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Chapter 1

Introduction

Most of our notation and terminology are standard, otherwise it is either
explained here or when needed. Classical references for Banach spaces theory
are [Con90], [DGZ93], [JL01] and [FHH+11]; for locally convex spaces is
[Köt69]; for general topology are [Eng89], [Nag74], [Kel75] and [Wil04].

By capital letters X , Y , Z, F , etc. we denote sets and sometimes topo-
logical spaces. All vector spaces X are assumed to be real. Sometimes X
is a normed space with the norm ‖·‖. Given a subset F of a vector space,
we write conv(F ), aconv(F ) and span(F ) to denote respectively, the convex,
absolutely convex and the linear hull of F . If (X, ‖·‖) is a normed space,
then X∗ denotes its topological dual. If F is a subset of X∗, then σ(X,F )
denotes the weakest topology on X that makes each member of F continuous
or, equivalently, the topology of pointwise convergence on F . Analogously, if
E is a subset of X , then σ(X∗, E) is the topology for X∗ of pointwise con-
vergence on E. In particular σ(X,X∗) and σ(X∗, X) are the weak (w) and
the weak-star (w∗) topology respectively. If x ∈ X and δ > 0 we denote by
B(x, δ) (B[x, δ], respectively) the open (closed, respectively) ball centred at
x of radius δ. If x = 0 and δ = 1 we simply write BX = B[0, 1], the unit
sphere will be denote by SX . Recall that a subset B of BX∗ is said to be
norming (1-norming, respectively) if

‖x‖B = sup
b∗∈B

|b∗(x)|

is a norm on X equivalent (equal, respectively) to the original norm of X .
Observe that the definition of ‖·‖B is plenty of sense also for element x∗∗ in the
bidual space X∗∗. A subspace F ⊆ X∗ is norming (1-norming, respectively)
if F ∩ BX∗ is norming (1-norming, respectively).
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1.1 Development of the dissertation

Renorming theory involves finding isomorphisms in order to improve the
norm of a normed space X . That means to make the geometrical and topo-
logical properties of the unit ball of a given normed space as close as possible
to those of the unit ball of an Hilbert space. An excellent monograph of
renorming theory up to 1993 is [DGZ93], in order to have an up-to-date ac-
count of the theory we should add [Hay99], [God01], [Ziz03], [MOTV09] and
[ST10]. In this work we will study different types of geometrical properties,
we will state the fundamental ones in the following list: let (X, ‖·‖) a normed
space and τ a topology on X , the norm ‖·‖ is said to be

� rotund, or strictly convex, if for every x, y ∈ X we have x = y, whenever
2‖x‖2 + 2‖y‖2 − ‖x+ y‖2 = 0.

� asymptotically rotund, or asymptotically strictly convex, if for every
y1, y2 ∈ X and (xn)n∈N ⊆ X we have y1 = y2, whenever for every
i = 1, 2

lim
n∈N

(2‖yi‖
2 + 2‖xn‖

2 − ‖yi + xn‖
2) = 0.

� τ -Kadec, if the norm and the τ topologies agree on the unit sphere. If
τ is the w-topology, we will simply say that the norm ‖·‖ is Kadec.

� τ -locally uniformly rotund (τ -LUR, for short), if for every sequence
(xn)n∈N ⊆ X and x ∈ X we have τ -limn∈N xn = x, whenever

lim
n∈N

(2‖x‖2 + 2‖xn‖
2 − ‖x+ xn‖

2) = 0.

If τ is the norm topology we will simply say that the norm ‖·‖ is locally
uniformly rotund (LUR, for short).

� τ -uniformly rotund (τ -UR, for short), if for every pair of sequence
(xn)n∈N, (yn)n∈N ⊆ X we have τ -limn∈N(xn − yn) = 0, whenever

lim
n∈N

(2‖xn‖
2 + 2‖yn‖

2 − ‖xn + yn‖
2) = 0.

If τ is the norm topology we will simply say that the norm ‖·‖ is
uniformly rotund (UR, for short).

By means of probabilistic techniques, in 1979 Troyanski has proved that
a Banach space X has an equivalent LUR renorming if, and only if, it ad-
mits an equivalent Kadec renorming and an equivalent rotund renorming (see
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[Tro79]). In 1999 Raja proved, in a more geometrical fashion, the same result
of Troyanski, but his proof add something more: the existence of an equiv-
alent, σ(X,F )-lower semicontinuous and LUR renorming, for some norming
subspace F ⊆ X∗, is equivalent to the existence of an equivalent σ(X,F )-
Kadec renorming and and equivalent rotund renorming (see [Raj99b, Theo-
rem 2]).

One of the most outstanding tool in LUR renorming theory is Deville’s
master lemma (see [DGZ93, Lemma VII.1.1]). It was widely use in the study
of this particular geometrical property.

Lemma 1.1 (Deville’s master lemma) Let (ϕi)i∈I and (ψi)i∈I be two fam-
ilies of real valued, convex and nonnegative functions defined on a normed
space X, which are both uniformly bounded on bounded subsets of X. For
every i ∈ I and k ∈ N, let us denote

θi,k(x) = ϕ2
i (x) +

1

k
ψ2
i (x);

θk(x) = sup
i∈I

θi,k(x);

θ(x) = ‖x‖2 +
∑

k∈N

2−k(θk(x) + θk(−x)),

where ‖·‖ is the norm of X. If ‖·‖θ denotes the Minkowski functional of the
set B = {x ∈ X | θ(x) ≤ 1}, then ‖·‖θ is an equivalent norm on X with the
following property: if (xn)n∈N ⊆ X and x ∈ X satisfy

lim
n∈N

(
2‖x‖2θ + 2‖xn‖

2
θ − ‖x+ xn‖

2
θ

)
= 0,

then there exists a sequence (in) ⊆ I such that

1. limn∈N

(
1
2
ψ2
in(x) +

1
2
ψ2
in(xn)− ψ2

in

(
x+xn

2

))
= 0;

2. limn∈N ϕin(x) = limn∈N ϕin(xn) = limn∈N ϕin

(
x+xn

2

)
= supi∈I ϕi(x).

This result is very powerful: in [DGZ93, Theorem VII.1.4] is showed how to
use this result in order to prove a classical theorem of Day: for every set Γ,
c0(Γ) admits an equivalent LUR norm (see [DGZ93, Theorem II.7.3]), and
to generalize a result of Troyanski [Tro71, Proposition 1] to obtain that X
admits an equivalent LUR norm, whenever it admits a particular projectional
resolution of the identity (see [DGZ93, Theorem VII.1.8]). Deville’s master
lemma gives also [FG88, Theorem 2.(iii)]: the dual of an Asplud space admits
an equivalent (in general non-dual) LUR norm. Haydon used Deville’s master
lemma in both [Hay99], where he proved powerful results on the renorming
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of C (Υ), where Υ is a tree, and [Hay08] where he proved that a Banach space
such that his dual admits an equivalent dual LUR norm admits an equivalent
LUR norm. For more information about LUR renorming see also [GTWZ83],
[GTWZ85], [HR90], [Fab91] and [HJNR00].

In [OT09b, Theorem 3] the authors get some characterizations of the
existence of LUR renormings via a suitable localization result, that in turn
is obtaines with the help of Deville’s master lemma (lemma 1.1).

Theorem 1.2 (Slice localization theorem) Let X a normed space with
a norming subspace F in X∗. Let A be a bounded subset in X and H a
family of σ(X,F )-open half-spaces such that for every H ∈ H the set A ∩H
is nonempty. Then there exists an equivalent σ(X,F )-lower semicontinuous
norm ‖·‖A,H such that for every sequence (xn)n∈N ⊆ X and x ∈ A ∩ H for
some H ∈ H, if

lim
n∈N

(2‖x‖2A,H + 2‖xn‖
2
A,H − ‖x+ xn‖

2
A,H) = 0,

then there exists a sequence of σ(X,F )-open half-spaces {Hn}n∈N ⊆ H so
that

1. there exists n0 ∈ N such that x, xn ∈ Hn for n ≥ n0, if xn ∈ A;

2. for every δ > 0 there exists nδ ∈ N such that

x, xn ∈ conv(A ∩Hn) + B(0, δ)
σ(X,F )

,

for every n ≥ nδ.

This result was later used in [OST12], in order to characterize rotund renorm-
ing in linear topological terms. In what follows we will use or adapt Deville’s
master lemma and the slice localization theorem in order to obtain result
about rotund, Kadec and other renormings.

In 1989 Hansell introduced, see [Han01], the notion of descriptive topo-
logical space, we will not state his definition here, since it is rather technical.
Hansell pointed out the role played by the existence of a σ-isolated network
in these spaces, replacing a σ-discrete topological basis which are exclusive
of metrizable spaces after the Bing–Nagata–Smirnov theorem (see [Eng89]),
and proved that a Banach space is descriptive with respect to the w-topology
if, and only if, the norm topology has a σ-isolated network with respect to
the w-topology. Hansell also proved that if a Banach space has a Kadec
norm, then it is descriptive with respect to the w-topology (see [Han01, The-
orem 1.5]). The main problem in Kadec renorming theory is if it is possible
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to prove the converse of the previous statement, this is due to the fact that
there are no known examples of descriptive Banach space, with respect to the
w-topology, without an equivalent Kadec norm (see [Ori07] and [MOTV09,
Chapter 3]). We will develop a study of this problem in chapter 2 of this
work; we will start from the following theorem of Raja [Raj99a, Theorem 1].

Theorem 1.3 Let X a Banach space and Z in X∗ a norming subspace. The
following are equivalent:

1. X is descriptive with respect to the σ(X,Z)-topology;

2. there exists a nonnegative, symmetric, homogeneous and σ(X,Z)-lower
semicontinuous function ϕ on X with ‖·‖ ≤ ϕ(·) ≤ 3‖·‖, such that
the norm and the σ(X,Z)-topology agree on the “unit sphere” S =
{x ∈ X |ϕ(x) = 1}.

The norm continuity of Raja’s function does not follow immediately from
his construction and it was asked by different people if it can be done (see
[Ori07] and [MOTV09]). In the unpublished note of Raja [Raj03a] appears
a previuos estimate of the continuity of ϕ, here we include the proof for the
sake of completeness.

Theorem 1.4 The function ϕ in statement 2 of theorem 1.3 can be made
also norm continuous.

Proof We may assume, without loss of generality, that X is a subspace of Z∗,
thus the σ(X,Z)-topology is induced on X by the w∗-topology of Z∗. Let ϕ the
function given in statement 2 of theorem 1.3. In this proof we will use the following

notation: Bw∗ [x, ε] := B(x, ε)
w∗

.
We will make another function with the same properties of ϕ which is also

norm continuous. Let K the w∗-closure of the star-shaped set {x ∈ X |ϕ(x) ≤ 1}.
It is easy to verify that K is also star-shaped. Let ϕn the Minkowski functional
of the sets K + Bw∗ [0, 1/n] for n ≥ 2. Since these sets are w∗-closed, then ϕn are
w∗-lower semicontinuous. It is easy to realize that ϕn is also symmetric and verifies
the inequality (

1−
1

n

)
‖·‖ ≤ ϕn(·) ≤ 3‖·‖.

We claim that every ϕn is norm continuous. Indeed, it is clear that ϕn is norm
lower semicontinuous. By homogeneity is enough to show that the set

U = {z∗ ∈ Z∗ |ϕn(z
∗) < 1}

is norm open. Take z∗ ∈ U , we know ϕn(z
∗) < 1, then take λ ∈ (0, 1) such

that ϕn(z
∗) < λ2. This implies that λ−2z∗ ∈ K + Bw∗ [0, 1/n] and thus z∗ ∈
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λ2K + Bw∗ [0, λ2/n]. In particular z∗ ∈ K + B(0, λ/n) which is norm open and
contained in K + Bw∗ [0, 1/n]. Consider the function

Φ(z∗) = ‖z∗‖+
∑

n≥2

2−nϕn(z
∗)

which is homogeneous, symmetric, w∗-lower semicontinuous, norm continuous and
satisfies ‖·‖ ≤ Φ(·) ≤ 3‖·‖. We claim that Φ has the Kadec property at the points
of X, that is, if (z∗ω)ω∈Ω is a net w∗-converging to x ∈ X such that Φ(z∗ω) converges
to Φ(x), then (z∗ω)ω∈Ω is norm convergent to x. Clearly, we may assume x 6= 0,
and by homogeneity also assume that ϕ(x) = 1. If (z∗ω)ω∈Ω is a net as above,
using the lower semicontinuity in a standard way we obtain that ϕn(z

∗
ω) converges

to ϕn(x). As ϕn(x) < 1, for ω ∈ Ω large enough we have ϕn(z
∗
ω) < 1 and thus

z∗ω ∈ K + Bw∗ [0, 1/n]. Given any ε > 0 it is possible to take a σ(X,Z)-open
neighbourhood U of x such that U ∩ {x ∈ X |ϕ(x) ≤ 1} has diameter less than ε.
We may assume that U is w∗-open in Z∗ and passing to the closure we obtain that
diam(U ∩ K) ≤ ε. By [Raj99a, Lemma 1], given ε > 0 there exists r > 0 and a
neighbourhood U of x such that diam(U ∩ (K + B(0, r))) < ε. If we take n ≥ 2
such that 1/n < r, then

diam(U ∩ {z∗ ∈ Z∗ |ϕn(z
∗) ≤ 1}) < ε.

For ω ∈ Ω large enough, z∗ω ∈ U by the w∗-convergence and ϕn(z
∗
ω) < 1, so

z∗ ∈ U ∩{z∗ ∈ Z∗ |ϕn(z
∗) ≤ 1} and this implies ‖z∗ − x‖ < ε. Now it is clear that

the restriction of Φ to X will satisfy all the properties required and this ends the
proof of the lemma. �

In what follows we will prove the following theorem which gives the result of
Raja and something more. Remember that a family A of set of a topological
space X is called discrete (isolated) if for every x ∈ X (x ∈

⋃
A) there exists

Ux such that at most one element of A has non-empty intersection with Ux.

Theorem 1.5 Let X a Banach space and Z in X∗ a norming subspace. The
following are equivalent:

1. X is descriptive with respect to the σ(X,Z)-topology;

2. there exists an equivalent σ(X,Z)-lower semicontinuous and σ(X,Z)-
Kadec quasinorm q(·), i.e. a quasinorm such that the σ(X,Z) and the
norm topologies agree on the set {x ∈ X | q(x) = 1}, and such that

µ‖·‖ ≤ q(·) ≤ ξ‖·‖

for some positive constants µ and ξ.
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3. the norm topology admits a basis B =
⋃

n∈N Bn such that every one of
the families Bn is isolated, with respect to the σ(X,Z)-topology, and
norm discrete.

Remember that a quasinorm (see definition 2.10) is a generalization of the
concept of norm, which is useful in the study of locally bounded space (see
[Köt69]). The quasinorm we construct in theorem 1.5 does not depend on
the constuction of Raja’s function. The triangle inequality tell us that our
quasinorm is a Lipschitz function with respect to the metric associated with
q, thus uniformly continuous for the original norm. If we agree with the loss of
the homogeneity of Raja’s function, then we can obtain the following result:

Theorem 1.6 Let X a normed space and Z in X∗ a norming subspace.
If X is descriptive with respect to the σ(X,Z)-topology, then there exists
an F-norm F such that it is LUR and σ(X,Z)-Kadec, i.e. the norm and
the σ(X,Z) topologies agree on the set {x ∈ X |F (x) = 1}, and for every
(xn)n∈N ⊆ X and x ∈ X we have ‖·‖-limn∈N xn = x, whenever

lim
n∈N

(2F 2(x) + 2F 2(xn)− F 2(x+ xn)) = 0.

Remember that a F-norm (see definition 2.9) is a tool useful for the study of
the uniform structure of a topological vector space.

In chapter 3 we will state some results on rotund renormings. Our starting
points are the papers [Smi09], [ST10] and [OST12]. Of particular interest is
the following topological definition (see [OST12, Definition 2.6]):

Definition 1.7 A topological space A has property (*) if, and only if, it
admits a sequence (Un)n∈N of families of open sets such that for every x, y ∈ A
there exists n0 ∈ N such that Un0 (*)-separates x and y, i.e.

1. {x, y} ∩
⋃
Un0 6= ∅;

2. for every U ∈ Un0 the set {x, y} ∩ U is at most a singleton.

We will call (Un)n∈N a (*)-sequence for A. If A is a subset of a topological
vector space and every family Un is formed by open slices of A, then we say
that A has (*) with slices.

What follows is the main theorem of [OST12, Theorem 2.7]:

Theorem 1.8 Let X a normed space and F in X∗ a norming subspace, then
the following are equivalent:

1. X admits an equivalent, σ(X,F )-lower semicontinuous and rotund norm;
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2. (X, σ(X,F )) has (*) with slices;

3. (SX , σ(X,F )) has (*) with slices.

The definition of the property (*) is actually a generalization of the definition
of a topological space with a Gδ-diagonal (see [Gru84, Section 2]). In this
work we will give other characterizations of rotund renorming in term of the
Gδ-diagonal property.

Theorem 1.9 Let X a normed space and F ⊆ X∗ a norming subspace. The
following are equivalent:

1. X admits an equivalent, σ(X,F )-lower semicontinuous and rotund norm;

2. X admits an equivalent, σ(X,F )-lower semicontinuous norm ‖·‖δ such
that the set {x ∈ X | ‖x‖δ = 1} has a Gδ-diagonal with slices;

3. there exist a symmetric ρ on X and an equivalent, σ(X,F )-lower semi-
continuous norm ‖·‖ρ such that for every point x ∈ X, with ‖x‖ρ = 1,
and ε > 0 there exists a σ(X,F )-open halfspace H such that x ∈ H
and

ρ- diam(H ∩ {x ∈ X|‖x‖ρ ≤ 1}) < ε.

For a definition of the topological concepts involved see [Gru84]. In a, by
now, failed attempt to improve theorem 1.8 in the dual case we develop an
eating process (see lemma 3.4), which enable us to prove the following result:

Theorem 1.10 Let X∗ a dual Banach space. The following are equivalent:

1. X∗ admits an equivalent dual rotund norm;

2. X∗ admits an equivalent dual norm ‖·‖δ such that {x ∈ X | ‖x‖δ = 1}
has a Gδ-diagonal;

3. there exist a symmetric ρ on X∗ and an equivalent dual norm ‖·‖ρ such
that for every point x ∈ X∗, with ‖x∗‖ρ = 1, and ε > 0 there exists a
w∗-open set U such that x ∈ U and

ρ- diam(U ∩ {x∗ ∈ X∗|‖x∗‖ρ ≤ 1}) < ε.

We will also give the following nonconvex characterization result.

Theorem 1.11 Let X∗ a dual Banach space. X∗ admits an equivalent dual
rotund norm if, and only if, there exists a w∗-compact, cirlced and absorbing
set A ⊆ X∗ such that ∂A admits a Gδ with respect to the w∗-topology, where
∂A is the w∗-boundary of A.
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In the second part of chapter 3, we will prove, using the slice localization
theorem, some transfer results, in the same spirits of the ones in [MOTV09].

Theorem 1.12 Let X, Y normed spaces, F ⊆ X∗ and G ⊆ Y ∗ norming
subspaces. Suppose that Y admits an equivalent σ(Y,G)-lower semicontinuous
rotund norm. If Φ : X → Y is a σ(X,F )-σ(Y,G)-continuous and one-to-
one function, such that there exists a family {Ap}p∈N of convex sets such
that for every x ∈ X and K σ(Y,G)-open half-space with Φ(x) ∈ K, there
exists p ∈ N and a σ(X,F )-open halfspace H such that x ∈ Ap ∩ H and
Φ(Ap∩H) ⊆ K. ThenX admits an equivalent, σ(X,F )-lower semicontinuous
and rotund norm.

The next theorem shows how well a function must behave in order to transfer
a rotund norm.

Theorem 1.13 Let X and Y normed spaces with norming subspaces F ⊆
X∗ and G ⊆ Y ∗. Let Φ : X → Y a one to one map such that for every g ∈
G we have that (g ◦ Φ)+ is quasiconvex and σ(X,F )-lower semicontinuous.
Assume that Y has a σ(Y,G)-lower semicontinuous and rotund norm. Then
X admits an equivalent rotund and σ(X,F )-lower semicontinuous norm.

Remember that a quasiconvex function is a real-valued function such that
the inverse image of any sets of the form (−∞, a) is a convex set.

In the fourth chapter we will start a study of uniformly rotund norm. The
main result is a generalization of [MOTV09, Theorem 1.1].

Theorem 1.14 Let X a normed space. X admits an equivalent uniformly
rotund norm if, and only if, for every ε > 0 there exists Nε ∈ N such that it
is possible to write the unit ball as

BX =

Nε⋃

n=1

Bε
i ,

and for every n = 1, . . . , Nε there exist δ ∈ (0, ε) and a family of open half-
spaces Hn,ε which cover Bn such that for every H ∈ Hn,ε

diam(Bn ∩ (H − δ)) < ε.

Where if H = {x ∈ X | f(x) > µ}, then H − δ := {x ∈ X | f(x) > µ− δ}.



Chapter 2

Quasinorms with the Kadec
property

Of particular interest in the study of topological properties related to renorm-
ing theory is the definition of paracompact space (see [Dug66, Pag. 162] or
[Eng89, Chapter 5]).

Definition 2.1 A topological space X is said to be paracompact if for every
open cover U of X, there exists a locally finite open cover V which is a
refinement of U ; i.e. for every V ∈ V there exists U ∈ U such that V ⊆ U
and for x ∈ X there exists a neighbourhood of x that meets only finitely many
members of V.

The paracompactness is a generalization of the concept of compactness and it
belongs to the class of concepts related with covering properties of a topolog-
ical spaces. On the other hand, the concept of full normality can be regarded
as belonging to another genealogy of concepts, the separation axioms which
include regularity, normality, etc.

Definition 2.2 A topological space X is full normal if every open cover
U = {Ui}i∈I admits an open star refinement V = {Vj}j∈J , i.e. if for every
j ∈ J there exists i ∈ I such that

st(Vj ,V) :=
⋃

{V ∈ V |Vj ∩ V 6= ∅} ⊆ Uj .

The Stone’s theorem says that those two concepts, belonging to different
categories, coincide for Hausdorff topological spaces (see [Nag74, Theorem
V.2]).

Theorem 2.3 (Stone’s theorem) An Hausdorff space is paracompact if,
and only if, it is fully normal.
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In particular, the fact that every metrizable space is paracompact is going to
be a fundamental one when we are looking for convex renorming properties
in a Banach space. Indeed the use of Stone’s theorem has been extensively
considered in order to build up new techniques to construct equivalent locally
uniformly rotund norms on a given normed space X in [MOTV09]. The σ-
discreteness of the basis for the metric topologies gives the necessary rigidity
condition that appears in all the known cases of existence of such a renorming
property (see [Hay99] and [MOTV99]). It is our aim here to study the impact
of Stone’s theorem for Kadec renormings.

The following general problem has been asked in different contexts by
different people, [MOTV09].

Problem 2.4 Find a class of nonlinear maps Φ : X → Y which transfer a
Kadec norm from a normed space Y with a Kadec norm to X .

The main reason of the difficulties of the problem above is that there is no
example of a normed space with a σ-isolated network, with respect to the w-
topology, without admitting an equivalent Kadec norm, [MOTV09]. Indeed,
transferring results for normed spaces with a σ-isolated network,with respect
to the w-topology, are obtained in chapter 3 of [MOTV09]. Nevertheless, the
convexification problem in the core of the matter seems to be very difficult
to deal with. Let us now introduce some ideas for the study of this question.

2.1 Basic definitions and main results

After 1989 when first appeared a seminal paper of Hansell, [Han01], the
notion of descriptive space has assume a lot of importance in the theory
of LUR and Kadec renorming of normed spaces. Remember that a family
U = {Ui}i∈I is isolated, with respect to the τ -topology, if it is discrete in

⋃
U ,

i.e. for every x ∈
⋃

U there exists a τ -neighbourhood V of x such that

card {i ∈ I |Ui ∩ V 6= ∅} = 1.

