
J Autom Reasoning (2010) 44:371–399
DOI 10.1007/s10817-009-9160-7

BCDL: Basic Constructive Description Logic

Mauro Ferrari · Camillo Fiorentini · Guido Fiorino

Received: 27 March 2008 / Accepted: 30 November 2009 / Published online: 17 December 2009
© Springer Science + Business Media B.V. 2009

Abstract In this paper we present BCDL, a description logic based on information
terms semantics, which allows a constructive interpretation of ALC formulas. In the
paper we describe the information terms semantics, we define a natural deduction
calculus for BCDL and we show it is sound and complete. As a first application of
proof-theoretical properties of the calculus, we show how it fulfills the proofs-as-
programs paradigm. Finally, we discuss the role of generators, the main element
distinguishing our formalisation from the usual ones.

Keywords Description logics · Constructive logics · Natural deduction

1 Introduction

In Computer Science it often happens that the introduction of a classically based log-
ical system is followed by an analysis of its constructive or intuitionistic counterparts.
Indeed, if on the one hand the applicability of a logical system is often driven from

M. Ferrari
Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria,
Via Mazzini 5, 21100, Varese, Italy
e-mail: mauro.ferrari@uninsubria.it

C. Fiorentini (B)
Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano,
Via Comelico 39, 20135 Milan, Italy
e-mail: fiorenti@dsi.unimi.it

G. Fiorino
Dipartimento di Metodi Quantitativi per le Scienze Economiche Aziendali,
Università degli Studi di Milano-Bicocca, P.zza dell’Ateneo Nuovo 1, 20126 Milan, Italy
e-mail: guido.fiorino@unimib.it

372 M. Ferrari et al.

its classical semantics, a constructive analysis allows us to exploit the computational
properties of its formulas and proofs. In line with this consideration, one of the
reasons for the success of description logics as a knowledge representation formalism
is surely their simple classically-based semantics and only in recent works [5, 9, 15, 16]
different proposals of a constructive reinterpretation of description logics have been
motivated.

In this paper we introduce BCDL (Basic Constructive Description Logic) a descrip-
tion logic based on information terms semantics. This is a constructive semantics es-
sentially different from those considered in [5, 9, 15, 16]. Information terms semantics
follows the style of BHK (Brower-Heyting-Kolmogorov) constructive explanation
of logical connectives [22] and belongs to the family of valuation form semantics
introduced in [13], which has already been applied in several frameworks [6, 7, 11].
In general, information term semantics is a realizability semantics according to the
definition given in [10].

Informally, in our setting the truth of an ALC formula in a classical model must be
justified by a mathematical object we call information term. For instance, if we prove
that an individual c belongs to the concept ∃R.C, the information term associated
with ∃R.C provides the witness d such that d is an R-successor of c and recursively
justifies why d belongs to C.

There are several reasons to consider information term semantics interesting. First
of all, differently from other approaches, as the Kripke-style semantics proposed in
[5], in our setting the reading of logical connectives is the classical one. This means
that the intuition at the base of description logics applications is preserved.

The second important aspect is that our semantics admits a simple proof-
theoretical characterisation. In Section 5 we present a natural deduction calculus
NDc which is sound and complete with respect to the logical consequence relation
induced by information term semantics. As we discuss in Section 5, BCDL is essen-
tially inspired by Kuroda Logic [8, 21], the constructive first order logic obtained
by extending Intuitionistic first order logic with the axiom schema ∀x.¬¬A(x) →
¬¬∀x.A(x). The calculus NDc allows us to develop a proof-theoretical investigation
of the logic using the classical techniques of proof-theory. In particular we prove
that BCDL is constructive in the sense that it satisfies an appropriate reformulation
in the description logic context of disjunction property (DP) and explicit definability
property (EDP)1 (see Theorem 10). More than this, we prove that the proofs of NDc

support the proofs-as-programs paradigm; in particular, at the end of Section 5.1 we
show how to exploit the algorithmic content of its proofs.

Finally, another interesting point is that information terms semantics supports a
natural notion of state. Indeed, in [6] information terms are used to provide a state-
semantics for a modeling language based on a first-order constructive logic. A similar
characterisation can be provided for the description logic studied in this paper and
can be used, e.g., to define an action language over description logics (see [2] for a
preliminary work).

1In the first order setting a logic L satisfies the disjunction property if A ∨ B ∈ L implies A ∈ L or
B ∈ L; L meets the explicit definability property if ∃xA(x) ∈ L implies A(t) ∈ L for some term t.

BCDL: Basic Constructive Description Logic 373

To enter into the technical details, in this paper we study BCDL which is the
correspondent in the information terms semantics context of the basic description
logic ALC [1, 19]. First of all, in Section 2 we introduce the logic ALCG obtained
by extending ALC with generators, which are concepts whose interpretation is fixed
by the language and are similar to concepts defined by means of object names in
ALBO [18]. Generators are needed to model a restricted form of subsumption in our
setting; indeed, as we discuss in Section 6, it seems hard to give a constructive proof-
theoretical characterisation of “pure” subsumption. In Section 3 we present a sound
and complete natural deduction calculus for ALCG. We remark that, being ALCG a
proper extension of ALC, disregarding the rules of the calculus treating generators,
we get a sound and complete natural deduction calculus for ALC. In Section 4 we
introduce the logic BCDL and information term semantics. In Section 5 we present a
natural deduction calculus for BCDL and we prove that it is sound and complete w.r.t.
constructive consequence. We also show, by means of an example, how the proofs of
this calculus support the proofs-as-programs paradigm.

To conclude, a remark about the treatment of negation in BCDL is needed. As
pointed out in [9, 15], in the description logic context different kinds of negation
can be given. E.g. in [15] Nelson negation and interpretations of negations in many-
valued logics are discussed. In this paper, to simplify the presentation, we treat nega-
tion “classically”. However a constructive negation can be introduced still preserving
the soundness and completeness of the resulting calculus. We leave for future work
the investigation on the various kinds of constructive negations that can be given in
informationterms semantics.

2 ALCG Language and Semantics

The language L for ALCG is based on the following denumerable sets: the set NR of
role names, the set NC of concept names and the set NI of individual names. The main
differences with respect to standard presentations are the lack of subsumption and
the introduction of a set NG of special concepts, called generators, where NG ∩ NC = ∅.
The lack of subsumption is due to the fact that it seems hard to give a constructive
interpretation of the usual subsumption A 	 B and a calculus complete for it (we
discuss this issue in Section 6). Thus, we limit subsumption to the case where A is
a generator. A generator G is a concept with associated a finite set of individual
names dom(G), we call the domain of G, which fixes the interpretation of G. In our
language, we use bounded quantified formulas of the kind ∀G H, meaning that every
element of dom(G) belongs to the concept H.

Formally, the language for L is defined as follows. A concept H is an expression
of the kind:

H ::= C | G | ¬H | H
 H | H � H | ∃R.H | ∀R.H

where C ∈ NC, G ∈ NG and R ∈ NR. Let Var be a denumerable set of individual
variables; the formulas K of L are defined according to the following grammar:

K ::= ⊥ | (s, t) : R | t : H | ∀G H

where s, t ∈ NI ∪ Var, R ∈ NR, G ∈ NG and H is a concept. An atomic formula of L
is a formula of the kind ⊥, t : H, with H ∈ NC ∪ NG, and (s, t) : R; a negated formula

374 M. Ferrari et al.

is a formula of the kind t : ¬H. A simple formula is either an atomic or a negated
formula. A formula is closed if it does not contain variables. We use the binary
relation symbol ≡ to denote syntactical identity.

In the following we need to refer to languages LN generated by subsets N of NI;
to do this we have to guarantee that generators are properly treated in LN . Given
N ⊆ NI, let NGN be the set of generators G ∈ NG such that dom(G) ⊆ N ; we denote
by LN the language built on the set N of individual names, the set NC of concept
names, the set NR of role names and the set NGN of generators.

A model (interpretation) M for LN is a pair (DM, .M), where DM is a non-empty
set (the domain of M) and .M is a valuation map such that:

– for every c ∈ N , cM ∈ DM;
– for every C ∈ NC, CM ⊆ DM;
– for every R ∈ NR, RM ⊆ DM × DM;
– for every G ∈ NGN , GM = {

cM1 , . . . , cMn
}

where dom(G) = {c1, . . . , cn}.
We remark that the interpretation of a generator is fixed by the language. A non
atomic concept H is interpreted by a subset HM of DM as usual:

(¬A)M = DM \ AM

(A
 B)M = AM ∩ BM

(A � B)M = AM ∪ BM

(∃R.A)M = {
c ∈ DM | there is d ∈ DM s.t. (c, d) ∈ RM and d ∈ AM}

(∀R.A)M = {
c ∈ DM | for all d ∈ DM, (c, d) ∈ RM implies d ∈ AM}

An assignment on a model M is a map θ : Var → DM. If t ∈ NI ∪ Var, tM,θ is the
element of D denoting t in M w.r.t. θ , namely: tM,θ = θ(t) if t ∈ Var and tM,θ = tM

if t ∈ NI.
A formula K is valid in M w.r.t. θ , and we write M, θ |= K, if K �≡ ⊥ and one of

the following conditions holds:

M, θ |= (s, t) : R iff
(
sM,θ , tM,θ

) ∈ RM

M, θ |= t : H iff tM,θ ∈ HM

M, θ |= ∀G H iff GM ⊆ HM

We write M |= K iff M, θ |= K for every assignment θ . If � is a set of formulas,
M |= � means that M |= K for every K ∈ �. We say that K is a logical consequence
of �, and we write � |= K iff, for every M and every θ , M, θ |= � implies M, θ |= K.
We use the symbol �|= to indicate that one of the above relations does not hold.

In our approach, the domain of a generator is fixed by the language, and this
simplifies the presentation of the results discussed in the paper. Alternatively, we can
extend the language with singleton concepts as in ALBO [18]. In this case, for every
c ∈ NI, {c} denotes a concept which is interpreted in M as the set {cM}. A generator
G such that dom(G) = {c1, . . . , cn} can be defined as the concept {c1} � · · · � {cn}. The
drawback is that, in the statements of the next propositions, we have to explicitly
mention the definitions of the generators at hand, whereas we assume that generator
domains are implicitly defined by the language.

