
A Space Efficient Implementation of a Tableau
Calculus for a Logic with a Constructive Negation

Alessandro Avellone1, Camillo Fiorentini2,
Guido Fiorino1, and Ugo Moscato1

1 Dipartimento di Metodi Quantitativi per le Scienze Economiche Aziendali,
Università Milano-Bicocca, piazza dell’Ateneo Nuovo, 1, 20126 Milano
{alessandro.avellone, guido.fiorino, ugo.moscato}@unimib.it

2 Dipartimento di Scienze dell’Informazione,
Università degli Studi di Milano, via Comelico, 39, 20135 Milano, Italy

fiorenti@dsi.unimi.it

Abstract. A tableau calculus for a logic with constructive negation and
an implementation of the related decision procedure is presented. This
logic is an extension of Nelson logic and it has been used in the framework
of program verification and timing analysis of combinatorial circuits. The
decision procedure is tailored to shrink the search space of proofs and it is
proved correct by using a semantical technique. It has been implemented
in C++ language.

1 Introduction

Since the works of Nelson [11] and Thomason [14], logics with constructive nega-
tion (∼) have been deeply investigated in the literature. Unlike intuitionistic
negation (¬), where ¬A is understood as “A implies falsehood“, the meaning
of ∼A is defined according to the structure of A, where the notion of falsity of
atomic formula is as primitive as the concept of its truth (for a thorough discus-
sion about constructive negation see [17]). Nelson logic N extends intuitionistic
logic by adding a constructive negation. Accordingly, both positive and negative
information has a constructive nature; indeed, N enjoys disjunction property (if
a formula A∨B belongs to N, then either A or B belongs to N) and its negative
counterpart, namely constructible falsity (if ∼(A∧B) belongs to N, then either
∼A or ∼B belongs to N). Beyond N, many other logical systems with the same
constructive features have been studied; for a comprehensive picture, we refer
the reader to [7], where sequent calculi and Kripke semantics of predicate con-
structive logics with constructive negation are presented. The interest in such
logics has been increased thanks to their applications in Computer Science; first
of all, we mention the relevance of constructive negation in logic programming
and in knowledge representation (see, e.g., [12, 13]).

In this paper we focus on a particular propositional logic with constructive
negation, namely the propositional fragment of the logic E introduced in [10]
(where E stays for “effective”). Instead of two negations, only the constructive

J. Marcinkowski and A. Tarlecki (Eds.): CSL 2004, LNCS 3210, pp. 488–502, 2004.
c©Springer-Verlag Berlin Heidelberg 2004

A Space Efficient Implementation of a Tableau Calculus 489

negation is used, but a new unary logical operator (�) is introduced to represent
classical truth inside E: a formula �A belongs to E if and only if A is classically
valid. In the classification of [7], E coincides with the logic N3o, namely the logic
obtained by adding to Nelson logic the potential omniscience axiom ¬¬(A∨ ∼
A). The interaction between constructive falsity and classical truth provides a
powerful environment where one can embed classical reasoning in a constructive
setting, and this has a fruitful impact for Computer Science. Two recent trends
encourage the research in this direction: in [3] it is described a framework based
on logic E oriented to verification of computer programs; in [5] formal proofs of
E are used to extract information about the propagation delays of signals in a
combinatorial circuit (timing analysis).

In this context, the main contribution of the paper is to supply a space
efficient tool to generate proofs of E. Firstly, we present a tableau calculus for
E. Differently from the calculi presented in [1, 7], we aim to avoid what might
produce inefficiency in the proof search task. Along the lines of [4, 9, 16], we avoid
duplications of formulas: when a rule is applied to a formula A, A must not occur
in the obtained configuration. The rules for the formulas A ∨ B and ∼ (A ∧ B)
are defined according to their constructive meaning. A peculiar feature of our
calculus is the combination of constructive and non-constructive tools; indeed,
in particular configurations, we are allowed to continue a proof by using the
rules for classical logic. The more expensive task in proof search strategy is due
to backtracking. Typically, if one fails to build a closed proof table, one has
to restore some old configuration and try the application of a different rule. In
our implementation we reduce this kind of backtracking and, using a semantical
argumentation, we show that the backtracking can be actually limited to few
rules.

We have implemented in C++ language a decision procedure for the logic
E based on the proof search strategy. The program is available at http://
www.dimequant.unimib.it/elogic/index.html.

We consider the propositional language L based on a denumerable set of propo-
sitional variables and the logical constants ∼,∧,∨,→ and �. We denote with
p, q, . . . propositional variables and with A,B, . . . arbitrary formulas. We write
A ↔ B as an abbreviation of (A → B) ∧ (B → A). A literal is any formula of
the kind p or ∼ p, where p is a propositional variable. We denote with Int the
set of intuitionistic valid formulas of the propositional language LInt having as
logical constants ¬,∧,∨,→; Cl denotes the set of classically valid formulas of L,
where � has to be trivially understood as the identity operator (namely, �A is
equivalent to A).

