
A Formal Framework for Synthesis and

Verification of Logic Programs

Alessandro Avellone, Mauro Ferrari, and Camillo Fiorentini

Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano
via Comelico 39, 20135 Milano, Italy

{avellone,ferram,fiorenti}@dsi.unimi.it

Abstract. In this paper we present a formal framework, based on the
notion of extraction calculus, which has been applied to define procedures
for extracting information from constructive proofs. Here we apply such
a mechanism to give a proof-theoretic account of SLD-derivations. We
show how proofs of suitable constructive systems can be used in the
context of deductive synthesis of logic programs, and we state a link
between constructive and deductive program synthesis.

1 Introduction

It is well known that formal proofs can be used for program synthesis and pro-
gram verification, and this essentially depends on the availability of an infor-
mation extraction mechanism allowing the capture in an uniform way of the
implicit algorithmic content of a proof. In this paper we present a formal frame-
work, based on the notion of extraction calculus, which has been devised by the
authors [4,5,6,7,8] and applied to define procedures for extracting information
from proofs of a great variety of logical systems.

Here we apply extraction calculi to give a proof-theoretic account of SLD-
derivations. We show how proofs of suitable constructive systems can be used
in the context of deductive synthesis of logic programs, and we state a link be-
tween constructive and deductive program synthesis (see [3] for a survey on the
various approaches to logic program synthesis). We will consider extended logic
programs constituted by extended program clauses, a generalization of usual pro-
gram clauses where negated atomic formulas are allowed also in the head. Since
the choice of the semantics for extended logic programs is problematic in the
usual semantical paradigms of Logic Programming, we develop our approach in
the setting of specification frameworks developed in [9,10]. The intended seman-
tics of specification frameworks is given by isoinitial models, a semantics that
can be fruitfully combined with a constructive proof theory (see [12] for a com-
prehensive discussion on isoinitial models, Abstract Data Types Specification
and constructive proof-theory).

The main result of our paper concerns the extraction of extended logic pro-
grams from proofs in a natural deduction calculus. In particular we prove that
the logic programs consisting of the extended program clauses occurring in a

Kung-Kiu Lau (Ed.): LOPSTR 2000, LNCS 2042, pp. 1–17, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

2 Alessandro Avellone et al.

natural deduction proof of a formula ∃xG(x) ∨ ¬∃xG(x), with G atomic, allows
us to correctly compute the goal ← G(x) (i.e., find a term t such that G(t) holds,
if such a t exists); here the notion of correctness is the one referred to specifi-
cation frameworks of [9,10]. This result can be used both to define a synthesis
method and to study properties of the deductive synthesis process. Finally we
discuss a simple example showing in which sense our framework allows us to
treat modularity.

This paper is a first step in the application of extraction calculi to logic
program synthesis; we believe that our approach can be further developed and
applied to open frameworks and to “disjunctive Logic Programming”.

2 Extraction Calculi

In this section we provide a short presentation of our mechanism to extract
information from proofs; for a complete discussion see [5,6,7,8]. Our extraction
mechanism is based on an abstract definition of the notions of proof and calculus
allowing us to treat extraction from Gentzen, Tableau or Hilbert style calculi.

Here we consider first-order languages LΣ over a set of non logical symbols
Σ and the set of logical symbols {∧,∨,→,¬, ∀, ∃}. A (single-conclusion) sequent
is an expression Γ � A, where A is a formula and Γ is a finite set of formulas;
we simply write � A to denote a sequent with Γ empty. A proof on LΣ is any
finite object π such that:

1. the (finite) set of formulas of LΣ occurring in π is uniquely determined and
nonempty;

2. π proves a sequent Γ � A, where Γ (possibly empty) is the set of assumptions
of π, while A is the consequence of π.

We use the notation π : Γ � A to mean that Γ � A is the sequent proved by π.
In the following a great care will be devoted to bound the logical complexity

(degree) of the formulas involved in the information extraction process from a
proof. The degree dg(A) of a formula is defined as follows: dg(A) = 1 if A is
atomic, dg(¬A) = dg(A) + 1; dg(A) = max{dg(B), dg(C)} + 1 if A is B ∧ C,
B∨C or B→C; dg(A) = dg(B)+1 if A is either ∃xB(x) or ∀xB(x). The degree
dg(π) of a proof π is the maximum among the degrees of the formulas occurring
in π.

A calculus on LΣ is a pair (C, [·]), where C is a recursive set of proofs on
the language LΣ and [·] is a recursive map associating with every proof of the
calculus the set of its relevant subproofs. We require [·] to satisfy the following
natural conditions:

1. π ∈ [π];
2. for every π′ ∈ [π], [π′] ⊆ [π];
3. for every π′ ∈ [π], dg(π′) ≤ dg(π).

We remark that any usual single conclusion inference system is a calculus ac-
cording to our definition. In particular the natural deduction calculi we use in
this paper meet this characterization.

A Formal Framework for Synthesis and Verification of Logic Programs 3

Given Π ⊆ C, Seq(Π) = {Γ � A | π : Γ � A ∈ Π} is the set of the sequents
proved in Π ; Theo(Π) = {A | � A ∈ Seq(Π)} is the set of theorems proved in
Π , and [Π] = {π′ | there exists π ∈ Π such that π′ ∈ [π]} is the closure under
subproofs of Π in the calculus C. Now, let R be a set of inference rules of the
kind

Γ1 � A1 . . . Γn � An

∆ � B
R

(where R is the name of the rule). R is a set of extraction rules for C (e-rules
for short) if there exists a function φ : N → N such that, for every R ∈ R:

1. R can be uniformly simulated in C w.r.t. φ. That is: for every π1,. . . ,πn in C
proving the premises of the rule R, there exists a proof π of the consequence
of R such that dg(π) ≤ max{φ(dg(π1)), . . . , φ(dg(πn))}.

