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Abstract

This chapter is concerned with multidimensional data models for spatial
data warehouses. Over the last few years different approaches have been
proposed in the literature for modelling multidimensional data with geometric
extent. Nevertheless, the deûnition of a comprehensive and formal data
model is still a major research issue. The main contributions of the chapter
are twofold: First, it draws a picture of the research area; second it
introduces a novel spatial multidimensional data model for spatial objects
with geometry (MuSD--multigranular spatial data warehouse). MuSD
complies with current standards for spatial data modelling, augmented by
data warehousing concepts such as spatial fact, spatial dimension and
spatial measure. The novelty of the model is the representation of spatial
measures at multiple levels of geometric granularity. Besides the
representation concepts, the model includes  a set of OLAP operators
supporting the navigation across dimension and measure levels.
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Introduction

A topic that over recent years that has received growing attention from both
academy and industry concerns the integration of spatial data management with
multidimensional data analysis techniques. We refer to this technology as spatial
data warehousing, and consider a spatial data warehouse to be a multidimen-
sional database of spatial data. Following common practice, we use here the term
spatial in the geographical sense, i.e., to denote data that includes the description
of how objects and phenomena are located on the Earth. A large variety of data
may be considered to be spatial, including: data for land use and socioeconomic
analysis; digital imagery and geo-sensor data; location-based data acquired
through GPS or other positioning devices; environmental phenomena. Such data
are collected and possibly marketed by organizations such as public administra-
tions, utilities and other private companies, environmental research centres and
spatial data infrastructures. Spatial data warehousing has been recognized as a
key technology in enabling the interactive analysis of spatial data sets for
decision-making support (Rivest et al., 2001; Han et al., 2002). Application
domains in which the technology can play an important role are, for example,
those dealing with complex and worldwide phenomena such as homeland
security, environmental monitoring and health safeguards. These applications
pose challenging requirements for integration and usage of spatial data of
different kinds, coverage and resolution, for which the spatial data warehouse
technology may be extremely helpful.

Origins

Spatial data warehousing results from the conûuence of two technologies, spatial
data handling and multidimensional data analysis, respectively. The former
technology is mainly provided by two kinds of systems: spatial database
management systems (DBMS) and geographical information systems(GIS).
Spatial DBMS extend the functionalities of conventional data management
systems to support the storage, efficient retrieval and manipulation of spatial data
(Rigaux et al., 2002). Examples of commercial DBMS systems are Oracle
Spatial and IBM DB2 Spatial Extender. A GIS, on the other hand, is a composite
computer based information system consisting of an integrated set of programs,
possibly including or interacting with a spatial DBMS, which enables the
capturing, modelling, analysis and visualization of spatial data (Longley, et al,.
2001). Unlike a spatial DBMS, a GIS is meant to be directly usable by an end-
user. Examples of commercial systems are ESRI ArcGIS and Intergraph
Geomedia. The technology of spatial data handling has made signiûcant progress
in the last decade, fostered by the standardization initiatives promoted by OGC
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(Open Geospatial Consortium) and ISO/TC211, as well as by the increased
availability of off-the-shelf geographical data sets that have broadened the
spectrum of spatially-aware applications. Conversely, multidimensional data
analysis has become the leading technology for decision making in the business
area. Data are stored in a multidimensional array (cube or hypercube) (Kimball,
1996; Chaudhuri & Dayla, 1997; Vassiliadis & Sellis, 1999). The elements of the
cube constitute the facts (or cells) and are defined by measures and dimensions.
Typically, a measure denotes a quantitative variable in a given domain. For
example, in the marketing domain, one kind of measure is sales amount. A
dimension is a structural attribute characterizing a measure. For the marketing
example, dimensions of sales may be: time, location and product. Under these
example assumptions, a cell stores the amount of sales for a given product in a
given region and over a given period of time. Moreover, each dimension is
organized in a hierarchy of dimension levels, each level corresponding to a
different granularity for the dimension. For example, year is one level of the time
dimension, while the sequence day, month, year defines a simple hierarchy of
increasing granularity for the time dimension. The basic operations for online
analysis (OLAP operators) that can be performed over data cubes are: roll-up,
which moves up along one or more dimensions towards more aggregated data
(e.g., moving from monthly sales amounts to yearly sales amounts); drill-down,
which moves down dimensions towards more detailed, disaggregated data and
slice-and-dice, which performs a selection and projection operation on a cube.