The logic E (in the predicate language) has been introduced in [10], where
both a natural deduction calculus and a Kripke semantics is provided. In this
section we outline some results presented in [10]. The logic E can be axiomatized
by adding to the positive axioms of Int (see, for instance, [15]) the following

2 The Logic E

490 A. Avellone et al.

axioms which characterize ∼as a constructive negation and � as an operator to
represent classical truth:

(E1). ∼(A ∧ B) ↔ (∼A∨ ∼B)
(E2). ∼(A ∨ B) ↔ (∼A∧ ∼B)
(E3). ∼(A → B) ↔ (A∧ ∼B)
(E4). ∼∼A ↔ A
(E5). A∧ ∼A → B
(E6). (�A ∧ � ∼A) → B
(E7). (∼A → B∧ ∼B) → �A
(E8). (A → B∧ ∼B) →∼�A

Clearly, E is contained in Cl. Constructive negation (also called strong negation)
is weaker, with respect to provability, than classical negation; as a matter of
fact, the classical tautologies ∼ (A∧ ∼ A), (A → B) → (∼ B →∼ A) and
(A → B) →∼A∨B do not belong to E. Moreover, unlike intuitionistic negation,
constructive negation satisfies the principle of constructible falsity (cf), which is
the negative counterpart of disjunction property (dp). This means that:

(cf). ∼(A ∧ B) ∈ E implies ∼A ∈ E or ∼B ∈ E;
(dp). A ∨ B ∈ E implies A ∈ E or B ∈ E.

The � operator allows us represent classical truth inside E; indeed:

(ct). �A ∈ E if and only if A ∈ Cl.

Intuitionistic validity can be represented inside E by means of a translation
map T defined on formulas of LInt. As a matter of fact, let us define:

T (p) = p, with p a propositional variable;
T (A ⊕ B) = T (A) ⊕ T (B), with ⊕ ∈ {∧,∨,→};
T (¬A) = � ∼A.

Then:

(int). A ∈ Int if and only if T (A) ∈ E.

We point out that in the literature logics with both intuitionistic and con-
structive negation have been investigated (see, e.g., [7, 11, 14, 17]). The logic E,
provided we define �A as ¬¬A, coincides with the logic N3o of [7], namely, the
logic obtained by adding to Nelson logic N3 the potential omniscience axiom
¬¬(A∨ ∼A). In [10] it is also presented the logic E∗, which is maximal among
the logics containing E and satisfying (dp), (cf) and (ct).

To treat constructive negation, we introduce a Kripke semantics equivalent
to the one in [7, 10]. We denote with 〈P,≤〉 a poset (partially ordered set), where
P is a nonempty set and ≤ is a partial ordering between elements of P ; 〈P,≤, ρ〉
means that ρ is the minimum element of 〈P,≤〉. We call final element of 〈P,≤〉
any φ ∈ P that is maximal in 〈P,≤〉 (that is, for every α ∈ P , φ ≤ α implies
φ = α). Given α ∈ P , Fin(α) denotes the set of final elements φ of 〈P,≤〉

A Space Efficient Implementation of a Tableau Calculus 491

such that α ≤ φ. Without loss of generality, we assume that, for every α ∈ P ,
Fin(α) �= ∅. A Kripke model for L is a structure K = 〈P,≤, ρ,�〉, where 〈P,≤, ρ〉
is a poset and � (the forcing relation) is a binary relation between elements α
of P and literals l of L such that:

(K1). α � l and α ≤ β implies β � l;
(K2). For every propositional variable p, it is not true that α � p and α �∼p;
(K3). For every final element φ of K and every propositional variable p, φ � p

or φ �∼p.

The forcing relation is extended in a standard way to arbitrary formulas of
L as follows:

1. α � A ∧ B iff α � A and α � B;
2. α � A ∨ B iff α � A or α � B;
3. α � A → B iff, for every β ∈ P such that α ≤ β, β � A implies β � B;
4. α � �A iff, for every φ ∈ Fin(α), φ � A;
5. α �∼(A ∧ B) iff α �∼A or α �∼B;
6. α �∼(A ∨ B) iff α �∼A and α �∼B;
7. α �∼(A → B) iff α � A and α �∼B;
8. α �∼�A iff, for every φ ∈ Fin(α), φ �∼A;
9. α �∼∼A iff α � A.

We write α � A to mean that α � A does not hold. It is easy to check that
properties (K1), (K2) and (K3) hold for arbitrary formulas as well. In this gen-
eralized formulation, (K1) is the usual monotonicity property of forcing relation,
(K3) states that a final element φ of K behaves like a classical interpretation.
Note that a classical interpretation I can be seen as a Kripke model having I
as the only element and forcing relation defined in the obvious way.

A formula A is valid in a Kripke model K if and only if α � A for all elements
α of K. As proved in [10], E coincides with the set of formulas valid in all Kripke
models.