2. R is non-increasing. That is: the degree of every formula occurring in ∆ � B
is bounded by the degree of a formula occurring in Γ1 � A1, . . . , Γn � An.

Condition (1) says that an extraction rule must be an admissible rule for C, and
must be simulated in a uniform way (w.r.t. the degrees) in the calculus C. This
means that an extraction rule respects the deductive power of the original cal-
culus in a uniform way. On the other hand Condition (2) says that an extraction
rule can coordinate or decompose the information contained in the premises,
but it must not create “new” information. Here, Condition (2) accomplishes this
by imposing a bound on the degree of the consequence, but more sophisticated
conditions using the subformula property or a goal oriented strategy can be used
(see [5]).

Examples of e-rules for the natural deduction calculus for Intuitionistic Logic
are the cut rule and the substitution rule

Γ � H Γ,H � A

Γ � A
cut

Γ � A

θΓ � θA
subst with θ a substitution

In our treatment a central role is played by the e-rule sld+ introduced in Sec-
tion 5.

Now, given a set R of e-rules for C and Π ⊆ C, the extraction calculus for Π ,
denoted by ID(R, [Π]), is defined as follows:

1. If Γ � A ∈ Seq([Π]), then τ ≡ Γ � A is a proof-tree of ID(R, [Π]).
2. If τ1 : Γ1 � A1, . . . , τn : Γn � An are proof-trees of ID(R, [Π]) and

Γ1 � A1 . . . Γn � An

∆ � B
R

is a rule of R, then the proof-tree

τ ≡
τ1 : Γ1 � A1 . . . τn : Γn � An

∆ � B
R

4 Alessandro Avellone et al.

with root ∆ � B belongs to ID(R, [Π]).

The following properties follow from the definition of e-rule (see [4,8]):

Theorem 1. Let R be a set of e-rules for C and let Π be a recursive subset of
C with dg(Π) ≤ c (c ≥ 1). Then:

1. There exists h ≥ 0 (which depends on R and c) such that dg(τ) ≤ h for
every τ ∈ ID(R, [Π]).

2. There exist a subset Π ′ ⊆ C and k ≥ 0 (which depends on R and c) such
that dg(Π ′) ≤ k and Seq(Π ′) = Seq(ID(R, [Π])).

A set of proofs Π is constructive if it meets the disjunction property (Dp):

(Dp) A ∨B ∈ Theo(Π) implies A ∈ Theo(Π) or B ∈ Theo(Π);

and the explicit definability property (Ed):

(Ed) ∃xA(x) ∈ Theo(Π), implies A(t/x) ∈ Theo(Π) for some ground
term t of the language.

Definition 1. A calculus C is uniformly constructive if there exists a set of
e-rules R for C such that, for every recursive subset Π of C, Theo(ID(R, [Π]))
is constructive.

The properties of a uniformly constructive calculus C assure that, if π : �
∃xA(x) ∈ C, then we can determine a ground term t such that A(t) is provable
in C exploiting the information contained in the proof π by means of the calculus
ID(R, [π]). Moreover, such information can be searched in the calculus ID(R, [π])
by means of an enumerative procedure only involving formulas of bounded logical
complexity (by Point (1) of Theorem 1). This allows us to define procedures for
extracting information from constructive proofs which are of interest in the fields
of program synthesis and formal verification [1,6].

In [6,7,8] a wide family of constructive systems (involving theories formal-
izing Abstract Data Types) is shown to be uniformly constructive, while in [8]
an example of a constructive but not uniformly constructive formal system is
provided. However, the proofs of uniform constructivity of all the systems dis-
cussed in [6,8] rely on extraction rules which are not suitable to get efficient
proof search in ID(R, [Π]); in particular, all these results involve the cut rule
(for a discussion on the complexity of these extraction procedures see [2]). On
the other hand, in [5] it is proven that ID(R, [Π]) can be characterized as a
goal-oriented calculus for suitable proofs involving Hereditary Harrop Formulae
(see [13]). In Section 5, we show that the sld+ rule is sufficient to decide the ex-
plicit definability property and the disjunction property for suitable constructive
proofs only involving program clauses as assumptions; this immediately yields a
logic program synthesis method.

A Formal Framework for Synthesis and Verification of Logic Programs 5

3 Specification Frameworks for Logic Programs

Specification frameworks, introduced in [9,10], establish the semantical setting
for logic programs. A framework F is a theory in some language LΣ (namely,
a recursively enumerable set of closed formulas of LΣ) and it must define in an
unambiguous way the intended semantics of a logic program. In the tradition of
Logic Programming [11], the semantics of a program P is determined by P itself;
indeed, the initial model of P is assumed to be the intended model of P . On the
other hand, if we enlarge the language of logic programs some problems arise;
for instance, when we introduce negation, it is not clear what the semantics
of P should be. We aim to use a generalization of program clauses (we call
extended program clauses), where negated atomic formulas are allowed also in
the head. In this case, the choice of the semantics of P is rather problematic, and
even the semantics of completion does not work. To overcome these difficulties,
we separate the task of defining the semantics from the task of synthesizing
logic programs. Firstly we introduce a framework F to describe the domain of
the problem, exploiting the expressiveness of first-order languages; within the
framework we explicitly define the relations to be computed and the goals to
be solved by means of a specification 〈Dr,Gr〉. The link between frameworks
and logic programs is settled by natural calculi. We show how the problem of
compute a goal G in F can be reduced to the problem of finding a proof of
∃xG(x) ∨ ¬∃xG(x) in the natural calculus.