We say that U is σ-isolatedly decomposable, with respect to the τ -topology, if
for every i ∈ I we can write Ui =

⋃
n∈N U

n
i such that {Un

i }i∈I is disjoint and
isolated, with respect to the τ -topology.

Definition 2.5 An Hausdorff space (X, τ) is called descriptive if there exists
a complete metric space T and a continuous surjective map f : T → X such
that if {Eλ}λ∈Λ is an isolated family, with respect to the τ -topology, in T ,
then {f(Eλ)}λ∈Λ is σ-isolatedly decomposable, with respect to the τ -topology,
in X.
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This complicated and technical definition can be simplified in normed space
case (see [Han01, Theorem 6.5]). Recall that a family N of subsets of a
topological space X is said to be a network, if for every x ∈ X and U
neighbourhood of x there exists N ∈ N such that x ∈ N ⊆ U .

Theorem 2.6 A Banach spaceX is descriptive with respect to the w-topology
if, and only if, the norm topology admits a network N that can be written
as a countable union of subfamilies N =

⋃
n∈NNn, where every one of the

subfamilies Nn is isolated, with respect to the w-topology.

Remember that if we have a Kadec norm ‖·‖ on the normed space X the
identity map from (SX , w) to (X, ‖·‖) is continuous.

Definition 2.7 Let X, Y normed space and C ⊆ X. A map Φ : (C,w) →
(Y, ‖·‖Y ) is called piecewise continuous, if there exists a countable cover

C =
⋃

n∈N

Cn

such that every one of the restrictions Φ|Cn
is weak to norm continuous. A

pointwise norm limit of a sequence of piecewise continuous maps is called a
σ-continuous map (see [MOTV06]).

In [MOTV06, Theorem 1] the following result is proved:

Proposition 2.8 Let C a subset of a normed space X. A map φ from (C,w)
into a normed space (Y, ‖·‖Y ) is σ-continuous if, and only if, for every ε > 0
we have C =

⋃
n∈NCn,ε in such a way that for every n ∈ N and every x ∈ Cn,ε

there is a w-neighbourhood U of x with

osc(φ|U∩Cn,ε
) := sup

x,y∈U∩Cn,ε

‖φ(x)− φ(y)‖Y < ε.

In a normed space (X, ‖·‖) with a Kadec norm the identity map inX from the
w to the norm topology is σ-continuous and the norm topology has a network
N that can be written as a countable union of subfamilies, N =

⋃
n∈N N n,

where every one of the subfamilies N n is isolated, with respect to the w-
topology, so every Kadec renormable space is descriptive with respect to the
w-topology (see [Han01, Theorem 1.5]).

In the classical theory of Banach spaces, not only normed spaces have
been considered, but also the so called metric linear spaces, i.e. linear spaces
equipped with a metric that turn out to be compatible with the vector space
operations. The uniform structure of a metrizable topological vector spaces
is usually described with the following notion, [Köt69, pag. 163]:
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Definition 2.9 (F -norm) An F -norm on a vector space X is function F :
X −→ [0,+∞) such that:

1. x = 0 if, and only if, F (x) = 0;

2. F (λx) ≤ F (x), for every |λ| ≤ 1 and x ∈ X;

3. F (x+ y) ≤ F (x) + F (y) for every x, y ∈ X;

4. limn∈N F (λxn) = 0, if limn∈N F (xn) = 0 for every (xn)n∈N ⊆ X and
λ ∈ R;

5. limn∈N F (λnx) = 0, if limn∈N λn = 0 for every (λn)n∈N ⊆ R and x ∈ X.

This definition was already in [Ban55], but for a more update account of the
basic results one can refer to [Mus83] and [KPR84]. Another relevant notion
is the following, see [Köt69, pag. 159]:

Definition 2.10 (Quasinorm) A quasinorm on a vector space X is a func-
tion q : X −→ [0,+∞) such that:

1. x = 0 if, and only if, q(x) = 0;

2. q(αx) = |α|q(x) for every α ∈ R and x ∈ X;

3. there exists k ≥ 1 such that q(x+y) ≤ k(q(x)+q(y)) for every x, y ∈ X.

An account of the basic results can be found in [KPR84], [Rol85] and [Kal03].
This definition is actually important in the locally bounded spaces case since
the following result (see [Aok42] and [Rol57]):

Theorem 2.11 (Aoki–Rolewicz) A topological vector space X is locally
bounded if, and only if, there exists a quasinorm which generates an equivalent
topology.

In this chapter we are going to prove this version of theorem 1.5:

Theorem 2.12 (Kadec quasi-renorming) Let (X, ‖·‖) a normed space
with a norming subspace Z in X∗, the following conditions are equivalent:

1. There is an equivalent σ(X,Z)-lower semicontinuous and σ(X,Z)-Kadec
quasinorm q(·), i.e. a quasinorm such that σ(X,Z) and the norm-
topology agree on the unit “sphere” {x ∈ X | q(x) = 1}, and such that

µ‖·‖ ≤ q(·) ≤ ξ‖·‖

for some constant µ and ξ.
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2. For every ε > 0 there is an equivalent σ(X,Z)-lower semicontinuous
quasinorm qε(·) such that

(1− ε)‖x‖ ≤ qε(x) ≤ (1 + ε)‖x‖

and

qε(x+ y) ≤
1 + ε

1− ε
(qε(x) + qε(y))

for every x, y ∈ X, and such that σ(X,Z) and the norm-topology which
agree on the unit “sphere” {x ∈ X : qε(x) = 1}.

3. There are isolated families for the σ(X,Z)-topology

{Bn |n = 1, 2, . . .}

in the unit sphere SX such that for every x in SX and every ε > 0
there is some positive integer n and a set B ∈ Bn with the property that
x ∈ B and ‖·‖- diam(B) < ε.

4. The identity map from the unit sphere (SX , σ(X,Z)) into the normed
space (X, ‖·‖) is σ-continuous.

5. (X, ‖·‖) is σ(X,Z)-descriptive, i.e. there exists a network N that can
be written as a countable union of subamilies, N =

⋃
n∈N N n, where

every one of the subfamilies N n is isolated

⋃
N n :=

⋃
{N |N ∈ N n}

endowed with the σ(X,Z)-topology.

The question that remains unsolved is the following:

Problem 2.13 Is it possible to convexify the construction in theorem 2.12
in order to get an equivalent σ(X,Z)-lower semicontinuous norm ‖·‖ on
X such that the σ(X,Z) and norm topologies agree on the unit sphere
{x ∈ X | ‖x‖ = 1}?

If the former question has a positive answer, then problem 2.4 for Kadec
renormings has a similar solution to the one given in [MOTV09] for LUR
renormings.
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2.2 Needed tools

In what follows we develop the study of two tools that will be used in the
sequel. In particular, we investigate a generalization of the notion of convexity
and construct a family of functions which behaves as a biorthogonal system
in some useful cases.

2.2.1 p-convex constructions

We state here some propositions regarding generalized convexity. First of all
let us remember the following definition, [Köt69, pag. 160]:

Definition 2.14 (p-convex set and hull) Let A a subset of a vector space
X and p ∈ (0, 1]. A is said to be p-convex if for every x, y ∈ A and τ, µ ∈ [0, 1]
such that τ p + µp = 1 we have τx + µy ∈ A. We denote with convp(A) the
p-convex hull of a set A, i.e. the intersection of all the p-convex sets of X
containing A.

Obviously if p = 1, then the 1-convex sets are exactly the convex sets. If we
have a p-convex and absorbent subset A in a vector space X , we can define
the p-Minkowski functional of it as

pA(x) := inf {λp | x ∈ λA}

and pA is a p-seminorm in the terminology of [Köt69, pag.160], i.e we have
pA(λx) = |λ|ppA(x) and pA(x + y) ≤ pA(x) + pA(y). The usual Minkowski
functional is defined as always:

qA(x) := inf {λ |x ∈ λA}

and we obviously have qA(x) = pA(x)
1/p for every x ∈ X . The functional qA

is a quasinorm and we have that qA(x+ y) ≤ 2(1/p)−1(qA(x) + qA(y)).
Now we pass to study some fundamental properties of the functions whose

epigraph is p-convex.

Definition 2.15 (p-convex function) A function φ from a vector space
X to the real line R is said to be p-convex (to satisfy the p-property), for
p ∈ (0, 1], if

φ(τx+ µy) ≤ τφ(x) + µφ(y) (φ(τx+ µy) ≤ τ pφ(x) + µpφ(y)),

whenever τ, µ ∈ [0, 1] and τ p + µp = 1.

We will need the following observations:
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� the epigraph of φ is p-convex if, and only if, φ is p-convex;

� if φ is convex and φ(0) = 0, then φ is p-convex for every p ∈ (0, 1];

� if φ is p-convex and non-negative, then φ satisfies the p-property;

� if φp is p-convex, φq is q-convex, with 0 < p ≤ q < 1 and both of them
are non-negative, then φp + φq is p-convex;

� if φ : X → [0,+∞) is bounded from above and satisfies the p-property,
then φ is continuous on X .

Last, but not least, we state some inequalities and facts concerning func-
tions which satisfy the p-property.

Proposition 2.16 Suppose that a map φ satisfies the p-property for some
p ∈ (0, 1], then for every x, y ∈ X,

τ pµp(φ(x)− φ(y))2 ≤ τ pφ(x)2 + µpφ(y)2 − φ(τx+ µy)2,

whenever τ p + µp = 1 and τ, µ ∈ [0, 1].

Proof We have

τpφ(x)2 + µpφ(x)2 − φ(τx+ µy)2 ≥ τpφ(x)2 + µpφ(x)2 − (τpφ(x) + µpφ(y))2 =

= (τp − τ2p)φ(x)2 + (µp − µ2p)φ(y)2 − 2τpµpφ(x)φ(y) =

= τp(1− τp)φ(x)2 + µp(1 − µp)φ(y)2 − 2τpµpφ(x)φ(y) =

= τpµp(φ(x) − φ(y))2. �

Corollary 2.17 For a p-seminorm ‖·‖p on the vector space X we have

0 ≤ (‖x‖p − ‖y‖p)
2 ≤ 2‖x‖2p + 2‖y‖2p − ‖x+ y‖2p.

Proof A p-seminorm is a nonnegative function that satisfied the p-property, we
can apply the former proposition for τ = µ = (1/2)1/p. �

What follows is a p-version of [DGZ93, Fact II.2.3].

Proposition 2.18 Let X a vector space, x ∈ X and (xj)j∈N ⊆ X. The
following hold:

1. If ‖·‖p is a p-seminorm on X, then the following are equivalent:

(a) limj∈N ‖xj‖p = ‖x‖p and limj∈N

∥∥x+xj

21/p

∥∥
p
= ‖x‖p;
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(b) limj∈N(2‖x‖
2
p + 2‖xj‖

2
p − ‖x+ xj‖

2
p) = 0

2. If αn > 0, ‖·‖pn are pn-seminorm on X for some sequence (pn) ⊆ (0, 1)
and

lim
j∈N

(
2F 2(x) + 2F 2(xj)− F 2(x+ xj)

)
= 0,

where F 2(x) =
∑

n∈N αn‖x‖
2
pn
, then for every n ∈ N

lim
j∈N

(2‖x‖2pn + 2‖xj‖
2
pn

− ‖x+ xj‖
2
pn
) = 0.

Proof Both follow from corollary 2.17. �

2.2.2 Similarities with biorthogonal systems

When on a Banach space there exists a good system of coordinates, for
example a biorthogonal systems

{(xi, fi) ∈ X ×X∗ | i ∈ I}

with some additional properties such as being a strong Markushevich basis
(see [HMSVZ08]), it is possible to construct an equivalent Kadec norm (see
[Ziz03, Chapter 4]). In [OT09a, Proposition 2.1] a result is proved that glues
the discreteness of Stone’s theorem with the linear topological structure of a
dual space to X ; here we will prove a p-convex verson of such a result

Proposition 2.19 (p-distance) Let X a normed space and Z a norming
subspace in X∗. If C is a w∗-compact and p-convex subset of X∗∗, 0 < p ≤ 1,
and define

ϕ(x) := inf
c∗∗∈C

‖x− c∗∗‖Z ,

then ϕ is p-convex, σ(X,Z)-lower semicontinuous and 1-Lipschitz map from
X to [0,+∞). We call such a function p-distance to the set C.

Proof The fact that C is p-convex implies that ϕ is a p-convex function. Indeed,
let us take x, y ∈ X and fix τ, µ ∈ [0, 1] with τp + µp = 1, and ε > 0. If we choose
c∗∗x and c∗∗y such that

‖x− c∗∗x ‖Z ≤ ϕ(x) + ε and
∥∥x− c∗∗y

∥∥
Z
≤ ϕ(y) + ε,

then
∥∥τx+ µy − (τc∗∗x + µc∗∗y )

∥∥
Z
≤ ‖τx− τc∗∗x ‖Z +

∥∥µy − µc∗∗y
∥∥
Z
≤

≤ τ(ϕ(x) + ǫ) + µ(ϕ(y) + ǫ) ≤ τϕ(x) + µϕ(y) + (τ + µ)ǫ,
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since τc∗∗x + µc∗∗y ∈ C we have that

ϕ(τx+ µy) ≤ τϕ(x) + µϕ(y) + ε,

for every ε > 0 and τ, µ ∈ [0, 1] with τp + µp = 1.
Let us prove the σ(X,Z)-lower semicontinuity. Fix r ≥ 0 and take a net

{xα}α∈A in X with ϕ(xα) ≤ r for every α ∈ A and let x ∈ X the σ(X,Z)-
limit of the net {xα}α∈A. We will see that ϕ(x) ≤ r too. Let us fix an ε > 0 and
choose c∗∗α ∈ C such that

‖xα − c∗∗α ‖ ≤ r + ε

for every α ∈ A. Since C is w∗-compact we can find a cluster point (x∗∗, c∗∗) of
the net {(xα, c

∗∗
α )}α∈A in X∗∗ ×X∗∗ for the topology σ(X∗∗,X∗). Then we have

that x∗∗ does coincide with x when both linear functionals are restricted to Z and
thus for every f ∈ BX∗ ∩Z

f(x∗∗ − c∗∗) = f(x− c∗∗) ≤ r + ε

and so ϕ(x) ≤ r + ε. Since the reasoning is valid for every ε > 0 we have got
ϕ(x) ≤ r as required.

The Lipschitz condition follows from the triangle inequality of the seminorm

‖·‖Z onX∗∗. Indeed, for every x, y ∈ X and c∗∗ ∈ C
σ(X∗∗,X∗)

we have ‖x− c∗∗‖Z ≤
‖x− y‖Z + ‖y − c∗∗‖Z , thus ϕ(x) ≤ ‖x− y‖Z + ϕ(y) and we see that

|ϕ(x) − ϕ(y)| ≤ ‖x− y‖Z . �

Looking for the “scalpel parameter” to get our renormings we introduce
the following:

Definition 2.20 Let (X, ‖·‖) a normed space, Z a norming subspace in X∗

and p ∈ (0, 1]. A family B := {Bi | i ∈ I} of subsets in the normed space X
is said to be p-isolated, with respect to the σ(X,Z)-topology, when for every
i ∈ I

Bi ∩ convp
σ(X,Z){Bj | j 6= i, j ∈ I} = ∅.

Here I will draw an example of what does the above formula means.

b

B1

B2

B3

convp (B1 ∪B2)

0
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Let us observe that the definition of 1-isolated familiy, with respect to the
σ(X,Z)-topology, corresponds to the definition of σ(X,Z)-slicely isolated
family, as defined in [OT09a, Definition 1.13], by the Hanh-Banach theorem.
We now can state the following interplay result:

Lemma 2.21 Let (X, ‖·‖) a normed space and Z a norming subspace in
X∗. Let B := {Bi | i ∈ I} an uniformly bounded family of subsets of X. The
following are equivalent:

1. The family B is p-isolated, with respect to the σ(X,Z)-topology;

2. There exists a family L := {ϕi : X → [0,+∞) | i ∈ I} of p-convex and
σ(X,Z)-lower semicontinuous functions such that for every i ∈ I

{x ∈ X |ϕi(x) > 0} ∩
⋃

j∈I

Bj = Bi.

To make clear what happens a drawing here is added:

b
0

B1

B3

B2 ϕ2(x) = 0ϕ2(x) > 0

ϕ2(x) < 0

3. There exist a family L := {ψi : X → [0,+∞) | i ∈ I} of p-convex and
σ(X,Z)-lower semicontinuous functions and numbers 0 ≤ α ≤ β such
that for every i, j ∈ I

ψi(Bi) > β ≥ α ≥ ψi(Bj).

Proof Assume that the family B is p-isolated, with respect to the σ(X,Z)-topology.
Applying proposition 2.19 we may consider ϕi to be the p-distance from

convp
σ(X∗∗,X∗){Bj | j 6= i, j ∈ I}

for every i ∈ I. Our hypothesis on the p-isolated character of the family B tells
us that when a point x belongs to the set Bi0 of the family B, then there exist
σ(X,Z)-open half-spaces

Hs := {z ∈ X : fs(z) > µs}, fs ∈ BX∗ ∩Z, s = 1, . . . , N
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in X with x ∈W :=
⋂N

s=1Hs and

W ∩ convp
σ(X∗∗,X∗){Bj | j 6= i0, j ∈ I} = ∅.

Then we have ‖y − z‖Z ≥ fs(y − z) ≥ fs(y)− µs whenever z /∈ Hs. Thus

ϕi0(y) ≥ min
s=1,...,N

(fs(y)− µs) > 0,

whenever y ∈W since

ϕi0(y) = inf
{
‖y − z‖Z : z ∈ convp

σ(X∗∗,X∗){Bj | j 6= i0, j ∈ I}
}
.

Thus ϕi0(x) > 0, and ϕi(x) = 0 for every i ∈ I with i 6= i0. The condition
2 clearly implies 3 with α = β = 0. Finally, if we assume 3, given a family L :=
{ψi : X → [0,+∞) | i ∈ I} of p-convex and σ(X,Z)-lower semicontinuous functions
such that the conditions in 3 are satisfied we will have that ψi(y) ≤ α for every
y ∈ convp {Bj | j 6= i, j ∈ I} by the p-convexity of the function ψi, and also for
every y ∈ convp

σ(X,Z){Bj | j 6= i, j ∈ I} by the σ(X,Z)-lower semicontinuity of
ψi. Consequently we have x /∈ convp

σ(X,Z){Bj | j 6= i, j ∈ I} for every x ∈ Bi and
every i ∈ I and it finishes the proof of the p-isolated property, with respect to the
σ(X,Z)-topology, of the family B. �

2.3 Constructing a Kadec quasinorm

In this section we are going to prove theorem 2.12, but we need two fun-
damental lemmata in order to do so. The first lemma is a decomposition
lemma, which says how to decompose an isolated family of sets in order to
obtain countable many pn-isolated families, the second lemma is a connection
lemma between the existence of a p-isolated family and the Kadec property.

Lemma 2.22 (Decomposition lemma) Let (X, ‖·‖) a normed space, Z
a norming subspace in X∗ and (qn) a decreasing sequence going to zero in
(0, 1]. Let B an isolated family, with respect to the σ(X,Z)-topology. Then
there exists a decomposition of every B ∈ B such that

B =
⋃

n∈N

Bn

and {Bn |B ∈ B} is a qm-isolated family, with respect to the σ(X,Z)-topology,
for m ∈ N big enough and every n ∈ N.

Proof Given a neighbourhood W of the origin in the σ(X,Z)-topology let us
define the width of W as:

wd(W ) = sup {δ > 0 |B(0, δ) ⊆W}.
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The isolated family B for the σ(X,Z)-topology can be decomposed as follows. Let
us denote with U the family of all convex and σ(X,Z)-open neigbourhoods of the
origin in X. We set B =

⋃
n∈NBn where

Bn :=
{
x ∈ B

∣∣∃W ∈ U ,wd(W ) > 1/n, (x +W ) ∩B′ = ∅ ∀B′ 6= B
}
.

Let us see that the family {Bn |B ∈ B} is pm-isolated whenever pm satisfies the
inequality (

1

2

)1/pm

< 1/4n.

Indeed, for x ∈ Bn we have W open neigbourhood of the origin in the σ(X,Z)-
topology, with B(0, 1/n) ⊆ W , and (x +W ) ∩ B′ = ∅ for every B′ ∈ B, B′ 6= B.
In particular we see that

(x+ 1/2W ) ∩ [(B′ + B(0, 1/2n)] = ∅

for every B′ 6= B ∈ B. Then we have

(x+W/4)∩
(
X \ B(0, 1 − 1/4n)

σ(X,Z)
)
∩ convpm {B′ |B′ ∈ B, B′ 6= B}

σ(X,Z)
= ∅

since

convpm
{
B′
∣∣B′ ∈ B, B′ 6= B

}
⊆
⋃

B′ 6=B

{
λx′

∣∣ 0 ≤ λ ≤ 1, x′ ∈ B′
}
+ B(0, 1/4n).

The last assertion holds because for τ, µ ∈ [0, 1] such that τpm + µpm = 1 we have
that τ ≤ µ⇔ τ ≤ (1/2)1/pm and so

(1/2)1/pm = max
τ∈[0,1]

{
min

{
τ, (1− τpm)1/pm

}}
,

then for z and y in
⋃

{B′ |B′ ∈ B, B′ 6= B} we have

‖·‖- dist


τz + µy,

⋃

B′ 6=B

{
λx′
∣∣ 0 ≤ λ ≤ 1, x′ ∈ B′

}

 ≤ (1/2)1/pm

from where the conclusion follows. �

The following variant of Deville’s master lemma has been stated, for se-
quences, by Haydon (see [Hay99, Proposition 1.2]) for the construction of
Kadec norms in spaces of the type C(Υ), where Υ is a tree. The following
is a net version which was already stated in [BKT06, Lemma 5.3], we will
use it in order to describe the connection between Haydon’s approach and
Stone’s discreteness.
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Lemma 2.23 Let X a topological space, S a nonempty set and ϕs, ψs : X →
[0,+∞) be lower semicontinuous functions such that sups∈S(ϕs(x)+ψs(x)) <
+∞ for every x ∈ X. Define

θs,m(x) = ϕs(x) +
1

2m
ψs(x);

θm(x) = sup
s∈S

θs,m(x);

θ(x) =
∑

m∈N

2−mθm(x).

Assume that {xσ}σ∈Σ is a net converging to x ∈ X and θ(xσ) → θ(x). Then
there exists a finer net {xγ}γ∈Γ and a net {iγ}γ∈Γ ⊆ S such that

lim
γ∈Γ

ϕiγ (xγ) = lim
γ∈Γ

ϕiγ (x) = lim
γ∈Γ

ϕ(xγ) = sup
s∈S

ϕs(x)

and limγ∈Γ(ψiγ (xγ)− ψiγ (x)) = 0.

We can now state a connection lemma between Haydon’s approach and
Stone’s discreteness.

Lemma 2.24 (Connection lemma) Let (X, ‖·‖) a normed space and Z a
norming subspace in X∗. Let B := {Bi | i ∈ I} an uniformly bounded and
p-isolated family of subsets of X, with respect to the σ(X,Z)-topology, for
some p ∈ (0, 1]. Then there exists an equivalent quasinorm, with p-power a
p-norm, ‖·‖B on X such that: for all net {xα}α∈A and x in X with x ∈ Bi0

for i0 ∈ I, the conditions σ(X,Z)- limα∈A xα = x and limα∈A ‖xα‖B = ‖x‖B
imply that

1. there exists α0 ∈ A such that xα is not in convp
σ(X,Z){Bi | i 6= i0, i ∈ I}

for α ≥ α0;

2. for every δ > 0 there exists αδ ∈ A such that

x, xα ∈ (conv (Bi0 ∪ {0}) + B(0, δ))
σ(X,Z)

,

whenever α ≥ αδ.