3 The Tableau Calculus

The major contribute of this paper is the definition of a tableau calculus Tab
for E. As far as we know, no tableau calculus for this logic has been presented in
the literature. The object language of the calculus is based on the signs T and
F. A signed formula (sf for short) is an expression of the form TA or FA, where
A is any formula; a T-formula is a sf with sign T, whereas an F-formula is a sf
with sign F. The rules of Tab are in Tables 1-3. The meaning of the signs T
and F is explained by the notion of realizability. Let K = 〈P,≤,�〉 be a Kripke
model, let α ∈ P , let A be a formula and let S be a set of sfs. We say that:

– α � TA (α realizes A) iff α � A;
– α � FA iff α � A;
– α � S iff, for every H ∈ S, α � H.

492 A. Avellone et al.

We say that S is realizable iff there exists an element α of some model K
such that α�S. A configuration is an expression of the form S1 | . . . | Sn where,
for all i = 1, . . . , n, Si is a set of sfs. In the rules of the calculus, we denote with
S,H1, . . . , Hm the set S∪{H1, . . . ,Hm} and with ST the set of T-formulas of S.
Every rule is applied to a signed formula of a configuration S1 | . . . | Si | . . . Sn;
e.g., the notation S,T(A ∧ B) points out that the rule T∧ is applied to the
formula T(A ∧ B) of the set S ∪ {T(A ∧ B)}, where S is possibly empty; the
schema

S1 | . . . | S,T(A ∧ B) | . . . | Sn

S1 | . . . | S,TA,TB | . . . | Sn

T∧

illustrates an application of the rule T∧. In every rule we distinguish two parts:
the premise, that is the configuration above the line, and the conclusion, that
is the configuration below the line. Differently from the calculi for logics with

Table 1.

S,T(A ∧ B)

S,TA,TB
T∧

S,F(A ∧ B)

S,FA | S,FB
F∧

S,T(A ∨ B)

S,TA | S,TB
T∨

S,F(A ∨ B)

S,FA
F∨1

S,F(A ∨ B)

S,FB
F∨2

S,F(A → B)

ST ,TA,FB
F→

S,T ∼(A ∧ B)

S,T ∼A | S,T ∼B
T∼∧

S,F ∼(A ∧ B)

S,F ∼A
F∼∧1

S,F ∼(A ∧ B)

S,F ∼B
F∼∧2

S,T ∼(A ∨ B)

S,T ∼A,T ∼B
T∼∨

S,F ∼(A ∨ B)

S,F ∼A | S,F ∼B
F∼∨

S,T ∼(A → B)

S,TA,T ∼B
T∼→

S,F ∼(A → B)

S,FA | S,F ∼B
F∼→

S,T ∼∼A

S,TA
T∼∼

S,F ∼∼A

S,FA
F∼∼

strong negation presented in [1, 7], we are interested in a calculus oriented to an
efficient implementation. First of all, we aim to avoid duplications, thus to treat
T(A → B) we need several rules according to the structure of A (see [4, 16]).
Moreover, to further reduce the depth of the proofs, the rules

S,T((A ∨ B) → C)

S,T(A → C),T(B → C)
T→∨

S,T((A → B) → C)

ST ,F(A → B),T(B → C) | S,TC
T→→

of [4, 16] are rewritten as in Table 2, where the new propositional variable p
avoids the repetition of C in the former rule and of B in the latter rule (see [6, 8]).

A Space Efficient Implementation of a Tableau Calculus 493

Table 2.

S,TA,T(A → B)

S,TA,TB
T→

S,T((A ∧ B) → C)

S,T(A → (B → C))
T→∧

S,T(∼(A ∧ B) → C)

S,T(∼A → p),T(∼B → p),T(p → C)
T→∼∧

S,T((A ∨ B) → C)

S,T(A → p),T(B → p),T(p → C)
T→∨

S,T(∼(A ∨ B) → C)

S,T(∼A → (∼B → C))
T→∼∨

S,T((A → B) → C)

ST ,TA,Fp,T(B → p),T(p → C) | S,TC
T→→

S,T(∼(A → B) → C)

S,T(A → (∼B → C))
T→∼→

S,T(∼∼A → B)

S,T(A → B)
T→∼∼

where the propositional variable p in T →∼∧, T → ∨ and T →→ is new

As already mentioned in the introduction, in some configurations we are allowed
to apply to a set S the rules of a tableau calculus for Cl. To mark these sets,
we use the notation [S]Cl and we say that [S]Cl is a classical set ; intuitively, the
signs T and F occurring in [S]Cl have to be understood in a classical way (see
the rules of Table 3).

Table 3.