In our formalization we aim to exploit the full first-order language, without
imposing restrictions on the form of the axioms of F ; in such a general setting,
initial semantics is inadequate, thus, following [9,10], we use the isoinitial se-
mantics. We briefly recall some definitions. We say that I is an isoinitial model
of a theory F if, for every model M of F , there exists a unique isomorphic em-
bedding (i.e., an homomorphism which preserves relations and their negations) of
I in M (if we take homomorphisms, we obtain the definition of initial models).
We stress that an isoinitial model of a theory F (if it exists) is unique up to
isomorphisms, thus it can be considered the intended semantics of F . We recall
that a model is reachable if every element of its domain is denoted by a ground
term of the language; moreover, a theory F is atomically complete if, for every
atomic closed formula A of LΣ , either A or ¬A is a logical consequence of F .
We can characterize theories which admit isoinitial models as follows:

Theorem 2. If a theory F has at least one reachable model, then F admits an
isoinitial model if and only if it is atomically complete.

This yields the definition of closed framework (see [9,10]):

Definition 2. A closed framework with language LΣ is a theory F which sat-
isfies the following properties:

1. Reachability. There is at least one model of F reachable by a subset C
of the constant and function symbols of LΣ , called the construction sym-
bols. The ground terms containing only construction symbols will be called
constructions.

6 Alessandro Avellone et al.

2. Freeness. F proves the freeness axioms [16] for the construction symbols.
3. Atomic completeness. F is atomically complete.

For instance, Peano Arithmetic PA is a closed framework: indeed, PA is atom-
ically complete, the construction symbols are the constant ‘0’ and the unary
function symbol ‘s’, the constructions are the ground terms 0, s(0), s(s(0))
Note that + and ∗ are not construction symbols, since they do not satisfy free-
ness axioms. Given a closed framework F , we can build a particular isoinitial
model I of F , we call it the canonical model of F , in the following way:

(C1) The domain of I is the set of constructions.
(C2) A function f is interpreted in I as the function fI defined as follows:

for every tuple t of constructions, the value of fI(t) is the construction s
such that F |= f(t) = s.

(C3) Every relation symbol r is interpreted in I as the relation rI such that,
for every tuple t of constructions, t belongs to rI if and only if F |= r(t).

By atomic completeness, canonical models are representative of any other model
as regards the validity of the ground atomic or negated ground atomic formulas;
more precisely, for every relation r and every tuple t, I |= r(t) iff, for every model
M of F , M |= r(t), iff F |= r(t).

Within a framework, a goal is represented by a formula ∃y R(t, y), where R is
any formula of LΣ , to be computationally understood as “find a term s such that
R(t, s) is valid in the framework F”. Since goals must be handled by logic pro-
grams, we need to introduce a new binary relation symbol r which is equivalent
in F to the formula R.

Definition 3. A specification in a framework F with language LΣ consists of:

1. A definition axiom Dr ≡ ∀x∀y(r(x, y) ↔ R(x, y)) where R(x, y) is a first-
order formula in the language LΣ;

2. A set Gr of goals of the form ∃y r(t0, y), ∃y r(t1, y), . . ., where the tk’s are
tuples of constructions.

We can expand in a natural way the canonical model I of F to the language
LΣ∪{r} still preserving the semantics of the symbols in LΣ . However, it may
happen that the expanded model Ir is not even a canonical model for F ∪{Dr},
since Condition (C3) might not hold; therefore the model Ir is not representative
as regards the relation r. To avoid this, we only consider axioms Dr which define
decidable relations, according to the following definition.

Definition 4. Let F be a closed framework and let Dr be the definition axiom
∀x∀y(r(x, y) ↔ R(x, y)). We say that Dr completely defines r in F iff F ∪Dr

satisfies the atomic completeness property.

If Dr completely defines r in F , then also F ∪Dr is a closed framework and the
model Ir which expands I is actually the canonical model of F ∪Dr. Clearly, a
relation r satisfying Definition 3 may be already in LΣ ; in this case there is no
need of expanding LΣ and F ∪Dr is trivially atomically complete.

A Formal Framework for Synthesis and Verification of Logic Programs 7

Finally, we introduce extended logic programs. An extended program clause
is any formula of the kind A1 ∧ . . .∧An→B, where n ≥ 0 and A1, . . . , An, B are
atomic formulas or negated atomic formulas; this generalizes the notion of Horn
clause (where all formulas are positive) and of program clause (where B must be
positive) explained in [11]. An extended logic program is a finite set of extended
program clauses. As the inference rule, we use the rule sld+ defined in Section 5.
The notion of answer substitution for extended logic programs is the same given
for logic programs, that is: given an extended logic program P , a goal ∃y r(t, y)
and a substitution θ, θ is a correct answer substitution for P ∪ {← r(t, y)} if
θr(t, y) is a logical consequence of P .

The link between specifications and programs is stated by the following def-
initions.