Proof Fix an index i ∈ I and define the function ϕi as the p-distance from the
set

convp
σ(X∗∗,X∗){Bj | j 6= i, j ∈ I},

for every i ∈ I. Consider the convex sets Di = conv(Bi ∪ {0}), together with
Dδ

i := Di + B(0, δ), where B(0, δ) := {x ∈ X | ‖x‖Z < δ} for every δ > 0 and
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i ∈ I. We are going to denote with pδi the Minkowski functional of the convex

bodies Dδ
i

σ(X,Z)
. Then we define the σ(X,Z)-lower semicontinuous norms ψi by

the formula

ψi(x) = ‖x‖Z +
∑

n∈N

1

n2n
p
1/n
i (x),

for every x ∈ X. We are now in position to apply lemma 2.23 in order to get an
equivalent quasinorm ‖·‖B on X such that the condition limα∈A ‖xα‖B = ‖x‖B
together with σ(X,Z)- limα∈A xα = x for a net {xα}α∈A and x in X imply that
there are a finer net {xβ}β∈B and a net (iβ)β∈B in I such that

1. limβ∈B ϕ(xβ) = limβ∈B ϕiβ (x) = limβ∈B ϕiβ (xβ) = supi∈I ϕi(x);

2. limβ∈B(ψiβ (xβ)− ψiβ (x)) = 0.

Indeed, using the definitions in lemma 2.23 we introduce the functions:

θi,m(x) := ϕi(x) +
1

2m
ψi(x);

θm(x) := sup
i∈I

θi,m(x);

θ(x) :=
∑

m∈N

2−m(θm(x) + θm(−x)).

It is not difficult to prove that θ is a p-convex and σ(X,Z)-lower semicontinuous
function such that limα∈A θ(xα) = θ(x) together with σ(X,Z)- limα∈A xα = x
imply the conditions 1 and 2 above by lemma 2.23. The Minkowski functional of
the p-convex set

{x ∈ X | θ(x) ≤ 1}

provide us with the quasinorm ‖·‖B we are looking for. Let us take the net {xα}α∈A
and x in X verifying that limα∈A ‖xα‖B = ‖x‖B and x is the σ(X,Z)-limit of
{xα}α∈A. Then we also have limα∈A θ(xα) = θ(x) since the following equality
holds:

{x ∈ X | ‖x‖B = 1} = {x ∈ X | θ(x) = 1}.

Our hypothesis on the p-isolated character of the family B tell us that

x /∈ convp
σ(X,Z){Bi | i 6= i0, i ∈ I}

whenever x ∈ Bi0 , and so ϕi0(x) > 0 but ϕi(x) = 0 for every i ∈ I with i 6= i0, see
lemma 2.21. From condition 1 there exists a β0 such that iβ = iβ0 and ϕiβ0

(xβ) > 0
for all β ≥ β0, from where the conclusion 1 of the lemma follows. Moreover, the
condition 2 above implies that for every positive integer q, we have

lim
β∈B

p
1/q
iβ0

(xβ) = p
1/q
iβ0

(x).
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If we fix a positive number δ and we set the integer q such that 1/q < δ, since

x ∈ D
1/q
i0

we have that p
1/q
iβ0

(x) < 1 because D
1/q
i0

is norm open and therefore,

there exists βδ ∈ B such that for β ≥ βδ we have that p
1/q
iβ0

(xβ) < 1 and thus

xβ ∈ Dδ
iβ0

σ(X,Z)
, and indeed xβ ∈ (conv(Biβ0

∪ {0}) + B(0, δ))
σ(X,Z)

. �

Remark 2.25 The following observations will be useful.

1. The quasinorm constructed here is the Minkowski functional ‖·‖B of
the p-convex set {x ∈ X | θ(x) ≤ 1}. Since the ϕi’s are p-convex and
σ(X,Z)-lower semicontinuous and the ψi’s are convex and σ(X,Z)-
lower semicontinuous norms, it follows that function θ is p-convex and
σ(X,Z)-lower semicontinuous; so the Minkowski functional ‖·‖B is a
σ(X,Z)-lower semicontinuous equivalent quasinorm, with p-power a p-
norm.

2. If we take the p-Minkowski functional of the set {x ∈ X | θ(x) ≤ 1},
instead of its Minkowski functional, we get a p-norm wich satisfies the
same conclusion of the lemma.

3. For every β > 1 and α > 0 is possible to construct the former quasinorm
‖·‖B such that:

α

4 + α
βp‖x‖Z ≤ ‖x‖B ≤ β‖x‖Z

for every x ∈ X .

Proof We use the same notations as above and define

ψα
i (x) = α‖x‖Z +

∑

n∈N

1

n2n
p
1/n
i (x)

for α > 0. If we do the calculations with ψα
i instead of ψi we see that: given

x ∈ X with ‖x‖Z ≤ 1, we have ϕi(x) ≤ 1 and ψα
i (x) ≤ 1+α, for every i ∈ I,

thus θm(x) ≤ (1 + (α+ 1)2−m) for every m ∈ N, and therefore

θ(x) ≤
∑

m∈N

21−m
(
1 + (1 + α)2−m

)
=

2(4 + α)

3
=: kα.

It follows ‖x‖B ≤ k
1/p
α ‖x‖Z , for every x ∈ X. If we have β > 1 we can

consider the functions 1
kα
βpϕi and

1
kα
βpψα

i instead of ϕi and ψ
α
i respectively

and we will have now
‖x‖B ≤ β‖x‖Z

for every x ∈ X. On the other hand, α‖·‖Z ≤ ψα
i (·), thus θm(·) ≥ α 1

2m ‖·‖Z ,
so

θ(·) ≥ α
2

3
‖·‖Z
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that gives α2
3‖·‖Z ≤ ‖·‖B. If we are using the factor 1

kα
βp in both functions

ϕi and ψ
α
i too, we will have that

2

3
α

1

kα
βp‖·‖Z ≤ ‖·‖B ≤ β‖·‖Z .

Thus we obtain α
4+αβ

p‖·‖Z ≤ ‖·‖B ≤ β‖·‖Z . �

4. Let ε ∈ (0, 1) and chose α > 0 such that α
4+α

> 1−ε and β ∈ (1, 1+ ε).
Then we see that (1 − ε)‖·‖Z ≤ ‖·‖B ≤ (1 + ε)‖·‖Z . Consequently the
quasinorm constructed verifies

‖x+ y‖B ≤
1 + ε

1− ε
(‖x‖B + ‖y‖B)

for every x, y ∈ X .

Now we can present the main resut of this section:

Theorem 2.26 A normed space (X, ‖·‖) with a norming subspace Z in
X∗ admits an equivalent σ(X,Z)-lower semicontinuous and σ(X,Z)-Kadec
quasinorm if, and only if, there exist, in the unit sphere SX , families isoltated,
with respect to the σ(X,Z)-topology,

{Bn |n = 1, 2, . . .}

such that for every x in SX and every ε > 0 there exist n ∈ N and a set
B ∈ Bn, such that x ∈ B and ‖·‖- diam(B) < ε.

Proof The decomposition lemma (lemma 2.22) says that for a fixed sequence
qn ց 0 in (0, 1] we will have a decomposition of the sets in the family Bn producing
families Bm

n ,m = 1, 2, . . ., with Bm
n being qsm-isolated, with respect to the σ(X,Z)-

topology, for all m,n = 1, 2, . . .. Therefore without loss of generality it is possible
to reorder the sequence and to assume that for n = 1, 2, . . . the family Bn is
already pn-isolated (with respect to the σ(X,Z)-topology). We can now consider
the equivalent quasinorms ‖·‖Bn

constructed using the connection lemma (lemma
2.24) for every one of the families Bn. We define now an equivalent quasinorm on
X as follows:

9x9 :=
∑

n∈N

cn‖x‖Bn
, x ∈ X

where the sequence (cn)n∈N is chosen so that the series converges uniformly on
bounded sets. That is possible since we can, and do assume, that the following
inequality holds

(1− δ)‖x‖Z ≤ ‖x‖Bn
≤ (1 + δ)‖x‖Z
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for the same fixed δ > 0 and for every n ∈ N, after point 4 of remark 2.25. We
will now prove the Kadec property. Take a net {xα}α∈(A,≻) and x with ‖x‖Z = 1,
limα∈A 9xα9 = 9x9 and (xα) being σ(X,Z)-convergent to x. Then we have

lim
α∈A

‖xα‖Bq
= ‖x‖Bq

for every q ∈ N by the σ(X,Z)-lower semicontinuity of the quasinorms ‖·‖Bq
.

Given ε > 0 consider q ∈ N such that for some B ∈ Bq we have x ∈ B and
‖·‖- diam(B) < ε/2. Then the connection lemma (lemma 2.24) tell us that for
some αε/2 we have

xα ∈ conv(B ∪ {0}) + B(0, ε/2)
σ(X,Z)

whenever α ≻ αε/2. We have that ‖·‖- dist(xα, Ix) ≤ ε for α ≻ αε/2 where Ix is the
segment joining x with the origin, and so there exist numbers r(α,ε) ∈ [0, 1] such
that ∥∥xα − r(α,ε)x

∥∥ ≤ ε,

for every α ≻ αǫ/2. Consider the directed set A × (0, 1] with the product order
and the subset D :=

{
(α, ε) ∈ A× (0, 1]

∣∣ α ≻ αε/2

}
which is a directed set with

the induced order. Then for the net
{
r(α,ε)

∣∣ (α, ε) ∈ D
}
there exists a subnet map

σ : B → D for some directed set (B,≻) such that the limit r := limβ∈B rσ(β) exists
by the compactness of the unit interval [0, 1]. Let us denote with σ the composition
of the map σ with the projection from A × (0, 1] onto A, which is a subnet map
too, and we have:

‖·‖- lim
β∈B

xσ(β) = rx.

The assumption limα∈A 9xα9 = 9x9 guarantees that 9rx9 = 9x9 6= 0, so r = 1.
We are done since the former reasoning is valid for every subnet of the given net,
so

‖·‖- lim
α∈A

xα = x.

If the given point x doesn’t lie in the unit sphere SX and different from the origin
it is enough to consider x

‖x‖Z
and the net ( xα

‖x‖Z
) to obtain the same conclusion. To

see that 9 · 9 is a quasinorm just use the fact that

‖x+ y‖Bn
≤

1 + δ

1− δ

(
‖x‖Bn

+ ‖y‖Bn

)

to obtain 9x+ y9 ≤ 1+δ
1−δ (9x 9 + 9 y9). �

Remarks Observe that if we had taken pn-norm pBn(·) instead of the quasinorm,
then the function

F (x) =
∑

n∈N

cnpBn(x),

where cn are chosen in order to guarantee the convergence of the series on bounded
set (this can be done due to the equivalence), is an equivalent σ(X,Z)-lower semi-
continouos and σ(X,Z)-Kadec F -norm.
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Theorem 2.12 follows easily now.

Proof (Theorem 2.12) The implication (2⇒1) is obvious, (3⇒2) is theorem
2.26 and (4⇒3) is proposition 2.8.

(1⇒5) Observing that theorem 7.2 of [Han01] can be proved with a radial set
in the place of the unit sphere and knowing that the set {x ∈ X | q(x) = 1}
admits a basis for the strong topology that is σ-discrete for the σ(X,Z)-
topology, we obtain that the space X admits a newtork for the strong
topology which is σ-isolated for the σ(X,Z)-topology. This means that X is
σ(X,Z)-descriptive.

(5⇒4) By proposition 2.7 of [MOTV09] we obtain that id : (X,σ(X,Z)) →
(X, ‖·‖) is σ-continuous, then also id : (SX , σ(X,Z)) → (X, ‖·‖) is σ-
continuous. �

2.4 Applications

Now we are going to state some applications of our results. In particular
an improvement of a result [Rib00] (already in [Raj03a]) and a version with
Kadec quasinorm of [OT09a, Section 2].

2.4.1 On a result of Ribarska

In this section we prove the results answered in [Raj03a]. First of all, let us
remember the following definition related to descriptiveness (see [JNR92a]).

Definition 2.27 (d-SLD) Let (X, τ) a topological space and d a metric on
X. It is said that X has countable cover by sets of small local diameter
(d-SLD, for short) if for every ε > 0 there exists a decomposition

X =
⋃

n∈N

Xε
n

such that for each n ∈ N every point of Xε
n has a relatively non-empty τ -

neighbourhood of d-diameter less than ε.

If (X, τ) is of the kind C p(K) or a Banach space endowed with its weak
topology, thenX has ‖·‖-SLD if and only if (X, τ) is descriptive (see [Onc00]).
Ribarska and Babev have proved in [RB09] that the function space C (K×L)
has an equivalent LUR norm provided that both C (K) and C (L) are LUR
renormable, where K and L are Hausdorff compacta. An analogous result
holds for LUR norms which are pointwise lower semicontinuous. The main
result in [Rib00] is the following:
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Theorem 2.28 If K and L are Hausdorff compacta such that C p(K) admits
a pointwise Kadec norm and C p(L) have ‖·‖-SLD, then C p(K ×L) has ‖·‖-
SLD.

Ribarska observed that theorem 2.28 holds when the existence of a point-
wise Kadec norm is repleced by the following assumption: there exists a
nonnegative, homogeneous, norm continuous and pointwise lower semicon-
tinuous function ϕ on C p(K), with ‖h‖ ≤ ϕ(h) ≤ 2‖h‖ whenever h ∈ C (K)
and such that the norm and the pointwise topology agree on the set S =
{h ∈ C (K) |ϕ(h) = 1}. So, using theorem 2.12, we obtain the following re-
sult:

Theorem 2.29 If K and L are Hausdorff compacta such that both C p(K)
and C p(L) have ‖·‖-SLD, then C p(K × L) has ‖·‖-SLD.

Our second aim is to prove some permanence results for the class of
compact Hausdorff spaces K such that C p(K) has ‖·‖-SLD. In that context,
theorem 2.29 is the staring point. Similar results can be obtain for the class of
compact Hausdorff spaces K such that C (K) has an equivalent LUR norm.
Among them, let us mention the following one:

Proposition 2.30 Let K a norm fragmented w∗-compact subset of a dual
Banach space X∗ such that C (K) has an equivalent LUR norm. Then C (H)
has an equivalent LUR norm, where H = convw

∗
(K) is consider endowed

with the w∗-topology.

In the following by property (R) we shall denote one of the following three
properties: “having ‖·‖-SLD with the pointwise topology”, “having an equiv-
alent LUR norm” or “having an equivalent pointwise lower semicontinuous
LUR norm”. The following generalizes corollary 8 of [MOT97]:

Proposition 2.31 Let K a compact space and Kn ⊆ K compact subsets
of K such that every space C (Kn) has the property (R). If there is a lower
semicontinuous metric d on K such that

K =
⋃

n∈N

Kn

d

,

then C (K) has the property (R).

Proof We shall prove the result when the property (R) is the LUR renormability
of the space and we shall give hints to modify the proof for the other properties.
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Let ‖·‖n an equivalent LUR norm on C (Kn) bounded by the supremum norm.
For every n ∈ N define

On(f) = sup

{
|f(x)− f(y)|

∣∣∣∣x, y ∈ K, d(x, y) ≤
1

n

}

and consider the equivalent norm 9 · 9 on C (K) defined by the formula

9f92 = ‖f‖2 +
∑

n∈N

2−n
∥∥∥f|Kn

∥∥∥
2

n
+
∑

n∈N

2−nOn(f)
2.

If we prove that 9·9 is a w-LUR norm, then the result will follow from [MOTV99].
To see that, suppose that 9fk9 = 9f9 and limk 9fk + f9 = 2 9 f9. A standard
convexity argument [DGZ93, Fact II.2.3] gives us that (fk) converges to f uniformly
on every Kn. We claim that (fk(x)) converges to f(x) for every x ∈ X. Fix ε > 0
and take n big enough to have On(f) < ε/3 (this is possible because continuous
function on K are d-uniformly continuous, see the proof of [Raj99a, Theorem
4]). Now take y ∈

⋃
m∈NKm such that d(x, y) < 1/n. If k is big enough, then

On(fk) < ε/3 and |fk(y)− f(y)| < ε/3. We have that

|fk(x)− f(x)| ≤ |fk(x)− fk(y)|+ |fk(y)− f(y)|+ |f(y)− f(x)| < ε

and this end the proof of the claim. Thus we have that (fk) converges to f weakly
by Lebesgue’s theorem and 9 · 9 is w-LUR .

For tp-lower semicontinuous LUR renormability, the proof is the same if we
notice that the norm 9 · 9 built above is tp-lower semicontinuous. For ‖·‖-SLD
consider the formula

Φ(f) =
∑

n∈N

2−nϕn(f|Kn
) +

∑

n∈N

2−nOn(f)

where ϕn are Kadec functions on C (Kn). The convexity argument above can be
replaced by an argument of lower semicontinuity in order to obtain that Φ is a
Kadec function on C (K). �

Corollary 2.32 Let K a norm fragmented w∗-compact subset of X∗ and
H = convw∗

(K). If C (K) has the property (R), then C (H) also has the
property (R).

Proof First notice that if K is a norm fragmented w∗-compact subset of X∗ then

convw
∗
(K) = conv‖·‖(K)

by a result of Namioka [Nam87]. Also notice that if L is a compact Hausdorff space
such that C (L) has the property (R), then C (L′) has the property (R) for any
compact L′ which is continuous image of L. Let Kn the set of convex combinations
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of at most n points of K. It is easy to see that Kn is compact and continuous image
of L = ∆×Kn, where

∆ =

{
(λi)

n
i=1

∣∣∣∣∣λi ≥ 0,
n∑

i=1

λi = 1

}
.

By Ribarska’s result C (L) has the property (R), and so C (Kn) does also. Now we
have that H =

⋃
n∈NKn and the result follows from proposition 2.31. �

Under the hypothesis of the previous corollary the LUR norm can be
made pointwise lower semicontinuous because for a Radon-Nikodým compact
K, C (K) has convex-P (tp, w) as a consequence of [Raj99a, Theorem 4], and
then is possible to apply [Raj99b, Theorem A].

2.4.2 Similarity with Stone’s theorem

In theorem 2.26 we have proved that a Kadec quasinorm exists if, and only
if, a σ-isolated network exists. What we want to prove now if it is possible
to obtain a σ-isolated and norm discrete base for the norm topology. Let
us begin with the following fattening lemma. Through this section we set
BZ(x, ε) := {x ∈ X | ‖x‖Z < ε}.

Lemma 2.33 Let X a normed space with a norming subspace Z ⊆ X∗.
Given a uniformly bounded and p-isolated family, with respect to the σ(X,Z)-
topology, A := {Ai}i∈I there exist decompositions Ai =

⋃
n∈NA

n
i with

A1
i ⊆ A2

i ⊆ · · · ⊆ An
i ⊆ An+1

i ⊆ · · · ⊆ Ai

for every i ∈ I and such that the families {An
i + BZ(0, 1/4n) | i ∈ I} are p-

isolated, with respect to the σ(X,Z)-topology, and norm discrete for every
n ∈ N.

Proof Denote by ϕi the p-distance to convp
σ(X∗∗.X∗){Aj | j 6= i}. Theorem 2.21

gives us the scalpel to split up the sets of the family using these p-convex functions.
Indeed, let us define An

i := {x ∈ Ai |ϕi(x) > 1/n} and we have Ai =
⋃

n∈NA
n
i .

Moreover, if x ∈ An
i + BZ(0, 1/4n), then we have

ϕi(x) > 3/4n.

Indeed, let us write x = y + z, y ∈ An
i , ‖z‖Z < 1/4n, since ϕi(y) > 1/n we

can select a number ρ with ϕi(y) > ρ > 1/n and we will have for every fixed
c∗∗ ∈ convp

σ(X∗∗.X∗){Aj | j 6= i} that ‖y − c∗∗‖Z > ρ. So we can find some f ∈
BX∗ ∩Z with f(y − c∗∗) > ρ. Now we see that f((y + z) − c∗∗) > ρ − 1/4n and



2.4. Applications 32

so ‖x− c∗∗‖Z > ρ− 1/4n for every c∗∗ ∈ convp
σ(X∗∗.X∗){Aj | j 6= i}. Consequently

we see that ϕi(x) ≥ ρ− 1/4n > 3/4n.
On the other hand for y ∈ Aj with j 6= i, we know that ϕi(y) = 0, then for

x ∈ An
j + BZ(0, 1/4n) if we write x = y + z, with y ∈ An

j and ‖z‖Z < 1/4n we

have, for fixed c∗∗ ∈ convp
σ(X∗∗.X∗){Aj | j 6= i};

‖x− c∗∗‖Z < ‖y − c∗∗‖Z + 1/4n

from where follows that

ϕi(x) = inf
{
‖x− c∗∗‖Z

∣∣∣ c∗∗ ∈ convp
σ(X∗∗.X∗){Aj | j 6= i}

}
≤ 1/4n,

since ϕi(y) = 0. This means that the family {An
i + BZ(0, 1/4n)}i∈I verifies the

conditions 3 of theorem 2.21 with the functions (ϕi)i∈I and constants α = 1/4n,
β = 3/4n. Thus it is p-isolated, with respect to the σ(X,Z)-topology, as we wanted
to prove. Moreover, if we fix δ > 0 and such that

1/4n + δ < 3/4n − δ

we can prove that the former family is discrete for the norm topology. Indeed for
any z ∈ X we have that

BZ(z, δ) ∩
⋃

i∈I

(An
i + BZ(0, 1/4n))

has nonempty intersection with at most one member of the family because every
time the intersection is nonempty we can see that ϕi(z) > 3/4n − δ if

BZ(z, δ) ∩ (An
i + BZ(0, 1/4n)) 6= ∅,

but ϕi(z) < 1/4n + δ when

BZ(z, δ) ∩
(
An

j + BZ(0, 1/4n)
)
6= ∅,

for any j 6= i and j ∈ I. This fact can be seen as above writing now z = x + y
with x ∈ BZ(z, δ) ∩ (An

i + BZ(0, 1/4n)) and ‖y‖Z < δ in the first case and x ∈
BZ(z, δ) ∩ (An

j + BZ(0, 1/4n)) with ‖y‖Z < δ for the second one. �

Proposition 2.34 Let X a normed space and Z a norming subspace in the
dual space X∗. Let us assume the space X admits an equivalent σ(X,Z)-lower
semicontinuous and σ(X,Z)-Kadec quasinorm. Then the norm topology ad-
mits a network N , such that

N =
⋃

n∈N

N n

where for every n ∈ N there exists pn ∈ (0, 1] such that the family N n is pn-
isolated, with respect to the σ(X,Z)-topology and it consists of sets which are
the difference of σ(X,Z)-closed and pn-convex subsets of X. Moreover, there
exists δn > 0 such that N n +BZ(0, δn) is norm discrete for every n ∈ N.
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Proof Consider the network M =
⋃

n∈N Mn of the norm topology such that every
one of the families Mr := {Mr,i | i ∈ Ir} is isolated, with respect to the σ(X,Z)-
topology. The decomposition lemma (lemma 2.22) says that for a fixed sequence
pn ց 0 in (0, 1] we will have a decomposition of the sets in the familyMr producing
families Mn

r , n = 1, 2, . . . withMn
r being pnm-isolated, with respect to the σ(X,Z)-

topology, for all r,m = 1, 2, . . .. Therefore without loss of generality it is possible to
reorder the sequence and to assume that for r = 1, 2, . . . the family Mr is already
pr-isolated (with respect to the σ(X,Z)-topology). Let us perform the following
decomposition: denote by ϕr,i the pr-distance to convpr

σ(X∗∗ ,X∗){Mr,j | j 6= i} and
define

Nn
r,i :=

{
x ∈ convpr

σ(X,Z)(Mr,i)
∣∣∣ϕr,i(x) > 3/4n

}
.