S,T�A

[ST ,TA]Cl

T�
S,F�A

[ST ,T ∼A]Cl

F�

S,T ∼�A

[ST ,T ∼A]Cl

T∼�
S,F ∼�A

[ST ,TA]Cl

F∼�

S,T(�A → B)

[ST ,T ∼A]Cl | S,TB
T→�

S,T(∼�A → B)

[ST ,TA]Cl | S,TB
T→∼�

A set S of sfs is contradictory iff one of the following conditions holds:

1. TA ∈ S and FA ∈ S;
2. TA ∈ S and T ∼A ∈ S;
3. S is a classical set and S is not Cl-consistent.

494 A. Avellone et al.

It is immediate to prove that:

Proposition 1. Let K = 〈P,≤,�〉 be a Kripke model, let α ∈ P and let S be a
contradictory set.

1. If S is not a classical set, then α � S does not hold.
2. If S is a classical set and α is a final element of K, then α � S does not

hold.

A proof table for a set S is a finite sequence of configurations Γ1, . . . , Γn, where
Γ1 is the set S and the configuration Γi+1 is obtained from Γi = S1 | . . . | Sm

by applying a rule to a non-contradictory set Si. A closed proof table is a proof
table Γ1, . . . , Γn where all the sets in the last configuration are contradictory.
We point out that to check that a classical set is contradictory, we can use any
classical tableau calculus (extended in a trivial way to the language L). Closed
proof tables are the proofs of our calculus Tab. A set S is provable in Tab iff
there exists a closed proof table for S; A is provable in Tab iff there exists a
closed proof table for {FA}. We remark that the rules of the calculus do not
increase the number of F-formulas in a set. In particular, if the set in the first
configuration of a proof table contains an F-formula at most, then every set
occurring in the proof table contains an F-formula at most. Note that the rule
F → applied to a set S of this kind is invertible. On the other hand, the rules
F∨i and F ∼∧i are non-invertible, but they capture the constructive meaning
of disjunction and negation.

Our aim is to exhibit an “efficient” sound and complete proof search strategy
for closed proof tables of Tab. We begin by proving that Tab is sound for E.
The main step consists in showing that the rules of Tab preserve realizability.
It is easy to prove that:

Lemma 1. Let K = 〈P,≤,�〉 be a Kripke model, let α ∈ P and let R be a rule
of the calculus having S as premise and S1 or S1 | S2 as consequence. If α � S,
then there is β ∈ P and i ∈ {1, 2} such that α ≤ β and β � Si. Moreover, if Si

is a classical set, then β is a final element of K.

From the above lemma we deduce that, if A does not belong to E, then no
closed proof table for {FA} can exist. Indeed, let K = 〈P,≤,�〉 be a model such
that A is not valid in K and let us assume that there exists a closed proof table
Γ1, . . . , Γn for {FA}. Since K realizes {FA}, by the previous lemma K realizes a
set S of Γn, moreover if S a classical set, then S is realized in a final element of K.
This contradicts Proposition 1. It follows that A is not provable in Tab, hence:

Theorem 1 (Soundness). If A is provable in Tab, then A belongs to E.

In the following sections we prove that every formula of E is provable in Tab
(Completeness Theorem).

A Space Efficient Implementation of a Tableau Calculus 495

4 The Proof Search Strategy

In this section we describe a procedure Tab which, given a set S of sfs, searches
for a closed proof table for S. The main issue is to reduce backtracking in proof
search. In our calculus the rules requiring backtracking are:

F∨i , F ∼∧i , T →→,T → � , T →∼� , T� , T ∼� (i = 1, 2)

Since we consider sets of sfs having an F-formula at most, the rules F →, F�

and F ∼ � are invertible, thus they do not require backtracking. Moreover, if
ST satisfies some properties (see Definition 1 in the next section), also the rules
F∨i, F ∼∧i, T� and T ∼� are invertible, as proved in Lemma 2 (see [2] for a
thorough discussion).

To describe our procedure we introduce some classes Cj to identify sfs with
the same behaviour:

C1 = {F�A, F ∼�A };
C2 = {T(A ∧ B), F(A → B), T ∼(A ∨ B), T ∼(A → B), T ∼∼A,F ∼∼A,

T((A ∧ B) → C), T(∼(A ∧ B) → C), T((A ∨ B) → C),
T(∼(A ∨ B) → C), T(∼(A → B) → C), T(∼∼A → B) };

C3 = {F(A ∧ B), T(A ∨ B), T ∼(A ∧ B), F ∼(A ∨ B), F ∼(A → B) };
C4 = {T(�A → B), T(∼�A → B) };
C5 = {T((A → B) → C) };
C6 = {F(A ∨ B), F ∼(A ∧ B) };
C7 = {T�A, T ∼�A }.