BCDL: Basic Constructive Description Logic 375

As usual, a theory T consists of an ABox and a TBox. An ABox is a finite set of
concept assertions and role assertions, where:

– a concept assertion is a formula of the kind c : C, with c ∈ NI and C ∈ NC;
– a role assertion is a formula of the kind (c, d) : R, with c, d ∈ NI and R ∈ NR.

A TBox is a finite set of universally quantified formulas of the form ∀G H, with G ∈
NG and H a concept.

Now, let us introduce the example we use all along this paper.

Example 1 Our example is inspired by the classical one of [3]. Let T be the TBox
consisting of the formulas:

(Ax1) = ∀FOOD∃goesWith.COLOR

(Ax2) = ∀COLOR∃isColorOf.WINE

where WINE is a concept name, isColorOf and goesWith are role names, FOOD
and COLOR are generators. Let us consider the set of individual names

W = {barolo, chardonnay, meat, fish, red, white }

and let

dom(FOOD) = {fish,meat} dom(COLOR) = {red,white}

the domain of the generators. Finally, let A be the ABox consisting of the following
role and concept assertions:

barolo:WINE (red,barolo):isColorOf
chardonnay:WINE (white,chardonnay):isColorOf

(fish,white):goesWith
(meat,red):goesWith

A model M of A ∪ T must interpret FOOD as the set
{
fishM,meatM

}
and COLOR

as
{
whiteM,redM

}
. The intuitive meaning of (Ax1) is that every food has an

appropriate color (the color of the more appropriate wine for the food) represented
by the role name goesWith; (Ax2) pairs a color to a wine. In M, the set of wines
(i.e., the set interpreting the WINE concept) contains the elements baroloM and
chardonnayM and possibly other elements (indeed, since WINE is not a generator,
its interpretation is not fixed by the language).

3 The Natural Calculus ND for ALCG

In this section we introduce a calculus ND for ALCG similar to the usual natural
deduction calculus for classical logic and we prove it is sound and complete. We refer

376 M. Ferrari et al.

the reader to [17, 23] for a detailed presentation of natural deduction calculi and their
notation. The rules of ND are those given in Tables 1 and 2 and the rule

�, [t : ¬H]··· π ′

⊥
¬E

t : H

We remark that we have introduction and elimination rules for all the logical con-
stants; some rules (namely, ¬I, ¬E, �E, ∃E and ∀I) allow us to discharge some of the
assumptions (we put between square brackets the discharged assumptions). The rules
∃E and ∀I need a side condition on the rule parameter to guarantee correctness. The

Table 1 Rules of the calculi ND and NDc

�1··· π1

t : H

�2··· π2

t : ¬H
⊥I

⊥

�··· π ′

⊥
⊥E

K

�, [t : H]··· π ′

⊥
¬I

t : ¬H

�1··· π1

t : A1

�2··· π2

t : A2

I

t : A1
 A2

�··· π ′

t : A1
 A2

Ek k ∈ {1, 2}

t : Ak

�··· π ′

t : Ak
�Ik k ∈ {1, 2}

t : A1 � A2

�1··· π1

t : A1 � A2

�2, [t : A1]··· π2

K

�3, [t : A2]··· π3

K
�E

K

(t, u) : R

�′
··· π ′

u : A
∃I

t : ∃R.A

�1··· π1

t : ∃R.A

�2, [(t, p) : R, p : A]··· π2

K
∃E

K

where p ∈ Var does not occur
in �2 ∪ {K} and p �= t

�, [(t, p) : R]··· π ′

p : A
∀I

t : ∀R.A

where p ∈ Var, p does not oc-
cur in � and p �= t (s, t) : R

�′
··· π ′

s : ∀R.A
∀E

t : A

BCDL: Basic Constructive Description Logic 377

Table 2 Rules for generators

AxGen
c : G

where c ∈ dom(G)

�··· π ′

c : G
⊥Dom⊥

where c ∈ NI and c �∈ dom(G)

�1··· π1

c1 : A . . .

�n··· πn

cn : A
∀G I

∀G A

where
dom(G) = {c1, . . . , cn} ∀G A

�′
··· π ′

t : G
∀G E

t : A

rules for generators given in Table 2 depend on the domain of the generators. Finally,
the above rule ¬E corresponds to the classical rule of reductio ad absurdum.

By π : � � K, with � a set of formulas, we denote a proof of � � K, that is a proof
of the formula K with undischarged assumptions in �. We write � | ALCG K if there
exists a proof π : � � K of ND . Obviously, � |� ALCG K means that no proof of � � K
exists in ND .

It is easy to prove by induction on the depth of proofs, the soundness of ND .

Theorem 1 (Soundness) Let π : � � K be a proof of ND . For every model M and
assignment θ , M, θ |= � implies M, θ |= K.

The proof of completeness follows the usual lines. First of all we give an appropri-
ate notion of saturated set and we show that any consistent set can be extended to a
consistent and saturated set (Lemma 1). Then we prove that any consistent saturated
set is satisfiable (Theorem 2).

Definition 1 (ALCG-saturated set) Let N ⊆ NI be a set of individual names and let
� be a set of closed formulas of LN . � is ALCG-saturated in N iff the following
conditions hold:

(1) c : A
 B ∈ � implies c : A ∈ � and c : B ∈ �.
(2) c : A � B ∈ � implies c : A ∈ � or c : B ∈ �.
(3) c : ∃R.A ∈ � implies that there exists d ∈ N such that (c, d) : R ∈ � and d :

A ∈ �.
(4) c : ∀R.A ∈ � and (c, d) : R ∈ � imply d : A ∈ �.
(5) ∀G A ∈ � implies

(i) c : G ∈ � iff c ∈ dom(G);
(ii) for every c ∈ dom(G), c : A ∈ �.

(6) c : ¬(A
 B) ∈ � implies c : ¬A ∈ � or c : ¬B ∈ �.
(7) c : ¬(A � B) ∈ � implies c : ¬A ∈ � and c : ¬B ∈ �.
(8) c : ¬∃R.A ∈ � and (c, d) : R ∈ � imply d : ¬A ∈ �.

378 M. Ferrari et al.

(9) c : ¬∀R.A ∈ � implies that there exists d ∈ N such that (c, d) : R ∈ � and d :
¬A ∈ �.

(10) c : ¬¬A ∈ � implies c : A ∈ �.

Lemma 1 Let N be a finite set of individual names, let � be a finite set of closed
formulas of LN and let K be a closed formula of LN such that � |� ALCG K. There

exists a finite set of individual names N ⊇ N and a finite set � ⊇ � of closed formulas
of LN such that:

(1) � is ALCG-saturated in N .
(2) � |� ALCG K.
(3) For every c, d ∈ N and every R ∈ NR, (c, d) : R ∈ � iff (c, d) : R ∈ �.
(4) For every G ∈ NGN , c : G ∈ � iff c ∈ dom(G).

Proof This is a quite standard saturation construction, but some care is needed to
guarantee the finiteness of �. Let C be a numerable set of individual names such that
C ∩ N = ∅. We build a sequence Ck of finite sets of individual names, a sequence �k

of finite sets of closed formulas of LCk such that �k |� ALCG K and a sequence �k of
formulas treated up to step k. We begin with:

C0 = N �0 = � ∪ { c : G | G ∈ NGN and c ∈ dom(G) } �o = ∅ .

Since ND contains the rule AxGen, � |� ALCG K implies �0 |� ALCG K. Let c ∈ NC. We
say that �k is saturated w.r.t. c iff the following conditions hold:

– The non-atomic formulas c : H belonging to �k are of the kind c : ∀R.A or c :
¬∃R.A.

– If (c, c) : R ∈ �k, we also require that:

– for every c : ∀R.A ∈ �k, there exists i < k such that c : A ∈ �i;
– for every c : ¬∃R.B ∈ �k, there exists j < k such that c : ¬B ∈ � j.

Given k > 0, let H be a formula of �k−1 such that H �∈ �k−1. We define the sets Ck,
�k and �k according to the form of H; by �H

k−1 we denote the set �k−1 \ {H}.

(i) If H ≡ c : C with C ∈ NC ∪ NGN or H ≡ (c, d) : R with R ∈ NR, then Ck =
Ck−1, �k = �k−1 and �k = �k−1 ∪ {H}.

(ii) If H ≡ c : A
 B, then Ck = Ck−1, �k = �H
k−1 ∪ {c : A, c : B} and �k =

�k−1 ∪ {H}.
(iii) If H ≡ c : A � B, then Ck = Ck−1 and �k = �k−1 ∪ {H}. Moreover, �k =

�H
k−1 ∪ {c : A} if �H

k−1 ∪ {c : A} |� ALCG K and �k = �H
k−1 ∪ {c : B} otherwise.

(iv) If H ≡ c : ∃R.A, let d ∈ C such that d �∈ Ck−1. Then, Ck = Ck−1 ∪ {d} and �k =
�H

k−1 ∪ {(c, d) : R, d : A}. Moreover, �k = (�k−1 ∪ {H}) \ � where � is the
set of the formulas of the kind c : ∀R.B and c : ¬∃R.B occurring in �k−1.

(v) If H ≡ c : ∀R.A, let {d1, . . . , dn} be the set of d ∈ Ck−1 s.t. (c, d) : R ∈ �k−1

and let � = {d1 : A, . . . , dn : A}. Then, Ck = Ck−1 and �k = �k−1 ∪ {H}.
Moreover, if �k−1 is not saturated w.r.t. c, then �k = �k−1 ∪ �, otherwise
�k = �H

k−1 ∪ �.

BCDL: Basic Constructive Description Logic 379

(vi) If H ≡ ∀G A, then G ∈ NGN and dom(G) = {c1, . . . , cn} ⊆ N . Then, Ck =
Ck−1, �k = �H

k−1 ∪ {c1 : A, . . . , cn : A} and �k = �k−1 ∪ {H}.
(vii) If H ≡ c : ¬(A
 B), then Ck = Ck−1 and �k = �k−1 ∪ {H}. Moreover, �k =

�H
k−1 ∪ {c : ¬A} if �H

k−1, c : ¬A |� ALCG K and �k = �H
k−1 ∪ {c : ¬B} otherwise.