The fact that each one of the families N n
r := {Nn

r,i|i ∈ Ir} is σ(X,Z)-pr-isolated
follows from theorem 2.21 since the lower semicontinuity and pr-convexity of the
functions ϕr,i tell us that ϕr,j(y) = 0 for every y ∈ convpr

σ(X,Z)(Mr,i) and j 6= i,
j ∈ Ir. Moreover, as in lemma 2.33, we have here that

ϕr,i(z) > 3/4n − µ

whenever z ∈ Nn
r,i + BZ(z, µ) and ϕr,i(z) < µ. Choose δn such that 0 < 2δn <

3/4n − δn, then we have that the norm open sets {Nn
r,i + BZ(0, δn)|i ∈ Ir} are

disjoint and they form a norm discrete and pr-isolated family, with respect to the
σ(X,Z)-topology. Moreover, each one of the sets Nn

r,i is the difference of pr-convex

and σ(X,Z)-closed subsets of X: convpr
σ(X,Z)(Mr,i) and {x ∈ X |ϕr,i(x) ≤ 3/4n}.

The union of all these families ⋃

r,n∈N

N n
r

is the network we are looking for. Indeed, given x ∈ X there exists r ∈ N and i ∈ Ir
such that x ∈Mr,i ⊆ x+BZ(0, ε/3). Then for n ∈ N big enough we have x ∈ Nn

r,i,

x ∈ convpr
σ(X,Z)(Mr,i) ⊆ x + BZ(0, 2ε/3) and we have x ∈ convpr

σ(X,Z)(Nn
r,i) +

BZ(0, δn) ⊆ x+ BZ(0, ε) if we take n ∈ N big enough. �

We now arrive to:

Theorem 2.35 Let X a normed space with a norming subspace Z ⊆ X∗.
X admits an equivalent σ(X,Z)-lower semicontinuous and σ(X,Z)-Kadec
quasinorm, if and only if, the norm topology admits a σ-discrete basis B =⋃

n∈N Bn such that every one of the families Bn is isolated, with respect to the
σ(X,Z)-topology, and norm discrete.

Proof Starting from the network constructed in the previous proposition, let us
continue with the same notation and observe that when we add open balls of
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suitable small radii to the network we get the basis of the norm topology we are
looking for. In fact ⋃

n,r∈N

{
Nn

r,i + BZ(0, δn)
∣∣ i ∈ Ir

}

is a basis of the norm topology. Indeed, for given x ∈ X and ε > 0 we can find
p ∈ N and i ∈ Ip with x ∈ Np,i ⊆ BZ(x, ε/2). There is m0 ∈ N such that
x ∈ Nm

p,i whenever m ≥ m0. It follows that, for m ∈ N big enough we have
Nm

p,i + BZ(0, δm) ⊆ BZ(x, ε) since x ∈ Np,i ⊆ BZ(x, ε/2) and δm goes to zero
when m goes to infinity. �

2.5 F-norms with the LUR property

In this section we want to prove theorem 1.6. To do that we look for a p-
version of [OT09a, Lemma 3.2], but the main ingredient is Deville’s master
lemma.

Lemma 2.36 (p-version of Deville’s lemma) Let (ϕi)i∈I and (ψi)i∈I be
two families of real valued non-negative functions defined on a Banach space
X, which are both uniformly bounded, uniformly continuous on bounded sub-
sets of X and satisfy the p-property. For i ∈ I and k ∈ N, let us denote for
every x ∈ X

θi,k(x) = ϕ2
i (x) +

1

k
ψ2
i (x);

θk(x) = sup
i∈I

θi,k(x);

θ(x) = ‖x‖2 +
∑

k∈N

2−k(θk(x) + θk(−x)),

where ‖·‖ is the norm of X. If q(·) denotes the p-Minkowski functional of
B = {x ∈ X | θ(x) ≤ 1}, then q(·) is an equivalent p-norm on X with the
following property: if xn, x ∈ X satisfy lim(2q2(x)+2q2(xn)−q2(x+xn)) = 0,
then there exists a sequence (in) in I such that:

1. limn∈N

(
1
2
ψ2
in(x) +

1
2
ψ2
in(xn)− ψ2

in

(
x+xn

21/p

))
= 0;

2. limn∈N ϕin(x) = limn∈N ϕin(xn) = limn∈N ϕin

(
x+xn

21/p

)
= supi∈I ϕi(x).

Proof The equivalence for p-norm is of the following type ξp‖x‖p ≤ q(x) ≤ ζp‖x‖p

and follows from boundedness and continuity. Suppose that x ∈ X and (xn)n∈N ⊆
X are such that

lim
n∈N

(2q2(x) + 2q2(xn)− q2(x+ xn)) = 0.
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From proposition 2.18 we have limn∈N q(xn) = q(x) and limn∈N q(x+ xn) = 2q(x).
Thus θ(x) = q(x), since θ is uniformly continuous on bounded subsets of X, we

have limn∈N θ(xn) = θ(x) and limn∈N θ
(
x+xn

21/p

)
= θ(x) and consequently

lim
n∈N

(
1

2
θ(x) +

1

2
θ(xn)− θ

(
x+ xn

21/p

))
= 0.

By proposition 2.18, we have for every k ∈ N,

lim
n∈N

(
1

2
θk(x) +

1

2
θk(xn)− θk

(
x+ xn
21/p

))
= 0.

Let (αn)n∈N a sequence of real number such that αn > 0 and limn∈N nαn = 0. By a
standard convexity argument (see [DGZ93, Fact II.2.3]) there exists (kn)n∈N ⊆ N

1

2
θkn(x) +

1

2
θkn(xn)− θkn

(
x+ xn

21/p

)
< αkn . (2.1)

It follow from (2.1) and the very definition of θkn that for each n ∈ N there exists
in such that

1

2
θkn(x) +

1

2
θkn(xn)− θin,kn

(
x+ xn

21/p

)
< αkn .

Thus, for every i ∈ I, we have:

αkn >
1

2
θi,kn(x) +

1

2
θin,kn(xn)− θin,kn

(
x+ xn
21/p

)
=

=
1

2
(ϕ2

i (x)− ϕ2
in(x)) +

1

2
ϕ2
in(x) + 2ϕ2

in(xn)− ϕ2
in

(
x+ xn

21/p

)
+

+
1

2kn
(ψ2

i (x)− ψ2
in(x)) +

1

kn

(
1

2
ψ2
in(x) +

1

2
ψ2
in(xn)− ψ2

in

(
x+ xn
21/p

))
. (2.2)

If we choose i = in we get by proposition 2.16

0 ≤

(
ϕin(x)− ϕin(xn)

2

)2

≤
1

2
ϕ2
in(x) +

1

2
ϕ2
in(xn)− ϕ2

in

(
x+ xn
21/p

)
≤ αkn (2.3)

0 ≤

(
ψin(x)− ψin(xn)

2

)2

≤
1

2
ψ2
in(x) +

1

2
ψ2
in(xn)− ψ2

in

(
x+ xn
21/p

)
≤ knαkn (2.4)

Since limn∈N knαkn = 0, (2.4) implies 1. Furthermore, (2.3) implies that

lim
n∈N

(ϕin(x)− ϕin(xn)) = 0 and lim
n∈N

(
ϕin(x)− ϕin

(
x+ xn
21/p

))
= 0.

On the other hand, if we denote by M = supi∈I ψ
2
i (x) then given n ∈ N, (2.2)

yields, for every i ∈ I

ϕ2
i (x)− ϕ2

in < 2αkn −
1

kn
(ψ2

i (x)− ψ2
in(x)) ≤ 2αkn −

M

kn
.
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Thus, for n ∈ N, we have

ϕ2
in(x) ≥ sup

i∈I
ϕ2
i (x) +

M

kn
− 2αkn .

Hence lim infn∈N ϕin(x) ≥ supi∈I ϕi(x). This concludes the proof of the lemma. �

Observe that if Z ⊆ X∗ is a norming subspace of X and if the norm ‖·‖,
the ϕi’s and the ψi’s are all σ(X,Z)-lower semicontinuous, then the p-norm
q(·) is also σ(X,Z)-lower semicontinuous. Let us state now a p-version of the
connection lemma.

Lemma 2.37 (p-connection lemma) Let (X, ‖·‖) a normed space and Z
a norming subspace in X∗. Let B = {Bi | i ∈ I} an uniformly bounded and
p-isolated family of subsets of X, with respect to the σ(X,Z)-topology. Then
there exists an equivalent σ(X,Z)-lower semicontinuous p-norm qB(·) on X
such that for every i0 ∈ I, every x ∈ Bi0, and every sequence (xn)n∈N in X
the condition

lim
n∈N

(
2q2B(xn) + 2q2B(x)− q2B(x+ xn)

)
= 0,

implies that:

1. there exists n0 ∈ N such that

xn,
xn + x

21/p
/∈ convp

σ(X,Z)
⋃

{Bi | i 6= i0, i ∈ I}

for every n ≥ n0;

2. for every δ > 0 there exists nδ ∈ N such that

xn ∈ conv(Bi0 ∪ {0}) + B(0, δ)
σ(X,Z)

,

whenever n ≥ nδ.

Proof Fix an index i ∈ I and define the functions ϕi as the p-distance from

convp
σ(X∗∗,X∗)

⋃
{Bi | i 6= i0, i ∈ I}

SetDi = conv(Bi∪{0}) andD
δ
i = Di+B(0, δ), where B(0, δ) = {x ∈ X | ‖x‖Z < δ},

for every δ > 0 and i ∈ I. We denote by pi,δ the Minkowski functional of the convex

body Dδ
i

σ(X,Z)
. Then we define the norm pi by the formula

p2i (x) =
∑

q∈N

1

q22q
p2i,1/q(x),
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for every x ∈ X. It is well defined and σ(X,Z)-lower semicontinuous. Indeed,

since B(0, δ) ⊆ Dδ
i

σ(X,Z)
we have for every x ∈ X, and δ > 0, that pi,δ

(
δx

‖x‖Z

)
≤ 1,

thus δpi,δ(x) ≤ ‖x‖Z and hence the above series converges. Finally we define the
nonnegative, p-convex and σ(X,Z)-lower semicontinuous function

ψi(x) = pi(x),

for every x ∈ X. We are now in position to apply the p-version of Deville’s lemma
to get an equivalent and σ(X,Z)-lower semicontinuous p-norm qB(·) on X. Take
i0 ∈ I, x ∈ Bi0 and a sequence (xn)n∈N in X satisfying

lim
n∈N

(
2q2B(xn) + 2q2B(x)− q2B(x+ xn)

)
= 0.

Lemma 2.36 implies the existence of a sequence of indexes (in)n∈N in I such that the
conclusion of the previous lemma hold. Our hypothesis on the p-isolated character
of the family B tell us, after lemma 2.21, that since the point x belongs to the set
Bi0 of the family B, we have ϕi0(x) > 0, but ϕi(x) = 0 for all i ∈ I r {i0}. From
the assertion 1 of lemma 2.36 follows that there exists n0 ∈ N such that in = i0,

ϕi0(xn) > 0 and ϕi0

(
x+xn

21/p

)
> 0 for all n ≥ n0, from where the conclusion 1 of our

lemma follows. Moreover, the equation 2, of lemma 2.36 is now of the form

lim
n∈N

(
1

2
ψ2
i0(xn) +

1

2
ψ2
i0(x)− ψ2

i0

(
x+ xn
21/p

))
= 0

and so by a p-convexity argument (proposition 2.18), for every q ∈ N, we have

lim
n∈N

(
1

2
p2i0,1/q(xn) +

1

2
p2i0,1/q(x)− p2i0,1/q

(
x+ xn

21/p

))
= 0

and consequently limn∈N pi0,1/q(xn) = pi0,1/q(x). Fix δ > 0 and q ∈ N such that
1
q < δ. Since x ∈ D

1/q
i0

we have that pi0,1/q(x) < 1 because D
1/q
i0

is norm open.
Therefore, there exists nδ ∈ N such that for n ≥ nδ we have that pi0,1/q(xn) < 1

and thus xn ∈ Dδ
i0

σ(X,Z)
that is

xn ∈ conv(Bi0 ∪ {0}) + BZ(0, δ)
σ(X,Z)

which is 2 for ‖·‖Z . Since the proof is valid for every δ > 0 and ‖·‖Z is an equivalent
norm the proof is over. �

We are now in position to prove theorem 1.6.

Theorem 2.38 In a normed space (X, ‖·‖) with a norming subspace Z in
X∗, if there exist isolated families, with respect to the σ(X,Z)-topology

{Bn |n ∈ N}
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in the unit sphere SX such that for every x in SX and every ε > 0 there exists
n ∈ N and B ∈ Bn such that x ∈ B and ‖·‖-diam(B) < ε, then there exists a
LUR F-norm; i.e. there exists an F-norm F such that for every (xn)n∈N ⊆ X
and x ∈ X it follows ‖·‖- limn∈N xn = x, whenever

lim
n∈N

(2F 2(x) + 2F 2(xn)− F 2(x+ xn)) = 0.

Proof By the decomposition lemma (lemma 2.22) we may assume that {Bn}n∈N
are pn-isolated, with respect to the σ(X,Z)-topology, for some sequence pn ց 0.
So we can consider the pn-norms, say qBn(·), constructed using the pn-version of
the connection lemma. Define an F -norm in the following way

F 2
B(x) :=

∑

n∈N

cnq
2
Bn

(x),

for every x ∈ X, where the sequence (cn)n∈N is chosen accordingly for the conver-
gence of the series on bounded set. This is possible because all the pn-norms qBn(·)
are equivalent to the original norm and hence there exist numbers ζn such that

qBn(x) ≤ ζpnn ‖x‖pn ≤ ζpnn max {1, ‖x‖},

so it is enough to take cn := 1
ζ2pnn 2n

. Consider x ∈ X and a sequence (xn)n∈N ⊆ X

such that
lim
n∈N

(
2F 2

B(xn) + 2F 2
B(x)− F 2

B(x+ xn)
)
= 0.

Fix ε > 0, we know that there existsm ∈ N and B0 ∈ Bm with x
‖x‖ ∈ B0 ⊆ x+ ǫ

2BX .
The condition

lim
n∈N

(
2F 2

B(xn) + 2F 2
B(x)− F 2

B(x+ xn)
)
= 0

implies that
lim
n∈N

(
2q2Bm

(xn) + 2q2Bm
(x)− q2Bm

(x+ xn)
)
= 0

by a p-convexity arguments (proposition 2.18), and then

lim
n∈N

(
2q2Bm

(
xn
‖x‖

)
+ 2q2Bm

(
x

‖x‖

)
− q2Bm

(
x+ xn
‖x‖

))
= 0

in particular limn∈N qBm(xn/‖x‖) = qBm(x/‖x‖). The p-connection lemma (lemma
2.37) tells us that there exists n ε

2
∈ N such that

xn
‖x‖

∈ conv(B0 ∪ {0}) + B (0, ε/2)
σ(X,Z)

whenever n ≥ n ǫ
2
. Fix (yβ)β∈B a subnet of (xn/‖x‖)n∈N associated to a subnet

map σ : B → N. We know that there exists β ε
2
∈ B such that for every β ≥ β ε

2
we

have σ(β) ≥ n ε
2
, and then

yβ ∈ conv(B0 ∪ {0}) + B (0, ε/2)
σ(X,Z)

,
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whenever β ≥ β ε
2
. So we have that ‖·‖- dist(yβ, Ix) ≤ ε for β ≥ β ε

2
where Ix is the

segment joining x with the origin, and so there exists a net r(β,ε) ∈ [0, 1] such that

∥∥∥∥yβ − r(β,ε)
x

‖x‖

∥∥∥∥ ≤ ε,

for β ≥ β ε
2
. Consider now the direct set D := {(β, ε) ∈ B × (0, 1]|β ≥ β ε

2
}, which

is direct with the induced order. Then for the net
{
r(β,ε)

∣∣ (β, ε) ∈ D
}
there exists

a subnet map τ : C → D for some directed set (C,�) such that the limit

r := lim
γ∈C

rτ(γ)

exists by compactness of [0, 1]. Let us denote with τ the composition of the map
τ with the projection from B × (0, 1] onto B, which is a subnet map too, we have

‖·‖- lim
γ∈C

xτ(γ)

‖x‖
= r

x

‖x‖
.

In particular by equivalence of qBm(·) with ‖·‖ we have

lim
γ∈C

qBm

(
xτ(γ)

‖x‖

)
= qBm

(
r
x

‖x‖

)
,

and by hypothesis we have qBm(rx/‖x‖) = qBm(x/‖x‖) 6= 0, and so r = 1. The
proof is over because the former reasoning is valid for every subnet of the given
sequence. �

Using this theorem we can construct an F -norm F1 with the LUR prop-
erty. By the remark after the proof of theorem 2.26, we also get an F -norm
F2 with the Kadec property. If we define

F 2(x) = F 2
1 (x) + F 2

2 (x) x ∈ X,

then F is an F -norm which enjoys both the Kadec and the LUR property.
This prove theorem 1.6.



Chapter 3

Characterizing and transferring
rotund norms

One of the older results on rotund renorming theory (a part the result of
Clarkson [Cla36]) is Day’s renorming of c0(Γ) (see [Day55, Theorem 10]):

Theorem 3.1 If Γ is an arbitrary nonempty set, then the Day’s norm on
c0(Γ) defined for every x = (x(γ))γ∈Γ by

‖x‖D = sup





(
n∑

k=1

x2(γk)

4k

) 1
2

∣∣∣∣∣∣
(γ1, . . . , γn)



,

is an equivalent rotund norm.

It is actually possible to prove that Day’s norm is a LUR norm on c0(Γ) (see
[Rai69] and [DGZ93, Theorem II.7.3]) From that point onward, a lot of theory
was develop focusing in particular on LUR renorming theory. Surely one of
the next oustanding result was the following theorem of Haydon [Hay99,
Theorem 5.1]:

Theorem 3.2 For a tree Υ the following are equivalent:

1. C 0(Υ) admits an equivalent rotund norm;

2. C 0(Υ) admits an equivalent MLUR norm, i.e. for every sequence (hn)n∈N ⊆
X and x ∈ X we have ‖·‖-limn∈N hn = 0, whenever

lim
n∈N

(‖x+ hn‖
2 + ‖x− hn‖

2 − 2‖x‖2) = 0;

3. there exists a bounded linear injection from C 0(Υ) into some space
c0(I).
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This result has give new life to the study of rotund norms, and in particu-
lar the works of Smith (see [Smi06], [Smi09] and [Smi12]), Orihuela, Smith
and Troyanski (see [OST12]) and Moltó, Orihuela, Troyanski and Zizler (see
[MOTZ07]) give new interesting results in this branch of renorming theory.

Dual rotund norm are important in the theory of Gâteaux smooth space,
by the following result of Šmulian (see [Šmu40]):

Theorem 3.3 Let X a Banach space. If X∗ admits an equivalent dual rotund
norm, then X admits an equivalent Gâteaux smooth norm.

As a consequence, characterizing dual spaces which admit equivalent dual
rotund has a special interest. Our starting point in this framework is the
characterization result in [OST12, Theorem 2.7], which was already stated in
theorem 1.8. In order to improve this result in the dual case, we have proved
an eating lemma, with the intention of replacing open neighbourhoods with
open slices. Let us consider the following derivation process: we fix a family
Λ of w∗-open sets of BX∗ , H the family of all w∗-slices of BX∗ and for a set
T ⊆ BX∗ we define

Sl∗(T,Λ) = {H ∩ T |H ∈ H and W ∈ Λ with ∅ 6= H ∩ T ⊆ W};

now by transfinite induction we set B(0)(BX∗ ,Λ) = BX∗ and for an ordinal
α, such that B(α)(BX∗ ,Λ) 6= ∅, we define

B(α+1)(BX∗ ,Λ) = B(α)(BX∗ ,Λ)r
⋃

Sl∗(B(α)(BX∗ ,Λ),Λ),

and if λ is a limit ordinal then

B(λ)(BX∗ ,Λ) =
⋂

α<λ

B(α)(BX∗ ,Λ).

If we assume that Λ cover a set D ⊆ BX∗ , we want to study when there
exists a countable ordinal α such that B(α)(BX∗ ,Λ) ∩D = ∅. The following
two lemmata answer our needs.

Lemma 3.4 (Eating lemma) B(ω0)(BX∗ ,Λ) = convw
∗
(BX∗ r

⋃
Λ).

Proof We will use the notation B(α) := B(α)(BX∗ ,Λ) for every ordinal α. It is
easy to see that BX∗ r

⋃
Λ ⊆ B(ω0). By the Krein–Milman theorem the thesis

follows if we prove that ext(B(ω0)) ⊆ BX∗ r
⋃

Λ. Assume by contradiction that
there exists x∗0 ∈ ext(B(ω0)) ∩

⋃
Λ, then we have

x∗0 /∈
⋃

Sl∗(B(n),Λ) (3.1)
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for every n ∈ N. Let us fix W ∈ Λ such that x∗0 ∈ W and, by Choquet’s lemma
(see [FHH+11, Lemma 3.69]), there is a w∗-open half-space H such that

x∗0 ∈ H ∩B(ω0) ⊆W. (3.2)

Let H1 a w∗-open half-space such that x∗0 ∈ H1 ⊆ H1
w∗

⊆ H, by (3.1) there exists
x∗n ∈ H1 ∩B

(n) such that x∗n /∈W for every n ∈ N. By the w∗-compactness of the
dual unit ball there is x∗ a cluster point of the sequence {x∗n}n∈N, thus

x∗ ∈ B(n) ∩H1
w∗

and x∗ /∈W

and so x∗ ∈ B(ω0) ∩H1
w∗

⊆ B(ω0) ∩H which is a contradiction with (3.2). �

The previous lemma says that if Λ is a w∗-open cover of BX∗ , then B(ω0)(BX∗ ,Λ) =
∅. Now we want to prove that B(ω0)(BX∗ ,Λ) ∩ SX∗ = ∅, whenever Λ is an
open cover of the unit sphere. To this goal we need the following extreme
point lemma of Choquet (see [Cho69b, Lemma 27.8]). We state it here for
the sake of completeness.

Lemma 3.5 Let X a Hausdorff topological vector space, C ⊆ X a convex set
and A ⊆ C a convex and linearly compact set (that is, any line intersecting
A does so in a closed segment). Suppose that B = C r A is convex. Then if
ext(A) 6= ∅, we have ext(A) ∩ ext(C) 6= ∅.

Proof Let a ∈ ext(A). The lemma holds if a ∈ ext(C), so suppose that a /∈ ext(C).
In this case there exist x, y ∈ C so that

a =
x+ y

2

and x 6= y. As A and B are convex, we may suppose x ∈ A amnd y ∈ B. Let ℓ
denote the line containing x and y which meets A in a closed segment [a, b] (one
end must be a as a ∈ ext(A)). By translation we may assume b = 0. We now claim
that b ∈ ext(C). This will conclude the proof since obviously

ext(C) ∩A ⊆ ext(A)

and b ∈ A.
To prove our claim, suppose that b /∈ ext(C). Let b = (1/2)(b1 + b2) with

b1 6= b2. One of this point, say b1, lies in A. Since

A ∩ ℓ = [a, b],

b1 /∈ ℓ (otherwise A ∩ ℓ = [a, b2]). Let ℓ
′ denote the line through b1 and b2 so that

ℓ and ℓ′ determine a plane π through the origin. It is known that π is isomorphic
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to R2 (see for example [Cho69a, Theorem 15.23]). Let f : R2 → R a continuous
linear map such that ℓ = ker(f). Then for

c1, c2 ∈ conv({b1, b2, y})

and lying in separate open halfspace of f . Define

g(c1, c2) =
f(c1)

f(c1)− f(c2)
c1 −

f(c2)

f(c1)− f(c2)
c2,

then g is continuous and g(c1, c2) ∈ [0, y], since f ◦ g = 0. We claim that we may
choose b2 ∈ A. If not, then we may choose zn → 0 with

zn ∈ (0, b2] ∩B.

For z ∈ [b1, y), zn and z lie in separate halfspace and g(z, zn) → 0. Hence either
a = b = 0 (since g(z, zn) ∈ B if z ∈ B) or z /∈ B. We conclude that

[b1, y) ⊆ A.