We describe a recursive procedure Tab(S, applyAll) that, given a set S of sfs
containing at most an F-formula and a boolean value applyAll, returns either
a closed proof table for S or NULL if S is realizable (hence, no closed proof table
for S can exist). The role of applyAll will be clarified in the next section; here
we only point out that, when applyAll is false, we do not apply any rule to
signed formulas in S ∩ (C4 ∪ C5) (see line 29 of the procedure). We assume to
have a subroutine TabCL(S) that, given a set of sfs S, searches for a classical
closed proof table for S. If a proof is found, TabCL(S) returns [S]Cl, otherwise
it returns NULL (this means that S is Cl-consistent). Let S be a set of sfs, let
H ∈ S and let S1 or S1 | S2 the configuration obtained by applying to S the rule
Rule(H) corresponding to H (when H ∈ C6, we write Rule1(H) or Rule2(H)
to identify the rule). If Tab1 and Tab2 are closed proof tables for S1 and S2

respectively, then S

Tab1

Rule(H) or S

Tab1 | Tab2

Rule(H) denotes the closed proof

table for S defined in the obvious way. Moreover, Ri(H) (i = 1, 2) denotes the
set containing the sfs of Si which replace H. For instance:

R1(T(A ∧ B)) = {TA,TB };
R1(T(A ∨ B)) = {TA} ; R2(T(A ∨ B)) = {TB};
R1(T((A → B) → C)) = {TA,Fp,T(B → p),T(p → C) };
R2(T((A → B) → C)) = {TC}.

496 A. Avellone et al.

The pseudo-code for Tab is the following:

Function Tab(S, applyAll)
1 if ((TA,FA ∈ S) or (TA,T ∼A ∈ S))
2 then return S;
3 if (S ∩ C1 �= ∅)
4 then Let H be the F-formula of S;
5 Tab1 ← TabCL(ST ∪ R1(H));
6 if (Tab1 �= NULL)

7 then return
S

Tab1

Rule(H);

8 else return NULL ;
9 if (TA,T(A → B) ∈ S)

10 then Tab1 ← Tab((S \ T(A → B)) ∪ {TB}, true);
11 if (Tab1 �= NULL)

12 then return
S

Tab1

T→;

13 else return NULL ;
14 if (S ∩ C2 �= ∅)
15 then Let H ∈ S ∩ C2;
16 Tab1 ← Tab((S \ {H}) ∪R1(H), true);
17 if (Tab1 �= NULL)

18 then return
S

Tab1

Rule(H);

19 else return NULL ;
20 if (S ∩ C3 �= ∅)
21 then Let H ∈ S ∩ C3;
22 Tab1 ← Tab((S \ {H}) ∪R1(H), true);
23 if (Tab1 �= NULL)
24 then Tab2 ← Tab((S \ {H}) ∪R2(H), true);
25 if (Tab2 �= NULL)

26 then return
S

Tab1 | Tab2

Rule(H);

27 else return NULL ;
28 else return NULL ;
29 if (applyAll and (S ∩ (C4 ∪ C5) �= ∅))
30 then for (H ∈ (S ∩ (C4 ∪ C5))
31 do Tab2 ← Tab((S \ {H}) ∪R2(H), true);
32 if (Tab2 = NULL)
33 then return NULL ;
34 if (H ∈ C4)
35 then Tab1 ← TabCL((ST \ {H}) ∪R1(H));
36 else Tab1 ← Tab((ST \ {H}) ∪R1(H), true);
37 if (Tab1 �= NULL)

38 then return
S

Tab1 | Tab2

Rule(H);

39 if (S ∩ C6 �= ∅)
40 then Let H be the F-formula of S;
41 Tab1 ← Tab(ST ∪R1(H), false);
42 if (Tab1 �= NULL)

A Space Efficient Implementation of a Tableau Calculus 497

43 then return
S

Tab1

Rule1(H);

44 else Tab2 ← Tab(ST ∪R2(H), false);
45 if (Tab2 �= NULL)

46 then return
S

Tab2

Rule2(H);

47 else return NULL ;
48 if ((S ∩ (C4 ∪ C5) = ∅) and (S ∩ C7 �= ∅))
49 then Let H ∈ S ∩ C7;
50 Tab1 ← TabCL((S \ {H}) ∪R1(H));
51 if (Tab1 �= NULL)

52 then return
S

Tab1

Rule(H);

53 else return NULL ;
54 return NULL ;

We remark that, when one of the if conditions at lines 1, 3, 9, 14, 20, 39 and
48 is matched, the corresponding then instruction is executed and the procedure
ends returning a value. This means that, independently of the choice of H, no
backtracking is needed. On the contrary, in the for instruction at line 30 it might
be necessary to try the application of a rule to all the formulas H in S∩(C4∪C5)
and possibly to continue in line 39. We emphasize that to implement F∨i, F ∼∧i,
T� and T ∼ � without backtracking, it is essential to apply these rules after
having tried the application of all the other rules (see the proof of Proposition 2
in the next section).

Example 1. Let us consider the set of signed formulas
S = {T((a → (b → c)) → �d) , F(a ∨ �((b → c) → d)) }

To search for a closed proof table for S, we call Tab(S, true).
(1). Since T((a → (b → c)) → �d) ∈ C5 and applyAll is true, the condition

in the if statement of line 29 is matched. This means that the procedure
tries to apply T →→ to S, therefore closed proof tables for the sets

S1 = {Ta , T((b → c) → p) , T(p → �d) , Fp }
S2 = {T�d , F(a ∨ �((b → c) → d)) }

are searched.
(2). The call Tab(S2, true) of line 31 is executed in order to build a closed

proof table for S2.
(3). The call Tab(S3, false) of line 41 is executed, where S3 = {T�d,Fa},

which corresponds to the application of F∨1 to S2.
(4). The application of T� to S3 is tried by the call TabCL({Td}) (line 50).