The integration of these two technologies, spatial data handling and multidimen-
sional analysis, responds to multiple application needs. In business data ware-
houses, the spatial dimension is increasingly considered of strategic relevance
for the analysis of enterprise data. Likewise, in engineering and scientific
applications, huge amounts of measures, typically related to environmental
phenomena, are collected through sensors, installed on ground or satellites, and
continuously generating data to be stored in data warehouses for subsequent
analysis.

Spatial Multidimensional Models

A data warehouse (DW) is the result of a complex process entailing the
integration of huge amounts of heterogeneous data, their organization into de-
normalized data structures and eventually their loading into a database for use
through online analysis techniques. In a DW, data are organized and manipulated
in accordance with the concepts and operators provided by a multidimensional
data model. Multidimensional data models have been widely investigated for
conventional, non-spatial data. Commercial systems based on these models are
marketed. By contrast, research on spatially aware DWs (SDWs) is a step
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behind. The reasons are diverse: The spatial context is peculiar and complex,
requiring specialized techniques for data representation and processing; the
technology for spatial data management has reached maturity only in recent
times with the development of SQL3-based implementations of OGC standards;
finally, SDWs still lack a market comparable in size with the business sector that
is pushing the development of the technology. As a result, the deûnition of spatial
multidimensional data models (SMDs) is still a challenging research issue.

A SMD model can be specified at conceptual and logical levels. Unlike the
logical model, the specification at the conceptual level is independent of the
technology used for the management of spatial data. Therefore, since the
representation is not constrained by the implementation platform, the conceptual
specification, that is the view we adopt in this work, is more flexible, although not
immediately operational.

The conceptual specification of an SMD model entails the deûnition of two basic
components: a set of representation constructs, and an algebra of spatial OLAP
(SOLAP) operators, supporting data analysis and navigation across the repre-
sentation structures of the model. The representation constructs account for the
specificity of the spatial nature of data. In this work we focus on one of the
peculiarities of spatial data, that is the availability of spatial data at different
levels of granularity. Since the granularity concerns not only the semantics but
also the geometric aspects of the data, the location of objects can have different
geometric representations. For example, representing the location of an accident
at different scales may lead to associating different geometries to the same
accident.

To allow a more flexible representation of spatial data at different geometric
granularity, we propose a SDM model in which not only dimensions are organized
in levels of detail but also the spatial measures. For that purpose we introduce
the concept of multi-level spatial measure.

The proposed model is named MuSD (multigranular spatial data warehouse). It
is based on the notions of spatial fact, spatial dimension and multi-level
spatial measure. A spatial fact may be defined as a fact describing an event that
occurred on the Earth in a position that is relevant to know and analyze. Spatial
facts are, for instance, road accidents. Spatial dimensions and measures
represent properties of facts that have a geometric meaning; in particular, the
spatial measure represents the location in which the fact occurred. A multi-level
spatial measure is a measure that is represented by multiple geometries at
different levels of detail. A measure of this kind is, for example, the location of
an accident: Depending on the application requirements, an accident may be
represented by a point along a road, a road segment or the whole road, possibly
at different cartographic scales. Spatial measures and dimensions are uniformly
represented in terms of the standard spatial objects defined by the Open
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Geospatial Consortium. Besides the representation constructs, the model in-
cludes a set of SOLAP operators to navigate not only through the dimensional
levels but also through the levels of the spatial measures.

The chapter is structured in the following sections: the next section, Background
Knowledge, introduces a few basic concepts underlying spatial data represen-
tation; the subsequent section, State of the Art on Spatial Multidimensional
Models, surveys the literature on SDM models; the proposed spatial multidimen-
sional data model is presented in the following section; and research opportuni-
ties and some concluding remarks are discussed in the two conclusive sections.