Definition 5. Let 〈Dr,Gr〉 be a specification in a framework F . A program P
is totally correct in a model M of F w.r.t. 〈Dr,Gr〉 if, for every ∃y r(t, y) ∈ Gr,
it holds that:

1. If ∃y r(t, y) is valid in M, then there is at least a computed answer substi-
tution for P ∪ {← r(t, y)};

2. If σ is a computed answer substitution for P ∪ {← r(t, y)}, then σr(t, y) is
valid in M.

In the sequel we consider specifications which completely define new relations,
thus total correctness is with respect to the canonical model of F ∪Dr as stated
in the following definition.

Definition 6. Let 〈Dr,Gr〉 be a specification in a closed framework F and let Dr

completely define r in F . A program P is totally correct in F∪Dr iff P is totally
correct in the canonical model Ir of F ∪Dr.

4 Natural Deduction Calculi for Program Extraction

As a basis of our synthesis process we will use the calculus NDC(T) obtained by
adding to the natural calculus ND of Table 1 the rule IT to introduce as axioms
the formulas of a theory T , and the induction rule IndC associated with a finite
set C of constant and function symbols.

We point out that introduction/elimination rules for ∧,∨,→, ∃, ∀ in Table 1
are the usual ones for Minimal Logic (see, e.g., [15]), while we use special rules
for negation. In the rules of the caclulus we use square brackets to denote the
assumptions discharged by the rule application.

Let T be a theory; the rule IT is as follows:

A
IT with A ∈ T

Let us assume C to contain the constant and function symbols s1, . . . , sn; the
Cover Set Induction Rule IndC associated with C is the rule

8 Alessandro Avellone et al.

Table 1. The calculus ND

Γ1··· π1

A

Γ2··· π2

B
∧I

A ∧ B

Γ··· π

A ∧ B
∧El

A

Γ··· π

A ∧ B
∧Er

B

Γ··· π

A
∨Il

A ∨ B

Γ··· π

B
∨Ir

A ∨ B

Γ1··· π1

A ∨ B

Γ2, [A]··· π2

C

Γ3, [B]··· π3

C
∨E

C

Γ, [A]··· π

B
→I

A→B

Γ1··· π1

A

Γ2··· π2

A→B
→E

B

Γ··· π

A(p)
∀I

∀x A(x)

where p does not oc-
cur free in Γ ∗

Γ··· π

∀x A(x)
∀E

A(t)

Γ··· π

A(t)
∃I

∃x A(x)

Γ1··· π1

∃x A(x)

Γ2, [A(p)]··· π2

B
∃E

B

where p does not occur free in
Γ2, ∃xA(x) or B ∗

Γ1··· π1

A

Γ2··· π2

¬A
Contr

B

[H1, . . . , Hn, A]··· π

B ∧ ¬B
I¬

H1 ∧ . . . ∧ Hn→¬A

with H1, . . . , Hn atomic
or negated formulas. H1,
. . . , Hn, A are the only
undischarged assumptions of
π.∗ p is the proper parameter of the rule.

Γ1, [∆1]
··· π1

A(t1) · · ·

Γn, [∆n]
··· πn

A(tn)
Ind

C
A(x)

where x is any variable and, for 1 ≤ j ≤ n:

1. If sj is a constant symbol then ∆j is empty and tj coincides with sj ;
2. If sj is a function symbol of arity k, then ∆j = {A(y1), . . . , A(yk)} and tj is

the term sj(y1, . . . , yk).

A Formal Framework for Synthesis and Verification of Logic Programs 9

The formulas in ∆j are the induction hypotheses, the variables y1, . . . , yk are
called proper parameters of the Cover Set Induction Rule and must not occur
free in Γ1, . . . , Γn, A(x); we extend to the rule IndC the conditions on proper
parameters made in [15,17]. Finally, the induction hypothesis in the ∆j ’s are
discharged by the rule application.

We say that a proof π of NDC(T) proves the sequent Γ � A (π : Γ � A) if
Γ is the set of the assumptions on which π depends and A is the end-formula of
π; a formula A is provable in NDC(T) if this calculus contains a proof π of the
sequent � A (i.e., π has no undischarged assumptions). Finally, we denote with
depth(π) the depth of a natural deduction proof, for a formal definition see [17].

5 Program Extraction from Deductive Proofs

In this section we show how proofs of the calculus NDC(T) can be used in the
context of deductive synthesis of logic programs (for a general discussion on logic
program synthesis see [3]).

Definition 7. Let Π be a finite set of proofs of NDC(T). The (extended logic)
program extracted from Π is the set PΠ of extended program clauses occurring
in Theo([Π]).

Accordingly, the program PΠ extracted from Π contains all the extended pro-
gram clauses H such that the sequent � H is proven in a subproof of some
proof in Π . If Π only consists of the proof π, we say that PΠ is the program
extracted from π. To study the proof theoretical properties of the program ex-
tracted from Π , we use the extraction calculus ID({sld+, subst}, [Π]) (ID(Π)
for short), which uses the e-rule sld+:

� θH1 . . . � θHn � H1 ∧ . . . ∧Hn→K

� θK
sld+

where H1 ∧ . . . ∧ Hn →K is an extended program clause and θ is an arbitrary
substitution. If H1∧ . . .∧Hn→K is a Horn clause, we obtain the usual sld rule
of Logic Programming; thus, sld+ is an extension of sld where negated formulas
are treated as atoms and “negation as failure” is not considered. According to
this rule, the proof of the goal θK consists in solving the goals θH1,. . . ,θHn

obtained by unifying θK with the program clause H1∧ . . .∧Hn→K. We remark
that θ is not required to be a most general unifier, but this does not affect our
treatment because any sld+ proof using arbitrary substitutions is an instance
of a sld+ proof using mgu’s. For a deeper discussion about the role of the rule
sld+ in Logic Programming we refer the reader to [14], where a similar rule is
studied.

