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Abstract

Background: Albeit several studies pointed out the pivotal role that CD4+T cells have in Multiple Sclerosis, the CD8+ T cells
involvement in the pathology is still in its early phases of investigation. Proteasome degradation is the key step in the
production of MHC class I-restricted epitopes and therefore its activity could be an important element in the activation and
regulation of autoreactive CD8+ T cells in Multiple Sclerosis.

Methodology/Principal Findings: Immunoproteasomes and PA28-ab regulator are present in MS affected brain area and
accumulated in plaques. They are expressed in cell types supposed to be involved in MS development such as neurons,
endothelial cells, oligodendrocytes, macrophages/macroglia and lymphocytes. Furthermore, in a genetic study on 1262
Italian MS cases and 845 controls we observed that HLA-A*02+ female subjects carrying the immunoproteasome LMP2
codon 60HH variant have a reduced risk to develop MS. Accordingly, immunoproteasomes carrying the LMP2 60H allele
produce in vitro a lower amount of the HLA-A*0201 restricted immunodominant epitope MBP111–119.

Conclusion/Significance: The immunoproteasome LMP2 60HH variant reduces the risk to develop MS amongst Italian HLA-
A*02+ females. We propose that such an effect is mediated by the altered proteasome-dependent production of a specific
MBP epitope presented on the MHC class I. Our observations thereby support the hypothesis of an involvement of
immunoproteasome in the MS pathogenesis.
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Introduction

Multiple Sclerosis (MS) is the most common autoimmune

disorder of the central nervous system (CNS). It is characterized by

multifocal areas of demyelization (plaques), chronic inflammation

and damage to oligodendrocytes and neurons. The cause of MS is

still unknown and disease pathways are poorly understood.

However, the association of HLA-DRB1*15 and other HLA class

I (e.g. HLA-A*02 and HLA-A*03) and class II alleles, the presence

of autoreactive T lymphocytes together with other inflammatory

cells and cytokines in active MS lesions suggest an autoimmune

pathogenesis. Accordingly, the experimental autoimmune enceph-

alomyelitis (EAE), a classical mouse model for MS, can be induced

by the administration of myelin antigens or CD4+ and CD8+ T

lymphocytes specific for those antigens [1,2,3]. On the basis of

recent results on EAE, it has been proposed that the first bout of
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the disease is mediated by CD8+ T cells while the first relapse and

further disease are mediated by CD4+ T cells through different

mechanisms such as antigen release and epitope spreading [4].

The antigen bound on Major Histocompatibility Complex class

I (MHC-I) and presented to the T cell receptor (TCR) of CD8+ T

cells, is normally produced by proteasomes. One of the

proteasome isoforms, known as immunoproteasome, enhances

the generation of specific antigenic epitopes [5] and its role in

neurodegenerative diseases has recently been described [6,7].

Immunoproteasome differs from the constitutive proteasome by

the b subunits with catalytic activity [b1, b2, b5 into constitutive

proteasome and Low Molecular Mass Polypeptide 2 (LMP2),

Multicatalytic Endopeptidase Complex Subunit (MECL-1) and

LMP7 into immunoproteasome] [5]. Immunoproteasome assem-

bly can be induced by IFN-c, which also stimulates the expression

of proteasome activator-ab (PA28-ab). This regulatory complex

binds to the end of the 20S proteasome core, increasing the

cleavage rate in an ATP-independent manner and affecting the

quality of protein digestion [5,8]. Moreover, a role for immuno-

proteasomes has been suggested in some autoimmune diseases

such as ankylosing spondylitis and psoriasis because of the

association of a polymorphism of its LMP2 subunit to the those

pathologies [9,10,11]. This particular polymorphism is a non-

conservative nucleotide base pair change at amino acid position 60

(in exon 3), resulting in two alleles, arginine (R) or histidine (H). It

modifies the susceptibility of peripheral blood mononuclear cells to

TNF-a induced-apoptosis in elderly donors [12], as well as the

proteasome activity in brain protein extracts from Alzheimer

patients and non-demented elderly [7].

In this study, we investigated the presence of immunoprotea-

some in the CNS of MS patients and whether its LMP2

polymorphism might be involved in MS onset. The data we

obtained indicates that immunoproteasomes and PA28-ab
regulator are present in MS CNS and that the LMP2 60HH

genotype impinges upon MS, likely in part by reducing the

production of a specific HLA-A*02 restricted Myelin Basic Protein

epitope (MBP111–119) implicated in MS pathology [13,14,15] as

shown in in vitro assays and in the presence of PA28-ab.

Furthermore, these results add further evidences on the complex

role of HLA-A*02 allele in the pathogenesis of this disease.

Materials and Methods

The Ethics Committees of the University of Bologna, Florence,

Empoli, Milan and Eastern Piedmont approved this study. An

informed written consent to participate in this study was obtained

from all participants.