Background Knowledge

The real world is populated by different kinds of objects, such as roads, buildings,
administrative boundaries, moving cars and air pollution phenomena. Some of
these objects are tangible, like buildings, others, like administrative boundaries,
are not. Moreover, some of them have identifiable shapes with well-defined
boundaries, like land parcels; others do not have a crisp and fixed shape, like air
pollution. Furthermore, in some cases the position of objects, e.g., buildings, does
not change in time; in other cases it changes more or less frequently, as in the
case of moving cars. To account for the multiform nature of spatial data, a variety
of data models for the digital representation of spatial data are needed. In this
section, we present an overview of a few basic concepts of spatial data
representation used throughout the chapter.

The Nature of Spatial Data

Spatial data describe properties of phenomena occurring in the world. The prime
property of such phenomena is that they occupy a position. In broad terms, a
position is the description of a location on the Earth. The common way of
describing such a position is through the coordinates of a coordinate reference
system.

The real world is populated by phenomena that fall into two broad conceptual
categories: entities and continuous fields (Longley et al., 2001). Entities are
distinguishable elements occupying a precise position on the Earth and normally
having a well-defined boundary. Examples of entities are rivers, roads and
buildings. By contrast, fields are variables having a single value that varies within
a bounded space. An example of field is the temperature, or the distribution, of
a polluting substance in an area. Field data can be directly obtained from sensors,
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for example installed on satellites, or obtained by interpolation from sample sets
of observations.

The standard name adopted for the digital representation of abstractions of real
world phenomena is that of feature (OGC, 2001; OGC, 2003). The feature is the
basic representation construct defined in the reference spatial data model
developed by the Open Geospatial Consortium and endorsed by ISO/TC211. As
we will see, we will use the concept of feature to uniformly represent all the
spatial components in our model. Features are spatial when they are associated
with locations on the Earth; otherwise they are non-spatial. Features have a
distinguishing name and have a set of attributes. Moreover, features may be
defined at instance and type level: Feature instances represent single phenom-
ena; feature types describe the intensional meaning of features having a
common set of attributes. Spatial features are further specialized to represent
different kinds of spatial data. In the OGC terminology, coverages are the spatial
features that represent continuous fields and consist of discrete functions taking
values over space partitions. Space partitioning results from either the subdivi-
sion of space in a set of regular units or cells (raster data model) or the
subdivision of space in irregular units such as triangles (tin data model). The
discrete function assigns each portion of a bounded space a value.

In our model, we specifically consider simple spatial features. Simple spatial
features (“features” hereinafter) have one or more attributes of geometric type,
where the geometric type is one of the types defined by OGC, such as point, line
and polygon. One of these attributes denotes the position of the entity. For
example, the position of the state Italy may be described by a multipolygon, i.e.,
a set of disjoint polygons (to account for islands), with holes (to account for the
Vatican State and San Marino). A simple feature is very close to the concept of
entity or object as used by the database community. It should be noticed,
however, that besides a semantic and geometric characterization, a feature type
is also assigned a coordinate reference system, which is specific for the feature
type and that defines the space in which the instances of the feature type are
embedded.

More complex features may be defined specifying the topological relationships
relating a set of features. Topology deals with the geometric properties that
remain invariant when space is elastically deformed. Within the context of
geographical information, topology is commonly used to describe, for example,
connectivity and adjacency relationships between spatial elements. For example,
a road network, consisting of a set of interconnected roads, may be described
through a graph of nodes and edges: Edges are the topological objects represent-
ing road segments whereas nodes account for road junctions and road endpoints.

To summarize, spatial data have a complex nature. Depending on the application
requirements and the characteristics of the real world phenomena, different



Spatial Data Warehouse Modelling   7

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

spatial data models can be adopted for the representation of geometric and
topological properties of spatial entities and continuous fields.

State of the Art on Spatial
Multidimensional Models

Research on spatial multidimensional data models is relatively recent. Since the
pioneering work of Han et al., (1998), several models have been proposed in the
literature aiming at extending the classical multidimensional data model with
spatial concepts. However, despite the complexity of spatial data, current spatial
data warehouses typically contain objects with simple geometric extent.

Moreover, while an SMD model is assumed to consist of a set of representation
concepts and an algebra of SOLAP operators for data navigation and aggrega-
tion, approaches proposed in the literature often privilege only one of the two
aspects, rarely both. Further, whilst early data models are defined at the logical
level and are based on the relational data model, in particular on the star model,
more recent developments, especially carried out by the database research
community, focus on conceptual aspects. We also observe that the modelling of
geometric granularities in terms of multi-level spatial measures, which we
propose in our model, is a novel theme.

