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EXTENDED DERDZINSKI-SHEN THEOREM

FOR CURVATURE TENSORS

CARLO ALBERTO MANTICA AND LUCA GUIDO MOLINARI

Abstract. We extend a remarkable theorem of Derdzinski and Shen,
on the restrictions imposed on the Riemann tensor by the existence of
a nontrivial Codazzi tensor. We show that the Codazzi equation can be
replaced by a more general algebraic condition. The ensuing extension
applies both to the Riemann and to generalized curvature tensors.

1. Introduction

On a Riemannian manifold with metric gij and Riemann connection ∇i,

a Codazzi tensor is a symmetric tensor that satisfies the Codazzi equation:

(1.1) ∇jbkl −∇kbjl = 0.

In terms of differential forms (1.1) is the condition for closedness of the

1-form bjkdxk [3, 11]. Codazzi tensors are of great interest in geometry

and have been studied by several authors, such as Berger and Ebin [1],

Bourguignon [3], Derdzinski [5, 6], Derdzinski and Shen [7], Ferus [8], Si-

mon [15, 16]; a compendium of results is reported in Besse’s book [2] (pp.

436-440). They occur in the study of Riemannian manifolds with harmonic

curvature. For example, the Ricci tensor is a Codazzi tensor if and only

if ∇mRjkl
m = 0, i.e. the manifold has harmonic Riemann curvature [2]

(page 435). The Weyl 1-form
[

Rkj −
R

2(n−1)
gkj

]

dxk is closed if and only if

∇mCjkl
m = 0, i.e. the manifold has harmonic conformal curvature [2] (page

435).

In ref. [3] important geometric and topological consequences of the existence

of a non-trivial Codazzi tensor are examined, in particular the restrictions

imposed on the structure of the curvature operator. Derdzinski and Shen

improved them and stated the remarkable theorem (the theorem is reported

in Besse’s book [2], page 438):

Theorem 1.1 (Derdzinski-Shen, [7]). Let bij be a Codazzi tensor on a Rie-

mannian manifold M , x a point of M , λ and µ two eigenvalues of the
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operator bi
j(x), with eigenspaces Vλ and Vµ in TxM . Then, the subspace

Vλ ∧ Vµ is invariant under the action of the curvature operator Rx.

Then, they obtained the following result: in a n-dimensional Riemannian

manifold with a Codazzi tensor having n distinct eigenvalues almost every-

where, all real Pontryagin classes vanish.

We point out that the Codazzi equation is a sufficient condition for the

theorem to hold. A more general one is suggested by the following lemma:

Lemma 1.2. Any symmetric Codazzi tensor bkl satisfies the algebraic iden-

tity

Rjkl
mbim + Rkil

mbjm + Rijl
mbkm = 0,(1.2)

Proof. The following identity among commutators is true for a Codazzi

tensor:

[∇j ,∇k]bil + [∇k,∇i]blj + [∇i,∇j]bkl = 0(1.3)

Each commutator is evaluated: [∇i,∇j]bkl = Rijk
mbml + Rijl

mbkm. Cancel-

lations occur by the first Bianchi identity and the result is obtained. �

Our first extension of the theorem states that if a symmetric tensor

bkl satisfies the algebraic condition (1.2), then the same conclusions of the

Derdzinski and Shen’s theorem are valid for the Riemann tensor. It turns

out that the proof of the extended theorem is much simpler than Derdzinski

and Shen’s proof.

The replacement of the Codazzi equation by an algebraic condition allows

for a further natural extension of the theorem to generalized curvature ten-

sors. It includes well known tensors such as the conformal, the concircular

and the conharmonic tensors [14, 9, 12].

2. Extension of D-S theorem for the Riemann tensor.

As in the original theorem, we need an auxiliary tensor and a lemma

to prove that it is a generalized curvature tensor, a concept introduced by

Kobayashi and Nomizu [10] (page 198). The algebraic condition (1.2) is

here used rather than Codazzi’s equation to prove both the lemma and the

extended theorem.

Definition 2.1. A tensor Kijlm is a generalized curvature tensor if it has

the symmetries of the Riemann curvature tensor:

a) Kijkl = −Kjikl = −Kijlk,
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b) Kijkl = Kklij,

c) Kijkl + Kjkil + Kkijl = 0 (first Bianchi identity).

Lemma 2.2. If a symmetric tensor bkl satisfies eq.(1.2), then Kijkl =

Rijrsbk
rbl

s is a generalized curvature tensor.

Proof. Properties a) are shown easily. For example: Kijlk = Rijrsbl
rbk

s =

Rijsrbl
sbk

r = −Rijrsbl
sbk

r = −Kijkl.

Property c) follows from (1.2): Kijkl+Kjkil+Kkijl = Rijrsbk
rbl

s+Rjkrsbi
rbl

s+

Rkirsbj
rbl

s = (Rjis
rbkr + Rkjs

rbir + Riks
rbjr)bl

s = 0.