Patients and Controls
Two independent MS populations were genotyped and

compared to a common Italian control population. The samples

consisted of: i. 694 MS patients (mean age: 38.8+/211.7 years) for

the first MS population consecutively referred to the Department

of Neurology of the University of Florence, the Hospital of Empoli,

the University of Eastern Piedmont (Novara); ii. 568 MS patients

(mean age: 43.4+/212.4 years) for the second MS population

referred to the Institute of Experimental Neurology and

Department of Neurology - San Raffaele Scientific Institute

(Milan) and the IRCCS Fondazione Ospedale Maggiore Policli-

nico (Milan). The two independent samples were compared to a

population of 845 age- and area-matched controls (mean age:

37.8+/212.9 years) and then grouped providing a total MS

sample of 1262 patients (mean age: 41.6+/212.3). Inclusion

criteria were a definite diagnosis of MS [16], age $18 years and

written informed consent. All controls were carefully assessed to

exclude diagnosis of inflammatory disorders. DNA was extracted

from peripheral blood of controls and MS patients as previously

described [12].

Materials and Chemicals
Fetal calf serum and RPMI 1640 medium were from Biowhit-

taker (Belgium). The restriction enzymes were from MBI

Fermentas (Latvia). The peptide MBP102–109 (seq. 102–129 of

the human classical Myelin Basic Protein (MBP) isoform 5) has the

following sequence: PSQGKGRGLSLSRFSWGAEGQRPGF-

GYG-CONH2 term. In bold the sequence of the analyzed epitope

MBP111–119, HLA-A*0201 restricted, detected in MS patient

blood and believed to be involved in MS [13,14,15]. The epitope

(ELA)-MART126–35 used in comparison with MBP111–119 has the

following sequence: ELAGIGILTV-COOH term [17]. All

peptides have been synthesized by Dr. P. Henklein (Institute of

Biochemistry, Medical Faculty Charité, Berlin, Germany).

Immunohistochemistry (IHC)
In the present study we described ‘‘immunoproteasomes’’ as any

iso-form of proteasome that contains immunosubunits, thereby

also including intermediate-types [18,19]. IHC assays were

performed on parietal lobes and rostral medulla (with MS plaques)

of three MS patients (2 males, 37 and 49 years old; 1 female, 49

years old) and two young controls (females, 21 and 42 years old),

provided by the Department of Hematology and Oncology, ‘‘L.

and A. Seragnoli’’ Section of Anatomic Pathology, University of

Bologna at Bellaria Hospital, Bologna, Italy. The IHC showed in

Figure 1, 2 and 3 referred to autopsy samples derived from MS

and control donors (respectively 49 and 42 years old) died by lung

embolus and gastric hemorrhage, respectively. Both autopsies

were carried out after 24 h from the death and almost all brain was

included for histological examination and diagnostic definition of

the disease. For the present study we selected brain areas carrying

the histopathological features of active chronic plaques. These

plaques, included for our immunohistochemical examination,

were characterized by area of myelin reduction containing

numerous macrophages with clear and foamy cytoplasm, positive

with acid periodic Schiff staining (PAS) after diastase digestion.

The same macrophages contained myelin degradation products,

which reacted with the Luxol Fast Blue (LFB) staining and were

mainly located in the peripheral part of the plaque as previously

described [20]. The presence of macrophages and microglial cells

has been evidenced by anti-CD68 immunostaining. In addition

small venules, surrounded by mature lymphocytes, were present

within the plaques. The lymphocyte population, characterized at

the time of the diagnosis, consisted mainly of mature T cells, CD8

positive. The other MS and controls samples were biopsies

obtained during surgery to investigate the presence of possible

cancers. In the brain of subjects classified as MS patients

characteristic MS lesions, were identified, instead of cancer

markers; in contrast, neither cancer nor MS plaques were

observed in the control sample.

Immunostaining was performed as previously described [7]

adopting a dilution 1:100 of LMP2 and 1:50 of LMP7 antibodies

(Abs) (Affinity- Biomol International, Plymouth Meeting, PA,

USA). In addition, mouse monoclonal Ab to human 20S

proteasome subunit a4 (diluted 1:25; Affinity- Biomol Interna-

tional, Plymouth Meeting, PA, USA) and rabbit polyclonal PA28a
(diluted 1:50; Affinity- Biomol International, Plymouth Meeting,

PA, USA) were used. Double stainings with Abs anti-LMP2 and

anti-CD68 (Dako, Carpintera, CA, USA, diluted 1:150, clone

KP1 that recognizes macrophages/microglial cells), anti LMP2

LMP2 60HH Variant in MS
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and anti-CD45RB (Dako, Carpintera, CA, USA, diluted 1:600;

Abs from clones 2B11 + PD7\26 that recognizes antigens clustered

as CD45RB specific for mature lymphocytes) were performed to

identify microglia/macrophages or to distinguish between oligo-

dendrocytes and lymphocytes. In addition, oligodendrocytes

identification was also carried out by double immunostaining with

anti-LMP2 and anti-Olig2 (Chemicon, Billerica, MA, USA; dilution

1:300; polyclonal rabbit that recognizes the transcription factor

Olig2 [21] specific for oligodendrocytes) as well as anti-PA28-a and

anti-Olig2. Double immunostainings with anti-LMP2 and anti-

CD45RB or anti-CD68 were performed according to the following

procedure: after biotinylated goat anti-polyvalent, two types of

streptavidin were used, the first conjugated with peroxidase (Lab

VISION Ultra vision Large Detection System Anti-polyvalent

HRP, Fremont, CA, USA) and the second with alkaline

phosphatase (DakoCytomation ChemMate Detectin Kit, Alkaline

Phosphatase/RED, Rabbit/Mouse K5005, Carpintera, CA, USA)

and two different chromogens: 3,39-diaminobenzidine (Dako Liquid

DAB-substrate- Chromogen system K3468, Carpintera, CA, USA)

for streptavidin peroxidase and the fast red Working solution

(CHROM) (Dako, Carpintera, CA, USA) for alkaline phosphatase.