Often, existing approaches do not rely on standard data models for the represen-
tation of spatial aspects. The spatiality of facts is commonly represented through
a geometric element, while in our approach, as we will see, it is an OGC spatial
feature, i.e., an object that has a semantic value in addition to its spatial
characterization.

A related research issue that is gaining increased interest in recent years, and
that is relevant for the development of comprehensive SDW data models,
concerns the specification and efficient implementation of the operators for
spatial aggregation.

Literature Review

The first, and perhaps the most signiûcant, model proposed so far has been
developed by Han et al. (1998). This model introduced the concepts of spatial
dimension and spatial measure. Spatial dimensions describe properties of facts
that also have a geometric characterization. Spatial dimensions, as conventional
dimensions, are defined at different levels of granularity. Conversely, a spatial
measure is defined as “a measure that contains a collection of pointers to spatial
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objects,” where spatial objects are geometric elements, such as polygons.
Therefore, a spatial measure does not have a semantic characterization, it is just
a set of geometries. To illustrate these concepts, the authors consider a SDW
about weather data. The example SDW has three thematic dimensions: {tem-
perature, precipitation, time}; one spatial dimension: {region}; and three mea-
sures: {region_map, area, count}. While area and count are numeric measures,
region_map is a spatial measure denoting a set of polygons. The proposed model
is specified at the logical level, in particular in terms of a star schema, and does
not include an algebra of OLAP operators. Instead, the authors develop a
technique for the efficient computation of spatial aggregations, like the merge of
polygons. Since the spatial aggregation operations are assumed to be distributive,
aggregations may be partially computed on disjoint subsets of data. By pre-
computing the spatial aggregation of different subsets of data, the processing
time can be reduced.

Rivest et al. (2001) extend the deûnition of spatial measures given in the previous
approach to account for spatial measures that are computed by metric or
topological operators. Further, the authors emphasize the need for more ad-
vanced querying capabilities to provide end users with topological and metric
operators. The need to account for topological relationships has been more
concretely addressed by Marchant et al. (2004), who define a specific type of
dimension implementing spatio-temporal topological operators at different levels
of detail. In such a way, facts may be partitioned not only based on dimension
values but also on the existing topological relationships.

Shekhar et al. (2001) propose a map cube operator, extending the concepts of
data cube and aggregation to spatial data. Further, the authors introduce a
classification and examples of different types of spatial measures, e.g., spatial
distributive, algebraic and holistic functions.

GeoDWFrame (Fidalgo et al., 2004) is a recently proposed model based on the
star schema. The conceptual framework, however, does not include the notion
of spatial measure, while dimensions are classified in a rather complex way.

Pederson and Tryfona (2001) are the first to introduce a formal deûnition of an
SMD model at the conceptual level. The model only accounts for spatial
measures whilst dimensions are only non-spatial. The spatial measure is a
collection of geometries, as in Han et al. (1998), and in particular of polygonal
elements. The authors develop a pre-aggregation technique to reduce the
processing time of the operations of merge and intersection of polygons. The
formalization approach is valuable but, because of the limited number of
operations and types of spatial objects that are taken into account, the model has
limited functionality and expressiveness.

Jensen et al. (2002) address an important requirement of spatial applications. In
particular, the authors propose a conceptual model that allows the deûnition of
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dimensions whose levels are related by a partial containment relationship. An
example of partial containment is the relationship between a roadway and the
district it crosses. A degree of containment is attributed to the relationship. For
example, a roadway may be defined as partially contained at degree 0.5 into a
district. An algebra for the extended data model is also defined. To our
knowledge, the model has been the first to deal with uncertainty in data
warehouses, which is a relevant issue in real applications.