But since A is linearly compact y ∈ A, a contradiction. Hence we may assume that
b2 ∈ A.

Let ci denote the endpoint of the segment [bi, y] in A. Then ci 6= y and we
may choose sequences din → ci, such that din ∈ [bi, y] ∩ B. Let en = g(din, d

2
n) ∩ B

as en → g(c1, c2) ∈ A, it follows that e = lim en = a and hence a /∈ ext(A). This
contradiction establishes the result. �

Now we can prove that our derivation process “eats” the whole unit sphere
in at most ω0 steps.

Lemma 3.6 (Eating lemma for the sphere) If Λ is a w∗-cover of the
unit sphere, then B(ω0)(BX∗ ,Λ) ∩ SX∗ = ∅.

Proof We will use the notation B(α) := B(α)(BX∗ ,Λ) for every ordinal α. Sup-
pose, by contradiction, that there exists x∗ ∈ B(ω0) ∩ SX∗ . Now consider

B(ω0)
n = B(ω0) ∩ B(0, 1 − 1/(n + 1)),

and let us observe that, without loss of generality, we can assume B
(ω0)
1 6= ∅. We

plan to construct a family of slices which press the point x∗ in such a way that
an extreme point x∗0 ∈ ext(B(ω0)) ∩ SX∗ can be found. Then we can conclude our
proof as in lemma 3.4. We start with a preliminary contruction which enable us
to apply lemma 3.5. By the Hahn–Banach theorem, for every n ∈ N a w∗-open
halfspace Hn exists with the following properties:

1. x∗ ∈ Hn,
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2. B
(ω0)
1 ⊆ B(ω0) rH1

w∗

,

3. conv((B(ω0) rHn) ∪B
(ω0)
n ) ⊆ B(ω0) rHn+1

w∗

for every n ∈ N.

This is possible due to the fact that x∗ /∈ conv((B(ω0) r Hn) ∪ B
(ω0)
n ). Let us

consider the convex and w∗-compact set

H =
⋂

n∈N

(Hn
w∗

∩B(ω0)).

It is easy to see that H ⊆ SX∗ and B(ω0)rH is convex, then by the Krein–Milman
theorem and lemma 3.5 we obtain that there exists x∗0 ∈ ext(H) ∩ ext(B(ω0)). By
repeating the proof of lemma 3.4, we get a contradiction, so we are done. �

3.1 Characterizations of rotundity

In this first section we study some topological characterizations of the exis-
tence of rotund renormings. In particular we prove that, if the unit sphere in
some equivalent norm admits a special separating cover, then we can always
put on our space an equivalent rotund norm. Also we prove a version for
rotund renorming of [OT09a, Theorem 1.5].

3.1.1 Radial sets with a Gδ-diagonal

First of all we need a well known topological property:

Definition 3.7 Let (X, τ) a topological space. We say that X has a Gδ-
diagonal if, and only if, the set ∆ = {(x, x) |x ∈ X} is a Gδ-set in X ×X.

The following well known theorem (see [Ced61, Lemma 5.4] or [Gru84, The-
orem 2.2]) will be usefull for our purposes.

Theorem 3.8 Let (X, τ) a topological space. X has a Gδ-diagonal if, and
only if, there exists a sequence (Gn)n∈N of open covers of X such that for each
x, y ∈ X with x 6= y, there exists n ∈ N with

y /∈ st(x,Gn) :=
⋃

{U ∈ Gn | x ∈ U}.

We will call the sequence (Gn)n∈N a Gδ-diagonal sequence.

The following proposition is borrowed from [ST10, Proposition 5]. We prove
it just for the sake of completeness.
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Proposition 3.9 Let X a normed space and F ⊆ X∗ a norming subspace.
If X admits an equivalent, σ(X,F )-lower semicontinuous and rotund norm
‖·‖R, then SR = {x ∈ X | ‖x‖R = 1} has a Gδ-diagonal. Furthermore a Gδ-
diagonal sequence (Gn)n∈N can be obtaines such that for every n ∈ N the
members of Gn are open slices of SR.

Proof Let S∗
R the dual sphere related with the norm ‖·‖R. Given a rational q ∈

Q+ ∩ [0, 1) consider the families of open slices

Hq = {{x ∈ SR | f(x) > q} | f ∈ S∗
R ∩ F}.

Consider two distinct point x, y ∈ SR and q ∈ Q+∩ [0, 1) such that
∥∥x+y

2

∥∥ < q < 1,
it is obvious that every H ∈ Hq cannot contain both x and y. �

By this proposition, the unit sphere under a σ(X,F )-lower semicontinuous
rotund norm has a Gδ-diagonal relative to the σ(X,F )-topology. Actually
we can say more, since all the elements of the families Hq are σ(X,F )-open
half-spaces. In this situation we say that SX has a Gδ-diagonal with σ(X,F )-
slices. We are going to prove three theorems. The first one is a converse of
proposition 3.9; the second one is an improvement of the first one in case we
deal with a dual space; finally the third one is a nonconvex version of the
second one.

Theorem 3.10 Let X a normed space and F ⊆ X∗ a norming subspace. X
admits an equivalent, σ(X,F )-lower semicontinuous and rotund norm ‖·‖R
if, and only if, X admits an equivalent, σ(X,F )-lower semicontinuous norm
‖·‖δ such that Sδ = {x ∈ X | ‖x‖δ = 1} has a Gδ-diagonal with σ(X,F )-slices.

Proof Let (Hn)n∈N a Gδ-diagonal sequence for Sδ, such that every memeber of
Hn is a σ(X,F )-slice. We will apply theorem 1.2 with Sδ and Hn in order to
obtain a countable number of equivalent norms ‖·‖n which satisfy the conclusion
of theorem 1.2. Define

‖·‖2R = ‖·‖2δ +
∑

n∈N

cn‖·‖
2
n,

where the constants cn are chosen in order to guarantee the uniform convergence of
the series on bounded sets. Since there are costants an, bn such that an‖·‖ ≤ ‖·‖n ≤
bn‖·‖, for every n ∈ N, it is suffices to take cn = 1/(2nbn). We will prove rotundness:
fix x, y ∈ X and consider the condition 2‖x‖2R + 2‖y‖2R − ‖x+ y‖2R = 0; suppose
by contradiction that x 6= y. By a standard convexity argument (see [DGZ93, Fact
II.2.3]) we obtain for every n ∈ N

2‖x‖2n + 2‖y‖2n − ‖x+ y‖2n = 0, (�n)
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as well as ‖x‖δ = ‖y‖δ. Dividing every equation (�n) for ‖x‖
2
δ we obtain

2

∥∥∥∥
x

‖x‖δ

∥∥∥∥
2

n

+ 2

∥∥∥∥
y

‖x‖δ

∥∥∥∥
2

n

−

∥∥∥∥
x+ y

‖x‖δ

∥∥∥∥
2

n

= 0, (�δn)

By the Gδ-diagonal property we know that exists n0 such that y/‖x‖δ /∈ st(x/‖x‖δ,Hn0).
Considering the thesis of 1.2 and the condition (�δn0

) it follows that and there exists
H ∈ Hn0 such that x

‖x‖δ
, y
‖x‖δ

∈ H ∩ Sδ, but this is a contradiction, so we have

that x = y. The converse implication is proposition 3.9. �

The previous result appears as an improvement of [MOTZ07, Theorem 1.2].
In the dual case our eating lemma (lemma 3.4) allows us to replace open
slices by open neighbourhoods.

Theorem 3.11 Let X∗ a dual Banach space. X∗ admits an equivalent dual
rotund norm ‖·‖R if, and only if, X∗ admits an equivalent dual norm ‖·‖δ
such that Sδ = {x ∈ X | ‖x‖δ = 1} has a Gδ-diagonal, with respect to the
w∗-topology.

Proof Let (Un)n∈N a countable collection of families of covers of Sδ, such that it
gives the Gδ-diagonal property to Sδ and put Bδ = {x ∈ X | ‖x‖δ ≤ 1}. We have
that for every n ∈ N

B(ω0)(Bδ,Un) ∩ Sδ = ∅.

Now we may apply theorem 1.2 with B(m)(Bδ,Un) and SL∗(B(m)(Bδ,Un),Un)
to obtain a countable number of norms ‖·‖n,m which satisfy the conclusions of
theorem 1.2. Define

‖·‖2R = ‖·‖2δ +
∑

n,m∈N

cn,m‖·‖2n,m,

where the constants cn,m are chosen in order to guarantee the uniform convergence
of the series on bounded sets. We will prove rotundness: fix x, y ∈ X∗ and let us
consider the condition 2‖x‖2R + 2‖y‖2R − ‖x+ y‖2R = 0; suppose, by contradiction
that x 6= y. By a standard convexity argument (see [DGZ93, Fact II.2.3]) we have,
for every n,m ∈ N,

2‖x‖2n,m + 2‖y‖2n,m − ‖x+ y‖2n,m = 0, (�n,m)

as well as ‖x‖δ = ‖y‖δ. Dividing every equation (�n) for ‖x‖
2
δ we obtain

2

∥∥∥∥
x

‖x‖δ

∥∥∥∥
2

n

+ 2

∥∥∥∥
y

‖x‖δ

∥∥∥∥
2

n

−

∥∥∥∥
x+ y

‖x‖δ

∥∥∥∥
2

n

= 0, (�δn,m)

Define for every z ∈ Sδ and n ∈ N

mz,n = min{m ∈ N | z ∈ B(m)(Bδ ,Un) and z /∈ B(m+1)(Bδ,Un)}
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and consider n0 ∈ N, which is provided by the Gδ-diagonal property, such that
y/‖x‖δ /∈ st(x/‖x‖δ,Hn0). Without loss of generality we can consider mx/‖x‖δ,n0

≥

my/‖x‖δ,n0
, by theorem 1.2 the condition (�δn0,my/‖x‖δ,n0

) implies that

x

‖x‖δ
∈B(my/‖x‖δ,n0

)(Bδ,Un) ∩ Sδ;

y

‖x‖δ
∈B(my/‖x‖δ,n0

)(Bδ,Un) ∩ Sδ ∩
⋃
SL∗(B(my/‖x‖δ,n0

)(Bδ,Un0),Un0).

We obtain that there existsH∩B(my/‖x‖δ,n0
)(Bδ,Un) ∈ SL∗(B(my/‖x‖δ,n0

)(Bδ,Un0),Un0)

such that x/‖x‖δ, y/‖x‖δ ∈ H ∩B(my/‖x‖δ,n0
)(Bδ,Un0). By the definition there ex-

ists W ∈ Un0 such that

x

‖x‖δ
,
y

‖x‖δ
∈ H ∩B(my/‖x‖δ,n0

)(Bδ,Un0) ⊆W,

but this is a contradiction, then x = y. The converse implication is proposition
3.9. �

It is possible to get rid of the convexity assumption with some extra work.
Remember that a set A in a vector space is said to be circled if αx belongs
to A whenever |α| ≤ 1 and x ∈ A, see [Köt69, Pag. 146].

Theorem 3.12 Let A a w∗-compact, circled and absorbing subset of a dual
space X∗. Let µ1 and µ2 the Minkowski functionals of A and convw∗

(A)
respectively and consider for i = 1, 2

Si = {x∗ ∈ X∗ |µi(x
∗) = 1}.

If S1 has a Gδ-diagonal with respect to the w∗-topology, then S2 has (*) with
w∗-slices. In particular X∗ admits an equivalent dual rotund norm by [OST12,
Theorem 2.7].

Proof Let {Un}n∈N a Gδ-diagonal sequence for S1 andB = {x∗ ∈ X∗ |µ2(x
∗) ≤ 1}.

First of all we change our family in order to have a cover of S2. For every α ∈ R

and x ∈ X consider the w∗-open cones

C(x, α) = {x∗ ∈ X∗ | x∗(x) < αµ1(x
∗)}.

If U is a w∗-open set, we can assume that U =
⋃

i∈I

⋂ni
j=1 x

−1
j (−∞, αj). Now

consider the w∗-open cone

U# =
⋃

i∈I

ni⋂

j=1

C(xj, αj).
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We claim that if U is an w∗-open cover of S1, then the family U# =
{
U#

∣∣U ∈ U
}

is a w∗-open cover of X∗ r {0}. Indeed let x∗ ∈ X∗ r {0}. We know that rx∗ > 0
exists such that rx∗x∗ ∈ S1, so there exists U ∈ U such that rx∗x∗ ∈ U . As before,
we can assume that U =

⋃
i∈I

⋂ni
j=1 x

−1
j (−∞, αj). This means that there exists

i ∈ I such that
rx∗x∗(xj) < αj = αjµ1(rx∗x∗)

for every j = 1, . . . , ni, hence x
∗ ∈ U#. Consider the collection of covers {U#

n }n∈N
of S2 and apply lemma 3.6. Let H the family of all the w∗-open halspace of X∗.
We show that the families

Hn,m = {H ∩ S2|H ∈ H and there exists W ∈ U# such that

∅ 6= H ∩B(m)(B,U#
n ) ⊆W#}.

provide a (*)-sequence for S2. For every x
∗ ∈ S2 consider the natural number

mx∗,n = min
{
m ∈ N

∣∣∣x ∈ B(m)(B,U#
n ) and x /∈ B(m+1)(B,U#

n )
}
,

well defined by lemma 3.6. For fixed x∗, y∗ ∈ S2, let rx∗ , ry∗ ∈ (0,+∞) such that
rx∗x∗, ry∗y

∗ ∈ S1 and consider n0 ∈ N such that Un0 (*)-separates rx∗x∗ and ry∗y
∗.

Without loss of generality we can, and do, assume that mx∗,n0 ≥ my∗,n0 . We claim
that Hn0,my∗,n0

(*)-separates x∗ and y∗. In fact assume mx∗,n0 > my∗,n0 . Then we
know that

y∗ ∈
⋃

Hn0,my∗,n0
∩B(my∗,n0

)(B,U#
n0
) and x∗ ∈ B(my∗,n0

)(B,U#
n0
).

Suppose by contradiction that there exists H ∩ S2 ∈ Hn0,my∗,n0
such that x, y ∈

H ∩ S2. This means that there exists W# ∈ U#
n0 such that

x∗, y∗ ∈ H ∩B(my∗,n0
)(B,U#

n0
) ⊆W#

which implies mx∗,n0 = my∗,n0 , a contradiction. Suppose now mx∗,n0 = my∗,n0 . In
this case

x∗, y∗ ∈
⋃

Hn0,my∗,n0
∩B(my∗,n0

)(B,U#
n0
).

Suppose by contradiction that there exists H ∩ S2 ∈ Hn0,my∗,n0
such that x∗, y∗ ∈

H ∩ S2. This means that there exists W# ∈ U#
n0 such that

x∗, y∗ ∈ H ∩B(my∗,n0
)(B,U#

n0
) ⊆W#

which implies that rx∗x∗, ry∗y
∗ ∈W , a contradiction. �

Observe that theorems 3.11 and 3.12 give us the following result.

Corollary 3.13 Let X∗ a dual Banach space. X∗ admits an equivalent dual
rotund norm if, and only if, there exists a w∗-compact, cirlced and absorbent
set A ⊆ X∗ such that ∂A has a Gδ-diagonal with respect to the w∗-topology,
where ∂A is the w∗-boundary of A.
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The theorems of this section and the results of chapter 2 allow us to prove
the following fact, which was already proved in [Raj02, Theorem 1.3].

Corollary 3.14 Let X∗ a dual Banach space. X∗ admits an equivalent w∗-
Kadec norm if, and only if, X∗ admits an equivalent dual LUR norm.

Proof It is a well known fact that a dual LUR norm is w∗-Kadec (see [DGZ93,
Proposition 1.4], which can be easily adapted in the w∗ case). If X∗ admits an
equivalent w∗-Kadec norm ‖·‖∗, then by definition the unit sphere

S∗ = {x∗ ∈ X∗ | ‖x∗‖∗ = 1}

admits a Gδ-diagonal with respect to the w∗-topology. So by theorem 3.11 we have
the thesis. �

Raja had proved in [Raj03b, Theorem 1.3(a)] that X∗ admits an equivalent
w∗-LUR norm if, and only if, X∗ is w∗-descriptive. Using our techniques we
can only prove the following partial result.

Corollary 3.15 Let X∗ a dual Banach space. If X∗ is w∗-descriptive, then
X∗ admits an equivalent dual rotund norm.

Proof By theorem 2.12 there exists an equivalent w∗-lower semicontinuous and
w∗-Kadec quasinorm q(·), i.e. a quasinorm such that the w∗ and norm topologies
agree on the unit “sphere” {x ∈ X | q(x) = 1}. Observe that the set

A = {x ∈ X | q(x) = 1}

satisfies the condition of theorem 3.12, so we have that X∗ admits an equivalent
dual rotund norm. �

3.1.2 Characterizations through symmetrics

One of the most well known result in LUR renorming theory is the following
Troyanski’s characterization (see [Tro79]).

Theorem 3.16 A Banach space X admits an equivalent LUR norm if, and
only if, there exists an equivalent norm ‖·‖D such that every point of SD is
denting; i.e. for every ε > 0 and x ∈ SD there exists a w-open half-space H
such that x ∈ H and

‖·‖-diam(H ∩ BD) < ε.

In what follows we will generalize the concept of denting point, but in order
to do so we need a classical topological concept (see [Gru84]):
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Definition 3.17 Let S a nonempty set. A function ρ : S × S → [0,+∞) is
called symmetric if for every x, y ∈ S

� ρ(x, y) = ρ(y, x);

� ρ(x, x) = 0 if, and only if, x = y.

If a set S has a symmetric ρ, then we can define a topology τρ in the following
way: U ∈ τρ if, and only if, for every x ∈ U there exists ε > 0 such that
Bε(x) ⊆ U , where

Bε(x) = {y ∈ S | ρ(x, y) < ε}.

Observe that without additional conditions (such that the triangular inequal-
ity of ρ), we cannot assume that Bε(x) are neighbourhood of x. Now we make
precise what we mean by denting point with respect to ρ.

Definition 3.18 Let X a normed space, F ⊆ X∗ a norming subspace and
ρ a symmetric on X. We say that x ∈ SX is a σ(X,F )-denting point with
respect to ρ, if for every ε > 0 there exists a σ(X,F )-open half-space H such
that x ∈ H and

ρ- diam(H ∩ BX) < ε.

In the following lemma we define a natural symmetric on a rotund normed
space.

Lemma 3.19 Let X a normed space and F ⊆ X∗ a norming subspace.
Consider the function ρ(x, y) = 2‖x‖2 + 2‖y‖2 − ‖x+ y‖2, defined for every
x, y ∈ X. The following holds:

1. ρ is a non-negative function;

2. for every x ∈ SX and ε > 0 there exists a σ(X,F )-open half-space H
such that x ∈ H and ρ- diam(H ∩ BX) < ε;

3. if ‖·‖ is rotund, then ρ is a symmetric;

4. if ‖·‖ is asymptotically rotund, then ρ is a symmetric such that every
sequence has at most an unique limit in the τρ-topology;

5. if ‖·‖ is τ -LUR, where τ is a T0 topology, then ρ is a symmetric such
that τρ is finer than τ ;

6. if ‖·‖ is σ(X,F )-lower semicontinuous and σ(X,F )-LUR, then ρ is a
symmetric such that τρ is finer than σ(X,F ) and τρ = σ(X,F ) when
restricted to the sphere.
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Proof 1 and 3 follows from [DGZ93, Fact II.2.3], from this consideration 4 is
actually trivial.

2. Let µ ∈ (0, 1), x ∈ SX and f ∈ BX∗ ∩F such that f(x) > 1− µ and define

Hµ = {y ∈ X | f(y) > 1− µ}.

Fix ε > 0 and consider µ small enough such that 4(2µ−µ2) < ε and observe
that for every y, z ∈ Hµ ∩ BX we have

ρ(y, z) = 2‖y‖2 + 2‖z‖2 − ‖y + z‖2 ≤ 4− (f(y + z))2 ≤ 4(2µ − µ2) < ε.

So ρ- diam(Hµ ∩ BX) < ε.

5. Since τ is a T0 topology, ‖·‖ is rotund, so ρ is a symmetric. Indeed let
x, y ∈ X satisfy

2‖x‖2 + 2‖y‖2 − ‖x+ y‖2 = 0.

For any pair Ux, Uy of τ -neighbourhoods of x and y respectively, we do have
x ∈ Uy and y ∈ Ux, so x = y. Let U a τ -open set, C = X r U and assume
that for every ε > 0 there exists yε ∈ Bε(x) ∩ C.For every n ∈ N we have

2‖x‖2 + 2
∥∥y1/n

∥∥2 −
∥∥x+ y1/n

∥∥ < 1

n
,

so τ -lim y1/n = x. Since C is τ -closed, we have x ∈ C, a contradiction.

6. The remaining part to be proved follows easily from the equality

{y ∈ SX | ρ(x, y) < ε} =

{
y ∈ SX

∣∣∣∣
∥∥∥∥
x+ y

2

∥∥∥∥ > 1− ε

}
,

that holds for every x ∈ SX . �

Before stating our next results, we state a transfer result that will help us
later.

Theorem 3.20 Let X a normed space, F ⊆ X∗ a norming subspace and S
a nonempty set with a symmetric ρ. Let Φ : X → S a map such that for
every x ∈ SX and every ε > 0 there exists a σ(X,F )-open half-space H with
x ∈ H and

ρ- diam (Φ(H ∩ BX)) < ε.

Then there exists a σ(X,F )-lower semicontinuous norm ‖·‖Φ such that

τρ- limΦ(xn) = Φ(x),

whenever x ∈ SX , (xn)n∈N ⊆ BX and 2‖x‖2Φ + 2‖xn‖
2
Φ − ‖x+ xn‖

2
Φ → 0.

Furthermore if 2‖x‖2Φ + 2‖y‖2Φ − ‖x+ y‖2Φ = 0, for some point x ∈ SX and
y ∈ BX , then Φ(x) = Φ(y).
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Proof Consider the families of slices of BX

Un =

{
H ∩ BX

∣∣∣∣ ρ- diam (Φ(H ∩ BX)) <
1

n

}

and let ‖·‖n the norms constructed using theorem 1.2; now define

‖·‖2Φ =
∑

n∈N

cn‖·‖
2
n,

where the constants cn are chosen in order to guarantee the uniform convergence
of the series on bounded set. Suppose that x and (xn)n∈N satisfy the hypothesis
of our theorem, by a standard convexity argument (see [DGZ93, Fact II.2.3]) we
have that from

lim
n∈N

(2‖x‖2Φ + 2‖xn‖
2
Φ − ‖x+ xn‖

2
Φ) = 0

it follows
lim
n∈N

(2‖x‖2k + 2‖xn‖
2
k − ‖x+ xn‖

2
k) = 0,

for every k ∈ N. By theorem 1.2 for every k ∈ N we obtain that there exist n0 ∈ N

and (Hn ∩ BX)n∈N ⊆ Uk such that x, xn ∈ Hn ∩ BX for every n ≥ n0. Then for
every k ∈ N there exists n0 ∈ N such that

ρ(Φ(x),Φ(xn)) <
1

k
,

for every n ≥ n0. So by [Gru84, Lemma 9.3] we have that τρ-limΦ(xn) = Φ(x).
The furthermore part follows easily. �

The previous result make it possible to construct equivalent norms that “be-
have well”.

Theorem 3.21 Let (X, ‖·‖) a normed space, F ⊆ X∗ a norming subspace
and τ a vector topology on X. X admits an equivalent, σ(X,F )-lower semi-
continuous and rotund norm if, and only if, there exists a symmetric ρ on X
and an equivalent norm ‖·‖ρ such that every point of the unit sphere of ‖·‖ρ
is a σ(X,F )-denting point with respect to ρ;

Proof We apply theorem 3.20 and obtain an equivalent and σ(X,F )-lower semi-
continuous norm ‖·‖id such that

τρ- lim xn = x

whenever x ∈ SX , (xn) ⊆ BX and 2‖x‖2id+2‖xn‖
2
id−‖x+ xn‖

2
id → 0. Furthermore

if 2‖x‖2id + 2‖y‖2id − ‖x+ y‖2id = 0 for some x ∈ SX and y ∈ BX , then x = y. Let

‖x‖2ρ = ‖x‖2 + ‖x‖2id
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and take x, y ∈ X such that

2‖x‖2ρ + 2‖y‖2ρ − ‖x+ y‖2ρ = 0.