Double immunostainings with anti-LMP2/anti-Olig2 and with

anti-PA28-a/anti-Olig2 were performed following the previous

procedure but employing as second chromogen Perma\Blue AP

Chromogen (Diagnostic Biosystems, Pleasonton, CA, USA) for

alkaline phosphatase.

Cell Cultures
Lymphoblastoid cell lines (LcLs) are human B lymphocytes

immortalized with Epstein Barr virus (EBV) which mainly express

immunoproteasomes, as previously reported [22]. T2 cell line is a

human T cell leukemia/B cell line hybrid defective in TAP1/

TAP2 and LMP2/LMP7 subunits and expressing the HLA-

A*0201 allele [23]. LcLs and T2 cell lines were cultured in

RPMI1640 medium supplemented with 10% FCS.

Isolation of DNA from LcLs and Genotyping of Patients,
Controls and LcLs

DNA from LcLs was collected from 15*106 cells using TRIZOL

reagent (Life Technologies, Paisley, UK) as previously reported [22].

DNA from donors for the genetic study was obtained from peripheral

blood and genotyped for LMP2 codon 60 polymorphism, HLA-A*02

and HLA-DRB1*15 alleles. LMP2 genotyping was performed using

standard PCR methods and DNA enzymatic digestions as previously

described [12]. Genotyping for HLA-A*02 and HLA-DRB1*15 was

performed by PCR-SSP analysis; as internal controls, regions of

330 bp of b2 microglobulin and 520 bp of MOG (Myelin

Oligodendrocyte Glycoprotein) promoter were amplified.

20S Proteasome and PA28-ab Purifications
PA28-ab and 20S proteasomes were purified from 9 LcLs

(genotyped for LMP2 codon 60 polymorphism) as previously

Figure 1. LMP2 subunit and PA28-ab are expressed in CNS cortex and white matter of MS but not of young controls. Example of
cortex (A, C) and plaque into white matter (B, D) of MS parietal lobe, stained with anti-LMP2 (A, B) and anti-PA28-a (C, D) Abs are shown. Different cell
types, positive to the staining, are marked as following: 1. neurons; 2. luminal endothelial cells; 3. astrocytes; 4. oligodendrocytes (putative). Example
of a parietal lobe cortex (E, G) and white matter (F, H) of young control stained with anti-LMP2 (E, F) and anti-PA28-a (G, H) Abs, which bind only
luminal endothelial cells (see arrow). In (I) and (L) example of a parietal lobe white matter of a MS patient stained with anti-b1 and anti-a4 Abs are
shown, respectively. As expected, all cells are positive to both stainings. The representative samples here reported derived from gender- and age-
matched MS and control samples. A, C, D, F, G, H, I scale bars = 50 mm; B, E, L scale bars = 25 mm.
doi:10.1371/journal.pone.0009287.g001

LMP2 60HH Variant in MS
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described [8]. The final step of the PA28-ab purification was the

fractioning by chromatography on a phenylsepharose column of

pooled material obtained from all the LCLs. Isolated PA28-ab
stimulated proteasomal activity on Suc-LLVY-MCA substrate up

to five-fold and no activity was observed in controls without 20S

proteasome testifying the absence of protease contamination in the

PA28-ab preparation. Final purified PA28-ab was tested on SDS-

PAGE and stained with Comassie-Blue.

Digestion of Long Substrates, Epitope Detection and
Their Quantification by Mass Spectrometry

The digestion of the synthetic peptide MBP102–129 by purified

20S proteasomes+/2PA28-ab was performed in Hepes buffer in

different condition. In particular, to examine the effects of LMP2

polymorphism on MBP102–129 degradation, 20 mg MBP102–129

peptide was dissolved in 100 ml buffer-1 (20 mM Hepes pH 7.8,

2 mM MgAcetate, 1 mM dithiothreitol) and incubated with

0.5 mg 20S proteasome or dissolved in 100 ml buffer-2 (20 mM

Hepes pH 7.8, 1 mM dithiothreitol) and incubated with 0.25 mg

20S proteasome+3 ml PA28-ab. To examine the effects of PA28-

ab on MBP102–129 degradation, 20 mg MBP102–129 was incubated

with 0.25 mg 20S proteasome+/23 ml PA28-ab. Digestions were

stopped by acidic inactivation and samples frozen. Samples were

analyzed by mass spectrometry as previously described [22].

Briefly, they were quantified by C18 reversed phase HPLC

(HP1100, Agilent) followed by an ESI-MS analyses performed

online with a LCQ ion trap mass spectrometer (Thermo Fisher).