Malinowski and Zimanyi (2004) present a different approach to conceptual
modelling. Their SMD model is based on the Entity Relationship modelling
paradigm. The basic representation constructs are those of fact relationship
and dimension. A dimension contains one or several related levels consisting of
entity types possibly having an attribute of geometric type. The fact relationship
represents an n-ary relationship existing among the dimension levels. The
attributes of the fact relationship constitute the measures. In particular, a
spatial measure is a measure that is represented by a geometry or a function
computing a geometric property, such as the length or surface of an element. The
spatial aspects of the model are expressed in terms of the MADS spatio-
temporal conceptual model (Parent et al., 1998). An interesting concept of the
SMD model is that of spatial fact relationship, which models a spatial
relationship between two or more spatial dimensions, such as that of spatial
containment. However, the model focuses on the representation constructs and
does not specify a SOLAP algebra.

A different, though related, issue concerns the operations of spatial aggrega-
tion. Spatial aggregation operations summarize the geometric properties of
objects, and as such constitute the distinguishing aspect of SDW. Nevertheless,
despite the relevance of the subject, a standard set of operators (as, for example,
the operators Avg, Min, Max in SQL) has not been defined yet. A first
comprehensive classification and formalization of spatio-temporal aggregate
functions is presented in Lopez & Snodgrass (2005). The operation of aggrega-
tion is defined as a function that is applied to a collection of tuples and returns
a single value. The authors distinguish three kinds of methods for generating the
set of tuples, known as group composition, partition composition and sliding
window composition. They provide a formal deûnition of aggregation for
conventional, temporal and spatial data based on this distinction. In addition to the
conceptual aspects of spatial aggregation, another major issue regards the
development of methods for the efficient computation of these kinds of opera-
tions to manage high volumes of spatial data. In particular, techniques are
developed based on the combined use of specialized indexes, materialization of
aggregate measures and computational geometry algorithms, especially to
support the aggregation of dynamically computed sets of spatial objects (Papadias,
et. al., 2001; Rao, et. al., 2003; Zhang & Tsotras, 2005).
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A Multigranular Spatial Data
Warehouse Model: MuSD

Despite the numerous proposals of data models for SDW defined at the logical,
and more recently,conceptual level presented in the previous section, and despite
the increasing number of data warehousing applications (see, e.g., Bedard et al.,
2003; Scotch & Parmantoa, 2005), the deûnition of a comprehensive and formal
data model is still a major research issue.

In this work we focus on the definition of a formal model based on the concept
of spatial measures at multiple levels of geometric granularity.

One of the distinguishing aspects of multidimensional data models is the
capability of dealing with data at different levels of detail or granularity.
Typically, in a data warehouse the notion of granularity is conveyed through the
notion of dimensional hierarchy. For example, the dimension administrative
units may be represented at different decreasing levels of detail: at the most
detailed level as municipalities, next as regions and then as states. Note,
however, that unlike dimensions, measures are assigned a unique granularity. For
example, the granularity of sales may be homogeneously expressed in euros.

In SDW, the assumption that spatial measures have a unique level of granularity
seems to be too restrictive. In fact, spatial data are very often available at
multiple granularities, since data are collected by different organizations for
different purposes. Moreover, the granularity not only regards the semantics
(semantic granularity) but also the geometric aspects (spatial granularity)
(Spaccapietra et al., 2000; Fonseca et al., 2002). For example, the location of an
accident may be modelled as a measure, yet represented at different scales and
thus have varying geometric representations.

To represent measures at varying spatial granularities, alternative strategies can
be prospected: A simple approach is to define a number of spatial measures, one
for each level of spatial granularity. However, this solution is not conceptually
adequate because it does not represent the hierarchical relation among the
various spatial representations.

In the model we propose, named MuSD, we introduce the notion of multi-level
spatial measure, which is a spatial measure that is defined at multiple levels of
granularity, in the same way as dimensions. The introduction of this new concept
raises a number of interesting issues. The first one concerns the modelling of the
spatial properties. To provide a homogeneous representation of the spatial
properties across multiple levels, both spatial measures and dimensions are
represented in terms of OGC features. Therefore, the locations of facts are
denoted by feature identifiers. For example, a feature, say p1, of type road
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accident, may represent the location of an accident. Note that in this way we
can refer to spatial objects in a simple way using names, in much the same way
Han et al. (1998) do using pointers. The difference is in the level of abstraction
and, moreover, in the fact that a feature is not simply a geometry but an entity
with a semantic characterization.