The NULL value is returned (indeed, Td is Cl-consistent) and also Tab(S3,
false) fails (line 53 is executed and NULL is returned).

(5). The execution of Tab(S2, true) continues in line 44 with the computation
of Tab(S4, false), where

S4 = {T�d , F�((b → c) → d) }
namely, F∨2 is applied to S2.

498 A. Avellone et al.

(6). The call TabCL({T�d,T ∼ ((b → c) → d)}) of line 5 is executed (F� is
applied to S4) and a classical proof table is found. Thus, both the calls in
(5) and (2) succeed and the closed proof table Tab2 is built as follows:

T�d , F(a ∨ �((b → c) → d))

T�d , F�((b → c) → d)

[T�d , T ∼((b → c) → d)]Cl

T�

F∨2

(7). Now, the computation of Tab(S, true) continues with the call Tab(S1,
true) (line 36) in order to build a closed proof table for S1.

(8). The condition in the if statement of line 29 is matched, thus the for loop
in line 30 is executed. This means that it is tried the application of the rule
T →→ to S1 for all the signed formulas of the kind T((H1 → H2) → H3).
We have two signed formulas of this kind and it is easy to check that in
both cases the search for a closed proof table fails. It follows that no closed
proof table for S1 can be built; nevertheless, Tab(S, true) does not fail,
but the computation continues with the statements after line 38.

(9). The condition in the if statement of line 39 is satisfied, thus the computa-
tion continues with the call Tab(S5, false) of line 41, where

S5 = {T((a → (b → c)) → �d) , Fa }

(it corresponds to apply F∨1 to S). The procedure immediately fails. As
a matter of fact, the application of T →→ is not tried since the value
of applyAll is false, and no other if statement can be executed; hence,
line 54 is executed and NULL is returned.

(10). The call Tab(S6, false) of line 44, where

S6 = {T((a → (b → c)) → �d) , F�((b → c) → d) }

is executed (it corresponds to apply F∨2 to S).
(11). Since the value of applyAll is false, the instructions inside the if statement

of line 29 are not executed (namely, the application of T →→ is not tried),
but the call TabCL(S7) in line 5 is executed (F� is applied to S6), where

S7 = {T((a → (b → c)) → �d) , T ∼((b → c) → d) }

The procedure succeeds in finding out a classical closed proof table for
S7; accordingly, both Tab(S6, false) and Tab(S, true) succeed and the
returned closed table for S is:

T((a → (b → c)) → �d) , F((a ∨ �((b → c) → d)))

T((a → (b → c)) → �d) , F�((b → c) → d)

[T((a → (b → c)) → �d) , T ∼((b → c) → d)]Cl

F�

F∨2

A Space Efficient Implementation of a Tableau Calculus 499

Example 2. Let us consider the set

S = {T((p ∨ q) ∨ r) , Fq }

To build a closed proof table for S, we call Tab(S, true). Line 22 is ex-
ecuted and Tab(S1, true) is called, where S1 = {T(p ∨ q), Fq} (T∨ is ap-
plied to S). Again, line 22 is executed and Tab(S2, true) is called, where S2 =
{Tp, Fq}. Now, no condition associated with the if statements is matched, hence
Tab(S2, true) immediately fails (line 54 is executed and NULL is returned). This
implies that Tab(S1, true) and Tab(S, true) immediately fail (indeed, in both
cases line 28 is executed and NULL is returned) and no proof table for S is found.

To prove the termination of Tab and the Completeness Theorem we define
the function dg as follows:

– if l is a literal, then dg(l) = 0;
– dg(A ∧ B) = dg(A) + dg(B) + 2;
– dg(A ∨ B) = dg(A) + dg(B) + 3;
– dg(A → B) = dg(A)+dg(B)+ (number of implications occurring in A)+1;
– dg(∼A) = dg(A) + 1;
– dg(�A) = dg(A);
– if S is a set of sfs, we set dg(S) =

∑
H∈S dg(H).

It is easy to check that, if S is a set of sfs and S′ is obtained from S by an
application of a rule of Tab, then dg(S′) < dg(S). Using this fact, it is immediate
to prove that Tab always terminates.

Remark 1. Along the lines of [6], it is possible to prove that the depth of every
proof table of Tab is linearly bounded in the proved formula. This property
implies the space efficiency of Tab (see the discussion in Section 6).

5 Completeness

We prove that, when the call Tab(S, applyAll) returns NULL, S is realizable and
we can actually build a countermodel for S (namely, a model K = 〈P,≤, ρ,�〉
such that ρ � S). To justify the lack of backtracking in rules F∨i, F ∼∧i, T�

and T ∼� we introduce the notion of →-realizability.

