and L. Wang, “On the Analysis of the Zeus Botnet
Crimeware Toolkit,” in Proceedings of the 8th Annual Conference on

Privacy, Security and Trust. IEEE, 2010, pp. 31–38.

[5] D. Baumer, J. Earp, and J. Poindexter, “Internet privacy law: A compar-
ison between the United States and the European Union,” Computers &

Security, vol. 23, no. 5, pp. 400–412, 2004.

[6] C. Kuner, European data protection law. Oxford University Press.

[7] L. Spitzner, “The honeynet project: Trapping the hackers,” IEEE Security

and Privacy, pp. 15–23, 2003.

[8] M. Cremonini and M. Riccardi, “The Dorothy Project: An Open Botnet
Analysis Framework for Automatic Tracking and Activity Visualiza-
tion,” in Proceedings of the 5th European Conference on Computer

Network Defense (EC2ND). IEEE, 2010, pp. 52–54.

[9] D. Oro, J. Luna, T. Felguera, M. Vilanova, and J. Serna, “Benchmarking
IP blacklists for financial botnet detection,” in Proceedings of the 6th

International Conference on Information Assurance. IEEE, 2010, pp.
98–103.

[10] “Zeus Tracker,” https://zeustracker.abuse.ch, 2010.

[11] B. Walters, “VMware virtual platform,” Linux Journal, vol. 1999, no.
63es, p. 6, 1999.

[12] R. Marty, “Applied security visualization,” 2008.

[13] C. Ellis, “Concurrent search and insertion in AVL trees,” IEEE Trans-

actions on Computers, vol. 100, no. 29, pp. 811–817, 1980.

[14] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams,
“RFC2560: X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol (OCSP),” Internet Engineering Task Force (IETF), 1999.

[15] W. Cohen, “Multiple Architecture Characterization of the Linux Build
Process with OProfile,” in Workshop on Workload Characterization,
2003.

[16] “IEEE Standards Association: Industry Connections Malware Working
Group,” http://standards.ieee.org/prod-serv/indconn/icsgmal/index.html,
2010.

[17] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer, “RFC 2440:
OpenPGP Message Format,” Internet Engineering Task Force (IETF),
1998.

[18] R. Danyliw, J. Meijer, and Y. Demchenko, “RFC 5070: The Incident
Object Description Exchange Format,” Internet Engineering Task Force
(IETF), 2007.

[19] P. Cain and D. Jevans, “RFC 5901: Extensions to the IODEF-Document
Class for Reporting Phishing,” Internet Engineering Task Force (IETF),
2010.