Another issue concerns the representation of the features resulting from
aggregation operations. To represent such features at different granularities, the
model is supposed to include a set of operators that are able to dynamically
decrease the spatial granularity of spatial measures. We call these operators
coarsening operators. With this term we indicate a variety of operators that,
although developed in different contexts, share the common goal of representing
less precisely the geometry of an object. Examples include the operators for
cartographic generalization proposed in Camossi et al. (2003) as well the
operators generating imprecise geometries out of more precise representations
(fuzzyfying operators).

In summary, the MuSD model has the following characteristics:

• It is based on the usual constructs of (spatial) measures and (spatial)
dimensions. Notice that the spatiality of a measure is a necessary condition
for the DW to be spatial, while the spatiality of dimensions is optional;

• A spatial measure represents the location of a fact at multiple levels of
spatial granularity;

• Spatial dimension and spatial measures are represented in terms of OGC
features;

• Spatial measures at different spatial granularity can be dynamically com-
puted by applying a set of coarsening operators; and

• An algebra of SOLAP operators is defined to enable user navigation and
data analysis.

Hereinafter, we first introduce the representation concepts of the MuSD model
and then the SOLAP operators.

Representation Concepts in MuSD

The basic notion of the model is that of spatial fact. A spatial fact is defined as
a fact that has occurred in a location. Properties of spatial facts are described
in terms of measures and dimensions which, depending on the application, may
have a spatial meaning.
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A dimension  is composed of levels. The set of levels is partially ordered; more
specifically, it constitutes a lattice. Levels are assigned values belonging to
domains. If the domain of a level consists of features, the level is spatial;
otherwise it is non-spatial. A spatial measure, as a dimension, is composed of
levels representing different granularities for the measure and forming a lattice.
Since in common practice the notion of granularity seems not to be of particular
concern for conventional and numeric measures, non-spatial measures are
defined at a unique level. Further, as the spatial measure represents the location
of the fact, it seems reasonable and not significantly restrictive to assume the
spatial measure to be unique in the SDW.

As Jensen et al. (2002), we base the model on the distinction between the
intensional and extensional representations, which we respectively call schema
and cube. The schema specifies the structure, thus the set of dimensions and
measures that compose the SDW; the cube describes a set of facts along the
properties specified in the schema.

To illustrate the concepts of the model, we use as a running example the case of
an SDW of road accidents. The accidents constitute the spatial facts. The
properties of the accidents are modelled as follows: The number of victims and
the position along the road constitute the measures of the SDW. In particular,
the position of the accident is a spatial measure. The date and the administrative
unit in which the accident occurred constitute the dimensions.

Before detailing the representation constructs, we need to define the spatial data
model which is used for representing the spatial concepts of the model.

The Spatial Data Model

For the representation of the spatial components, we adopt a spatial data model
based on the OGC simple features model. We adopt this model because it is
widely deployed in commercial spatial DBMS and GIS. Although a more
advanced spatial data model has been proposed (OGC, 2003), we do not lose in
generality by adopting the simple feature model. Features (simple) are identified
by names. Milan, Lake Michigan and the car number AZ213JW are examples
of features. In particular, we consider as spatial features entities that can be
mapped onto locations in the given space (for example, Milan and Lake
Michigan). The location of a feature is represented through a geometry. The
geometry of a spatial feature may be of type point, line or polygon, or recursively
be a collection of disjoint geometries. Features have an application-dependent
semantics that are expressed through the concept of feature type. Road, Town,
Lake and Car are examples of feature types. The extension of a feature type,
ft, is a set of semantically homogeneous features. As remarked in the previous
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section, since features are identified by unique names, we represent spatial
objects in terms of feature identifiers. Such identifiers are different from the
pointers to geometric elements proposed in early SDW models. In fact, a feature
identifier does not denote a geometry, rather an entity that has also a semantics.
Therefore some spatial operations, such as the spatial merge when applied to
features, have a semantic value besides a geometric one. In the examples that
will follow, spatial objects are indicated by their names.

Basic Concepts

To introduce the notion of schema and cube, we first need to define the following
notions: domain, level, level hierarchy, dimension and measure. Consider the
concept of domain. A domain defines the set of values that may be assigned to
a property of facts, that is to a measure or to a dimension level. The domain may
be single-valued or multi-valued; it may be spatial or non-spatial. A formal
deûnition is given as follows.