By a standard convexity argument (see [DGZ93, Fact II.2.3]), we have that ‖x‖ =
‖y‖ and 2‖x‖2id + 2‖y‖2id − ‖x+ y‖2id = 0. So considering the equation
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= 0,

by theorem 3.20 we obtain x = y. �

Via a suitable use of all the theorems of the previuos section we can prove
our result in the dual case.

Theorem 3.22 Let (X∗, ‖·‖) a dual Banach space. X∗ admits an equivalent,
dual rotund norm if, and only if, there exists a symmetric ρ on X∗ and an
equivalent dual norm ‖·‖ρ such that every point of the unit sphere of ‖·‖ρ and
ε > 0 there exists a w∗-neighbourhood U of x∗ such that

ρ- diam(U ∩ {x∗ ∈ X∗|‖x∗‖ρ ≤ 1}) < ε.

Proof Define B = {x∗ ∈ X∗|‖x∗‖ρ ≤ 1} and S = {x∗ ∈ X∗|‖x∗‖ρ = 1}. Consider
the countable collection of covers of S

Un =

{
U ∩B

∣∣∣∣ ρ- diam(U ∩B) <
1

n

}
.

It is easy to see that this family gives us a Gδ-diagonal of the unit sphere of ‖·‖ρ,
and by theorem 3.11 the thesis follows. �

3.1.3 Characterizations through quasiconvex functions

We state a characterization theorem for rotund renorming using quasiconvex
functions in place of half-spaces. Let us remember that a function ϕ : X → R

is said to be quasiconvex (see, for example, [Sio58]) if

ϕ((1− σ)x+ σy) ≤ max {ϕ(x), ϕ(y)}

for x, y ∈ X and σ ∈ [0, 1]. We need the following definition.

Definition 3.23 Let X a normed space and F ⊆ X∗ a norming subspace.
We say that a countable collection of families Ln = {ϕn

i : X → [0,+∞)}i∈In
of quasiconvex and σ(X,F )-lower semicontinuous functions is a (*)-sequence
for X if the countable collection of families of open sets

VLn =
{
(ϕn

i )
−1(0,+∞)

∣∣ i ∈ In
}

is a (*)-sequence for X.
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We do not loose generality when using non negative functions to separate
points. Indeed, assume that a family I = {ϕi : X → R}i∈I of quasiconvex
σ(X,F )-lower semicontinuous functions makes the family of sets

WI =
{
(ϕi)

−1(µi,+∞)
∣∣ i ∈ I

}

(*)-separating points x, y ∈ X . For µi ∈ R fixed, we can consider the new
family L = {(ϕi − µi)

+ : X → [0,+∞)}i∈I of positive quasiconvex σ(X,F )-
lower semicontinuous functions which (*)-separates x and y (according to the
former definition).

The following theorem is a version for rotund renorming of theorem 1.5
of [OT09a].

Theorem 3.24 Let X a normed space with a norming subspace F ⊆ X∗.
They are equivalent:

1. There is a countable collection of families Ln = {ϕn
i : X → [0,+∞)}i∈In

of σ(X,F )-lower semicontinuous and quasiconvex functions, which is
a (*)-sequence for X.

2. X admits an equivalent, σ(X,F )-lower semicontinuous and rotund norm.

Proof

(1.⇒ 2.) Since the open sets (ϕn
i )

−1(0,+∞) have a convex and σ(X,F )-closed
complementary we can consider the families Hn of all σ(X,F )-open half-
space H such that

H ∩ (ϕn
i )

−1(0) = ∅,

for some i ∈ In and every n ∈ N. It follows by the Hahn-Banach theorem
that these families of open half-spaces (*)-separates the points of X.

(2.⇒ 1.) For a given family H of σ(X,F )-open half-spaces define the F -distance
function

ϕH(x) = inf {‖x− c‖F | c ∈ X rH},

for H ∈ H. It follows that two points x, y ∈ X are (*)-separated by H if,
and only if, they are (*)-separated by the family of convex functions given
by {ϕH}H∈H. �

It is an easy observation that when we have two normed spaces X and Y
together with a map Φ : X → Y and

Ln = {ϕn
i : Y → [0,+∞) | i ∈ In}
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families of quasiconvex functions such that ϕn
i ◦ Φ is quasiconvex for every

i ∈ In too, it follow that x ∈ Φ−1(y) and x′ ∈ Φ−1(y′) are (*)-separated by
the family of quasiconvex functions

Ln ◦ Φ = {ϕn
i ◦ Φ | i ∈ In},

whenever y 6= y′ ∈ Y are (*)-separates by the family Ln. It follows the
following transfer result:

Corollary 3.25 Let X and Y normed spaces with the norming subspaces
F ⊆ X∗ and G ⊆ Y ∗. Let Φ : X → Y a one to one map. Assume there exist
families

Ln = {ϕn
i : Y → [0,+∞) | i ∈ In}

of σ(Y,G)-lower semicontinuous and quasiconvex functions such that for ev-
ery y 6= y′ there exists p ∈ N such that Lp (*)-separates y and y′. If ϕn

i ◦Φ is
quasiconvex and σ(X,F )-lower semicontinuous for every i ∈ In and n ∈ N,
then there exists a σ(X,F )-lower semicontinuous and equivalent rotund norm
on X.

If we involve linear functionals for the range space we obtain:

Theorem 3.26 Let X and Y normed spaces with norming subspaces F ⊆
X∗ and G ⊆ Y ∗. Let Φ : X → Y a one to one map such that for every g ∈
G we have that (g ◦ Φ)+ is quasiconvex and σ(X,F )-lower semicontinuous.
Assume that Y has a σ(Y,G)-lower semicontinuous and rotund norm. Then
X admits an equivalent rotund and σ(X,F )-lower semicontinuous norm.

Proof Consider the families Hn of σ(Y,G)-open half-space such that Y has the
(*)-separation property with them. If we remind the proof of [OST12, Theorem
2.7], it is not restriction to assume that the σ(Y,G)-open half-spaces are always of
the form

H = {z ∈ Y | g(z) > λ}

for g ∈ BY ∗ ∩G and λ > 0. Take two different points x, x′ ∈ X and choose p ∈ N

such that Φ(x) and Φ(x′) are (*)-separated by Hp. Let us write every H ∈ Hn as

H = {z ∈ Y | gnH(z) > λH}

where gnH ∈ BY ∗ ∩G and λHn > 0. Denote

ϕn
H = max

{
(gnH ◦ Φ)+, λnH

}
− λnH .

Our hypothesis imply that ϕn
H is a quasiconvex and σ(X,F )-lower semicontinuous

function. It now follows that the families Lp =
{
ϕp
H

}
H∈Hp

(*)-separates the points

x and x′. �
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3.2 Transfer results

In this section we study some nonlinear transfer results in the spirit of the
theorems in [MOTV09]. In particular we study conditions to be put on a
function

Φ : X → (Y, d),

where d is a pseudometric, so that we can obtain a rotund norm on X . Later
we will generalize [MOTV09, Corollary 4.32] and [OT09a, Theorem 1.5] in
the case of rotund renorming.

3.2.1 Pseudometric transfer results

Let us recall that a pseudometric d on a set Y is a function that verifies all the
properties of a metric except the condiction d(x, y) = 0 ⇒ x = y (for more
information see [Eng89]). Let us remark that theorem 1.2 also holds when
the subspace F ⊆ X∗ is not a norming subspace. Of course, in that case we
will obtain a σ(X,F )-lower semicontinuous and norm-continuous seminorm
instead of an equivalent norm.

Theorem 3.27 Let X a normed space, F a subspace in X∗ and (Y, d) a
pseudometric space and Φ : X → Y a map. Suppose that there exists a
sequence (An) of subsets of X such that for every x ∈ X and every ε > 0
we can find n ∈ N together with a σ(X,F )-open half-space H so that x ∈
H ∩An and d-diam(Φ(conv(H ∩An))) < ε, then X admits a σ(X,F )-lower
semicontinuous and norm-continuous seminorm ‖·‖Φ such that

lim
n∈N

(2‖x‖2Φ + 2‖yn‖
2
Φ − ‖x+ yn‖

2
Φ) = 0

implies that there exists a sequence {y∗∗n ∈ Dn
w∗

|n ∈ N} for a sequence of
bounded subsets Dn ⊆ X with x ∈

⋂
n∈NDn, limn∈N ‖y∗∗n − yn‖F = 0 and

lim
n∈N

d-diamΦ(Dn) = 0.

Furthermore if F is norming, then ‖·‖Φ is an equivalent norm.

Proof Without loss of generality we can assume that the terms of the sequence
(An) are bounded and convex sets. Let H the family of σ(X,F )-open half-spaces
of X and consider the following families of slices

Hε
n = {H ∩An |H ∈ H, H ∩An 6= ∅ and d- diam(Φ(H ∩An)) < ε}
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for every n ∈ N and ε > 0. Apply theorem 1.2 to every one of the families H
1/p
n

and bounded set An to obtain a countable number of σ(X,F )-lower semicontinuous
and norm-continuous seminorm ‖·‖n,p. Consider the series

‖·‖2Φ :=
∑

n,p∈N

cn,p‖·‖
2
n,p

where the constants cn,p are chosen for the uniform convergence of the series on
bounded sets. If we assume

lim
n∈N

(2‖x‖2Φ + 2‖yn‖
2
Φ − ‖x+ yn‖

2
Φ) = 0,

for some sequence (yn)n∈N ⊆ X and x ∈ X, by a standard convexity argument
(see [DGZ93, Fact II.2.3]), we will have

lim
n∈N

(2‖x‖2m,p + 2‖yn‖
2
m,p − ‖x+ yn‖

2
m,p) = 0,

for every p,m ∈ N. We are going to construct the sequence (y∗∗n ) by induction:

(p = 1) Take an integer m1 ∈ N such that for some H ∩ Am1 ∈ H1
m1

we have
x ∈ H ∩Am1 and d- diam(Φ(H ∩Am1)) < 1. Since

lim
n∈N

(2‖x‖2m1,1
+ 2‖yn‖

2
m1,1

− ‖x+ yn‖
2
m1,1

) = 0,

theorem 1.2 tells us that there exists a sequence H1
n∩Am1 ∈ H1

m1
and n1 ∈ N

such that for n ≥ n1 we have x ∈ H1
n ∩Am1 and

x, yn ∈ (H1
n ∩Am1) + δBX

σ(X,F )

for some δ ∈ (0, 1) we fix. Let us observe that for

z ∈ (H1
n ∩Am1) + δBX

σ(X,F )

there exists a net {zα = vα + wα |α ∈ (D,�)}, where vα ∈ H1
n ∩ Am1 and

wα ∈ δBX for every α in the directed set (D,�) with

lim
α∈D

|f(z − (vα +wα))| = 0

for every f ∈ F . By w∗-compactness we can find a w∗-converging subnet to

some point in X∗∗ that can be written as v∗∗ +w∗∗ with v∗∗ ∈ H1
n ∩Am1

w∗

and w∗∗ ∈ δBX∗∗ . Then we obtain that z coincides with v∗∗ +w∗∗ on every
element f ∈ F , therefore

‖z − v∗∗‖F = ‖w∗∗‖F ≤ ‖w∗∗‖X∗∗ ≤ δ.

In particular we have for some y∗∗n ∈ H1
n ∩Am1

w∗

that ‖yn − y∗∗n ‖F ≤ δ, for
every n ≥ n1.
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(p p+ 1) Take an integer mp+1 ∈ N such that for some H ∩ Amp+1 ∈ Hp+1
mp+1

we have x ∈ H ∩Amp+1 and d- diam(Φ(H ∩Amp+1)) <
1

p+1 . Since

lim
n∈N

(2‖x‖2mp+1,p+1 + 2‖yn‖
2
mp+1,p+1 − ‖x+ yn‖

2
mp+1,p+1) = 0,

theorem 1.2 tells us that there exists a sequence Hp+1
n ∩Amp+1 ∈ Hp+1

mp+1 and

an integer np+1 > np such that for every n ≥ np+1 we have x ∈ Hp+1
n ∩Amp+1

and

x, yn ∈ (Hp+1
n ∩Amp+1) + δp+1 BX

σ(X,F )
.

Then for every n > np+1 we can take a y∗∗n ∈ Hp+1
n ∩Amp

w∗

with ‖yn − y∗∗n ‖F ≤
δp.

Now define Dn = B(0, 2‖x‖) and y∗∗n = 0 for 1 ≤ n ≤ n1, and Dn = Hp
n ∩Amp for

np < n ≤ np+1. With this definition we have x ∈
⋂

n∈NDn, y
∗∗
n ∈ Dn

w∗

and

lim
n∈N

d- diamΦ(Dn) = 0.
�

The following corollary is a first step on the way to rotund renorming.

Corollary 3.28 Let X a normed space, F a subspace in X∗, (Y, d) a pseu-
dometric space and Φ : X → Y a map such that the function d(Φ(x),Φ(·))
is σ(X,F )-lower semicontinuous on X for every x ∈ X. If there exists a
sequence (An) of subsets of X such that for every x ∈ X and every ε > 0 we
can find n ∈ N and a σ(X,F )-open half-space H such that x ∈ H ∩ An and

d-diam(Φ(conv(H ∩An))) < ε,

then X admits a σ(X,F )-lower semicontinuous and norm-continuous semi-
norm ‖·‖Φ such that the condition 2‖x‖2Φ+2‖y‖2Φ−‖x+ y‖2Φ = 0, implies that
d(Φ(x),Φ(y)) = 0. Furthermore if F is norming, then ‖·‖Φ is an equivalent
norm.

Proof Theorem 3.27, applied to x and the constant sequence yn = y for every

n ∈ N, gives us y∗∗n ∈ Dn
w∗

such that limn∈N ‖y − y∗∗n ‖F = 0. Then we have that
for every n ∈ N

y ∈
⋃

m≥n

Dm

σ(X,F )

.

Indeed, take any f ∈ F ∩ BX∗ and µ > 0, and choose m ∈ N big enough such
that m ≥ n and ‖y − y∗∗n ‖F ≤ µ

2 , then we have |f(y − y∗∗n )| ≤ µ
2 . If we select now

zm ∈ Dm so that |f(y∗∗m − zm)| ≤ µ
2 , we finally have

|f(y − zm)| ≤ |f(y − y∗∗m )|+ |f(y∗∗m − zm)| ≤ µ.
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Since x ∈
⋂

n∈NDn and limn∈N d-diamΦ(Dn) = 0 we have, for every ε > 0

d(Φ(x),Φ(zn)) ≤ ε,

for n ≥ nε and zn ∈ Dn. If we take a net {zα |α ∈ (D,�)} ⊆
⋃

n≥nε
Dn with

y = σ(X,F )- lim
α∈D

zα

we will have, by σ(X,F )-lower semicontinuity of the function d(Φ(x),Φ(·)),

d(Φ(x),Φ(y)) ≤ ε.

Since ε > 0 is arbitrary we finally have d(Φ(x),Φ(y)) = 0, as we wanted. �

As a consequence we have the following nonlinear version of [DGZ93,
Theorem 2.4].

Corollary 3.29 Let X, Y two normed spaces, F a subspace in X∗ and G a
norming subspace in Y ∗. Let Φ : X → Y a one to one, σ(X,F ) to σ(Y,G)
continuous map. If there exists a sequence of subsets (An) of X such that for
every x ∈ X and ε > 0 there exists p ∈ N and a σ(X,F )-open half-space H
with x ∈ H ∩Ap and

‖·‖G- diam(Φ(conv(Ap ∩H))) ≤ ε,

then X admits an equivalent σ(X,F )-lower semicontinuous, norm-continuous
and rotund seminorm ‖·‖Φ. Furthermore if F is norming, then ‖·‖Φ is an
equivalent norm.

Proof Apply the former corollary with the pseudometric d(x, y) = ‖x− y‖G. �

3.2.2 Subdifferential transferring results

In this section we extend some results of [MOTV09, Chapter 4] to the case
of rotund renorming. Remember that, if A is a subset of a topological vector
space, ϕ : A → R, x ∈ U ⊆ A and ε > 0, then we call ε-subdifferential of ϕ
as a function on U at the point x, the set

∂εϕ(x|U) = {x∗ ∈ X∗ |ϕ(y) ≥ ϕ(x) + x∗(y − x)− ε, for every y ∈ U}.

For a deeper analysis of this concept see [Phe93]. The next theorem deals
with the local convexity condition for the map ϕx(u) = ‖Φ(u) + Φ(x)‖Y at
x.
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Theorem 3.30 Let (X, ‖·‖) and (Y, ‖·‖Y ) normed spaces such that ‖·‖Y is
asymptotically rotund. Let Φ : X → Y a map, and ϕx(u) := ‖Φ(u) + Φ(x)‖Y
for all u, x ∈ X. If ∂εϕx(x|Br(0)) 6= ∅ for every x ∈ Br(0), ε > 0 and
r ∈ (0,+∞), then X admits an equivalent norm ‖·‖Φ such that

2‖x‖2Φ + 2‖y‖2Φ − ‖x+ y‖2Φ = 0

implies Φ(x) = Φ(y), whenever ‖Φ(x)‖Y = ‖Φ(y)‖Y . Furthermore if ‖Φ(x)‖Y =
‖Φ(y)‖Y =

∥∥Φ
(
x+y
2

)∥∥
Y
and

2‖x‖2Φ + 2‖y‖2Φ − ‖x+ y‖2Φ = 0,

then Φ(x) = Φ(y) = Φ
(
x+y
2

)
.

Proof Let us select fx,rε ∈ ∂εϕx(x|Br(0)) for every x ∈ Br(0) and define

H(fx,rε ) = {z ∈ X | fx,rε (z) > fx,rε (x)− ε}.

Consider the families of slices

Hx,r,ρ,µ
ε = {H(fx,rε ) ∩ Br(0) | ρ < ‖Φ(x)‖Y < µ}

where ε > 0, r, ρ, µ ∈ Q+ and x ∈ Br(0). Observe that when y ∈ H ∩ Br(0) ∈
Hx,r,ρ,µ

ε and y ∈ Br(0) we have

‖Φ(x) + Φ(y)‖Y ≥ 2‖Φ(x)‖Y − 2ε

If we have two points x, y ∈ Br(0) with ξ := ‖Φ(x)‖Y = ‖Φ(y)‖Y , and we assume
that for every m ∈ N, ρ ≤ ξ ≤ µ, ρ, µ ∈ Q+, there is some u(1/m, ρ, µ) ∈ Br(0)
such that

x, y,
x+ y

2
∈ H(f

u(1/m,ρ,µ),r
1/m ) ∩ Br(0) ∈ H

u(1/m,ρ,µ),r,ρ,µ
1/m

we will have

‖Φ(x) + Φ(u(1/m, ρ, µ))‖Y ≥ 2‖Φ(u(1/m, ρ, µ))‖Y − 2/m,

‖Φ(y) + Φ(u(1/m, ρ, µ))‖Y ≥ 2‖Φ(u(1/m, ρ, µ))‖Y − 2/m

and ρ < ‖Φ(u(1/m, ρ, µ))‖Y < µ. If we take two sequences ρn ≤ ‖Φ(x)‖Y =
‖Φ(y)‖Y ≤ µn and εn such that

lim
n∈N

εn = 0 lim
n∈N

ρn = ‖Φ(x)‖Y = ‖Φ(y)‖Y = lim
n∈N

µn

we will have, by asymptotically rotundness, that Φ(x) = Φ(y). Furthermore if∥∥Φ
(x+y

2

)∥∥
Y
= ‖Φ(x)‖Y = ‖Φ(y)‖Y , then repeating the same argument we obtain
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that Φ
(x+y

2

)
= Φ(x) = Φ(y). To get the equivalent norm we are looking for let us

consider the families
{
H

u(1/n,ρ,µ),r,ρ,µ
1/n

∣∣∣n ∈ N, r, ρ, µ ∈ Q+, ρ < µ
}

and the sets {Br(0) | r ∈ Q+} and apply theorem 1.2 to obtain the equivalent
norms ‖·‖r,n,ρ,µ that localizes slices through the LUR condition. In particular we
have that

2‖x‖2r,n,ρ,µ + 2‖y‖2r,n,ρ,µ − ‖x+ y‖2r,n,ρ,µ = 0

should imply that for some H ∩ Br(0) ∈ H
u(1/n,ρ,µ),r,ρ,µ
1/n we have x, y, x+y

2 ∈ H ∩

Br(0) when either:

� x ∈ Br(0) ∩
⋃

H
u(1/n,ρ,µ),r,ρ,µ
1/n and y ∈ Br(0) or

� y ∈ Br(0) ∩
⋃
H

u(1/n,ρ,µ),r,ρ,µ
1/n and x ∈ Br(0).

Since we always are able to ensure this condition for every n ∈ N, r big enough and
suitable ρ, µ, we will have the norm we are looking for adding all this information.
Thus we write

‖·‖2Φ =
∑

n∈N, r∈Q+

ρ,µ∈Q+, ρ<µ

cr,n,ρ,µ‖·‖
2
r,n,ρ,µ

where the constant cr,n,ρ,µ are chosen for the uniform convergence of the series on
bounded sets. Take two points x, y ∈ X with ‖Φ(x)‖Y = ‖Φ(y)‖Y and such that

2‖x‖2Φ + 2‖y‖2Φ − ‖x+ y‖2Φ = 0.

Fix r ∈ Q+ such that max {‖x‖Y , ‖y‖Y } < r together with sequences ρn ≤
‖Φ(x)‖Y = ‖Φ(y)‖Y ≤ µn such that

lim
n∈N

ρn = ‖Φ(x)‖Y = ‖Φ(y)‖Y = lim
n∈N

µn.

By a standard convexity argument (see [DGZ93, Fact II.2.3]) we have

2‖x‖2r,n,ρn,µn
+ 2‖y‖2r,n,ρn,µn

− ‖x+ y‖2r,n,ρn,µn
= 0

for every n ∈ N and theorem 1.2 gives us u(1/n, ρn, µn) ∈ Br(0) such that

x, y,
x+ y

2
∈ H(f

u(1/n,ρn,µn),r
1/n ) ∩ Br(0) ∈ H

u(1/n,ρn,µn),r,ρn,µn

1/n

thus we will have, as above, Φ(x) = Φ(y). Furthermore if
∥∥Φ
(x+y

2

)∥∥
Y
= ‖Φ(x)‖Y =

‖Φ(y)‖Y , then we obtain that Φ
(x+y

2

)
= Φ(x) = Φ(y). �

This result enables us to prove the following version of [MOTV09, Corollary
4.32], for rotund renorming.
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Corollary 3.31 Let (X, ‖·‖) and (Y, ‖·‖Y ) normed spaces such that ‖·‖Y is
asymptotically rotund. Let Φ : X → Y a locally bounded map such that

2‖Φ(x)‖Y ≤
n∑

i=1

λi‖Φ(x) + Φ(xi)‖Y

whenever n ∈ N, x, xi ∈ X,
∑n

i=1 λi = 1, x =
∑n

i=1 λixi and λi ≥ 0 for
i = 1, . . . , n. Then X admits an equivalent norm ‖·‖Φ such that

2‖x‖2Φ + 2‖y‖2Φ − ‖x+ y‖2Φ = 0

implies Φ(x) = Φ(y) = Φ
(
x+y
2

)
. In particular ‖·‖Φ is an equivalent rotund

norm, whenever Φ is one to one.