Peptides were identified by their molecular masses calculated from

the m/z peaks of the single or multiple charged ions and were

confirmed by tandem mass spectrometry sequencing analyses. To

test the absence of protease contamination in the PA28-ab
preparation, the substrate MBP102–129 was digested in the usual

Figure 2. LMP2 subunit is accumulated in MS plaques. (A)
Cortex, white matter and plaque of MS parietal lobe stained with anti-
LMP2 Ab; an increase of cells expressing LMP2 in the plaque emerges.
(B) In control parietal lobe, cortex and white matter marked with anti-
LMP2 Ab show a detectable staining only in luminal endothelial cells.
The labeling with anti-b1 Ab of the same MS (C) and control (D) brain
area do not show any difference neither between MS and control nor
between grey and white matters. (E) Rostral medulla, with MS plaque
into inferior olivar nucleus (arrow), stained with anti-LMP2 Ab, which
mainly binds the MS plaque. The representative samples here reported
derived from gender- and age-matched MS and control samples. A-D
scale bars = 300 mm; E scale bar = 3 mm.
doi:10.1371/journal.pone.0009287.g002

Figure 3. LMP2 subunit and PA28-ab are expressed in different
cell types, including oligodendrocytes, macrophages and
microglial cells in MS brains. A) To discriminate among oligoden-
drocytes and lymphocytes, we performed a double staining with anti-
LMP2 (brown) and anti- CD45RB (red) Abs in parietal lobe of MS brains.
Many oligodendrocytes (only brown stained; marked with 1) and
lymphocytes (brown and red stained; marked with 2) are visible. B)
Oligodendrocyte identification was confirmed by staining the same
area with anti-LMP2 (brown) and anti-Olig2 (blue) Abs and observing a
clear labeling of oligodendrocytes for both Olig2 and LMP2 (marked by
arrow). C) Oligodendrocytes (marked by arrow) express also PA28-ab as
emerged by the double staining of MS parietal lobe with anti-PA28-a
(blue) and anti-Olig2 (brown). A double staining for LMP2 (brown) and
CD68 (red) verified that microglia/macrophages (marked with arrows)
express the immunoproteasome subunit in parenchyma (D) and
perivascular (E) parietal lobe of MS brains. F) Microglia/macrophages
(marked with arrows) also express PA28-ab as revealed by the double
staining with anti-PA28-a (blue) and anti-CD68 (brown) Abs. A, E scale
bars = 25 mm; B, C scale bars = 10 mm. D, F scale bars = 50 mm.
doi:10.1371/journal.pone.0009287.g003

LMP2 60HH Variant in MS
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digestion solution without 20S proteasomes for 60 mins and no

detectable degradation of the substrate was observed. Moreover,

when 20S proteasomes were inhibited by MG132 (final concen-

tration of 5 mM) no substrate degradation was observed,

confirming the absence of other proteases in the 20S proteasome

preparation. The impact of LMP2 R60H polymorphism on

MBP102–129 degradation was tested computing the degradation

rate constant (K1) in a reaction of first order. The Specific

Production (SP) of the fragments 10–18 (MBP111–119 epitope) by

20S immunoproteasomes +/2 PA28-ab carrying different LMP2

60 variants was computed as following: (fragment signal)/(signal of

substrate degraded) multiplied for a factor of 1000 (to facilitate the

comparison by readers). The SP provided de facto an estimation of

the epitope produced per digested substrate based on the mass

spectrometry signal. Only peptide signals in samples with similar

substrate degradation and less than 50% of substrate consumption

were compared to minimize errors during peptide quantification

and the re-entry of products in the proteasome core, consequently

obtaining epitope SP by 20S proteasomes carrying different LMP2

codon 60 variants at different percentage of substrate degraded

(,25%, between 25% and 35%, between 35% and 50%).

Flow Cytometric Analysis of the Binding Affinity of
Epitopes-HLA-A*0201

T2 cells (36105 cells/ml) were incubated with various concen-

trations of peptides MBP111–119 or (ELA)-MART126–35 (100–

0,1 mg/ml) in serum-free RPMI 1640 medium for 16h. After-

wards, cells were washed and incubated with anti-HLA-A*02 Ab-

FITC and the HLA-A*02 stabilization on cell surface by bound

epitope was measured by flow cytometer FACScalibur. Net

fluorescence reported in Fig. S1 was computed by subtraction of

fluorescence detected in control samples (with Ab and without

peptides).

Statistical Analyses
Statistical analyses of in vitro digestion data were performed

using the tests of Monte Carlo Anova to evaluate the effect of

LMP2 R60H polymorphism, t-student for independent samples to

evaluate the effect of LMP2 60H allele and Mann-Whitney test to

evaluate the effect of PA28-ab. To compare mass spectrometry

values obtained from different experiments, mass spectrometry

signals were standardized within each degradation set and then

compared. In each data set, homogeneity of variance was checked

by Levene’s test. Comparisons of genetic distributions were

assessed by Monte Carlo Pearson x2 test. Investigation of MS

onset age was performed with Monte Carlo Anova test. Hardy

Weinberg equilibrium was tested using the Pearson x2 test.

p,0.05 was considered statistically significant. All the analyses

were implemented using SPSS software. Pair-wise linkage

disequilibrium was evaluated by two linkage disequilibrium

parameters, Lewontin’s D2 [24] and r2 [25], which were both

calculated in haploview (http://www.broad.mit.edu/mpg/

haploview/) [26].