Definition 2 (Domain and spatial domain): Let V be the set of values and F
the set f features with F ⊆  V. A domain Do is single-valued if Do ⊆ V; it is multi-
valued if Do ⊆  2 V, in which case the elements of the domain are subsets of values.
Further, the domain Do is a single-valued spatial domain if Do

 
⊆  F; it is a multi-

valued spatial domain if Do ⊆  2 F. We denote with DO the set of domains DO
={Do

1
..., Do

k
}.

Example 1: In the road accident SDW, the single-valued domain of the property
victims is the set of positive integers. A possible spatial domain for the position
of the accidents is the set {a4, a5, s35} consisting of features which represent
roads. We stress that in this example the position is a feature and not a mere
geometric element, e.g., the line representing the geometry of the road.

The next concept we introduce is that of level. A level denotes the single level
of granularity of both dimensions and measures. A level is defined by a name and
a domain. We also define the notion of partial ordering among levels, which
describes the relationship among different levels of detail.

Definition 3 (Level): A level is a pair  < Ln, Do > where Ln is the name of the
level and Do its domain. If the domain is a spatial domain, then the level is spatial;
otherwise it is non-spatial.



14   Damiani & Spaccapietra

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Let Lv1 and Lv2 be two levels, dom(Lv) the function returning the domain of
level Lv, and ≤

lv 
a partial order over V. We say that Lv1≤

lv
 Lv2 iff for each v1

∈   dom(Lv1), it exists v2 ∈  
 
dom(Lv2) such that v1≤

lv
 v2. We denote with LV

the set of levels. The relationship Lv1 ≤
lv
 Lv2 is read: Lv1 is less coarse (or more

detailed) than Lv2.

Example 2: Consider the following two levels: L
1
=<AccidentAtLargeScale,

PointAt1:1’000>, L
2
=<AccidentAtSmallScale, PointAt1:50’000>. Assume that

Do
1
 = PointAt1:1’000 and Do2 = PointAt1:50’000 are domains of features

representing accidents along roads at different scales. If we assume  that Do
1

≤
lv
 Do

2
 then it holds that AccidentAtLargeScale≤

lv
 AccidentAtSmallScale.

The notion of level is used to introduce the concept of hierarchy of levels, which
is then applied to define dimensions and measures.

Definition 4 (Level hierarchy): Let L be a set of n levels L = {Lv
1
, ..., Lv

n
}.

A level hierarchy H is a lattice over L: H =<L, ≤
lv
, Lvtop, Lvbot> where ≤

lv
 is

a partial order over the set L of levels, and Lvtop, Lvbot, respectively, the top and
the bottom levels of the lattice.

Given a level hierarchy H, the function LevelsOf(H) returns the set of levels in
H. For the sake of generality, we do not make any assumption on the meaning
of the partial ordering. Further, we say that a level hierarchy is of type spatial
if all the levels in L are spatial; non-spatial when the levels are non-spatial;
hybrid if L consists of both spatial and non-spatial levels. This distinction is
analogous to the one defined by Han et al. (1998).

Example 3: Consider again the previous example of hierarchy of administrative
entities. If the administrative entities are described by spatial features and thus
have a geometry, then they form a spatial hierarchy; if they are described simply
by names, then the hierarchy is non-spatial; if some levels are spatial and others
are non-spatial, then the hierarchy is hybrid.

At this point we introduce the concepts of dimensions, measures and spatial
measures. Dimensions and spatial measures are defined as hierarchies of
levels. Since there is no evidence that the same concept is useful also for numeric
measures, we introduce the notion of hierarchy only for the measures that are
spatial. Further, as we assume that measures can be assigned subset of values,
the domain of a (spatial) measure is multivalued.
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Definition 5 (Dimension, measure and spatial measure): We define:

• A dimension D is a level hierarchy. The domains of the dimension levels are
single-valued. Further, the hierarchy can be of type: spatial, non-spatial and
hybrid;

• A measure M is defined by a unique level < M, Do >, with Do a multi-valued
domain; and

• A spatial measure SM is a level hierarchy. The domains of the levels are
multi-valued. Moreover the level  hierarchy is spatial.