Proof The fact that our conditions on Φ implies that ∂εϕx(x|Br(0)) 6= ∅ for
every x ∈ Br(0), ε > 0 and r > 0, where

ϕx(u) = ‖Φ(u) + Φ(x)‖Y u, x ∈ X,

follows from the proof done in [MOTV09, Corollary 4.32]. Theorem 3.30 give us
an equivalent norm ‖·‖1 such that 2‖x‖21 + 2‖y‖21 − ‖x+ y‖21 = 0 implies that
Φ(x) = Φ(y) = Φ

(x+y
2

)
, whenever ‖Φ(x)‖Y = ‖Φ(y)‖Y =

∥∥Φ
(x+y

2

)∥∥
Y
. Let us

consider the sets
Ar = {x ∈ X | ‖Φ(x)‖Y ≤ r},

for every r ∈ Q+. Without loss of generality we can assume that Φ(0) = 0. Consider
τ(x) := ‖Φ(x)‖Y and observe that τ is convex and continuous (since Φ is locally
bounded), and let pAr the Minkowski functionals of the sets Ar. We have that

‖·‖2Φ = ‖·‖21 +
∑

r∈Q+

p2Ar
(·)

is the norm we were seeking. Indeed if x, y ∈ X are such that 2‖x‖2Φ + 2‖y‖2Φ −
‖x+ y‖2Φ = 0, then by a standard convex argument (see [DGZ93, Fact II.2.3]) we
have that ‖x‖1 = ‖y‖1 =

∥∥x+y
2

∥∥
1
and pAr(x) = pAr(y) = pAr

(x+y
2

)
for all r ∈ Q+.

This last condition implies that τ(x) = τ(y) = τ
(x+y

2

)
and then by theorem 3.30

the proof follows. �

A straightforward application of the last corollary gives the following
result (in fact, turns out to be a particular case of [OST12, Theorem 2.9]).

Corollary 3.32 Let (X, ‖·‖) a normed space and Φ : X → c0(Γ) a locally
bounded and one-to-one map. If δγ ◦ Φ is convex and non-negative for every
γ ∈ Γ, then X admits an equivalent rotund norm.
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One more application is the following generalization of a result of Zizler
in [Ziz84], which has been already proved, in a different way, in [DGZ93,
Proposition VII.1.5].

Corollary 3.33 Let (X, ‖·‖) a normed space and {Tα}α∈Γ a family of bounded
linear operators Tα : X → X. If the following conditions hold:

1. the function T defined on X by T (x) = (‖Tα(x)‖)α∈Γ maps X into
c0(Γ);

2.
⋂

α∈Γ {x ∈ X |Tα(x) = 0} = {0};

3. for every α ∈ Γ, Tα(X) admits an equivalent rotund norm ‖·‖α,

then X admits an equivalent rotund norm.

Proof Let cα and Cα such that

cα‖y‖α ≤ ‖y‖ ≤ Cα‖y‖α

for every y ∈ Tα(X). Consider the function T̃ (x) = (cα‖Tα(x)‖α)α∈Γ: it is easy to
prove that this function satisfies the conditions of corollary 3.31, which gives us
an equivalent notm ‖·‖

T̃
such that

2‖x‖2
T̃
+ 2‖y‖2

T̃
− ‖x+ y‖2

T̃
= 0

implies T̃ (x) = T̃ (y) = T̃
(x+y

2

)
. Then for every α ∈ Γ

cα‖Tα(x)‖α = cα‖Tα(y)‖α = cα

∥∥∥∥Tα
(
x+ y

2

)∥∥∥∥
α

,

and by the linearity of Tα and the rotundity of ‖·‖α we have that Tα(x) = Tα(y).
By condition 2 we obtain that x = y. �

A straightforward application of this result gives us the following corollary.

Corollary 3.34 Let (X, ‖·‖) a normed space and {Pα}α∈[ω0,µ]
a projectional

resolution of the identity (see [FHH+11, Definition 11.5]). Suppose that for
every α ∈ [ω0, µ) the space

Tα(X) := (Pα+1 − Pα)(X)

admits an equivalent rotund norm, then X admits an equivalent rotund norm.

Via corollary 3.31, a result on vector valued sequence spaces can be ob-
tained.
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Corollary 3.35 Let X a normed space and Γ a nonempty set. c0(Γ, X) ad-
mits an equivalent rotund norm if, and only if, X admits an equivalent rotund
norm. The same result is valid for ℓ1(Γ, X).

Proof Observe that c0(Γ,X) admits an equivalent lattice and LUR norms ‖·‖L
and define ‖·‖X an equivalent rotund norm on X. Consider the function T (x) =
(‖x(γ)‖X)γ∈Γ, defined for every x = (x(γ))γ∈Γ ∈ c0(Γ,X), and observe that satis-
fies the condition of corollary 3.31. So there exists an equivalent norm ‖·‖T such
that if 2‖x‖2T + 2‖y‖2T − ‖x+ y‖2T = 0, then for every γ ∈ Γ we have

2‖x(γ)‖2X + 2‖y(γ)‖2X − ‖x(γ) + y(γ)‖2X = 0.

Since ‖·‖X is rotund, we have x(γ) = y(γ) for every γ ∈ Γ. The proof in the
ℓ1(Γ,X) case is similar. �

Another application is a known three space result.

Corollary 3.36 Let X a normed space and Y ⊆ X a closed subspace. If
X/Y admits an equivalent LUR norm and Y admits an equivalent rotund
norm, then X admits an equivalent rotund norm.

Proof Consider the continuous projection Q : X → X/Y and let B : X/Y → X
the continuous and positively homogeneous Bartle–Graves selection of the inverse
Q−1 (see [FHH+11, Corollary 7.56]). By corollary 3.31 there exists an equivalent
norm ‖·‖Q on X such that for every x, y ∈ X such that

2‖x‖2Q + 2‖y‖2Q − ‖x+ y‖2Q = 0

implies Q(x) = Q(y). Let ‖·‖1 an equivalent LUR norm on X/Y , ‖·‖2 an equivalent
norm on X such that its restriction on Y is rotund (using [DGZ93, Lemma II.8.1]
for rotund norm) and

S1 = {x̂ ∈ X/Y | ‖x̂‖1 = 1}.

For every â ∈ S1 consider fâ ∈ (X/Y )∗ such that fâ(â) = 1 and ‖fâ‖
∗
2 ≤ M , and

define

Pâ(x) = fâ(Qx)Bâ;

ϕâ(x) = inf{r > 0 |
∥∥r−1Qx+ â

∥∥
1
≤ 2};

ψâ(x) = ‖x− Pâx‖2.

We can apply Deville’s master lemma (lemma 1.1) with the families (ϕâ)â∈S1
and

(ψâ)â∈S1
, and obtains the norm ‖·‖ which satisfies for every x ∈ X and (xn)n∈N ⊆

X such that if
lim
n∈N

(2‖x‖2 + 2‖xn‖
2 − ‖x+ xn‖

2) = 0,

then there exists (ân)n∈N ⊆ S1 such that
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1. limn∈N

(
1
2ψ

2
ân
(x) + 1

2ψ
2
ân
(xn)− ψ2

ân

(
x+xn

2

))
= 0;

2. limn∈N ϕân(x) = limn∈N ϕân(xn) = limn∈N ϕân

(
x+xn

2

)
= supâ∈S1

ϕâ(x).

Let x, y ∈ X such that 2‖x‖2 + 2‖y‖2 − ‖x+ y‖2 = 0, observe the following fact:

� supâ∈S1
ϕâ(x) = ‖Qx‖1. Indeed

∥∥∥∥
Qx

‖Qx‖1
+ â

∥∥∥∥
1

≤ 2

for every â ∈ S1 and this implies supâ∈S1
ϕâ(x) ≤ ‖Qx‖1. Furthermore

∥∥∥∥
Qx

r
+

Qx

‖Qx‖1

∥∥∥∥
1

=
‖Qx‖1
r

+ 1 ≤ 2,

thus ‖Qx‖1 ≤ r, then ‖Qx‖1 ≤ supâ∈S1
ϕâ(x).

� limn∈N ân = Qx
‖Qx‖1

. Indeed for every ε ∈ (0, ‖Qx‖1) there exists nε ∈ N such

that

2 ≤

∥∥∥∥
Qx

r
+ ân

∥∥∥∥
1

,

whenever r ≤ ‖Qx‖1 − ε and n ≥ nε. Now let r = ‖Qx‖1 − ε and observe
that

2 ≤

∥∥∥∥
Qx

‖Qx‖1
+ ân +

(
1

r
−

1

‖Qx‖1

)
Qx

∥∥∥∥
1

≤

≤

∥∥∥∥
Qx

‖Qx‖1
+ ân

∥∥∥∥+
ε

‖Qx‖1 − ε
.

It follows lim infn∈N ‖Qx‖Qx‖−1
1 + ân‖1 ≥ 2 and by the LUR property we

have our claim.

� limn∈N Pân(x) = BQx. Indeed

1

‖Qx‖1
‖Pân(x)−BQx‖2 =

∥∥∥∥fân
(

Qx

‖Qx‖1

)
Bân − fân(ân)B

Qx

‖Qx‖1

∥∥∥∥
2

≤

≤

∥∥∥∥fân
(

Qx

‖Qx‖1
− ân

)
B

Qx

‖Qx‖1

∥∥∥∥
2

+

∥∥∥∥fân
(

Qx

‖Qx‖1

)(
Bân −B

Qx

‖Qx‖1

)∥∥∥∥
2

≤

≤M

∥∥∥∥
Qx

‖Qx‖1
− ân

∥∥∥∥
1

∥∥∥∥B
Qx

‖Qx‖1

∥∥∥∥
2

+M

∥∥∥∥Bân −B
Qx

‖Qx‖1

∥∥∥∥
2

,

by continuity of B we have our claim.
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Now observe that these facts give us

2‖x−BQx‖22 + 2‖y −BQy‖22 − ‖x+ y −BQx−BQy‖22 = 0,

since ‖·‖2 is rotund on Y and x − BQx, y − BQy ∈ Y we have that x − BQx =
y −BQy. Consider now the equivalent norm

‖·‖23 = ‖·‖2Q + ‖·‖2,

it is easy to see that this norm satisfies the thesis of our corollary. �

3.2.3 Nonlinear (*)-transference

The following results provide versions of [MOTV09, Theorem 1.1] for the
rotund renorming case. The first theorem is a nonlinear transfer of the (*)-
property.

Theorem 3.37 Let X, Y normed spaces, F ⊆ X∗ and G ⊆ Y ∗ norming
subspaces. Suppose that Y admits an equivalent σ(Y,G)-lower semicontinuous
rotund norm. If Φ : X → Y is a σ(X,F )-σ(Y,G)-continuous and one-to-
one function, such that there exists a family {Ap}p∈N of convex sets such
that for every x ∈ X and K σ(Y,G)-open half-space with Φ(x) ∈ K, there
exists p ∈ N and a σ(X,F )-open halfspace H such that x ∈ Ap ∩ H and
Φ(Ap∩H) ⊆ K. ThenX admits an equivalent, σ(X,F )-lower semicontinuous
and rotund norm.

The theorem above can be obtained as a corollary from the following more
general result.

Theorem 3.38 Let X a normed space, F ⊆ X∗ a norming subspace and
(Y, τ) a topological space which has (*) with closed subsets. Suppose that
(Kn)n∈N is a (*)-sequence of families of closed subsets for Y and let

K =
⋃

n∈N

Kn.

If Φ : X → Y is a σ(X,F )-τ -continuous and one-to-one function, such that
there exists a family {Ap}p∈N of convex sets such that for every x ∈ X and
K ∈ K such that Φ(x) ∈ K, there exists p ∈ N and a σ(X,F )-open halfspace
H such that x ∈ Ap ∩H and Φ(Ap ∩H) ⊆ K. Then X admits an equivalent,
σ(X,F )-lower semicontinuous and rotund norm.
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Proof Without loss of generality we may assume that X ⊆ F ∗, in such a way that
the σ(X,F )-topology is induced by the w∗-topology on F ∗, also we can assume
that the family {Ap}p∈N is composed of bounded sets, indeed the sets

Ap,q = Ap ∩ B(0, q),

for p ∈ N and q ∈ Q, satisfy the same property. Let H the family of σ(X,F )-open
halfspaces of X. Consider the families of slices

Hn,p =
{
Ap

σ(X,F )
∩H

∣∣∣H ∈ H and there exists K ∈ Kn such that Φ(Ap ∩H) ⊆ K
}

and let us apply theorem 1.2 to every set Ap
σ(X,F )

and each family Hn,p in order

to obtain the norms ‖·‖n,p which satisfy for every (xk)k∈N ⊆ X and x ∈ Ap
σ(X,F )

∩⋃
Hn,p such that if

lim
k∈N

(2‖x‖2n,p + 2‖xk‖
2
n,p − ‖x+ xk‖

2
n,p) = 0,

then there exists a sequence of slices (Ap
σ(X,F )

∩Hk)k∈N ⊆ Hn,p such that

1. there exists k0 ∈ N such that x, xk ∈ Ap
σ(X,F )

∩Hk, whenever k ≥ k0 and

xk ∈ Ap
σ(X,F )

;

2. for every δ > 0 there exists kδ ∈ N such that

x, xk ∈ (Ap
σ(X,F )

∩Hk) + B(0, δ)
σ(X,F )

,

for every k ≥ kδ.

Consider the equivalent norm

‖x‖2 =
∑

n,p∈N

cn,p‖x‖
2
n,p

where the constants cn,p are chosen in order to guarantee the convergence of the
series on bounded subsets. Let x, y ∈ X such that

2‖x‖2 + 2‖y‖2 − ‖x+ y‖2 = 0

and suppose, by contradiction, that x 6= y. By a standard convexity argument (see
[DGZ93, Fact II.2.3]) we obtain for every n, p ∈ N

2‖x‖2n,p + 2‖y‖2n,p − ‖x+ y‖2n,p = 0.

Consider n0 ∈ N such that Kn0 (*)-separates Φ(x) and Φ(y). Without loss of
generality we can assume that Φ(x) ∈

⋃
Kn0 and, by hypothesis, we know that

there exists p0 ∈ N and a σ(X,F )-open halfspace H such that x ∈ Ap0 ∩H and

Φ(Ap0 ∩H) ⊆ K ∈ Kn0



3.2. Transfer results 68

for a fixed K. Consider the condition

2‖x‖2n0,p0
+ 2‖y‖2n0,p0

− ‖x+ y‖2n0,p0
= 0,

from x ∈ Ap0∩
⋃

Hn0,p0 we obtain that there exists a sequence of slices (Ap0
σ(X,F )

∩
Hk)k∈N ⊆ Hn0,p0 such that

1. there exists k0 ∈ N such that x, y ∈ Ap0
σ(X,F )

∩Hk, whenever k ≥ k0 and

y ∈ Ap0
σ(X,F )

;

2. for every δ > 0 there exists kδ ∈ N such that

x, y ∈ (Ap0
σ(X,F )

∩Hk) + B(0, δ)
σ(X,F )

,

for every k ≥ kδ.

Observe that if

z ∈ (Ap0
σ(X,F )

∩Hk) + B(0, δ)
σ(X,F )

⊆ (Ap0
σ(X,F )

∩Hk) + B(0, δ)
w∗

then there exists a net {zα = vα + wα |α ∈ (D,�)}, where vα ∈ Ap0
σ(X,F )

∩ Hk

and wα ∈ B(0, δ) for every α ∈ D, such that

lim
α∈D

|f(z − (vα + wα))| = 0 (�)

for every f ∈ F . By w∗-compactness we can find a w∗-covergent subnet to some

point of F ∗ which we can write as v∗+w∗ where v∗ ∈ Ap0
σ(X,F )

∩H
w∗

⊆ Ap0 ∩H
w∗

and w∗ ∈ B(0, δ)
w∗

. We obtain that z coincide with v∗+w∗ on every element f ∈ F
by condition (†), so

‖z − v∗‖F ∗ = ‖w∗‖F ∗ ≤ δ.

So in our case we obtain that for every δ > 0 there exists yδk ∈ Ap0 ∩Hk
w∗

such that∥∥y − yδk
∥∥δ. So there exists a sequence yn ∈ Ap

w∗

such that limn∈N ‖y − yn‖F ∗ = 0

and so y ∈ Ap
w∗

. By hypothesis we have that y ∈ Ap0
σ(X,F )

= Ap0
w∗

∩ X. By

condition 1. we obtain that there exists H ∈ Hn0,p0 such that x, y ∈ Ap0
σ(X,F )

∩H,
by the very definition of H ∈ Hn0,p0 , there exists K ∈ Kn0 such that

Φ(Ap0 ∩H) ⊆ K,

but this is a contradiction since

Φ(x),Φ(y) ∈ Φ(Ap0
σ(X,F )

∩H) ⊆ Φ(Ap0 ∩H
σ(X,F )

) ⊆ Φ(Ap0 ∩H)
τ
⊆ K

by continuity, but Kn0 (*)-separates Φ(x) and Φ(y). �



3.2. Transfer results 69

Observe that if Y is a normed space for which a norimg space G ⊆ Y ∗ exists
such that Y admits an equivalent, σ(Y,G)-lower semicontinuous and rotund
norm then Y satisfies the assumption of our theorem. Furthermore in the
same way (without any substantial change) the following theorem can be
proved.

Theorem 3.39 Let X a normed space, F ⊆ X∗ a norming subspace and
(Y, τ) a topological space which has (*). Suppose that (Kn)n∈N is a (*)-
sequence for Y and let

K =
⋃

n∈N

Kn.

If Φ : X → Y is a one-to-one function, such that there exists a family
{Ap}p∈N of convex and σ(X,F )-closed sets such that for every x ∈ X and
K ∈ K such that Φ(x) ∈ K, there exists p ∈ N and a σ(X,F )-open halfspace
H such that x ∈ Ap ∩H and Φ(Ap ∩H) ⊆ K. Then X admits an equivalent,
σ(X,F )-lower semicontinuous and rotund norm.

Now we state a “symmetric” characterization result:

Theorem 3.40 Let X a normed space and F ⊆ X∗ a norming subspace. X
admits an equivalent, σ(X,F )-lower semicontinuous an rotund norm if, and
only if, there exists a symmetric ρ : X × X → [0,+∞) such that for every
ε > 0 it is possible to write

X =
⋃

n∈N

Xn,ε,

such that every one of Xn,ε is a convex and σ(X,F )-closed set, and for every
x ∈ X there exists n ∈ N and a σ(X,F )-open halfspace H such that x ∈
Xn,ε ∩H and ρ-diam(Xn,ε ∩H) < ε.

Proof We use the same idea of the previous theorem. Without loss of generality
we may assume that X ⊆ F ∗, in such a way that the σ(X,F )-topology is induced
by the w∗-topology on F ∗, also we can assume that the sets Xn,ε are bounded sets,
indeed the sets

Xn,q,ε = Xn,ε ∩ B(0, q),

for n ∈ N, q ∈ Q and ε > 0, satisfy the same property. Consider the families of
slices

Hn,m =

{
Xn,1/m ∩H

∣∣∣∣ ρ- diam(Xn,1/m ∩H) <
1

m

}

and let us apply theorem 1.2 to every set Xn,1/m and each family Hn,m in order
to obtain the norms ‖·‖n,m which satisfy for every (xk)k∈N ⊆ X and x ∈ Xn,1/m ∩⋃

Hn,m such that if

lim
k∈N

(2‖x‖2n,m + 2‖xk‖
2
n,m − ‖x+ xk‖

2
n,m) = 0,
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then there exists a sequence of slices (Xn,1/m ∩Hk)k∈N ⊆ Hn,m such that

1. there exists k0 ∈ N such that x, xk ∈ Xn,1/m ∩ Hk, whenever k ≥ k0 and
xk ∈ Xn,1/m;

2. for every δ > 0 there exists kδ ∈ N such that

x, xk ∈ (Xn,1/m ∩Hk) + B(0, δ)
σ(X,F )

,

for every k ≥ kδ.

Consider the equivalent norm

‖x‖2 =
∑

n,m∈N

cn,m‖x‖2n,m

where the constants cn,m are chosen in order to guarantee the convergence of the
series on bounded subsets. Let x, y ∈ X such that

2‖x‖2 + 2‖y‖2 − ‖x+ y‖2 = 0

and suppose, by contradiction, that x 6= y. By a standard convexity argument (see
[DGZ93, Fact II.2.3]) we obtain for every n,m ∈ N

2‖x‖2n,m + 2‖y‖2n,m − ‖x+ y‖2n,m = 0.

Consider ε0 > 0 such that ρ(x, y) > ε0 and m0 ∈ N such that 1/m0 < ε0. By
hypothesis, we know that there exists n0 ∈ N and a σ(X,F )-open halfspace H
such that x ∈ Xn0,1/m0

∩H and

ρ− diam(Xn0,1/m0
∩H) <

1

m0
.

Consider the condition

2‖x‖2n0,p0
+ 2‖y‖2n0,p0

− ‖x+ y‖2n0,p0
= 0,

from x ∈ Xn0,1/m0
∩
⋃

Hn0,m0 we obtain that there exists a sequence of slices
(Xn0,1/m0

∩Hk)k∈N ⊆ Hn0,m0 such that

1. there exists k0 ∈ N such that x, y ∈ Xn0,1/m0
∩ Hk, whenever k ≥ k0 and

y ∈ Xn0,1/m0
;

2. for every δ > 0 there exists kδ ∈ N such that

x, y ∈ (Xn0,1/m0
∩Hk) + B(0, δ)

σ(X,F )
,

for every k ≥ kδ.
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Observe that if

z ∈ (Xn0,1/m0
∩Hk) + B(0, δ)

σ(X,F )
⊆ (Xn0,1/m0

∩Hk) + B(0, δ)
w∗

then there exists a net {zα = vα + wα |α ∈ (D,�)}, where vα ∈ Xn0,1/m0
∩Hk and

wα ∈ B(0, δ) for every α ∈ D, such that

lim
α∈D

|f(z − (vα + wα))| = 0 (�)

for every f ∈ F . By w∗-compactness we can find a w∗-covergent subnet to some

point of F ∗ which we can write as v∗ + w∗ where v∗ ∈ Xn0,1/m0
∩H

w∗

and w∗ ∈

B(0, δ)
w∗

. We obtain that z coincide with v∗ + w∗ on every element f ∈ F by
condition (†), so

‖z − v∗‖F = ‖w∗‖F ≤ ‖w∗‖F ∗ ≤ δ.

So in our case we obtain that for every δ > 0 there exists yδk ∈ Xn0,1/m0
∩Hk

w∗

such that
∥∥y − yδk

∥∥ ≤ δ. So there exists a sequence yn ∈ Xn0,1/m0

w∗

such that

limn∈N ‖y − yn‖F ∗ = 0 and so y ∈ Xn0,1/m0

w∗

. By hypothesis we have that y ∈

Xn0,1/m0
= Xn0,1/m0

w∗

∩X. By condition 1 we obtain that there exists H ∈ Hn0,m0

such that x, y ∈ Xn0,1/m0
∩H

ρ- diam(Xn0,1/m0
∩H) <

1

m0

but this is a contradiction. �

It is possible to prove (without substantial changes) the following result.

Theorem 3.41 Let X a normed space and F ⊆ X∗ a norming subspace. If
there exists a σ(X,F )-lower semicontinuous symmetric ρ : X×X → [0,+∞)
such that for every ε > 0 it is possible to write

X =
⋃

n∈N

Xn,ε,

such that every one of Xn,ε is a convex and σ(X,F )-closed set, and for every
x ∈ X there exists n ∈ N and a σ(X,F )-open halfspace H such that x ∈
Xn,ε ∩H and ρ-diam(Xn,ε ∩H) < ε; then X admits an equivalent, σ(X,F )-
lower semicontinuous an rotund norm.



Chapter 4

Uniformly rotund renorming

In this chapter we start studying uniformly rotund renorming in the same
spirit as the previous part of our work.