Results

Immunoproteasome Subunits Are Present in the CNS of
MS Patients (and Concentrated in MS Plaques) but Not of
Young Controls

Although the mechanisms of MS are still largely unknown, some

cell types seem to be involved in the pathogenesis of this disease.

Therefore, we first investigated if immunoproteasome and PA28-

ab subunits are expressed in MS CNS and in which cells. Grey

and white matters of parietal lobe from three MS patients and two

young controls were initially stained with Abs specific for

constitutive proteasome (b1), immunoproteasome (LMP2 &

LMP7) and PA28-a subunits. In the cortex (Fig. 1A) and in the

plaques of the white matter (Fig. 1B) of MS patients, LMP2 was

detected in different cell types. Similar results were obtained

staining the same area with Abs anti-LMP7 (data not shown) and

anti-PA28-a (Fig. 1C, D). In contrast, all stainings were negative

both in cortex and white matter of the same CNS area of young

controls except for luminal endothelial cells, which were positive to

anti-LMP2 (Fig. 1E, F) and anti-PA28-a (Fig. 1G, H) Abs. As

expected, proteasome b1 and a4 subunits were expressed in all cell

types, both in MS patients (Fig. 1I & L, respectively) and in young

controls (data not shown).

Moreover, LMP2 expression was predominant in MS plaques

(Fig. 2A) compared to pre-plaque white matter and cortex while in

the same CNS area of control only luminal endothelial cells were

stained (Fig. 2B). Otherwise, b1 subunit was equally distributed in

grey and white matter of MS (Fig. 2C) and control (Fig. 2D). Such

an accumulation of the immunoproteasome subunit in the plaque

area was even more evident in the rostral medulla of a MS patient

stained with Ab anti-LMP2, which mainly spotted the plaque into

inferior olivar nucleus, whereas other areas were weakly stained

(Fig. 2E).

Immunoproteasome and PA28-ab Subunits Are
Expressed in Different Cell Types in the CNS of MS
Patients

In the CNS areas affected by the disease, LMP2 and PA28-ab
were expressed in different cell types such as neurons, luminal

endothelial cells, astrocytes (Fig. 1A, C) and, in white matter

plaques, also in (putative) oligodendrocytes (Fig. 1B, D). To verify

that oligodendrocytes express LMP2 & PA28-ab and to

distinguish them from lymphocytes, we performed a double IHC

staining of MS parietal lobe slices using Abs anti-LMP2 (or anti-

PA28-a) and anti-CD45RB (marker of mature lymphocytes). As

shown in Figure 3A, lymphocytes present in white matter were

positive to anti-LMP2 and anti-CD45RB staining. In addition,

small rounded nuclei, positive to anti-LMP2 and negative to anti-

CD45RB Abs, corresponding to oligodendrocytes, were present.

This result was further confirmed by anti-LMP2 and anti-Olig2

labeling of the same MS brain area where oligodendrocytes were

positive to both LMP2 and the oligodendrocytes transcription

factor Olig2, while other cells were only stained for LMP2

(Fig. 3B). Similarly, PA28-ab was detected in oligodendrocytes,

positive to both anti-PA28-a and anti-Olig2 Abs (Fig. 3C).

Furthermore, we performed IHC double staining with Abs anti-

CD68 (marker of microglial cells and macrophages) and anti-

LMP2 (or anti-PA28-ab) in MS parietal lobe. Microglial cells and

macrophages expressed both CD68 and LMP2 (Fig. 3D, E) as well

as CD68 and PA28-ab (Fig. 3F), proving that immunoprotea-

somes were present in these cell types also in vivo and thus

extending the in vitro observations of Stohwasser and co-workers

[27].

The Immunodominant Epitope MBP111–119 Is Produced In
Vitro by Immunoproteasomes and PA28-ab Increases the
Efficiency of Its Production

To test the involvement of immunoproteasome and its LMP2

R60H polymorphism in MS we investigated one of the major

immunodominant self-epitopes detected in MS patient blood

[13,14,15], i.e. MBP111–119 (HLA-A*0201-restricted). This epitope

bound the MHC–I (HLA-A*0201) with a relative good affinity

LMP2 60HH Variant in MS
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(Fig. S1) and is present in both the classic and golli MBP. This an

important aspect because, as demonstrated in EAE, these two

MBP families can play different roles in central and peripheral

tolerance towards MBP-reactive CD8+ T cells [28,29].

The 28mer peptide (MBP102–129), which contains the epitope

MBP111–119, was digested in vitro by 20S immunoproteasomes in

presence or absence of PA28-ab, which is strongly implicated in

MHC-I antigen presentation by increasing the production of some

epitopes [30,31].

We observed that this regulatory complex increased the

degradation rate of MBP102–129 (Fig. 4A) as well as the MBP111–119

specific production (SP) (M-W U = 0; p = 0.002), as also indirectly

confirmed by the concomitant higher SP of the flanking peptide 1–9

( M-W U = 0; p = 0.002) (Fig. 4B).