As for the extraction calculus ID(Π), we stress that:

1. the axioms of ID(Π) are the sequents of the form � A occurring in the
subproofs of Π ;

2. the only applied rules are sld+ and subst.

10 Alessandro Avellone et al.

We point out that ID(Π) is a “Logic Programming oriented calculus”, since a
proof τ : � G(x) in ID(Π) can be seen as a refutation of PΠ ∪{← G(x)}, where
PΠ is the program extracted from Π . The remarkable point is that, to build the
proof τ in ID(Π), not all the information contained in the proofs Π is used, but
only the sequents of [Π] of the form � H , with H an extended program clause.
This means that the program extracted from the proofs in Π contains all the
information needed to compute the goal; moreover, the proofs in Π also contain
the information needed to guarantee the correctness of the extracted program
as we show in Theorem 3 below.

Finally, we point out that, under some conditions, ID(Π) is constructive.
This fact has a relevant consequence in the relationship between proofs of the
natural calculus NDC(T) and the deductive power of the extracted logic pro-
grams. Suppose there is a proof π : � ∃xG(x) in NDC(T) and let us assume
that the extraction calculus ID(Π) generated by the set Π = {π} is constructive.
By definition, � ∃xG(x) is an axiom of ID(Π), hence there exists a (trivial) proof
of such a sequent in ID(Π). By constructivity, ID(Π) must also contain a proof
τ of the sequent � θG(x), for some ground substitution θ. By the above consid-
erations, it follows that the program P extracted from π is able to compute the
answer substitution θ (or a more general one) for the goal ← G(x).

To better formalize, we introduce the notion of evaluation.

Definition 8 (Evaluation). Given a set of proofs Π (on LΣ) and a formula A
of LΣ, A is evaluated in Π (in symbols Π ✄A) if, for every ground substitution
θ, one of the following inductive conditions holds:

1. θA is an atomic or a negated formula and � θA ∈ Seq(Π);
2. θA ≡ B ∧ C and Π ✄ B and Π ✄ C;
3. θA ≡ B ∨ C and either Π ✄ B or Π ✄ C;
4. θA ≡ B→C and, if Π ✄ B then Π ✄ C;
5. θA ≡ ∀xB(x) and, for every ground term t of LΣ, Π ✄ B(t);
6. θA ≡ ∃xB(x) and Π ✄ B(t) for some ground term t of LΣ.

A set Γ of formulas is evaluated in Π (Π ✄ Γ) if Π ✄ A holds for every A ∈ Γ .
The following fact can be proved:

Lemma 1. Let Π be any recursive set of proofs of NDC(T) and let H be an
extended program clause. If there exists a proof π : � H in the closure under
substitution of [Π], then ID(Π) ✄ H.

Proof. Let H = A1 ∧ . . . ∧ An → B be an extended program clause provable
in the closure under substitution of [Π], this implies that there exist a sequent
� A′

1 ∧ . . . ∧ A′
n →B′ ∈ Seq([Π]) and a substitution θ′ such that H ≡ θ′(A′

1 ∧
. . .∧A′

n→B′). Now, let us consider an arbitrary ground substitution θ; we must
prove that, if ID(Π)✄{θθ′A′

1, . . . , θθ
′A′

n} then ID(Π)✄θθ′B′. But ID(Π)✄θθ′A′
i

for every i = 1, . . . , n implies, by definition of evaluation, that ID(Π) contains a
proof τi : � θθ′A′

i for every i = 1, . . . , n; moreover, ID(Π) contains also a proof

A Formal Framework for Synthesis and Verification of Logic Programs 11

of � A′
1 ∧ . . . ∧A′

n→B′. We can apply the sld+-rule

τ1 : � θθ′A1 . . . τn : � θθ′An � A′
1 ∧ . . . ∧A′

n→B′

� θθ′B′
sld+

to get a proof of θθ′B′ in ID(Π). Since B′ is atomic or negated, this implies that
ID(Π) ✄ θθ′B′.

This immediately guarantees that every formula in the extended logic program
PΠ extracted from a finite set of proofs Π ⊆ NDC(T) is evaluated in ID(Π).

Lemma 2. Let Π be a recursive set of proofs of NDC(T) over the language LΣ

containing a finite set C of constant and function symbols, such that ID(Π) ✄

T . For every π : Γ � A belonging to the closure under substitution of [Π], if
ID(Π) ✄ Γ then ID(Π) ✄ A.

Proof. The proof goes by induction on the depth of π. Suppose depth(π) = 0;
then either π is a proof of the sequent A � A (i.e., we introduce an assumption A)
or π proves the sequent � A with A ∈ T . In both cases the assertion immediately
follows. Now, let us suppose that the assertion holds for any proof π′ : Γ ′ � A′

belonging to the closure under substitution of [Π] such that depth(π′) ≤ h, and
let us suppose that depth(π) = h + 1. The proof goes by cases according to the
last rule applied in π. We only see some representative cases.