(viii) If H ≡ c : ¬(A � B), then Ck = Ck−1, �k = �H
k−1 ∪ {c : ¬A, c : ¬B} and �k =

�k−1 ∪ {H}.
(ix) If H ≡ c : ¬∃R.A let {d1, . . . , dn} be the set of d ∈ Ck−1 s.t. (c, d) : R ∈ �k−1

and let � = {d1 : ¬A, . . . , dn : ¬A}. Then, Ck = Ck−1 and �k = �k−1 ∪ {H}.
Moreover, if �k−1 is not saturated w.r.t. c, then �k = �k−1 ∪ �, otherwise
�k = �H

k−1 ∪ �.
(x) If H ≡ c : ¬∀R.A, let d ∈ C such that d �∈ Ck−1. Then, Ck = Ck−1 ∪ {d} and

�k = �H
k−1 ∪ {(c, d) : R, d : ¬A}. Moreover, �k = (�k−1 ∪ {H}) \ � where �

is the set of the formulas of the kind c : ∀R.B and c : ¬∃R.B occurring in
�k−1.

(xi) If H ≡ c : ¬¬A, then Ck = Ck−1, �k = �H
k−1 ∪ {c : A} and �k = �k−1 ∪ {H}.

We remark that in points (iv) and (x) we delete the formulas of the kind c : ∀R.B and
c : ¬∃R.B from the set of the formulas treated up to step k. This is needed to guaran-
tee that these formulas are correctly saturated w.r.t. the new role assertion (c, d) : R
introduced in points (iv) and (x). Clearly, for every k ≥ 0, Ck and �k are finite. It is
easy to check, by induction on k ≥ 0, that �k |� ALCG K. For instance, let us suppose
that �k is defined as in Point (vii) when �H

k , c : ¬A | ALCG K; we have to show that
�H

k , c : ¬B |� ALCG K. If �H
k , c : ¬B | ALCG K, by the fact that c : ¬(A
 B) | ALCG c :

¬A � ¬B, we get �H
k , c : ¬(A
 B) | ALCG K, namely �k−1 | ALCG K, in contradiction

with the induction hypothesis. The other cases are similar. In particular, for negated
formulas we exploit the following facts:

– c : ¬(A � B) | ALCG c : ¬A and c : ¬(A � B) | ALCG c : ¬B.
– c : ¬∃R.A | ALCG c : ∀R.¬A.
– c : ¬∀R.A | ALCG c : ∃R.¬A.
– c : ¬¬A | ALCG c : A.

One can prove the following properties:

(a) If c : ∀R.A ∈ �k, there is i ≥ k s.t. c : ∀R.A ∈ �i and �i is saturated w.r.t. c.
(b) If c : ¬∃R.B ∈ �k, there is j ≥ k s.t. c : ¬∃R.B ∈ � j and � j is saturated w.r.t. c.
(c) If �m is saturated w.r.t. c then, for every l ≥ m, (c, d) : R ∈ �l iff (c, d) : R ∈ �m.

Now, let N = ⋃
i≥0 Ci and � = ⋃

i≥0 �i. Clearly, N ⊇ N , � ⊇ � and � |� ALCG K. It is
easy to prove that � is ALCG-saturated in N . As an example, let c : ∀R.A ∈ � and
(c, d) : R ∈ �. By Point (a), there is a �m saturated w.r.t. c such that c : ∀R.A ∈ �m.
By Point (b), (c, d) : R ∈ �m. Thus, for some j > m, d : A ∈ � j, which implies d :
A ∈ �. Point (3) follows from the fact that, whenever we add (c, d) : R to some �k, d
is a new constant. Thus, if (c, d) : R ∈ � and both c and d belong toN , we have (c, d) :
R ∈ �. As for Point (4), if c : G ∈ � then c ∈ dom(G), otherwise by applying rule
⊥Dom of Table 2 we would get � | ALCG ⊥, in contradiction with � |� ALCG K. Finally,
we outline the proof of the finiteness of �. Firstly, we note that, except the cases (v)
and (ix), the set �k is obtained from �k−1 by replacing a formula H with one or more
formulas simpler than H. In cases (v) and (ix), this happens only if �k−1 is saturated

380 M. Ferrari et al.

w.r.t. c. By points (a) and (b), this eventually happens, so we cannot have infinitely
many applications of cases (v) and (ix).
�

We point out that the “only if” part of Point (3) of the previous lemma (and of
Point (iii) of the next theorem) is not required to prove the completeness of ND , but
it is crucial to prove the completeness of the constructive calculus of Section 5.

Theorem 2 Let N be a finite set of individual names, let � be a finite set of closed
formulas of LN and let K be a simple closed formula of LN such that � |� ALCG K.
There exists a finite model M for LN such that:

(i) M |= �.
(ii) M �|= K.

(iii) For every c, d ∈ N and every R ∈ NR, M |= (c, d) : R iff (c, d) : R ∈ �.
(iv) For every G ∈ NGN , M |= c : G iff c ∈ dom(G).

Proof Let us assume K to be an atomic formula. By Lemma 1, there exist a finite set
of individual names N ⊇ N and a finite set � such that � ⊆ � ⊆ LN , � is ALCG-
saturated in N , � |� ALCG K and � satisfies Points (3)–(4) of the lemma. Let M =
(DM, .M) be the model for LN done as follows:

– DM = N ;
– For every C ∈ NC ∪ NGN , CM is the set of c ∈ DM such that c : C ∈ �;
– For every R ∈ NR, RM is the set of pairs (c, d) ∈ DM × DM s.t. (c, d) : R ∈ �.

By Points (3)–(4) of Lemma 1, we immediately have:

(3’) For every R ∈ NR, (c, d) ∈ RM iff (c, d) : R ∈ �;
(4’) For every G ∈ NGN , c ∈ GM iff c ∈ dom(G).

One can easily check that the definition of M is sound and that M is finite. Now we
prove that:

(*) D ∈ � implies M |= D.

The proof is by induction on the structure of D. If D ≡ c : C, with C ∈ NC ∪ NGN ,
or D ≡ (c, d) : R, (*) follows by the definition of M. If D ≡ c : ¬C, with C ∈ NC ∪
NGN , we cannot have c : C ∈ �, otherwise � | ALCG ⊥ and � | ALCG K would follow.
By definition of CM, we have M �|= c : C, hence M |= c : ¬C. The other cases easily
follow by the properties of ALCG-saturated sets.

Point (i) of the assertion immediately follows from (*). Now, we prove Point (ii). If
K ≡ ⊥, then M �|= ⊥. If K ≡ c : C, with C ∈ NC ∪ NGN and M |= c : C, by definition
of CM we should have c : C ∈ �, in contradiction with the hypothesis � |� ALCG K.
The case K ≡ (c, d) : R is similar. Points (iii) and (iv) follow from (3’) and (4’)
respectively. Since M is a model for LN , this concludes the proof of the assertion
in the case where K is an atomic formula.

Now let us consider the case K ≡ t : ¬H. Since � |� ALCG t : ¬H, we have �, t :
H |� ALCG ⊥. As proved in the previous case, there exists a model M for LN such
that M |= �, M |= t : H, and M satisfies (iii) and (iv). Thus, M �|= t : ¬H, and the
theorem holds.
�

BCDL: Basic Constructive Description Logic 381

The above theorem implies that, if � is a consistent set of closed formulas (i.e.,
� |� ALCG ⊥), then � has a model. The completeness theorem follows along the usual
lines:

Theorem 3 (Completeness) For every finite �, � |= K implies � | ALCG K.

To conclude this section we remark that disregarding generators and quantifica-
tion over generators in ALCG we get the usual language of ALC. More precisely, let
ND′ be the natural deduction calculus only consisting of the rules of Table 1 and the
rule ¬E. From the above proofs we get that ND′ is a sound and complete calculus
for ALC.

4 BCDL and Information Terms Semantics

In this section we introduce the logic BCDL. It uses ALCG language, but its semantics
is based on information terms. Intuitively, an information term α for a formula A
is a possible explanation of the truth of A in the spirit of the BHK interpretation
of logical connectives [22]. Formally, given a finite set of individual names N ⊆ NI
and a closed formula K of LN , we define the set of information terms itN (K) by
induction on K as follows.

itN (K) = {tt}, if K is a simple formula

itN (c : A1
 A2) = { (α, β) | α ∈ itN (c : A1) and β ∈ itN (c : A2) }
itN (c : A1 � A2) = { (k, α) | k ∈ {1, 2} and α ∈ itN (c : Ak) }
itN (c : ∃R.A) = { (d, α) | d ∈ N and α ∈ itN (d : A) }
itN (c : ∀R.A) = { φ : N → ⋃

d∈N itN (d : A) | φ(d) ∈ itN (d : A) }
itN (∀G A) = { φ : dom(G) → ⋃

d∈dom(G) itN (d : A) | φ(d) ∈ itN (d : A) }

We recall that in the last case dom(G) ⊆ N . Let M be a model for LN , K a closed
formula of LN and η ∈ itN (K). We define the realizability relation M � 〈η〉 K by
induction on the structure of K.

M � 〈tt〉 K iff M |= K, where K is a simple formula

M � 〈(α, β)〉 c : A1
 A2 iff M � 〈α〉 c : A1 and M � 〈β〉 c : A2

M � 〈(k, α)〉 c : A1 � A2 iff M � 〈α〉 c : Ak

M � 〈(d, α)〉 c : ∃R.A iff M |= (c, d) : R and M � 〈α〉 d : A

M � 〈φ〉 c : ∀R.A iff M |= c : ∀R.A and, for every d ∈ N ,
M |= (c, d) : R implies M � 〈φ(d)〉 d : A

M � 〈φ〉 ∀G A iff, for every d ∈ dom(G), M � 〈φ(d)〉 d : A

It is easy to prove that:

Lemma 2 Let N be a finite subset of NI, K a closed formula of LN and η ∈ itN (K).
For every model M, M � 〈η〉 K implies M |= K.