LMP2 R60H Polymorphism Influences the Efficiency of
MBP111–119 Production by 20S Immunoproteasomes in
the Presence of PA28-ab

To investigate the impact of the LMP2 R60H polymorphism on

the production of the epitope MBP111–119, we performed in vitro

digestions of the substrate MBP102–129 by 20S immunoprotea-

somes (with or without PA28-ab) purified from 9 LcLs carrying

different LMP2 R60H variants. The epitope SP in the presence of

PA28-ab was associated with the LMP2 R60H polymorphism

(F = 15.49; p = 0.004) and was significantly lower (a decrease of

28.8%) in LMP2 H-carriers (t = 8.08; p,0.001) when less than the

25% of the substrate was consumed (Fig. 4C). Such a result was

confirmed by a decreased epitope SP of 28.5% and 21.72% when

25–35% (t = 2.97; p = 0.021) or 35–50% (t = 4.75; p = 0.002) of

substrate was consumed, respectively. Such an association of the

LMP2 R60H polymorphism with the epitope SP was not detected

in the absence of PA28-ab (F = 0.306; p = 0.747, e.g., with 25–35%

substrate consumed) and, accordingly, it was similar between

LMP2 H-carriers and H-not-carriers when less than 25%

(t = 20.47; p = 0.962), 25–35% (t = 20.77; p = 0.462) and 35–

50% (t = 0.35; p = 0.744) of the substrate was consumed (Fig. 4D).

Although LMP2 polymorphism influenced the epitope SP, it did

not impinge upon the MBP102–129 degradation rate either in the

absence [22] or in the presence of PA28-ab as described by the

comparison of the degradation rate constants K1 (Fig. 4E)

(F = 0.206; p = 0.820).

Figure 4. 20S immunoproteasomes (+ PA28-ab) carrying LMP2 60H allele have a lower SP of the MBP111–119 epitope. (A) Chart shows
the time-dependent kinetics of MBP102–129 degradation increased in presence of PA28-ab. (B) Specific production (SP) [expressed as: (peptide signal/
consumed substrate signal)*1000] of the MBP111–119 epitope (peptide 10–18 of MBP102–129) and of the two flanking peptides 1–9 and 19–28 in
absence or presence of PA28-ab. The values are the average of the SPs measured at different time points. (C) In presence of PA28-ab, H-carrier 20S
immunoproteasomes have a significant lower epitope SP in all three selected ranges of substrate consumption. No significant difference emerged, on
the contrary, in absence of PA28-ab (D). (E) The similar rate constant K1 of MBP102–129 digestion by 20S immunoproteasomes (in presence of PA28-ab)
carrying the three LMP2 codon 60 variants. All values are given as mean+S.E.M. Statistical significance (p,0.05) is marked with *.
doi:10.1371/journal.pone.0009287.g004
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LMP2 60HH Variant Decreases the Risk to Develop MS in
HLA-A*02+ Female Population

As in vitro experiments showed that LMP2 60H allele decreases

the production of the HLA-A*02-restricted MBP111-119 epitope we

performed a genetic population study to test its possible impact on

MS onset. We genotyped two independent samples of 694 and 598

MS patients as well as 845 geographically- and age-matched

controls for LMP2 R60H, HLA-A*02 and HLA-DRB1*15 alleles,

considering their gender. The impact of an alteration of MBP111-

119 production on MS pathogenesis should be evident in patients

able to present such an epitope on HLA-A*02 MHC-I variant.

Accordingly, we compared the LMP2 R60H distribution in HLA-

A*02 positive MS patients and control subjects. Both MS

population showed the same genetic behavior (Table S1 & S2),

hence we grouped them in a MS Italian population of 1262

patients and compared them to the control sample (Table 1). A

significant decrease in LMP2 60HH frequency emerged in female

MS patients carrying the HLA-A*02 allele (e.g. LMP2 60HH vs

RR: p = 0.005; OR = 0.443; 95% CI = 0.249 – 0.790) (Table 2)

but not in HLA-A*02-positive male MS patients (Table 3) nor in

HLA-A*02-negative female and male MS patients (data not

shown). In female controls LMP2 60H was not in linkage

disequilibrium (LD) neither with HLA-DRB1*15 (D’ = 0.02; r2

, 0.001; p . 0.05) nor with HLA-A*02 (D’ = 0.03; r2 = 0.001; p

. 0.05). Both MS and control populations were in Hardy-

Weinberg equilibrium for LMP2 codon 60 polymorphism (data

not shown). Furthermore, HLA-A*02 allele was a protective factor

against MS (p = 0.001; OR = 0.671; 95% CI = 0.529 - 0.851)

while HLA-DRB1*15 allele was a risk factor (p , 0.001; OR =

2.525; 95% CI = 1.801 - 3.754) (data not shown), as already

reported in the Italian population too [3,32,33,34,35]. No effects

on the MS onset age exerted by LMP2 polymorphism in HLA-

A*02-positive female MS population (Table 4) and by HLA-A*02

in the total MS population was observed (Table 5).