Definition 1. A set ST of T-formulas is →-realizable iff the following holds:

1. ST ⊆ {Tl | l is a literal} ∪ C4 ∪ C5 ∪ C7;
2. For all T(l → B) ∈ ST , with l a literal, Tl �∈ ST ;
3. For all T(�A → B) ∈ ST , the set (ST \ {T(�A → B)}) ∪ {T ∼ A} is

realizable;
4. For all T(∼ �A → B) ∈ ST , the set (ST \ {T(∼ �A → B)}) ∪ {TA} is

realizable;
5. For all T((A → B) → C) ∈ ST , the set

(ST \ {T((A → B) → C)}) ∪ {TA,Fp,T(B → p),T(p → C)}, where p is
new, is realizable.

500 A. Avellone et al.

Remark 2. If ST is →-realizable and ST ∩ (C4 ∪C5) �= ∅, then ST is realizable as
well.

Using a semantical construction on Kripke models, in [2] it is proved that:

Lemma 2. Let ST be →-realizable. Then:

(i). ST ,F(A ∨ B) is realizable iff both ST ,FA and ST ,FB are realizable.
(ii). ST ,F ∼(A∧B) is realizable iff both ST ,F ∼A and ST ,F ∼B are realizable.

Moreover, if l is a literal and Tl �∈ ST , then:
(iii). ST ,Fl is realizable iff ST is Cl-consistent.

We say that the call Tab(S, applyAll) is sound iff applyAll is true or ST is
→-realizable.

Proposition 2. Let S be a set of sfs containing at most one F-formula, let
Tab(S, applyAll) be a sound call and suppose that Tab(S, applyAll) returns
the NULL value. Then, there is a Kripke model K = 〈P,≤, ρ,�〉 such that ρ � S.

Proof. Let us assume, by induction hypothesis, that the proposition holds for
all sets S′ such that dg(S′) < dg(S). We prove that the proposition holds for S
by inspecting all the possible cases where the procedure returns the NULL value.
We show some significant cases (the whole proof is in [2]).

The instruction at line 33 has been executed.
Let us assume, for instance, that, at line 31, the call Tab(S′, true) has been
executed, with S′ = (S \{T(�A → B)})∪{TB}. By induction hypothesis there
exists a Kripke model K = 〈P,≤, ρ,�〉 such that ρ � S′, hence ρ � S.

Remark 3. If none of the conditions at lines 1, 3, 9, 14, 20 and 29 holds, we claim
that ST is →-realizable. Indeed, if the second parameter of the function is false,
this follows by the hypothesis of the proposition. Otherwise, using the induction
hypothesis, one can easily check that ST satisfies the definition of →-realizability.
In particular, the realizability of (ST \ {H}) ∪ R1(H), for H ∈ C4 ∪ C5, follows
by the fact that the procedure has not terminated inside the for instruction at
line 30, since the value of Tab1 is NULL.

The instruction at line 47 has been executed.
Suppose that S = ST ∪ {F(A∨B)} and let SA = ST ∪ {FA}, SB = ST ∪ {FB}.
Then, both the call Tab(SA, false) and Tab(SB , false) have returned the
NULL value. Note that both calls are sound (indeed, (SA)T = (SB)T = ST and
ST is →-realizable) thus, by induction hypothesis, both ST ,FA and ST ,FB are
realizable. By Lemma 2(i), S is realizable. The case S = ST ∪ {F ∼ (A ∧ B)} is
similar. ��

By the above proposition, it immediately follows the Completeness Theorem.

Theorem 2 (Completeness). If A belongs to E, then Tab({FA}, true) re-
turns a closed proof table for FA.

As a consequence of the above theorem, we have a trivial proof of properties
(cf), (dp) and (ct) of E stated in Section 2

A Space Efficient Implementation of a Tableau Calculus 501

6 Implementation of the Decision Procedure

We have implemented a decision procedure based on Tab and TabCL. The
implementation uses the signs T,F,Tc and Fc. The signs T and F are used
as in Tab. When the procedure TabCL is called, the signs of the formulas are
turned into Tc (classical truth) and Fc (classical falsity). To treat formulas with
signs Tc and Fc rules of a classical tableau calculus are used. Since the rules for
Classical logic are invertible backtracking is not required. To reduce the number
of nodes in the classical tableau the rules having one set in the conclusion are
applied first. Since signed formulas TH and TcH, where H is an axiom of Cl,
are not needed to close a proof table, they are deleted any time they appear in
a configuration. Whenever a rule is applied, the condition in Line 1 is checked
as follows. If the rule related to H is applied to “(S \ {H}),H”, the consistence
of the resulting set Si is checked considering every formula in Ri(H): every
T-formula in Ri(H) is checked against the F-formula and the T-formulas of
Si \ Ri(H). If Ri(H) contains the F-formula, then it is checked against the T-
formulas of Si \ Ri(H). The implementation proceeds in a similar way for the
signs Tc and Fc.