382 M. Ferrari et al.

This means that the constructive semantics is compatible with the classical one.
If � is a finite set of closed formulas {K1, . . . , Kn} of LN , itN (�) denotes the set of
n-tuples η = (η1, . . . , ηn) such that, for every 1 ≤ j ≤ n, η j ∈ itN (K j); M � 〈η〉� iff,
for every 1 ≤ j ≤ n, M � 〈η j〉 K j.

We introduce the constructive consequence relation.

Definition 2 (Constructive consequence) Let � ∪ {K} be a set of closed formulas of
L and let N be a finite set of individual names such that � ∪ {K} ⊆ LN . We say that
K is a constructive consequence of �, and we write �|=c K, iff, for every γ ∈ itN (�),
there exists η ∈ itN (K) such that, for every model M for LN , M � 〈γ 〉� implies
M � 〈η〉 K.

Thus, the relation �|=c K implicitly defines a map �N from itN (�) to itN (K) such
that, for every model M, M � 〈γ 〉� implies M � 〈�N (γ)〉 K. The key point is that
�N is independent of the choice of the models.

Example 2 Let us consider the ABox A and the TBox T defined in Example 1.
We recall that W is the set of all the individual names occurring in A. An element
of itW (Ax1) is a function mapping each f ∈ dom(FOOD) to an element δ ∈ itW (f :
∃goesWith.COLOR), where δ = (c,tt) (intuitively, c is a wine color which goes with
food f). For instance, let us consider the following ψ1 ∈ itW (Ax1), where we denote
with f �→ψ1(f) the pairs belonging to the function ψ1:

[fish �→ (white,tt) , meat �→ (red,tt)]

Let M be a model of A. One can easily check that M � 〈ψ1〉 Ax1. Similarly, if ψ2 ∈
itW (Ax2) is the information term

[red �→ (barolo,tt) , white �→ (chardonnay,tt)]

then M � 〈ψ2〉 Ax2 as well. We conclude M � 〈(ψ1, ψ2)〉T . We can prove that

T |=c ∀FOOD∃goesWith.(COLOR
 ∃isColorOf.WINE) (1)

Indeed, let N be such that

T ∪ { ∀FOOD∃goesWith.(COLOR
 ∃isColorOf.WINE) } ⊆ LN

and let (φ1, φ2) ∈ itN (T). We define

ψ : dom(FOOD) →
⋃

f∈dom(FOOD)

itN (f : ∃goesWith.(COLOR
 ∃isColorOf.WINE))

as follows: for every f ∈ dom(FOOD), ψ(f) = (c, (tt, (w,tt))) where c and w satisfy
φ1(f) = (c,tt), φ2(c) = (w,tt). One can check that, for every model M for LN ,
M � 〈(φ1, φ2)〉T implies

M � 〈ψ〉 ∀FOOD∃goesWith.(COLOR
 ∃isColorOf.WINE)

and this proves (1).

BCDL: Basic Constructive Description Logic 383

On the other hand, T �|=c meat : WINE � ¬WINE. Indeed, let us consider the pair
(ψ1, ψ2) ∈ itW (T) defined above. There exist models M1 and M2 for LW such that

M1 � 〈(ψ1, ψ2)〉T M2 � 〈(ψ1, ψ2)〉T
M1 |= meat : ¬WINE M2 |= meat : WINE

Thus, there is no η ∈ itW (meat : WINE � ¬WINE) such that for every model M
for LW , M � 〈(ψ1, ψ2)〉T implies M � 〈η〉meat : WINE � ¬WINE. We conclude by
noticing that T |= meat : WINE � ¬WINE. Hence, meat : WINE � ¬WINE classically
holds but it cannot be constructively justified in T .

In the following section we present the calculus NDc from which proofs one can
extract the map �N involved in the definition of �|=c K.

5 The Natural Calculus NDc for BCDL

In this section we introduce the calculus NDc for the logic BCDL and we prove it is
sound and complete w.r.t. the constructive consequence relation of Definition 2.

The calculus NDc is obtained by adding to the rules in Tables 1 and 2 the following
rules:

�··· π ′

t : ¬¬C
At

t : C

C ∈ NC ∪ NG

�··· π ′

t : ∀R.¬¬H
KUR

t : ¬¬∀R.H

The rule At is double negation elimination for atomic concepts and generators. It
corresponds to the rule of double negation elimination on atomic formulas in the
first order setting. The addition of this principle to Intuitionistic first order logic Int
gives rise to a system still satisfying the disjunction property (if A ∨ B is provable,
then either A or B is provable) and the explicit definability property (if ∃xA(x) is
provable then also A(t) is provable for some term t) [12, 13]. Instead, the calculus
obtained by adding to NDc the unrestricted version of At, where C is any concept, is
equivalent to the calculus ND for ALCG.

As for the rule KUR, it corresponds to the first order axiom schema

∀x.¬¬A(x) → ¬¬∀x.A(x)

which is well-known in the literature of constructive logics [8, 21]. Indeed, adding this
schema to Int, we get a proper extension of Int, called Kuroda Logic, that satisfies the
disjunction property and the explicit definability property. An important property
of Kuroda Logic is that a theory T is classically consistent iff it is consistent w.r.t.
Kuroda Logic. In our setting the rule KUR has a similar role, indeed it allows to
prove that there is a proof π : � � ⊥ in NDc iff � | ALCG ⊥ (see Corollary 1 below).

To avoid inessential technicalities and improve the readability of the paper, we
introduce the following assumption on the individual names occurring in a proof of
NDc. Let π : � � K be a proof of NDc and let π ′ : �′ � K′ a subproof of π .

– We say that π ′ is simple iff K′ is a simple formula.

384 M. Ferrari et al.

– Let r be the last rule applied to π ′. We say that r is relevant in π iff π ′ is not a
subproof of a simple subproof of π .

Assumption on individual names Let π : � � K be a proof of NDc, let N be a finite
set of individual names such that � ∪ {K} ⊆ LN , let π ′ be a subproof of π and let r
be the last rule applied in π ′. We assume that:

– If r is the rule �E of Table 1 with major premise t : A1 � A2 and r is relevant in
π , then t ∈ Var ∪ N .

– If r is the rule ∃E in Table 1 with major premise t : ∃R.A and r is relevant in π ,
then t ∈ Var ∪ N .

We write � | BCDL K to mean that there exists a proof π : � � K of NDc satisfying the
above assumption.

First of all, we notice that the rules At and KUR are derivable in ND , hence:

Theorem 4 � | BCDL K implies � | ALCG K.

Another interesting relation between ND and NDc is that they prove the same set
of simple formulas. To prove this, let us define the following map on concepts and
formulas:

– H¬¬ = H if H ∈ NC ∪ NG.
– H¬¬ = ¬¬H if H is a concept such that H �∈ NC ∪ NG.
– ⊥¬¬ = ⊥.
– ((s, t) : R)¬¬ = (s, t) : R.
– (t : H)¬¬ = t : H¬¬.
– (∀G H)¬¬ = ∀G H¬¬.

It is easy to prove by induction on the depth of π : � � K the following result:

Theorem 5 � | ALCG K implies � | BCDL K¬¬.

As a corollary we get:

Corollary 1 For every simple formula K of L, � | BCDL K iff � | ALCG K.

The following is an admissible rule of NDc allowing us to prove ∀G A using one
“generic proof” instead of as many proofs as the elements of dom(G).

�, [p : G]··· π ′

p : A
∀G I′

∀G A

where p ∈ Var
and p does not occur in �

The admissibility follows from the fact that by instantiating the parameter p of π ′
and by applying the rule AxGen, we get the proofs π ′

k : � � ck : A, for every ck ∈
dom(G). By applying the rule ∀G I to these proofs, we get a proof π : � � ∀G A.

BCDL: Basic Constructive Description Logic 385

5.1 Soundness of NDc

We prove the soundness of NDc, namely � | BCDL K implies �|=c K. First of all, from
Theorem 1 and the fact that the rules At and KUR are derivable in ND we get that
NDc preserves validity of formulas. More precisely:

(P1) Let π : � � K be a proof of NDc. For every model M for LN and every
assignment θ , M, θ |= � implies M, θ |= K.

As a consequence, π : � � K implies � |= K.
Let N be a finite subset of NI, an N -substitution σ is a map σ : Var → N . We

extend σ to LN as usual:

– If c ∈ N , σc = c;
– For a formula K of LN , σ K denotes the closed formula of LN obtained by

replacing every variable x occurring in K with σ(x);
– If � is a set of formulas, σ� is the set of σ K such that K ∈ �.

If c ∈ N , σ [c/p] is the N -substitution σ ′ such that σ ′(p) = c and σ ′(x) = σ(x) for
x �= p.

Let π : � � K be a proof of NDc, let N be a finite set of individual names such
that � ∪ {K} ⊆ LN and let σ be a N -substitution. We define a computable function

�π
σ,N : itN (σ�) → itN (σ K)

that will provide the computational interpretation of π . �π
σ,N is defined, by induction

on the depth of π , in order to fulfill the following property:

(P2) For every model M of LN and for every γ ∈ itN (σ�), M � 〈γ 〉 σ� implies
M � 〈�π

σ,N (γ)〉 σ K.

If π only consists of the introduction of an assumption K, then �π
σ,N is the identity

function on itN (σ K). If K is a simple formula, then �π
σ,N (γ) = tt. Otherwise, let r

be the last rule applied in π . By definition, r is a relevant rule in π .

(1) r = ⊥E. Then, �π
σ,N : itN (σ�) → itN (σ K) and �π

σ,N (γ) = η+, where η+ is an
element of itN (K).