Discussion

The observed gender-dependency of the genetic association is

consistent with other studies describing a gender dimorphism in

cytokine response towards myelin antigens and a hormonal

regulation of the immune system in MS [36,37,38]. LMP2 R60H

polymorphism association is gender- (male-) dependent in another

autoimmune disease, i.e. dermal psoriasis [9]. The bulk of these

indirect observations suggest a connection between LMP2 codon 60

polymorphism, immunoproteasome activity and gender in immu-

nological dysfunctions. Despite the scarcity of experimental

evidences we might speculate that the cytokines responses towards

MHC-I myelin epitopes (as demonstrated for the MHC-II [38]) is

altered by gender, generating a scenario in which the influence of

the LMP2 R60H polymorphism on specific myelin epitopes might

Table 1. Gender distribution in Italian MS and control
populations. Values in brackets in distribution column are
percentages. The Italian MS population described in this table
is the result of sum of two independent Italian MS samples
reciprocally in accordance (see also Tables S1 & S2).

MS (n = 1262) control (n = 845)

male 413 (32.7) 437 (51.7)

female 849 (67.3) 408 (48.3)

doi:10.1371/journal.pone.0009287.t001

Table 2. LMP2 60HH variant decreases the risk to develop MS
in HLA-A*02 carrier female population. Values in brackets in
distribution column are percentages. Statistical results are
reported for each genetic analysis. The Italian MS female
population described in this table is the result of sum of two
independent Italian MS samples reciprocally in accordance
(see also Tables S1 & S2).

Genotype MS (n = 337) control (n = 202) p OR (95% CI)

HH 26 (7.7) 32 (15.8)

RH 146 (43.3) 80 (39.6) 0.013

RR 165 (49.0) 90 (44.6)

HH vs RR 0.005 0.443 (0.249–0.790)

HH vs RH 0.006 0.445 (0.248–0.799)

RH vs RR 0.981 0.995 (0.684–1.448)

Allele MS (n = 674) control (n = 404) p OR (95% CI)

H 198 (29.4) 144 (35.6) 0.032 0.840 (0.713–0.989)

R 476 (70.6) 260 (64.4)

doi:10.1371/journal.pone.0009287.t002

Table 3. LMP2 R60H distribution in HLA-A*02 carrier MS and
control male populations. Values in brackets in distribution
column are percentages. Statistical results are reported for
each genetic analysis. The Italian MS male population
described in this table is the result of sum of two independent
Italian MS samples reciprocally in accordance (see also Tables
S1 & S2).

Genotype MS (n = 178) control (n = 194) p OR (95% CI)

HH 18 (10.1) 21 (10.8)

RH 85 (47.8) 88 (45.4) 0.281

RR 75 (42.1) 85 (43.8)

HH vs RR 0.728 0.868 (0.389–1.933)

HH vs RH 0.948 1.026 (0.468–2.248)

RH vs RR 0.501 0.846 (0.518–1.379)

Allele MS (n = 356) control (n = 388) p OR (95% CI)

H 121 (34.0) 130 (33.5) 0.579 0.908 (0.646–1.276)

R 235 (66.0) 258 (66.5)

doi:10.1371/journal.pone.0009287.t003

Table 4. LMP2 R60H polymorphism and MS onset age in
HLA-A*02 carrier female MS population. Means and standard
deviations (SD) are reported. The Italian HLA-A*02 carrier
female MS population described in this table is the result of
sum of two independent Italian MS samples reciprocally in
accordance (see also Tables S1 & S2).

Genotype mean (years) SD p

HH 32.61 7.65 0.329

RH 29.48 9.65

RR 30.65 10.57

doi:10.1371/journal.pone.0009287.t004
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impinges upon the MS onset only in females. Indeed, the decreased

risk of female subjects carrying the HLA-A*02 allele and the LMP2

60HH variant to develop MS might be explained by the impact of

the LMP2 polymorphism on the generation of the HLA-A*02-

restricted epitope (MBP111–119) as well of other epitopes not

investigated in this study. Indeed, the decreased presentation of

this epitope on the MHC-I (HLA-A*02) complex of antigen

presenting cells or other cells involved in MS pathways could reduce

the probability to disrupt the physiological tolerance (central or

peripheral) of MBP-reactive CD8+ T cells and/or their cytotoxicity

towards oligodendrocytes thereby restraining the MS onset. We

showed that the main producers of myelin sheets, i.e. the

oligodendrocytes, as well as the macrophages/microglial cells,

which express PA28-ab [39] and golli MBP [40] during EAE, are

positive to LMP2 and PA28-ab staining in MS CNS (Fig. 3). In

oligodendrocytes, a decreased presentation mediated by the LMP2

60HH variant of MBP epitopes (e.g. MBP111–119) on HLA-A*02

MHC could attenuate the cytotoxic activity of MBP-reactive CD8+
T cells against their main cell targets. In macrophages/microglial

cells (Fig. 3), the lower presentation of these epitopes could restrain a

further clonal expansion of self-reactive CD8+ T cells, which has

been assumed as one of the key steps of MS development [1].

Taking into account that CNS endothelial cells express immuno-

proteasomes and PA28-ab (Fig. 1) as well as they can present MBP

in animal models [41,42,43], the LMP2 60HH-dependent altered

expression of the MBP epitopes (e.g. MBP111–119) might also affect

the blood-brain barrier (BBB) crossing. Indeed, it has been recently

proposed that, after priming, activated CD8+ T cells cross the BBB

by an antigen-specific interaction with cerebral endothelium [44].