Tab is implemented as an iterative procedure. The implementation uses a
stack to take into account two different levels of backtracking. The former level of
backtracking, related to the for statement in line 30, is used to explore the search
space of the proof table. The latter level of backtracking, related to lines 24 and
36, is used to visit with a depth-first strategy a single proof table to determine
if it is closed. The stack has, at most, as many elements as the longest branch of
the deepest proof table in the search space. Every element of the stack contains
the sets of formulas of the nodes in the branch the procedure is visiting and two
integers denoting, respectively, which formula of the set has been used to get the
subsequent set and if the right subtree of the node has already been visited. By
Remark 1, the stack has a number of elements linearly bounded in the length
of the formula to be proved. Moreover, the number of symbols in each node of
every proof table is linearly bounded in the length of the formula to be proved.
Thus, the implementation is O(n2)-SPACE. Finally, the iteration in line 30 is
implemented to apply the rules of C4 first, since the first set in the conclusion
gives rise to a classical set of formulas.

7 Conclusion and Future Work

We have provided a tableau calculus for the logic E and the related decision
procedure that minimizes the backtracking. The implementation has been de-
veloped in C++ language. 3 Since we are interested in using the logic E in the
field of timing analysis, we plan to extend our program in order to extract timing
information from proofs of E, to implement the algorithms described in [5].

3 The program is available at http://www.dimequant.unimib.it/elogic/index.html.

502 A. Avellone et al.

References

1. S. Akama. Tableaux for logic programming with strong negation. In Automated
reasoning with analytic tableaux and related methods (Pont-à-Mousson, 1997), Lec-
ture Notes in Artificial Intelligence, pages 31–42. Springer, Berlin, 1997.

2. A. Avellone, C. Fiorentini, G. Fiorino, and U. Moscato. An efficient implementation
of a tableau calculus for a logic with a constructive negation. Technical Report 83,
Dipartimento di Metodi Quantitativi per le Scienze Economiche Aziendali, Univer-
sità Milano-Bicocca., 2004. Available at http://homes.dsi.unimi.it/~fiorenti.

3. M. Benini. Verification and Analysis of Programs in a Constructive Environment.
PhD thesis, Dipartimento di Scienze dell’Informazione, Università degli Studi di
Milano, Italy, 1999.

4. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of
Symbolic Logic, 57(3):795–807, 1992.

5. M. Ferrari, C. Fiorentini, and M. Ornaghi. Extracting exact time bounds from
logical proofs. In A. Pettorossi, editor, Logic Based Program Synthesis and Trans-
formation, 11th International Workshop, LOPSTR 2001, Selected Papers, volume
2372 of Lecture Notes in Computer Science, pages 245–265. Springer-Verlag, 2002.

6. G. Fiorino. Space-efficient decision procedures for three interpolable propositional
intermediate logics. J. Logic Comput., 12(6):955–992, 2002.

7. I. Hasuo and R. Kashima. Kripke completeness of first-order constructive logics
with strong negation. IGPL, 11(6):615–646, 2003.

8. J. Hudelmaier. An O(n log n)-space decision procedure for intuitionistic proposi-
tional logic. Journal of Logic and Computation, 3(1):63–75, 1993.

9. P. Miglioli, U. Moscato, and M. Ornaghi. Avoiding duplications in tableau systems
for intuitionistic logic and Kuroda logic. Logic Journal of the IGPL, 5(1):145–167,
1997.

10. P. Miglioli, U. Moscato, M. Ornaghi, and G. Usberti. A constructivism based on
classical truth. Notre Dame J. Formal Logic, 30(1):67–90, 1989.

11. D. Nelson. Constructible falsity. J. Symbolic Logic, 14:16–26, 1949.
12. D. Pearce. Reasoning with negative information. II. Hard negation, strong negation

and logic programs. In Nonclassical logics and information processing (Berlin,
1990), volume 619 of Lecture Notes in Comput. Sci., pages 63–79. Springer, Berlin,
1992.

13. D. Pearce and G. Wagner. Logic programming with strong negation. In Extensions
of logic programming (Tübingen, 1989), volume 475 of Lecture Notes in Comput.
Sci., pages 311–326. Springer, Berlin, 1991.

14. R.H. Thomason. A semantical study of constructible falsity. Z. Math. Logik Grund-
lagen Math., 15:247–257, 1969.

15. A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1996.

16. N. N. Vorob’ev. A new algorithm of derivability in a constructive calculus of state-
ments. In Sixteen papers on logic and algebra, volume 94 of American Mathematical
Society Translations, Series 2, pages 37–71. American Mathematical Society, Prov-
idence, R.I., 1970.

17. H. Wansing. The logic of information structures, volume 681 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1993. Lecture Notes in Artificial
Intelligence.

	Introduction
	The logic
	The Tableau Calculus
	The Proof Search Strategy
	Completeness
	Implementation of the Decision Procedure
	Conclusion and Future Work