(2) r =
I. Then, �π
σ,N : itN (σ�1) × itN (σ�2) → itN (σ t : A
 B) and

�π
σ,N

(
γ 1, γ 2

) =
(

�
π1
σ,N (γ 1), �

π2
σ,N (γ 2)

)

(3) r =
Ek (k ∈ {1, 2}). Then, �π
σ,N : itN (σ�) → itN (σ t : Ak) and

�π
σ,N (γ) = Prok

(
�π ′

σ,N (γ)
)

where Prok is the k-projection function.
(4) r = �Ik (k ∈ {1, 2}). Then, �π

σ,N : itN (σ�) → itN (σ t : A1 � A2) and

�π
σ,N (γ) =

(
k, �π ′

σ,N (γ)
)

(5) r = �E. Then, �π
σ,N : itN (σ�1) × itN (σ�2) × itN (σ�3) → itN (σ K). Since

�E is relevant, by the assumptions on the individual names, σ t ∈ N , thus �
π1
σ,N ,

386 M. Ferrari et al.

�
π2
σ,N , and �

π3
σ,N are defined. We set

�π
σ,N

(
γ 1, γ 2, γ 3

) =
{

�
π2
σ,N (γ 2, α) if �

π1
σ,N (γ 1) = (1, α)

�
π3
σ,N (γ 3, β) if �

π1
σ,N (γ 1) = (2, β)

(6) r = ∃I. Then, �π
σ,N : {tt} × itN (σ�′) → itN (σ t : ∃R.A) and

�π
σ,N

(
tt, γ ′) =

(
σu, �π ′

σ,N (γ ′)
)

(7) r = ∃E. Then, �π
σ,N : itN (σ�1) × itN (σ�2) → itN (σ K). By the assumption

on individual names, σ t ∈ N . Let �
π1
σ,N (γ 1) = (c, α). By the side condition on

p, (σ [c/p])�2 = σ�2 and (σ [c/p])K = σ K. We define

�π
σ,N

(
γ 1, γ 2

) = �
π2
σ [c/p],N

(
γ 2, tt, α

)

(8) r = ∀I. Then, �π
σ,N : itN (σ�) → itN (σ t : ∀R.A). Let c ∈ N . By the side

condition on p, (σ [c/p])� = σ� and (σ [c/p])t : ∀R.A = σ t : ∀R.A. Then
�π

σ,N (γ) is the function defined as follows: for every c ∈ N
[
�π

σ,N (γ)
]
(c) = �π ′

σ [c/p],N (γ , tt)

(9) r = ∀E. Then, �π
σ,N : {tt} × itN (σ�′) → itN (σ t : A) and

�π
σ,N

(
tt, γ ′) =

[
�π ′

σ,N (γ ′)
]
(σ t)

(10) r = ∀G I. Let dom(G) = {c1, . . . , cn}. Then, �π
σ,N : itN (σ�1) × · · · × (σ�n) →

itN (∀G A) is the function such that, for every 1 ≤ k ≤ n,
[
�π

σ,N
(
γ 1, . . . , γ n

)]
(ck) = �

πk
σ,N (γ k)

(11) r = ∀G E. Analogous to the case r = ∀E.

One can easily check that �π
σ,N is a well-defined function and that (P2) holds.

Note that in the definition of �π
σ,N the relevant rules of π are used to build

up “relevant information terms”, namely information terms different from tt. For
instance, in the case of the rule
I, the map takes the information terms α and β

produced by the subproofs π1 and π2 and builds the pair (α, β). On the other hand,
a simple subproof π ′ : �′ � K′ of π does not convey any relevant information apart
from the fact that �′ |= K′.

Let �π
N = �π

σ,N , where σ is any N -substitution. By (P1) and (P2), we get:

Theorem 6 Let π : � � K be a proof of NDc such that the formulas in � ∪ {K} are
closed, and let N be a finite set of individual names such that � ∪ {K} ⊆ LN . Then:

(i) � |= K.
(ii) For every γ ∈ itN (�) and for every model M for LN , M � 〈γ 〉� implies M �

〈�π
N (γ)〉 K.

As a consequence, we get:

Theorem 7 (Soundness) � | BCDL K implies �|=c K.

BCDL: Basic Constructive Description Logic 387

Now we give an example of the information one can extract from a proof using
the map �π

N .

Example 3 Let us consider the knowledge base of Example 1. We can build a proof

π : T � ∀FOOD∃goesWith.(COLOR
 ∃isColorOf.WINE)

in NDc. The proof π is

Ax1 [y : FOOD]2

∀FOODE
y : ∃goesWith.COLOR

[(y, z) : goesWith]1

[z : COLOR]1

Ax2 [z : COLOR]1

∀COLORE
z : ∃isColorOf.Wine

I
z : COLOR
 ∃isColorOf.WINE

∃I
y : ∃goesWith.(COLOR
 ∃isColorOf.WINE)

∃E [1]
y : ∃goesWith.(COLOR
 ∃isColorOf.WINE)

∀FOODI′ [2]
∀FOOD∃goesWith.(COLOR
 ∃isColorOf.WINE)

Note that the assumption on individual names is satisfied since we do not use
individual names. Let us consider, for instance, the subproof

π ′ : {(y, z) :goesWith, z :COLOR, Ax2} � y : ∃goesWith.(COLOR
 ∃isColorOf.WINE)

Let φ2 ∈ itW (Ax2) and let σ be any W-substitution. By the above definition, we get:

�π ′
σ,W (tt,tt, φ2) = (σ z, (tt, (φ2(σ z),tt)))

The map �π
W is defined as in Example 2.

To conclude this section we remark that, along the lines of the previous example,
Theorem 7 allows us to interpret a proof of a “goal” as a program to solve it. More
in details, let us suppose to have an “open” proof

�··· π p ∈ Var

p : A � ¬A

in NDc and let N be a finite set of individual names containing all the individual
names occurring in π . Then, for every c ∈ NI, the map extracted from π allows us to
decide the membership of c in A w.r.t. the models of �. Formally, let c ∈ NI, let N ′ =
N ∪ {c} and let σ be a N ′-substitution such that σ p = c. We can associate with every
γ ∈ itN ′(σ�) the class Iγ of models M such that M � 〈γ 〉 σ�. Moreover, for every
γ ∈ itN ′(σ�), �π

σ,N (γ) provides an information term (k, η) ∈ itN ′(c : A � ¬A), with
k ∈ {1, 2}. By Theorem 6, for all models M ∈ Iγ , M |= c : A if k = 1 and M |= c :
¬A if k = 2.

Analogously, the map extracted from a proof π : � � p : ∃R.A in NDc allows us
to compute, for every c ∈ NI, an R-successor d of c such that d belongs to A w.r.t.
the models of �.

388 M. Ferrari et al.

5.2 Completeness of NDc

The proof of completeness consists of two steps. First, we introduce a quite standard
notion of saturated set and we show that every consistent set of formulas can
be extended in a saturated set. Differently from standard completeness proofs,
saturated sets do not contain enough information to build up a counter model based
on the information term semantics. Hence we need to rely on another construction
based on the notion of c-tree.

Definition 3 (Saturated set) Let N be a set of individual names and let � be a set of
closed formulas of LN . � is saturated in N iff the following conditions hold:

(1) c : A
 B ∈ � implies c : A ∈ � and c : B ∈ �.
(2) c : A � B ∈ � implies c : A ∈ � or c : B ∈ �.
(3) c : ∃R.A ∈ � implies that there exists d ∈ N such that (c, d) : R ∈ � and d :

A ∈ �.
(4) c : ∀R.A ∈ � and (c, d) : R ∈ � imply d : A ∈ �.
(5) ∀G A ∈ � implies:

(i) c : G ∈ � iff c ∈ dom(G);
(ii) for every c ∈ dom(G), c : A ∈ �.

Let � be a set of formulas of LN and let N ′ ⊆ N . By �/N ′ we denote the restriction
of � to LN ′ , i.e., �/N ′ = � ∩ LN ′ . Following the lines of Lemma 1 one can prove:

Lemma 3 Let N be a finite set of individual names, let � be a finite set of closed
formulas of LN , let K be a closed formula of LN such that � |� BCDL K. There exist
a finite set of individual names N ⊇ N and a finite set � ⊇ � of closed formulas of
LN such that:

(1) � is saturated in N .
(2) � |� BCDL K.
(3) If �′ ⊆ � is saturated in N ′ ⊆ N and �/N ′ = �′, then �/N ′ = �′.

Given � and K such that � |� BCDL K, we can build a tree T , we call a c-tree for
(�, K). From T , we can define a finite set N ⊆ NI and a “canonical” information
term δ ∈ itN (�) (denoted by IT (�)) with the following property:

– for every η ∈ itN (K), there exists a model M of LN such that M � 〈δ〉 � and
M��〈η〉 K.

This means that � �|=c K. This is the original part of the proof, which requires tech-
niques different from the standard ones.

We say that a triple (�, K,N) is a c-node iff:

(i) N is a finite set of individual names;
(ii) K is a closed formula of LN ;

(iii) � is a finite set of closed formulas of LN such that � is saturated in N .

We introduce the notion of c-tree.

BCDL: Basic Constructive Description Logic 389

Definition 4 (c-tree) Let �0 be a finite set of closed formulas and K0 a closed
formula. We say that T is a c-tree for (�0, K0) iff the following conditions hold:

(C1) The root of T is a c-node (�0, K0,N0), such that �0 ⊆ �0.
(C2) Let (�, K,N) be a node of T and let (�1, K1,N1), . . . , (�n, Kn,Nn) be the

immediate successors of (�, K,N) in T . Then

(�1, K1,N1) · · · (�n, Kn,Nn)

(�, K,N)
r

is an instance of a rule of Table 3.
(C3) If (�, K,N) is a leaf of T (namely, (�, K,N) has no immediate successors),

then � |� ALCG K.

Clearly, a c-tree T for (�0, K0), if exists, is finite and every node (�, K,N) of T is
a c-node.