→-introduction. In this case π has the following form:

π : Γ � A ≡

Γ, [B]
··· π1

C
→I

B→C

Let θ be any ground substitution. Since π1 is a subproof of π, the proof θπ1 ≡
θΓ, θB � θC belongs to the closure under substitution of [Π]. Suppose that
ID(Π)✄ θB; by applying the induction hypothesis on θπ1 (in fact, ID(Π)✄ θΓ),
we get that ID(Π) ✄ θC.

∀-introduction. In this case π has the following form:

π : Γ � A ≡

Γ··· πp

B(p)
∀I

∀x B(x)

Let θ be any ground substitution. Since θπp : θΓ � θB(p) belongs to the closure
under substitution of [Π], the proof θπp[t/p] : θΓ � θB(t) belongs to the closure
under substitution of [Π] for every ground term t of LΣ (we recall that under
the usual assumptions on proper parameters of [15,17], p does not belong to
the domain of θ and θπp is a correct proof). Hence, by induction hypothesis,

12 Alessandro Avellone et al.

ID(Π) ✄ θB(t) for every ground term t of the language.

∨-elimination. In this case π has the following form:

π : Γ � A ≡

Γ1··· π1

B ∨C

Γ2, [B]
··· π2

A

Γ3, [C]
··· π3

A
∨E

A

Let θ be any ground substitution. Since θπ1 belongs to the closure under sub-
stitution of [Π], by induction hypothesis either ID(Π) ✄ θB or ID(Π) ✄ θC.
Therefore we can apply the induction hypothesis either to θπ2 or to θπ3 to de-
duce that ID(Π) ✄ θA.

¬-introduction. In this case π has the following form:

π : Γ � A ≡

[H1, . . . , Hn,K]
··· π1

B ∧ ¬B
I¬

H1 ∧ . . . ∧Hn→¬K

with H1, . . . , Hn atomic or negated
formulas. H1, . . . , Hn, K are the only
undischarged assumptions of π.

Since H1 ∧ . . . ∧ Hn →¬K is an extended program clause, the assertion imme-
diately follows from Lemma 1.

Cover Set Induction Rule. In this case π : Γ � A has the following form:

π : Γ � A ≡

Γ1, [∆1]
··· π1

B(t1) · · ·

Γn, [∆n]
··· πn

B(tn)
Ind

C
B(x)

Let θ be any ground substitution; we have to prove that ID(Π) ✄ θB(t), for ev-
ery ground term t of LΣ . We proceed by a secondary induction on the structure
of t. Let C consist of the symbols s1, . . . , sn; then, either t coincides with some
constant symbol sj or t has the form sj(t1, . . . , tk), where sj is a k-ary function
symbol of C and t1, . . . , tk are ground terms. In the former case, there exists a sub-
proof πj : Γj � B(tj) of π such that tj coincides with sj. Let us consider the proof
θπj : θΓj � θB(sj); by applying the main induction hypothesis to θπj (which
belongs to the closure under subproofs of [Π]), we get ID(Π) ✄ θB(sj). Oth-
erwise, let us take the subproof πj : Γj , B(x1), . . . , B(xk) � B(sj(x1, . . . , xk)).
The subproof π′

j : θΓj , θB(t1), . . . , θB(tk) � θB(sj(t1, . . . , tk)) belongs to the
closure under substitution of [Π] and, by the secondary induction hypothesis
(since t1, . . . , tk are simpler than t), ID(Π)✄θB(t1), . . . , ID(Π)✄θB(tk). By the
main induction hypothesis, we can conclude that ID(Π) ✄ θB(sj(t1, . . . , tk)).

Now we give some conditions about correctness of programs.

Theorem 3. Let 〈Dr,Gr〉 be a specification in a closed framework F with a
finite set of construction symbols C, where Dr completely defines r; let P be

A Formal Framework for Synthesis and Verification of Logic Programs 13

an extended logic program over the language LΣ∪{r} having C as constant and
function symbols, such that:

1. There exists a proof π of the formula ∀x(∃y r(x, y) ∨ ¬∃y r(x, y)) in the
calculus NDC(P);

2. P is valid in the canonical model Ir of F ∪ {Dr}.

Then, the extended logic program P∗ extracted from π is totally correct in F ∪
{Dr}.

Proof. Let t be a tuple of ground terms of LΣ∪{r}. Let us suppose that σ is
a computed answer substitution for P∗ ∪ {← r(t, y)}. We have P∗ |= σr(t, y);
moreover, by the fact that Ir is a model of P , we also have that Ir is a model
of P∗. We can conclude Ir |= σr(t, y), and this proves the correctness of P∗. To
prove the completeness, let us suppose that ∃y r(t, y) is valid in the canonical
model Ir. We have to show that, for some tuple s of ground terms of LΣ∪{r},
P∗ ∪ {← r(t, s)} has a sld+-refutation. This amounts to showing that r(t, s) is
provable in ID(Π), where Π = {π}. We know, by Lemma 1, that ID(Π) ✄ P ;
we can apply Lemma 2 and state that ID(Π) ✄ ∀x(∃y r(x, y) ∨ ¬∃y r(x, y)),
which implies ID(Π) ✄ ∃y r(t, y) ∨ ¬∃y r(t, y), thus either ID(Π) ✄ ∃y r(t, y) or
ID(Π) ✄ ¬∃y r(t, y). It follows that either ID(Π) ✄ r(t, s) for some tuple s of
ground terms of LΣ∪{r} or ID(Π) ✄¬∃y r(t, y). On the other hand, it is not the
case that ID(Π)✄¬∃y r(t, y); otherwise, it would follow that ¬∃y r(t, y) is valid
in Ir, a contradiction. Thus, we have proven that ID(Π) ✄ r(t, s) for some s. By
definition of evaluation, ID(Π) contains a proof τ of r(t, s).