Lemma 4.1 (uniformly version of Deville’s lemma) Let (ϕi)i∈I , (ψi)i∈I
be two families of real valued, convex and nonnegative functions defined on
a normed space X, which are both uniformly bounded on bounded subsets of
X. For every i ∈ I and k ∈ N, let us denote

θi,k(x) = ϕ2
i (x) +

1

k
ψ2
i (x);

θk(x) = sup
i∈I

θi,k(x);

θ(x) = ‖x‖2 +
∑

k∈N

2−k(θk(x) + θk(−x)),

where ‖·‖ is the norm of X. If ‖·‖θ denotes the Minkowski functional of the
set B = {x ∈ X | θ(x) ≤ 1}, then ‖·‖θ is an equivalent norm on X with the
following property: if (xn)n∈N, (yn)n∈N ⊆ X satisfy

lim
n∈N

(
2‖xn‖

2
θ + 2‖yn‖

2
θ − ‖xn + yn‖

2
θ

)
= 0,

then there exists a sequence (in) ⊆ I such that

1. limn∈N

(
1
2
ψ2
in(xn) +

1
2
ψ2
in(yn)− ψ2

in

(
xn+yn

2

))
= 0;

2. limn∈N(ϕin(xn)− ϕin(yn)) = 0;

3. limn∈N

(
ϕin(yn)− ϕin

(
xn+yn

2

))
= 0;

4. lim infn∈N ϕin(xn) = lim infn∈N supi∈I ϕi(xn);
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5. lim infn∈N ϕin(yn) = lim infn∈N supi∈I ϕi(yn);

6. lim infn∈N(ϕin(xn) + ϕin(yn)) = lim infn∈N supi∈I(ϕi(xn) + ϕi(yn)).

Proof Following the proof, and with the same notations as in [DGZ93, Lemma
VII.1.1], we shall arrive to the following facts:

lim
n∈N

(ϕin(xn)− ϕin(yn)) = lim
n∈N

(
ϕin(yn)− ϕin

(
xn + yn

2

))
= 0.

On the other hand, if we denote by

Mn = sup
i∈I

ψ2
i (yn) and M = sup

n∈N
Mn,

then the equation (8) of [DGZ93, Lemma VII.1.1] for this case tell us that, given
n ∈ N we have for all i ∈ I

ϕ2
i (yn)− ϕ2

in(yn) ≤ −
1

2kn
(ψ2

i (yn)− ψ2
in(yn)) + 2αkn ≤

Mn

2kn
+ 2αkn .

Thus, for every n ∈ N, we have

ϕ2
in(yn) ≥ sup

i∈I
ϕ2
i (yn)−

Mn

2kn
− 2αkn ,

hence lim infn∈N ϕin(yn) = lim infn∈N supi∈I ϕi(yn). By the simmetry of our rea-
soning we also have lim infn∈N ϕin(xn) = lim infn∈N supi∈I ϕi(xn) and

lim inf
n∈N

(ϕin(xn) + ϕin(yn)) = lim inf
n∈N

sup
i∈I

(ϕi(xn) + ϕi(yn)).
�

We also need a generalization of the connection lemma [OT09b, Theorem 3].
We start by giving the following definition:

Definition 4.2 Given an half-space H = {x ∈ X | f(x) > µ} for a f ∈ X∗

we define the ε-enlargement of H as the half-space

H − ε := {x ∈ X | f(x) > µ− ε},

and the ε-shrinkage of H as the half-space

H + ε := {x ∈ X | f(x) > µ+ ε}.

Theorem 4.3 (Uniform slice localization theorem) Let X a normed space
with a norming subspace F in X∗. Let A ⊆ B a bounded subsets in X and H
a family of σ(X,F )-open half-spaces such that for every H ∈ H the set A∩H



74

is nonempty. Then there exists an equivalent σ(X,F )-lower semicontinuous
norm ‖·‖A,B,H such that for every sequences (xn)n∈N, (yn)n∈N ⊆ B, if

lim
n∈N

(2‖xn‖
2
A,H + ‖yn‖

2
A,H − ‖xn + yn‖

2
A,H) = 0,

then for every ε > 0 there exists a sequence of σ(X,F )-open half-spaces
{Hε

n}n∈N ⊆ H such that

1. if (xn)n∈N or (yn)n∈N are eventually in A∩
⋃

H, then there exists nε ∈ N

such that both xn, yn ∈ Hε
n − ε for every n ≥ nε. Moreover, for every

δ > ε there exists some nδ ∈ N such that for every n ≥ nδ

xn, yn ∈ conv(A ∩ (Hε
n − ε)) + B(0, δ).

2. if (xn)n∈N or (yn)n∈N are frequently in A ∩
⋃
H, then both xn and yn

are frequently in Hε
n − ε. Moreover, for every δ > ε frequently we have

xn, yn ∈ conv(A ∩ (Hε
n − ε)) + B(0, δ).

Proof We shall consider the σ(X,F )-lower semicontinuous and convex functions
(ϕε

H) and (ψε
H) for every H ∈ H defined as follows:

ϕε
H(x) := inf

{
‖x− c‖F

∣∣∣ c ∈ X r (H − ε) ∩ conv(B)
σ(X∗∗,X∗)

}

for every x ∈ X. Let us choose a point aH ∈ A ∩ H and set Dε
H = conv(A ∩

(H − ε)) for every H ∈ H, and Dε,δ
H = Dε

H + B(0, δ), for every δ > 0 and H ∈
H. We are going to denote with pH,ε,δ the Minkowski functional of the convex

body Dε,δ
H

σ(X,F )
− aH and pH,1 will be ‖·‖F . Then we define the σ(X,F )-lower

semicontinuous norm pH,ε by the formula

p2H,ε(x) =
∑

n∈N

1

n22n
p2H,ε,1/n(x),

for every x ∈ X. Indeed, since B(0, δ) + aH ⊆ Dε,δ
H

σ(X,F )
we have for every

x ∈ X, and δ > 0, that pH,ε,δ(δx/‖x‖F ) ≤ 1, thus δpH,ε,δ(x) ≤ ‖x‖F and the
above series converges. Finally we define the nonnegative, convex and σ(X,F )-
lower semicontinuous function ψε

H as ψε
H(x) := (p2H,ε(x− aH))1/2 for every x ∈ X.

We are now in position to apply lemma 4.1 for a fixed ε > 0 to get an equivalent
norm ‖·‖A,H,ε on X such that the condition

lim
n∈N

(2‖xn‖
2
A,H,ε + ‖yn‖

2
A,H,ε − ‖xn + yn‖

2
A,H,ε) = 0,

for sequences (xn)n∈N and (yn)n∈N in X, implies that there exists a sequence of
indexes (Hε

n) in H such that:
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1. limn∈N

(
1
2(ψ

ε
Hε

n
)2(xn) +

1
2(ψ

ε
Hε

n
)2(yn)− (ψε

Hε
n
)2
(xn+yn

2

))
= 0;

2. limn∈N(ϕ
ε
Hε

n
(xn)− ϕε

Hε
n
(yn)) = 0;

3. limn∈N

(
ϕε
Hε

n
(yn)− ϕε

Hε
n

(xn+yn
2

))
= 0;

4. lim infn∈N ϕ
ε
Hε

n
(xn) = lim infn∈N supH∈H ϕ

ε
H(xn);

5. lim infn∈N ϕ
ε
Hε

n
(yn) = lim infn∈N supH∈H ϕ

ε
H(yn);

6. lim infn∈N(ϕ
ε
Hε

n
(xn) + ϕε

Hε
n
(yn)) = lim infn∈N supH∈H(ϕ

ε
H(xn) + ϕε

H(yn)).

If a point yn0 belongs to one of the open half-spaces H ∈ H then we have
ϕH,ε(yn0) > ε and so we have that:

sup
H∈H

ϕH,ε(yn0) ≥ ϕH,ε(yn0) > ε.

Under the assumption that the sequence (yn)n∈N is eventually in A ∩
⋃

H, for
instance, the condition 5 above forces that

lim inf
n∈N

ϕε
Hε

n
(yn) = lim inf

n∈N
sup
H∈H

ϕε
H(yn) ≥ ε,

there exists m0 ∈ N such that ϕε
Hε

n
(yn) ≥ ε/2, whenever n ≥ m0, thus condition

2 and 3 tell us that there exists n0 ∈ N such that both ϕε
Hε

n
(xn) ≥ ε/2 > 0 and

ϕε
Hε

n
(yn) ≥ ε/2 > 0, therefore xn, yn ∈ Hε

n − ε. Moreover, condition 1 above and a
standard convexity argument (see [DGZ93, Fact II.2.3]) imply now that for every
q ∈ N we have that

lim
n∈N

(
1

2
p2Hε

n,ε,1/q
(xn − aHε

n
) +

1

2
p2Hε

n,ε,1/q
(yn − aHε

n
)+

−p2Hε
n,ε,1/q

(
xn + yn

2
− aHε

n

))
= 0,

and

lim
n∈N

(
1

2

∥∥xn − aHε
n

∥∥2
F
+

1

2

∥∥yn − aHε
n

∥∥2
F
−

∥∥∥∥
xn + yn

2
− aHε

n

∥∥∥∥
2

F

)
= 0.

Consequently

lim
n∈N

(
p2Hε

n,ε,1/q
(xn − aHε

n
) + pHε

n,ε,1/q
(yn − aHε

n
)
)
= 0.

If we fix δ > 0, an open half-space H ∈ H and any y ∈ A ∩ (H − ε) we have that

y − aH + (y − aH)
δ

‖y − aH‖F
∈ B(0, δ) + (y − aH) ⊆ Dε,δ

H − aH ,
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and therefore

pH,ε,δ(y − aH) <
‖y − aH‖F

δ + ‖y − aH‖F
,

because Dε,δ
H − aH is a norm open set. Let us choose now an integer q ∈ N such

that 1/q < δ and assume that the sequence (yn)n∈N is such that yn ∈ A∩
⋃

H for
every n ≥ N0 (respectively there is a subsequence (ynk

)k∈N with ynk
∈ A ∩

⋃
H

for every k ∈ N). We know that xn ∈ Hε
n − ε, whenever ϕε

Hε
n
(x) > 0, therefore

pH,ε,1/q(xn − aH) <
‖xn − aH‖F

1/q + ‖y − aH‖F
,

and we can find a real number ξ ∈ (0, 1) such that pHε
n,ε,1/q

(xn − aHε
n
) < 1 − ξ,

for every n ∈ N by boundness of A (respectively pHε
nk

,ε,1/q(xnk
− aHε

nk
) < 1 − ξ,

for every k ∈ N big enough). If we now take the integer n ∈ N big enough to have
pHε

n,ε,1/q
(yn − aHε

n
) < 1 − ξ, too (respectively pHε

nk
,ε,1/q(ynk

− aHε
nk
) < 1 − ξ, for

every k ∈ N big enough) we arrive to the fact that for both sequences we have:

xn − aHε
n
, yn − aHε

n
∈ Dε,δ

Hε
n
− aHε

n
and indeed

xn, yn ∈ conv(A ∩ (Hε
n − ε)) + B(0, δ),

(respectively xnk
, ynk

∈ conv(A ∩ (Hε
nk

− ε)) + B(0, δ), for k ∈ N big enough). In
order to have the norm valid for every ε > 0 we simply define

‖x‖2A,H :=
∑

n∈N

cn‖x‖
2
A,H,1/n

with a choice of (cn)n∈N ⊆ R according with the convergence of the series on
bounded subsets. �

The main result of this chapter is the following generalization of [MOTV09,
Theorem 1.1] and [Lan95, Proposition 2.1].

Theorem 4.4 Let X a normed space. X admits an equivalent uniformly
rotund norm if, and only if, for every ε > 0 there exists Nε ∈ N such that it
is possible to write the unit ball as

BX =
Nε⋃

n=1

Bε
i ,

and for every n = 1, . . . , Nε there exist δ ∈ (0, ε) and a family of open half-
spaces Hn,ε which cover Bn such that for every H ∈ Hn,ε

diam(Bn ∩ (H − δ)) < ε.
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Note that sets Bε
i in the previous decomposition need not to be convex.

Moreover they may not be obtained inductively by derivation with prescribed
order like in Lancien’s construction (see [Lan95]).

Proof We begin by proving the if part. Let ‖·‖ an equivalent uniformly rotund
norm on X and observe that for every ε > 0 there exists δ > 0 such that for
every x, y ∈ X with 2‖x‖2 + 2‖y‖2 − ‖x+ y‖2 < δ it follows that ‖x− y‖ < ε.
Indeed, if there exists ε0 > 0 such that for every δ > 0 exists xδ, yδ ∈ X with
2‖xδ‖

2 + 2‖yδ‖
2 − ‖xδ + yδ‖

2 < δ, but ‖xδ − yδ‖ ≥ ε0, then observe that

lim
n∈N

(2
∥∥x1/n

∥∥2 + 2
∥∥y1/n

∥∥2 −
∥∥x1/n + y1/n

∥∥2) = 0

and for every n ∈ N we have
∥∥x1/n − y1/n

∥∥ ≥ ε0, which is a contradiction. Fix

ε > 0 and consider η > 0 such that whenever 2‖x‖2 + 2‖y‖2 − ‖x+ y‖2 < η it
follows that ‖x− y‖ < ε. Fix n ∈ N big enough such that 8

n < η and consider the
following partition of the unit ball

Bn
k =

{
x ∈ BX

∣∣∣∣
k

2n
< ‖x‖ ≤

k + 1

2n

}

for k = 0, . . . , 2n − 1 and Bn
2n = {0}. For every point x ∈ BX r{0} consider

fx ∈ BX∗ such that fx(x) = ‖x‖ and define

H(fx, ‖x‖, n) =

{
y ∈ BX

∣∣∣∣ fx(y) > ‖x‖ −
1

4n

}
,

andHn,k = {H(fx, ‖x‖, n) | x ∈ Bn
k }. Consider x, y ∈ Bn

k ∩(H−1/4n) forH ∈ Hn,k

and k = 0, . . . , 2n− 1 and observe that if H = H(fz, ‖z‖, n) then

2‖x‖2 + 2‖y‖2 − ‖x+ y‖2 ≤ 4

(
k + 1

2n

)2

−

(
2‖z‖ −

1

n

)2

≤

≤
(k + 1)2

n2
−

(k − 1)2

n2
+

4

n2
= 4

k + 1

n2
≤

8

n
< η.

Thus ‖x− y‖ < ε and we have our thesis.
Let now prove the only if part. Consider the family of half-spaces Hk,1/m and

the sets B
1/m
k ⊆ BX , applying theorem 4.3 we obtain a countable family of norms

‖·‖k,m such that for every (xn)n∈N, (yn)n∈N ⊆ X such that if xn ∈ Bk ∩
⋃

Hk,m

frequently and

lim
n∈N

(2‖xn‖
2
k,m + 2‖yn‖

2
k,m − ‖xn + yn‖

2
k,m) = 0,

then for every ε > 0 there exists a sequence of open half-spaces {Hε
n}n∈N ⊆ H

such that for every η > ε frequently we have

xn, yn ∈ conv(A ∩ (Hε
n − ε)) + B(0, η).
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Consider the equivalent norm

‖x‖2 =
∑

k,m∈N

ck,m‖x‖2k,m

where ck,m are positive real number chose in order to guarantee the convergence
of the series on bounded subsets. Consider (xn)n∈N, (yn)n∈N ⊆ BX such that

lim
n∈N

(2‖xn‖
2 + 2‖yn‖

2 − ‖xn + yn‖
2) = 0,

by a standard convexity argument (see [DGZ93, Fact II.2.3]) we have for every
k,m ∈ N

lim
n∈N

(2‖xn‖
2
k,m + 2‖yn‖

2
k,m − ‖xn + yn‖

2
k,m) = 0.

Consider (nk)k∈N ⊆ N such that (xnk
)k∈N and (ynk

)k∈N are subsequence, and put
z1k = xnk

and w1
k = ynk

. We will construct a converging subsequence proceeding
by induction:

(m = 1) We know that there exists h1 such that z1k ∈ B
1/4
h1

∩
⋃
Hh1,1/4 frequently.

From the condition

lim
k∈N

(2
∥∥z1k
∥∥2
h1,1/4

+ 2
∥∥w1

k

∥∥2
h1,1/4

−
∥∥z1k + w1

k

∥∥2
h1,1/4

) = 0,

follows that there exists a sequence of open half-spaces {H
δ1/4
k }n∈N ⊆ Hh1,1/4

such that frequently we have

z1k, w
1
k ∈ conv(A ∩ (H

δ1/4
k − δ1/4)) + B(0, 1/2);

this means that there exists (kl)l∈N ⊆ N such that

∥∥z1kl − w1
kl

∥∥ < 1

4
+

1

2
=

3

4
.

In order to proceed by induction define z2l−1 = z1kl and w
2
l−1 = w1

kl
for every

l ≥ 2.

(m (m+ 1)) Using induction we obtain the sequences (zmk )k∈N and (wm
k )k∈N.

We know that there exists hm such that zmk ∈ B
1/(m+1)2

h1
∩
⋃

Hhm,1/(m+1)2

frequently. From the condition

lim
k∈N

(2‖zmk ‖2hm,1/(m+1)2 + 2‖wm
k ‖2hm,1/(m+1)2 − ‖zmk + wm

k ‖2h1,1/(m+1)2) = 0,

follows that there exists a sequence of open half-spaces {H
δ1/(m+1)2

k }n∈N ⊆
Hhm,1/(m+1)2 such that frequently we have

zmk , w
m
k ∈ conv(A ∩ (H

δ1/(m+1)2

k − δ1/(m+1)2 )) + B(0, 1/(m + 1));
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this means that there exists (kl)l∈N ⊆ N such that

∥∥zmkl − wm
kl

∥∥ < 1

(m+ 1)2
+

1

m+ 1
=

m+ 2

(m+ 1)2
.

In order to proceed by induction define zm+1
l−m = zmkl and wm+1

l−m = wm
kl

for
every l ≥ m+ 1.

Consider now the diagonal subsequences (zmm)m∈N and (wm
m)m∈N and observe that

lim
m∈N

‖zmm − wm
m‖ = 0.

Thus every subsequence of (xn − yn)n∈N admits a subsequence which converge in
norm to zero, then

lim
n∈N

‖xn − yn‖ = 0.
�

Since the beginning we have worked a lot with cover of the unit sphere in
order to obtain equivalent norms; the following result goes in this direction.

Lemma 4.5 Let X a normed space and ε > 0. If there exists a family H of
open half-spaces which cover the unit sphere such that there exists θ ∈ (0, ε)
with

diam(BX ∩(H − θ)) < ε,

then there exists an equivalent norm ‖·‖H such that the condition

lim
n∈N

(2‖xn‖
2
H + 2‖yn‖

2
H − ‖xn + yn‖

2
H) = 0

implies that ‖xn − yn‖ ≤ 2ε for n ∈ N big enough, (xn)n∈N ⊆ BX and
(yn)n∈N ⊆ SX .

Proof If we apply theorem 4.3 with SX ⊆ BX and the family H, we obtain an
equivalent norm ‖·‖H such that the condition

lim
n∈N

(2‖xn‖
2
H + 2‖yn‖

2
H − ‖xn + yn‖

2
H) = 0

implies that for every η > 0 if (yn)n∈N ⊆ SX definitively then there exists {Hη
n} ⊆

H such that for every δ > η

xn, yn ∈ conv(SX ∩(Hη
n − η)) + B(0, δ),

definitively. Fix ε > 0 and consider the θ given from the hypothesis, we know that

lim
n∈N

(2‖xn‖
2
H + 2‖yn‖

2
H − ‖xn + yn‖

2
H) = 0

implies that there exists {Hθ
n} ⊆ H such that

xn, yn ∈ conv(SX ∩(Hθ
n − θ)) + B(0, ε),

definitively. So we have that ‖xn − yn‖ ≤ 2ε definitively. �
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We obtain the following characterization.

Theorem 4.6 Let X a normed space. X admits an equivalent uniformly
rotund norm if, and only if, there exists an equivalent norm ‖·‖U such that
for every ε > 0 there exists a family Hε of open half-spaces which covers the
sphere SU = {x ∈ X | ‖x‖U = 1}, such that there exists θε ∈ (0, ε) with

diam((H − θε) ∩ {x ∈ X | ‖x‖U ≤ 1}) < ε

for every H ∈ Hε.

Proof For every k ∈ N we apply the preceding lemma for the family H1/k, ob-
taining a norm ‖·‖k such that the condition

lim
n∈N

(2‖xn‖
2
k + 2‖yn‖

2
k − ‖xn + yn‖

2
k) = 0

implies ‖xn − yn‖ ≤ 2/k for n ∈ N big enough, (xn)n∈N ⊆ BX and (yn)n∈N ⊆ SX .
So by a standard convexity argument (see [DGZ93, Fact II.2.3]) the norm

‖x‖2 =
∑

k∈N

ck‖x‖
2
k,

where the constant ck are chosen in order to guarantee the convergence of the
series on bounded subset, is the norm we were looking for. �



Chapter 5

Conclusion and open problems

In connection with descriptive properties, let us remind that, for a descriptive
Banach space with respect to the w-topology, the weak Borel sets coincide
with the norm Borel sets (see [Han01] and [Onc00]). Based on a sophisticated
construction of Todorčević [Tod05], Marciszewki and Pol have proved that it
is consistent the existence of a compact scattered space K such that in the
function space C (K) each norm open set is an Fσ-set with respect to the
w-topology, while the identity map

Id : (C (K), w) −→ (C (K), ‖·‖∞)

is not σ-continuous, see [MP09]. Descriptive Banach spaces are Souslin sets
built by σ(X∗∗, X∗) open or closed subsets of their biduals. Spaces in this
class are called weakly Čech analytic and are exactly the ones that can be
represented with a Souslin scheme of Borel subsets in their σ(X∗∗, X∗) bidu-
als. The fact that every weakly Čech analytic Banach space is σ-fragmented
is the main result in [JNR93]. The reverse implications is an open question,
that is considered in [JNR92a] and [JNR92b]. We recall here the following.

Problem 5.1 Is there any gap between the class of descriptive Banach
spaces, with respect to the w-topology, and the class of the σ-fragmented
Banach spaces?

After the seminal paper of R. Hansell [Han01] we know that a covering prop-
erty on the w-topology of a Banach space, known as hereditarely weakly
θ-refinability, is a necessary and sufficient condition for that classes to coin-
cide. Indeed, all known normed spaces which are not weakly θ-refinable are
not σ-fragmentable by the norm (see [DJP97] and [DJP06]). For spaces of
continuous functions on trees, Haydon has proved that there is no gap be-
tween σ-fragmented and the pointwise Kadec renormability property of the
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space (see [Hay99]). We can consider a particular case of the former question
as follows. For this question Hansell conjectures a positive answer:

Problem 5.2 LetX a weakly Čech analytic Banach space where every norm
open set is a countable union of sets which are differences of w-closed sets.
Does it follow that the identity map Id : (X,w) → (X, ‖·‖) is σ-continuous?

In the special case when the Banach space X enjoys the Radon-Nikodým
property, i.e every bounded closed convex subset of X has slices of arbitrarily
small diameter, it is still an open problem to decide whether X has even an
equivalent rotund norm or not. In that case, by the results in [MOTV00],
the LUR renormability reduces to the question of Kadec renormability. So
we summarize here.

Problem 5.3 If the Banach space X enjoys the Radon-Nikodým property,
does it follow that X has an equivalent Kadec norm? Does it have an equiv-
alent rotund norm?

Let us remark here that Yost and Plicko in [PY01] proved that the Radon-
Nikodým property does not imply the separable complementation property.
Thus it is not possible any approach to the former question based on the
projectional resolution of the identity; at the contrary, such an approch works
for the dual case, as in [FG88].

Our previous results, as well as those in [OST12], suggest the following
open question.

Problem 5.4 Is it true that a dual Banach space X∗ admits an equivalent
dual norm if, and only if, BX∗ enjoys (*) with respect to the w∗-topology?

Following our construnction, such a question can be answered in the affer-
mative if it possible to adapt lemma 3.4, in order to work without covers.
Finally a positive answer to the following question would be in interesting.

Problem 5.5 Let X a normed space with the separable complementation
property. Is it true that, if dens(X) ≤ ℵ1, then X admits an equivalent
rotund norm?
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