Table 3 Rules to build a c-tree

(�, c : A, N)
r
1

(�, c : A
 B, N)

(�, c : B, N)
r
2

(�, c : A
 B, N)

(�, c : A, N) (�, c : B, N)
r�

(�, c : A � B, N)

(�, d1 : A, N) · · · (�, dn : A, N)
r∃R1

(�, c : ∃R.A, N)

{d1, . . . dn} =
{d | (c, d) : R ∈ �} (n ≥ 1)

(�, ⊥, N)
r∃R2

(�, c : ∃R.A, N)
if, for all d ∈ N , (c, d) : R �∈ �

(�′, d : A, N ′)
r∀R

(�, c : ∀R.A, N)
where (�′, d : A,N ′) is a c-node such that

1. N ⊆ N ′ and d ∈ N ′ \ N ;
2. � ∪ {(c, d) : R} ⊆ �′;
3. �′

/N = �.

(�, d : A, N)
r∀G

(�, ∀G A, N)
where d ∈ dom(G)

390 M. Ferrari et al.

Let T be a c-tree and let � denote the reflexive and transitive closure of the imme-
diate successor relation between the nodes of T . Given two nodes (�1, K1,N1) and
(�2, K2,N2) of T , the greatest lower bound (g.l.b.) of (�1, K1,N1) and (�2, K2,N2)

is the node (�, K,N) of maximal depth among the nodes (�, K,N) satisfying both
the conditions (�, K,N) � (�1, K1,N1) and (�, K,N) � (�2, K2,N2). We note
that, if we rename the individual names c �∈ N0 occurring in T , we again obtain a
c-tree for (�0, K0). Thus, without loss of generality, we assume that the following
property holds:

(C4) Let (�1, K1,N1) and (�2, K2,N2) be two nodes of a c-tree and let (�, K,N)

the g.l.b. of (�1, K1,N1) and (�2, K2,N2). Then, N = N1 ∩ N2.

Inspecting the rules in Table 3, using Property (C4), one can easily prove:

Lemma 4 Let (�1, K1,N1) and (�2, K2,N2) be two nodes of a c-tree.

(i) (�1, K1,N1) � (�2, K2,N2) implies (�2)/N1
= �1.

(ii) Let (�, K,N) be the g.l.b. of (�1, K1,N1) and (�2, K2,N2).
Then, � = �1 ∩ �2.

We give an example of c-tree.

Example 4 Let

H = (∀R.∃S.A) � (∀R.∃S.B) �0 = { c : ∀R.¬¬∃S.A, c : ∀R.∃S.(A � B) }
The set �0 is saturated in {c}. We can build a c-tree T for (�0, c : H) as follows:

(�1, d2 : A, {c, d1, d2})
r∃S1

(�1, d1 : ∃S.A, {c, d1, d2})
r∀R

(�0, c : ∀R.∃S.A, {c})

(�2, d4 : B, {c, d3, d4})
r∃S1

(�2, d3 : ∃S.B, {c, d3, d4})
r∀R

(�0, c : ∀R.∃S.B, {c})
r�

(�0, c : (∀R.∃S.A) � (∀R.∃S.B), {c})

where

�1 =�0 ∪ { (c, d1) : R, d1 : ¬¬∃S.A, d1 : ∃S.(A � B), (d1, d2) : S, d2 : A � B, d2 : B }
�2 =�0 ∪ { (c, d3) : R, d3 : ¬¬∃S.A, d3 : ∃S.(A � B), (d3, d4) : S, d4 : A � B, d4 : A }

On the other hand, we are not able to build a c-tree for (�′, c : H) where �′ = �0 ∪
{c : ∀R.∃S.A}. Indeed, such a c-tree should contain a leaf (�l, d : A,Nl) such that, for
some d′ ∈ Nl , the formulas (c, d′) : R, (d′, d) : S and d : A belong to �l . This implies
�l | ALCG d : A, in contradiction with the definition of c-tree. Note that �′ | BCDL c : H.

We state a sufficient condition for the existence of a c-tree.

Lemma 5 Let (�, K,N) be a c-node such that � |� BCDL K. Then, there exists a c-tree
having root (�, K,N).

BCDL: Basic Constructive Description Logic 391

Proof We prove the lemma by induction on K. If K is a simple formula, by
Corollary 1 we have � |� ALCG K, hence (�, K,N) is a c-tree. Let K ≡ c : A
 B and
suppose � |� BCDL c : A (the case � |� BCDL c : B is similar). By induction hypothesis,
there exists a c-tree TA with root the c-node (�, c : A,N). It follows that

··· TA

(�, c : A, N)
r
1

(�, c : A
 B, N)

is a c-tree with root (�, c : A
 B,N). If K ≡ c : A � B, then � |� BCDL c : A and
� |� BCDL c : B. By induction hypothesis, there are two c-trees TA and TB having roots
(�, c : A,N) and (�, c : B,N) respectively. Then (possibly renaming individual
names not belonging to N), we can build the c-tree

··· TA

(�, c : A, N)

··· TB

(�, c : B, N)
r�

(�, c : A � B, N)

The other cases are similar. For K ≡ c : ∀R.A, the existence of �′ and N ′ follows by
the fact that �, (c, d) : R |� BCDL d : A (where d �∈ N) and by Lemma 3.
�

As a consequence, we get:

Theorem 8 If � |� BCDL K, then there exists a c-tree for (�, K).

Proof By Lemma 3, there exists a c-node (�, K,N) such that � |� BCDL K. By
Lemma 5, there exists a c-tree with root (�, K,N), which is a c-tree for (�, K).
�

A c-tree T for (�, K) describes the countermodels needed to show that � �|=c K.
Firstly, we define a canonical way to associate an information term with every
formula occurring in a set � of a node of T . Let

DT = ⋃ { � | (�, K,N) is a node of T }
NT = ⋃ { N | (�, K,N) is a node of T }

By Lemma 4, for every D ∈ DT the set of nodes (�, K,N) such that D ∈ � has
a minimum element (�M, KM,NM) w.r.t. �. We call (�M, KM,NM) the minimum
node associated with D.

Now, for every D ∈ DT we define the information term IT (D) ∈ itNT (D) by
induction on the structure of D.

– IT (D) = tt if D is a simple formula.
– IT (c : A
 B) = (IT (c : A), IT (c : B)).
– If D ≡ c : A � B, let (�M, KM,NM) be the minimum node associated with D.

Then:

IT (c : A � B) =
{

(1, IT (c : A)) if c : A ∈ �M

(2, IT (c : B)) otherwise

392 M. Ferrari et al.

We remark that if c : A �∈ �M then c : B ∈ �M must hold.
– If D ≡ c : ∃R.A, let (�M, KM,NM) be the minimum node associated with D.

Then:

IT (c : ∃R.A) = (d, IT (d : A))

where d is any element in NM such that (c, d) : R ∈ �M and d : A ∈ �M (being
�M saturated in NM, there exists at least one).

– IT (c : ∀R.A) is the map φ such that, for every d ∈ NT :

φ(d) =
{ IT (d : A) if (c, d) : R ∈ DT

α+ ∈ itNT (d : A) otherwise

where α+ is an element of itNT (d : A).
– IT (∀G A) is the map φ such that, for every d ∈ dom(G):

φ(d) = IT (d : A)

One can easily check that the above definition is sound. For instance, let c : ∀R.A ∈
DT and (c, d) : R ∈ DT . There are two nodes (�1, K1,N1) and (�2, K2,N2) such
that c : ∀R.A ∈ �1 and (c, d) : R ∈ �2. By Lemma 4 we get c : ∀R.A ∈ �2, hence d :
A ∈ �2, which implies d : A ∈ DT . Thus, IT (d : A) is inductively defined. As usual,
if � = {D1, . . . , Dn}, IT (�) denotes the tuple (IT (D1), . . . ,IT (Dn)). Thus, M �

〈IT (�)〉� iff, for every D ∈ �, M � 〈IT (D)〉 D.

Example 5 Let us consider the c-tree in Example 4. We have:

DT = �1 ∪ �2 NT = {c, d1, d2, d3, d4}
The definition of IT (D) for non-simple formulas D ∈ DT is:

IT (d2 : A � B) = (2,tt) IT (d1 : ∃S.(A � B)) = (d2, (2,tt))

IT (d4 : A � B) = (1,tt) IT (d3 : ∃S.(A � B)) = (d4, (1,tt))

IT (c : ∀R.¬¬∃S.A) = ψ such that, for every d ∈ NT , ψ(d) = tt

IT (c : ∀R.∃S.(A � B)) = φ such that, for every d ∈ NT :

φ(d) =

⎧
⎪⎨

⎪⎩

(d2, (2,tt)) if d ≡ d1

(d4, (1,tt)) if d ≡ d3

α+ otherwise

where we can take, for instance, α+ = (c, (1,tt)).
Let us consider the leaf (�1, d2 : A, {c, d1, d2}) of T . Since �1 |� ALCG d2 : A, by

Theorem 2 there exists a model M1 of �1 such that M1 �|= d2 : A and, for every
d, d′ ∈ NT , the following holds:

M1 |= (d, d′) : R iff d ≡ c and d′ ≡ d1

M1 |= (d, d′) : S iff d ≡ d1 and d′ ≡ d2

It follows that M1 � 〈φ〉 c : ∀R.∃S.(A � B), hence:

(i) M1 � 〈IT (�0)〉�0

BCDL: Basic Constructive Description Logic 393

Similarly, since (�2, d4 : B, {c, d3, d4}) is a leaf of T , there exists M2 defined accord-
ing to Theorem 2 such that:

(ii) M2 � 〈IT (�0)〉�0

We show that:

(iii) For every η ∈ itNT (c : H), either M1 ��〈η〉 c : H or M2 ��〈η〉 c : H.

If η ∈ itNT (c : H), either η ≡ (1, φ1) or η ≡ (2, φ2). Let us assume that η = (1, φ1),
with φ1 ∈ itNT (c : ∀R.∃S.A), and let φ1(d1) = (d,tt), with d ∈ NT . If d ≡ d2,
by the fact that M1 |= (c, d1) : R, M1 |= (d1, d2) : S and M1 �|= d2 : A, we get
M1 ��〈φ1〉 c : ∀R.∃S.A. If d �≡ d1, since M1 |= (c, d1) : R and M1 �|= (d1, d) : S, we
get M1 ��〈φ1〉 c : ∀R.∃S.A. Thus, η ≡ (1, φ1) implies M1 ��〈η〉 c : H. In a similar way
one can prove that η ≡ (2, φ2) implies M2 ��〈η〉 c : H, hence (iii) is proved.
By (i), (ii) and (iii) we conclude �0 �|=c c : H.