The above proof relies on the fact that formulas are evaluated in a constructive
sense in ID(Π). To get this the choice of the natural calculus NDC(P) is essential;
for instance, if we take the classical calculus, then a proof π of ∀x(∃y r(x, y) ∨
¬∃y r(x, y)) always exists, but in general we have no means to evaluate it in
a constructive sense in ID(Π). We also remark that there is a close relation
between the program P∗ extracted from the proof π and the program P ; indeed,
P∗ contains the axioms of P which are relevant for the computations of the goals
in Gr, moreover it may contain other relevant clauses occurring in the proof π.

If the relation r is total (i.e., for every tuple t there is a tuple s such that
r(t, s) holds), it is preferable to provide a proof of ∀x∃y r(x, y) in order to apply
the previous theorem since this makes easier the reusability of the extracted
program.

6 Some Examples

Let us see some examples in the framework PA, having, as canonical model, the
standard model N of Arithmetic. Suppose we have to solve a decision problem,
for instance, to decide whether a number is even. We introduce a new unary
relation symbol p together with the definition Dp

p(x) ↔ ∃y(x = y + y)

14 Alessandro Avellone et al.

Clearly Dp completely defines p in PA. The set of goals Gp contains the atoms of
the form p(0), p(s(0)), p(s(s(0)), . . . (we recall that the constructions of PA are
0, s(0), . . .). To synthesize a program Peven which is totally correct in PA∪{Dp},
we have to find an extended logic program P such that P is valid in N and a
proof

π : � ∀x(p(x) ∨ ¬p(x))

exists in the natural calculus NDC(P), where C = {0, s}.
We try to get the proof π by applying the Cover Set Induction Rule in-

duced by C; to this end, we need a proof π1 of p(0) ∨ ¬p(0) and a proof π2 of
p(s(x)) ∨ ¬p(s(x)) which depends on p(x) ∨ ¬p(x). Note that, since C is a set
of constructions for PA, the induction schema associated with C is valid in the
model N, the intended semantics of PA. Thus, we use the Cover Set Induction
Rule as an heuristic to single out the axioms we need to build π. Of course, one
could also strengthen the natural calculus with new rules; on the other hand one
has to revise the previous treatment to guarantee the validity of Theorem 3.

To build the proof π1, we observe that p(0) is valid in N. Let us take

(E1) p(0) P := {(E1)}

By applying the rule ∨Il to (E1), we get a proof of p(0)∨¬p(0) in NDC(P). Now
we attempt to build π2 according to the following schema:

p(x) ∨ ¬p(x)

[p(x)]
··· π3

p(s(x)) ∨ ¬p(s(x))

[¬p(x)]
··· π4

p(s(x)) ∨ ¬p(s(x))
∨E

p(s(x)) ∨ ¬p(s(x))

To complete π3, we introduce the following axiom valid in N

(E2) p(x)→¬p(s(x))

which allows us to derive, by applying→E, ¬p(s(x)) and then, by ∨Ir , p(s(x))∨
¬p(s(x)). Thus, adding (E2) to P , the proof π3 belongs to NDC(T). The proof
π4 is symmetric and we have to take

(E3) ¬p(x)→p(s(x)) P := P ∪ {(E3)}

At this point, the proof π1 is completely defined; in virtue of Theorem 3, the
general logic program Peven extracted from π is totally correct for PA ∪ {Dp}
and solves our decision problem; one can easily check that:

Peven = {(E1), (E2), (E3)}

Suppose now we have to compute a function, for instance, the function f(x) =
x+x. In this case, we have to introduce a binary relation r with the definition Dr:

r(x, y) ↔ y = x + x

A Formal Framework for Synthesis and Verification of Logic Programs 15

where Dr completely specifies r and the set Gr is

Gr = {∃y r(0, y), ∃y r(s(0), y), ∃y r(s(s(0)), y), . . .}

In this case, since the function f is total, we provide a proof

π : � ∀x∃y r(x, y)

We build π according to the schema

··· π2

∃y (r(0, y))

[∃y r(x, y)]
··· π3

∃y r(s(x), y)
IndC

∃y r(x, y)

Let us set
(F1) r(0, 0) P := {(F1)}

It is easy to build π2 in NDC(P). As regards π3, we observe that the formula

(F2) r(x, y)→r(s(x), s(s(y)))

is valid in N. We can use (F2) to derive ∃y r(s(x), y) from the assumptions
∃y r(x, y); thus, adding (F2) to P , the proof π3 belongs to NDC(P). Since the
proof π has been completed, our synthesis process can be halted and the program
extracted from π coincides with P .