Thus, endothelial cells carrying HLA-A*02 and LMP2 60HH

might lead to a decreased BBB crossing by MBP-reactive CD8+ T

cells during the early phases of neuroinflammation, affecting MS

development. Furthermore, LMP2 R60H polymorphism might

influence not only the mechanisms leading to MS that occur in CNS

but also the complex balance between central and peripheral

tolerance of MBP-restricted CD8+ T cells and thereby their

pathological activation in peripheral lymph nodes (e.g. cervical and

lumbal) by dendritic cells [1]. Indeed, these cells, which express

immunoproteasomes and PA28-ab at their mature stage [45], play

a key role in the thymic selection and in peripheral activation of

MBP-restricted CD8+ T cells by the presentation of endogenous

MBP on MHC-I [28,29]. As consequence, an alteration of the

amount of MBP epitopes (e.g. MBP111–119) presented on dendritic

cells due to the LMP2 polymorphism might affect the repertoire of

MBP-reactive CD8+ T cells and, thereby their eventual activation

during the early phases of MS onset.

Our investigation also addresses the complex role that HLA-

A*02 appears to have in MS. We observed a decreased risk to

develop MS in Italian female population carrying the HLA-A*02

allele, in agreement with other studies [32,33,46]. Although the

mechanisms are still unknown, HLA-A*02 variant in a specific

EAE model appeared to increase the negative selection of MBP-

reactive CD8+ thymocytes and to decrease the responsiveness of

MBP-reactive CD8+ T cells in periphery [4], thereby protecting

from EAE. Our results suggest that LMP2 60HH variant impinges

upon the likelihood to develop MS but only in HLA-A*02 carriers.

Likewise, LMP2 60H allele decreases the in vitro generation of the

MBP111–119 epitope by immunoproteasomes thereby suggesting

that this specific myelin epitope could play a pathogenetic role in

MS when presented on HLA-A*02 MHC. Accordingly, several

CD8+ T cells reactive to HLA-A*02 myelin epitopes have been

identified in peripheral blood of MS subjects [14]. In particular,

MBP111–119–reactive CD8+ T cells, which are increased three fold

in MS patients peripheral blood, are CD45RO+ memory T cells

secreting TNF-a and IFN-c after epitope challenging and are

cytotoxic towards antigen presenting cells and oligodendrocytes,

thus supporting the postulate that these CD8+ T cells could

contribute to the tissue injury in MS [13,15].

In conclusion, our data suggests that the presence of

immunoproteasomes in the CNS could be a marker of a

pathological scenario involving neuroinflammation (autoimmuni-

ty, neurodegeneration but also ageing) [6,7,47], therefore putting

immunoproteasome forward as potential candidate for future

therapeutic approaches [48,49,50,51,52].

Supporting Information

Figure S1 MBP111–119 binds the HLA-A*0201 complex with

relative good affinity. A) Comparison of the amount of HLA-

A*0201 complexes (marked with a FITC-Ab) presented on the

outer surface of T2 cells treated with 100 mg/ml MBP111–119 or

(ELA)-MART126–35 epitopes. In particular, signals of T2 cells are

reported: i. without FITC-Ab and epitope; ii. without epitopes and

with FITC-Ab; iii. with FITC-Ab and MBP111–119 epitope; iv.

with FITC-Ab and (ELA)-MART126–35 epitope. B) The chart

shows the binding affinity of the peptides for the MHC class I

complexes presented to the outer surface of T2 cells. The net

fluorescence is the fluorescence’s difference between the cells

incubated with and without the epitopes.

Found at: doi:10.1371/journal.pone.0009287.s001 (2.00 MB TIF)

Table S1 LMP2 60HH, HLA-A*02 and gender frequency in the

first investigated Italian MS population (n = 694) compared to age-

matched Italian control population (n = 845). (A) Gender distri-

bution in MS patients and control populations. (B) LMP2 R60H

polymorphism and allele distribution in MS and control HLA-

A*02 carrier populations, taking into account the gender. (C)

LMP2 R60H polymorphism and MS onset age in HLA-A*02-

positive female MS patients. Values in brackets in distribution

column are percentages. Statistical results are reported for each

genetic analysis.

Found at: doi:10.1371/journal.pone.0009287.s002 (0.14 MB

DOC)

Table S2 LMP2 60HH, HLA-A*02 and gender frequency in the

second investigated Italian MS population (n = 598) compared to

age-matched Italian control population (n = 845). (A) Gender

distribution in MS patients and control populations. (B) LMP2

R60H polymorphism and allele distribution in MS and control HLA-

A*02 carrier populations, taking into account the gender. (C) LMP2

R60H polymorphism and MS onset age in HLA-A*02-positive

female MS patients. Values in brackets in distribution column are

percentages. Statistical results are reported for each genetic analysis.

Found at: doi:10.1371/journal.pone.0009287.s003 (0.14 MB

DOC)

Table 5. MS onset age in HLA-A*02 carrier and not-carrier MS
populations. Means and standard deviations (SD) are
reported. The Italian MS population described in this table is
the result of sum of two independent Italian MS samples
reciprocally in accordance (see also Tables S1 & S2).

HLA-A* mean (years) SD p

02 not-carriers 31.11 10.79 0.206

02 carriers 30.27 10.21

doi:10.1371/journal.pone.0009287.t005
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