The following lemmas generalise the reasoning of the previous example to any
c-tree.

Lemma 6 Let (�, K,N) be a leaf of a c-tree T . Then, there exists a finite model M
for LNT such that:

(i) M � 〈IT (�)〉�.
(ii) M �|= K.

(iii) For every c, d ∈ NT and R ∈ NR, M |= (c, d) : R iff (c, d) : R ∈ �.
(iv) For every G ∈ NGNT , M |= c : G iff c ∈ dom(G).

Proof By definition of T , � ∪ {K} ⊆ LNT and � |� ALCG K. By Theorem 2 there exists
a model finite M for LNT such that

(1) M |= �.
(2) M �|= K.
(3) For every c, d ∈ NT and R ∈ NR, M |= (c, d) : R iff (c, d) : R ∈ �.
(4) For every G ∈ NGNT , M |= c : G iff c ∈ dom(G).

To complete the proof, it only remains to show that:

(*) D ∈ � implies M � 〈IT (D)〉 D.

If D is a simple formula, (*) immediately follows by (1).
Let D ≡ c : A
 B. Then, IT (D) = (IT (c : A),IT (c : B)). Since � is saturated in

N , we have c : A ∈ � and c : B ∈ �. By induction hypothesis, M � 〈IT (c : A)〉 c : A
and M � 〈IT (c : B)〉 c : B, and (*) holds.

Let D ≡ c : A � B and let (�M, KM,NM) be the minimum node associated
with D. Assume that c : A ∈ �M (the case c : B ∈ �M is similar). Then, IT (D) =
(1,IT (c : A)). By definition of minimum node, (�M, KM,NM) � (�, K,N). It fol-
lows that c : A ∈ �, hence, by induction hypothesis, M � 〈IT (c : A)〉 c : A, which
implies M � 〈(1,IT (c : A))〉 D.

Let D ≡ c : ∃R.A and let (�M, KM,NM) be the minimum node associated with
D. We have IT (D) = (d,IT (d : A)), where (c, d) : R ∈ �M and d : A ∈ �M. Since
(�M, KM,NM) � (�, K,N), it follows that (c, d) : R ∈ � and d : A ∈ �. Thus, M |=

394 M. Ferrari et al.

(c, d) : R and, by the induction hypothesis, M � 〈IT (d : A)〉 d : A. We conclude
M � 〈(d,IT (c : A))〉 D.

Let D ≡ c : ∀R.A. By (1), we have M |= c : ∀R.A. Let φ = IT (D) and let d ∈
NT . If M |= (c, d) : R, by (3) we have (c, d) : R ∈ �. It follows that d : A ∈ �

and (c, d) : R ∈ DT . Thus, φ(d) = IT (d : A) and, by induction hypothesis, M �

〈φ(d)〉 d : A. We conclude M � 〈φ〉 D.
The case D ≡ ∀G A is similar and requires Point (4).
�

Lemma 7 Let (�, K,N) be a node of a c-tree T . Then, for every η ∈ itNT (K), there
exists a finite model M for LNT such that:

(i) M � 〈IT (�)〉�.
(ii) M � �〈η〉 K.

(iii) For every c, d ∈ N and R ∈ NR, M |= (c, d) : R iff (c, d) : R ∈ �.
(iv) For every G ∈ NGNT , M |= c : G iff c ∈ dom(G).

Proof The proof is by induction on the height of the node (�, K,N) (i.e., the
maximum length of a path between (�, K,N) and a leaf of T). If (�, K,N) is a
leaf, then K is a simple formula, hence itT (K) = tt and the assertion immediately
follows by Lemma 6. Otherwise, (�, K,N) has one or more immediate successors
according to the form of K.

Let K ≡ c : A
 B and let (�, c : A,N) be the only immediate successor of
(�, K,N) (the other case is similar). Let (α, β) ∈ itNT (K). Since α ∈ itNT (c : A),
by induction hypothesis there exists M such that M � 〈IT (�)〉� and M��〈α〉 c : A,
hence M��〈(α, β)〉 K.

Let K ≡ c : A � B and let, for instance, η ≡ (1, α), with α ∈ itNT (c : A) (the other
case is similar). Since (�, c : A,N) is an immediate successor of (�, K,N), by
induction hypothesis there is M such that M � 〈IT (�)〉� and M��〈α〉 c : A, which
implies M��〈(1, α)〉 K.

Let K ≡ c : ∃R.A and let (d, α) ∈ itNT (K), with d ∈ NT and α ∈ itNT (d : A). If
(c, d) : R ∈ �, then (�, d : A,N) is an immediate successor of (�, K,N). By induc-
tion hypothesis, there is M such that M � 〈IT (�)〉� (hence, M |= (c, d) : R) and
M��〈α〉 d : A. It follows that M��〈(d, α)〉 K. Let (c, d) : R �∈ � and let (�, Z ,N)

be any immediate successor of (�, K,N) (there exists at least one). By induction
hypothesis, there exists a model M such that M � 〈IT (�)〉� and M �|= (c, d) : R. It
follows that M��〈(d, α)〉 K.

Let K ≡ c : ∀R.A and let φ ∈ itNT (K). Then, for some d ∈ NT , there exists an
immediate successor (�′, d : A,N ′) of (�, K,N) such that � ∪ {(c, d) : R} ⊆ �′.
Since φ(d) ∈ itNT (d : A), by the induction hypothesis there exists a model M such
that M � 〈IT (�′)〉�′ and M��〈φ(d)〉 d : A. It follows that M � 〈IT (�)〉� and, by
the fact that M |= (c, d) : R, we get M��〈φ〉 K. Point (iii) follows by the fact that
�′

/N = � (see the definition of the rule r∀G in Table 3); Point (iv) by the fact that
c : G ∈ � iff c : G ∈ �′.

The case K ≡ ∀G A is similar.
�

As a consequence, we get:

Theorem 9 If there is a c-tree for (�, K), then � �|=c K.

BCDL: Basic Constructive Description Logic 395

Proof Let T be a c-tree for (�, K) having root (�, K,N), where � ⊆ �, and let γ =
IT (�). Let us assume �|=c K. Since � ∪ {K} ⊆ LNT and γ ∈ itNT (�), by Definition 2
there is η′ ∈ itNT (K) such that, for every model M for LNT , M � 〈γ 〉� implies
M � 〈η′〉 K. On the other hand, by Lemma 7 there must be a model M′ for LNT

such that M′ � 〈IT (�)〉� and M′ ��〈η′〉 K. In particular, M′ � 〈γ 〉�, and we get a
contradiction. We conclude � �|=c K.
�

We summarise the main results of this section:

Corollary 2 The following statements are equivalent:

(i) � | BCDL K.
(ii) �|=c K.

(iii) There is no c-tree for (�, K).

Proof (i) implies (ii) by the Soundness Theorem for NDc (Theorem 7). (ii) implies
(iii) by Theorem 9. (iii) implies (i) by Theorem 8.
�

Example 6 Let �0 and H be defined as in Example 4. Since there exists a c-tree for
(�0, c : H), we have �0 |� BCDL c : H. Note that �0 | ALCG c : H.

We conclude the section by discussing some constructive properties of NDc. In
particular, we prove that, under suitable conditions on the assumptions � of a proof,
the disjunction property (DP) and the explicit definability property (EDP) hold.
Namely, let � be a set of closed formula and let c ∈ NI, the properties DP and EDP
are formulated as follows:

(DP) If � | BCDL c : A � B, then � | BCDL c : A or � | BCDL c : B.
(EDP) If � | BCDL c : ∃R.A, then there exists d ∈ NI such that � | BCDL (c, d) : R and

� | BCDL d : A.

In general DP and EDP do not hold; for instance, c : A � B | BCDL c : A � B but
neither c : A � B | BCDL c : A nor c : A � B | BCDL c : B (the same happens for (EDP),
taking � = {c : ∃R.A}). We have to restrict the set � to the well-known class of
Harrop formulas, namely the formulas not containing the connectives � and ∃. Let
N be a finite set of individual names and � a finite set of closed Harrop formulas
of LN . One can easily check that, for every H f ∈ �, itN (H f) contains exactly one
information term. This implies that, for every c ∈ N , the following properties hold:

(1) If �|=c c : A � B, then �|=c c : A or �|=c c : B.
(2) If �|=c c : ∃R.A, then there exists d ∈ N such that �|=c (c, d) : R and �|=c d : A.

Thus, by the completeness theorem, the constructivity of NDc can be stated as
follows:

Theorem 10 Let N be a finite set of individual names, A ⊆ LN an ABox, T ⊆ LN a
TBox such that the formulas in T are closed Harrop formulas, and let c ∈ N .

(1) If A ∪ T | BCDL c : A � B, then A ∪ T | BCDL c : A or A ∪ T | BCDL c : B.
(2) If A ∪ T | BCDL c : ∃R.A, then there exists d ∈ N such that A ∪ T | BCDL (c, d) : R

and A ∪ T | BCDL d : A

396 M. Ferrari et al.

6 On Unbounded Quantification

In this paper we have considered bounded quantified formulas of the kind ∀G A,
where dom(G) is a finite domain fixed by the language. What happens if we admit
unbounded quantified formulas of the form ∀C A, where C is any concept name?