We could solve our synthesis process in another way. Let us enrich our spec-
ification by a new ternary relation sum with definition Dsum

sum(x1, x2, y) ↔ y = x1 + x2

and a goal set

Gsum = {∃y sum(0, 0, y), ∃y sum(s(0), 0, y), ∃y sum(0, s(0), y), . . .}

To find a program for Gsum, since sum is a total function, a proof

π∗ : � ∀x1∀x2∃y sum(x1, x2, y)

is needed. Suppose that π∗ has already been given in some calculus NDC(S)
so to satisfy the hypothesis of Theorem 3; then a program for Gr can be easily
synthesized. As a matter of fact, let us take

(F ∗) sum(x, x, y)→r(x, y) P := S ∪ {(F ∗)}

We can build the following proof in NDC(P):

··· π∗

∀x1∀x2∃y sum(x1, x2, y)
∀E

∃y sum(x, x, y)

[sum(x, x, z)]
IP

sum(x, x, z)→r(x, z)
→E

r(x, z)
∃I

∃y r(x, y)
∃E

∃y r(x, y)
∀I

∀x∃y r(x, y)

16 Alessandro Avellone et al.

Since P is valid in N, by Theorem 3 the program P extracted from π is totally
correct in PA∪Dr ∪Dsum. Note that P consists of the union of the program S∗

extracted from π∗ and the axiom (F ∗), which is the only extended program
clause extracted from the right-hand subproof. Thus, provided that we are able
to compute sum, we can compute r(x, y). Now, we can treat apart the task of
finding a program for sum. We can proceed as above and we can show that the
extended program

S =
{

sum(0, 0, 0)
sum(x, y, z)→sum(s(x), y, s(z))

}

suffices to build the proof π∗ and the extracted program S∗ coincides with S. This
example shows how one can combine programs computing different functions and
reuse them. We can go on with this process considering also the cases where the
definition axiom Dr is a complex formula. In this case, to find the appropriate
program, it might be necessary many steps of introductions of new relations.
This leads to a sequence of of “specifications” D0 ⊆ D1 ⊆ . . . and of extended
logic programs P0 ⊆ P1 ⊆ . . ., where with each Dk is associated a set of goals
Gk. When conditions of Theorem 3 can be applied, this synthesis process can be
halted and this provides a halting criterion (see also [10]).

References

1. M. Benini. Verification and Analysis of Programs in a Constructive Environment.
PhD thesis, Dipartimento di Scienze dell’Informazione, Università di Milano, 1999.
4

2. S. Buss and G. Mints. The complexity of the disjunction and existential properties
in intuitionistic logic. Annals of Pure and Applied Logic, 99(3):93–104, 1999. 4

3. Y. Deville and K. Lau. Logic program synthesis. Journal of Logic Programming,
19(20):321–350, 1994. 1, 9

4. M. Ferrari. Strongly Constructive Formal Systems. PhD thesis, Dipartimento di
Scienze dell’Informazione, Universitá degli Studi di Milano, Italy, 1997. Available
at http://homes.dsi.unimi.it/~ferram. 1, 4

5. M. Ferrari, C. Fiorentini, and P. Miglioli. Goal oriented information extraction in
uniformly constructive calculi. In Proceedings of WAIT’99: Workshop Argentino
de Informática Teórica, pages 51–63. Sociedad Argentina de Informática e Inves-
tigación Operativa, 1999. 1, 2, 3, 4

6. M. Ferrari, C. Fiorentini, and P. Miglioli. Extracting information from in-
termediate T-systems. Technical Report 252-00, Dipartimento di Scienze
dell’Informazione, Universitá degli Studi di Milano, Italy, 2000. Available at
http://homes.dsi.unimi.it/~ferram. 1, 2, 4

7. M. Ferrari, C. Fiorentini, and P. Miglioli. Extracting information from intermedi-
ate semiconstructive HA-systems (extended abstract). Mathematical Structures in
Computer Science, 11, 2001. 1, 2, 4

8. M. Ferrari, P. Miglioli, and M. Ornaghi. On uniformly constructive and semicon-
structive formal systems. Submitted to Annals of Pure and Applied Logic, 1999.
1, 2, 4

A Formal Framework for Synthesis and Verification of Logic Programs 17

9. K.-K. Lau and M. Ornaghi. On specification frameworks and deductive synthesis
of logic programs. In Logic Program Synthesis and Transformation. Proceedings
of LOPSTR’94. Springer-Verlag, 1994. 1, 2, 5

10. Kung-Kiu Lau, Mario Ornaghi, and Sten-Åke Tärnlund. The halting problem for
deductive synthesis of logic programs. In P. Van Hentenryck, editor, Logic Pro-
gramming - Proceedings of the Eleventh International Conference on Logic Pro-
gramming, pages 665–683. The MIT Press, 1994. 1, 2, 5, 16

11. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 2nd
edition, 1987. 5, 7

12. P. Miglioli, U. Moscato, and M. Ornaghi. Abstract parametric classes and ab-
stract data types defined by classical and constructive logical methods. Journal of
Symbolic Computation, 18:41–81, 1994. 1

13. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a founda-
tion for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.
4

14. A. Momigliano and M. Ornaghi. Regular search spaces as a foundation of logic
programming. In R. Dyckhoff, editor, Proceedings of the 4th International Work-
shop on Extensions of Logic Programming, volume 798 of LNAI, pages 222–254,
Berlin, 1994. Springer. 9

15. D. Prawitz. Natural Deduction. Almquist and Winksell, 1965. 7, 9, 11
16. J. C. Shepherdson. Negation in logic progamming. In J. Minker, editor, Found.

of Deductive Databases and Logic Programming, page 19. Morgan Kaufmann, San
Mateo, CA, 1988. 6

17. A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1996.
9, 11

	A Formal Framework for Synthesis and Verification of Logic Programs
	Introduction
	Extraction Calculi
	Specification Frameworks for Logic Programs
	Natural Deduction Calculi for Program Extraction
	Program Extraction from Deductive Proofs
	Some Examples