Property b) follows from c): Kijkl +Kjkil +Kkijl = 0. Sum the identity over

cyclic permutations of all indices i, j, k, l and use the symmetries a) (this

fact was pointed out in [10]).

It is easy to see that a first Bianchi identity holds also for the last three

indices: Kijkl + Kiklj + Kiljk = 0. �

Theorem 2.3. Let M be an n-dimensional Riemannian manifold with a

symmetric tensor bkl that satisfies the algebraic equation

bimRjkl
m + bjmRkil

m + bkmRijl
m = 0

If X, Y and Z are three eigenvectors of the matrix br
s at a point x of the

manifold, with eigenvalues λ, µ and ν, then

(2.1) X i Y j Zk Rijkl = 0

provided that λ and µ are different from ν.

Proof. Consider the first Bianchi identity for the Riemann tensor, the con-

dition eq.(1.2) and the first Bianchi identity for the curvature Klijk =

Rlirsbj
rbk

s, and apply them to the three eigenvectors. The three algebraic

relations can be put in matrix form:




1 1 1
λ µ ν

µν λν λµ









RlijkX
iY jZk

RljkiX
iY jZk

RlkijX
iY jZk



 =





0
0
0





The determinant of the matrix is (λ − µ)(λ − ν)(ν − µ). If the eigenvalues

are all different then RlijkX
iY jZk = 0; by the symmetries of the Riemann

tensor the statement is true for the contraction of any three indices.

Suppose now that λ = µ 6= ν, i.e. X and Y belong to the same eigenspace;

the system of equations implies that RlkijX
iY jZk = 0. �

This completes the first extension of the theorem, involving the Riemann

tensor. The question arises about non-Codazzi symmetric tensor fields that

fulfill (1.2), and make the theorem applicable. We give some examples.
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Definition 2.4. A Riemannian manifold with symmetric tensor bij is “weakly

b-symmetric” if

(2.2) ∇ibkl = Aibkl + Bkbil + Dlbik

where A, B and D are 1-forms.

Weakly Ricci-symmetric manifolds [17] (see [4] and [12] for a compendium):

∇iRkl = AiRkl +BkRil +DlRik, and the more general Weakly Z-symmetric

manifolds [13] are of this sort.

If A−B is closed, the evaluation of the three commutators in the left hand

side of (1.3) yields zero, then bij is Riemann compatible.

3. Extension of D-S theorem for generalized curvature

tensors.

The theorem can be generalized further, and continues to hold if the

Riemann tensor R is replaced by a generalized curvature tensor K, and a

symmetric tensor field exists such that the condition (1.2) is valid with R

replaced by K.

Definition 3.1. Let K be a generalized curvature tensor; a symmetric

tensor bij is K-compatible if

(3.1) Kjkl
mbim + Kkil

mbjm + Kijl
mbkm = 0.

The metric tensor is trivially K-compatible, by the first Bianchi identity for

K.

The following lemma is needed. Its proof is identical to that of lemma 2.2,

with eq.(3.1) being used:

Lemma 3.2. If K is a generalized curvature tensor and bkl is K-compatible,

then K̂ijkl = Kijrsbk
rbl

s is a generalized curvature tensor.

The following fact can be proven by exactly the same argument as The-

orem 2.3.

Theorem 3.3. Let M be a n-dimensional Riemannian manifold with a

generalized curvature tensor K and a K-compatible tensor b. If X, Y and

Z are three eigenvectors of the matrix br
s at a point x of the manifold, with

eigenvalues λ, µ and ν, then

(3.2) X i Y j Zk Kijkl = 0

provided that λ and µ are different from ν.
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Consider the following family of curvature tensors K:

Kjkl
m =Rjkl

m + ϕ(δm
j Rkl − δm

k Rjl + Rj
mgkl − Rk

mgjl)

+ χ(δm
j gkl − δm

k gjl),(3.3)

where ϕ, χ are scalar functions. Appropriate choice of the scalars give the

conformal, concircular or conharmonic curvature tensors.

For this family, eq.(1.2) is a sufficient condition for the extended theorem

to apply:

Proposition 3.4. Let K be a tensor of the form (3.3). If a symmetric

tensor bkl is Riemann compatible, i.e. (1.2) holds, then it is K-compatible,

and Theorem 3.3 applies.

Proof. The proof is based on this identity, that holds for curvature tensors

of the form (3.3):

bimKjkl
m + bjmKkil

m + bkmKijl
m = bimRjkl

m + bjmRkil
m + bkmRijl

m

+ϕ [gkl(bimRj
m − bjmRi

m) + gil(bjmRk
m − bkmRj

m) + gjl(bkmRi
m − bimRk

m)]

K-compatibility requires the right hand side to be zero. If bkl is Riemann

compatible, then also bimRm
j − bjmRm

i = 0 (this is obtained by transvecting

(1.2)), and all terms in the right hand side vanish. �
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