Let Lu be the language obtained by extending L with the unbounded quantified
formulas. The validity of an unbounded quantified formulas can be defined as:

M |= ∀C H iff CM ⊆ HM

We remark that ∀C H models in our setting the usual subsumption relation C 	 H.
For a finite N ⊆ NI, an information term for ∀C A can be defined as

itN (∀C A) =
{

φ : N →
⋃

c∈N
itN (c : A) | φ(c) ∈ itN (c : A)

}

and M � 〈φ〉 ∀C A iff:

M |= ∀C A and, for every c ∈ N , M |= c : C implies M � 〈φ(c)〉 c : A

To properly treat ∀C we need the following rules

�, [p : C]··· π ′

p : A
∀C I∀C A

where p ∈ Var and
p does not occur in �

�1··· π1

∀C A

�2··· π2

t : C
∀C E

t : A

Let NDu
c be the calculus obtained by adding to NDc the rules ∀C I and ∀C E. We say

that � | Cu K iff there exists a proof π : � � K in NDu
c . It is easy to extend the map

�π
σ,N of Section 4 to the new rules so that Property (P2) holds, thus:

Theorem 11 (Soundness of NDu
c) � | Cu K implies �|=c K.

We show that the converse of Theorem 11 (namely, the Completeness of NDu
c

with respect to |=c) does not hold. To this aim let us consider the following translation
Tr from the formulas of Lu into the formulas of predicate first order logic:

– Tr(⊥) = ⊥
– Tr((s, t) : R) = R(s, t)
– Tr(t : C) = C(t), if C ∈ NC ∪ NG
– Tr(t : ¬A) = ¬Tr(t : A)

– Tr(t : A
 B) = Tr(t : A) ∧ Tr(t : B)

– Tr(t : A � B) = Tr(t : A) ∨ Tr(t : B)

– Tr(t : ∃R.A) = ∃x.(R(t, x) ∧ Tr(x : A))

– Tr(t : ∀R.A) = ∀x.(R(t, x)→Tr(x : A))

– Tr(∀G A) = ∀x.((G(x) ↔ x = c1 ∨ · · · ∨ x = cn) ∧ (G(x)→Tr(x : A))) where
dom(G) = {c1, . . . , cn}

– Tr(∀C A) = ∀x.(C(x)→Tr(x : A))

For a set of formulas �, Tr(�) denotes the set of formulas Tr(K) such that K ∈ �.

BCDL: Basic Constructive Description Logic 397

We write � |
Int+ K to mean that there exists a proof π : � � K in a calculus for

the logic obtained by adding to Intuitionistic Logic Int the equality theory and the
following axiom schema

(KUR) ≡ ∀x.¬¬A(x)→¬¬∀x.A(x)

(NegAt) ≡ ¬¬a → a where a is an atomic formula

It is easy to prove:

Lemma 8 � | Cu K implies Tr(�) |
Int+ Tr(K).

Now, let us consider the set � of formulas of Lu defined as follows:

� = { ∀C(A � B), d : ¬¬(A � C), d : ¬¬(B � C) } A, B, C ∈ NC

Lemma 9 � |� Cu d : A � B

Proof Suppose that � | Cu d : A � B. Let

K ≡ ∀x(C(x) → A(x) ∨ B(x)) ∧ ¬¬(A(d) ∨ C(d)) ∧ ¬¬(B(d) ∨ C(d))

Then, by Lemma 8 we should have

K |
Int+ A(d) ∨ B(d) (2)

Using standard techniques based on Kripke semantics for intermediate logics (see
e.g. [20]), one can prove that Fact (2) cannot hold.2
�

Lemma 10 �|=c d : A � B

Proof Let N be any finite set of individual names containing d. We have to prove
that, for every φ ∈ itN (∀C(A � B)), there exists η ∈ itN (d : A � B) such that, for
every model M for LN , the following holds:

(a) If M � 〈φ〉 ∀C(A � B) and M |= d : (A � C) and M |= d : (B � C),
then M � 〈η〉 d : A � B.

Let φ ∈ itN (∀C(A � B)). We define:

η =
{

(1,tt) if φ(d) = (1,tt)

(2,tt) if φ(d) = (2,tt)

Let us assume φ(d) = (1,tt). If the premise of (a) holds, then M |= d : A. Indeed,
since M |= d : (A � C), either M |= d : A or M |= d : C. In the latter case, since
M � 〈φ〉 ∀C(A � B), we get M � 〈φ(d)〉 d : A � B, namely M � 〈(1,tt)〉 d : A � B,
which implies M |= d : A. Since η ≡ (1,tt), we conclude M � 〈η〉 d : A � B, and
(a) is proved. The case φ(d) = (2,tt) is similar.
�

2Actually, to prove Fact (2) one needs to consider an extension of Int+ also including the Kreisel and
Putnam axiom schema (¬A→ B ∨ C)→(¬A→ B) ∨ (¬A→C) [4].

398 M. Ferrari et al.

By Lemmas 9 and 10, NDu
c is not complete with respect to constructive conse-

quence.
We think that we cannot apply the tools described in this paper to prove a com-

pleteness theorem. The major drawback is that we cannot extend Theorem 2 to Lu

so that the following property holds:

(v) For every c ∈ NI and every C ∈ NC, M |= c : C iff c : C ∈ �.

For instance, every model M of � satisfies M |= d : A or M |= d : B, but neither
d : A nor d : B belongs to �. Thus, different techniques have to be studied.

As for the future works, we think that a few questions deserve to be investigated.
First of all, as we remarked in the introduction, in our context negation is treated
classically. However we can extend BCDL with a further operator modeling Nelson
constructive negation [13, 14] still obtaining a sound and complete natural deduction
characterisation. Another significant point is to extend information terms semantics
to treat the usual quantifiers defined in the description logic context. Finally, an
interesting issue is the development of a Kripke-style semantics for BCDL. Indeed,
according to the authors experience, such a semantics is an important guideline in the
development of “efficient” decision procedures for a logic. This is also related to the
study of complexity issues of the usual decision problems considered in description
logics.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press, Cambridge (2003)

2. Bozzato, L., Ferrari, M., Villa, P.: Actions over a constructive semantics for description logics.
Fundam. Inform. 96, 1–17 (2009)

3. Brachman, R.J., Mcguinness, D.L., Patel-Schneider, P.F., Resnick, L.A., Borgida, A.: Living with
CLASSIC: When and How to Use a KL-ONE-like Language (1991)

4. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, Oxford (1997)
5. de Paiva, V.: Constructive description logics: what, why and how. Technical report, Xerox Parc

(2003)
6. Ferrari, M., Fiorentini, C., Momigliano, A., Ornaghi, M.: Snapshot generation in a construc-

tive object-oriented modeling language. In: King, A. (ed.) Logic Based Program Synthesis and
Transformation, LOPSTR 2007, Selected Papers. Lecture Notes in Computer Science, vol. 4915,
pp. 169–184. Springer, New York (2008)

7. Ferrari, M., Fiorentini, C., Ornaghi, M.: Extracting exact time bounds from logical proofs. In:
Petterossi, A. (ed.) Logic Based Program Synthesis and Transformation, 11th International
Workshop, LOPSTR 2001, Selected Papers. Lecture Notes in Computer Science, vol. 2372,
pp. 245–265. Springer, New York (2002)

8. Gabbay, D.M.: Semantical Investigations in Heyting’s Intuitionistic Logic. Reidel, Dordrecht
(1981)

9. Kaneiwa, K.: Negations in description logic - contraries, contradictories, and subcontraries. In:
Proceedings of the 13th International Conference on Conceptual Structures (ICCS ’05), pp. 66–
79. Kassel University Press, Kassel (2005)

10. Lipton, J., M.J. O’Donnel: Some intuitions behind realizability semantics for constructive logic:
Tableaux and Läunchli countermodels. Ann. Pure Appl. Logic 81, 187–239 (1996)

11. Miglioli, P., Moscato, U., Ornaghi, M.: Pap: a logic programming system based on a construc-
tive logic. In: Foundations of Logic and Functional Programming. Lecture Notes in Computer
Science, vol. 306, pp. 143–156. Springer, New York (1986)

12. Miglioli, P., Moscato, U., Ornaghi, M.: Abstract parametric classes and abstract data types
defined by classical and constructive logical methods. J. Symb. Comput. 18, 41–81 (1994)

BCDL: Basic Constructive Description Logic 399

13. Miglioli, P., Moscato, U., Ornaghi, M., Usberti, G.: A constructivism based on classical truth.
Notre Dame J. Form. Log. 30(1), 67–90 (1989)

14. Nelson, D.: Constructible falsity. J. Symb. Log. 14, 16–26 (1949)
15. Odintsov, S.P., Wansing, H.: Inconsistency-tolerant description logic. Motivation and basic sys-

tems. In: Hendricks, V., Malinowski, J. (eds.) Trends in Logic. 50 Years of Studia Logica, pp. 301–
335. Kluwer Academic, Dordrecht (2003)

16. Odintsov, S.P., Wansing, H.: Inconsistency-tolerant description logic. Part II: a tableau algorithm
for CACLc. Journal of Applied Logic 6(3), 343–360 (2008)

17. Prawitz, D.: Natural Deduction. Almquist and Wiksell, Stockholm (1965)
18. Schmidt, R.A.,. Tishkovsky, D.: Using tableau to decide expressive description logics with role

negation. In: ISWC/ASWC 2007. Lecture Notes in Computer Science, vol. 4825, pp. 438–451
(2007)

19. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif.
Intell. 48(1), 1–26 (1991)

20. Smorynski, C.A.: Applications of Kripke semantics. In: Troelstra, A.S. (ed.) Metamathematical
Investigation of Intuitionistic Arithmetic and Analysis. Lecture Notes in Mathematics, vol. 344,
pp. 324–391. Springer, New York (1973)

21. Troelstra, A.S. (ed.): Metamathematical Investigation of intuitionistic arithmetic and analysis.
In: Lecture Notes in Mathematics, vol. 344. Springer, New York (1973)

22. Troelstra, A.S.: From constructivism to computer science. Theor. Comp. Sci. 211(1–2), 233–252
(1999)

23. Troelstra, A.S., Schwichtenberg, H.: Basic proof theory. In: Cambridge Tracts in Theoretical
Computer Science, vol. 43. Cambridge University Press, Cambridge (1996)

	BCDL: Basic Constructive Description Logic
	Abstract
	Introduction
	ALCG Language and Semantics
	The Natural Calculus ND for ALCG
	BCDL and Information Terms Semantics
	The Natural Calculus NDc for BCDL
	Soundness of NDc
	Completeness of NDc

	On Unbounded Quantification
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