To distinguish the levels, we use the terms dimension and spatial measure
levels. Note that the levels of the spatial measure are all spatial since we assume
that the locations of facts can be represented at granularities that have a
geometric meaning. Finally, we introduce the concept of multigranular spatial
schema to denote the whole structure of the SDW.

Definition 6 (Multigranular spatial schema): A multigranular spatial schema
S (schema, in short) is the tuple S =<D1, ..Dn, M1, ...Mm, SM> where:

• Di is a dimension, for each i =1, .., n;

• Mj is a non-spatial measure, for each j =1, .., m; and

• SM is a spatial measure.

We assume the spatial measure to be unique in the schema. Although in principle
that could be interpreted as a limitation, we believe it is a reasonable choice since
it seems adequate in most real cases.

Example 4: Consider the following schema S for the road accidents SDW:

S =<date, administrativeUnit, victims, location> where:

• {date, administrativeUnit} are dimensions with the following simple
structure:

� date =<{year, month }
 
, ≤

date
, month, year>  with month ≤

date
 year

� administrativeUnit =<{municipality, region, state}, ≤
adm 

, municipality,
state> with municipality ≤

adm
 region ≤

adm 
state;
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• victims is a non-spatial measure;

• location is the spatial measure. Let us call M
1 
= AccidentAtLargeScale and

M
2 
= AccidentAtSmallScale, two measure levels representing accidents at

two different scales. Then the measure is defined as follows: <{M
1
, M

2
}

≤
pos

, M
1
, M

2
> such that M

1
≤

pos
 M

2
.

Finally, we introduce the concept of cube to denote  the extension of our SDW.
A cube is a set of cells containing the measure values defined with respect a
given granularity of dimensions and measures. To indicate the level of granularity
of dimensions, the notion of schema level is introduced. A schema level is a
schema limited to specific levels. A cube is thus defined as an instance of a
schema level.

Definition 7 (Schema level): Let S =<D
1
, ..D

n
, M

1
, ...M

m
, SM> be a schema.

A schema level SL for S is a tuple: <DLv
1
, ..DLv

n
, M

1
, ...M

m
, Slv> where:

• DLv
i
 ∈  LevelsOf (D

i
), is a level of dimension D

i
  (for each i = 1, ..., n);

• M
i
 is a non-spatial measure (for each i =1, …, m);and

• Slv ∈  LevelsOf (SM ) is a level of the spatial measure SM

Since non-spatial measures have a unique level, they are identical in all schema
levels. The cube is thus formally defined as follows:

Definition 8 (Cube and state): Let SL = <DLv
1
, ..DLv

n
, M

1
, ...M

m
, Slv> be

a schema level.

A cube for SL, C
SL

 is the set of tuples (cells) of the form: <d
1
, ..., d

n
, m

1
, ..., m

m
,

sv> where:

• d
i
 is a value for the dimension level DLv

i
;

• m
i
 is a value for the measure M

i
; and

• sv is the value for the spatial measure level Slv.

A state of a SDW is defined by the pair <SL, C
SL

> where SL is a schema level
and C

SL
 a cube.
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The basic cube and basic state respectively denote the cube and the schema
level at the maximum level of detail of the dimensions and spatial measure.

Example 5: Consider the schema S introduced in example 4 and the schema
level <month, municipality, victims, accidentAtlargeScale>. An example of fact
contained in a cube for such a schema level is the tuple <May 2005, Milan, 20,
A4> where the former two values are dimension values and the latter two values
are measure values. In particular, A4 is the feature representing the location at
the measure level accidentAtLargeScale.

Spatial OLAP

After presenting the representation constructs of the model, we introduce the
spatial OLAP operators. In order to motivate our choices, we first discuss three
kinds of requirements that the concept of hierarchy of measures poses on these
operators and thus the assumptions we have made.

Requirements and Assumptions

Interrelationship Between Dimensions and Spatial Measures

A first problem due to the introduction of the hierarchy of measures may be
stated in these terms: Since a measure level is functionally dependent on
dimensions, is this dependency still valid if we change the granularity of the
measure? Consider the following example: assume the cube in example 4 and
consider an accident that occurred in May 2005 in the municipality of Milan,
located in point P along a given road, and having caused two victims. Now
assume a decrease in the granularity of the position, thus representing the
position no longer as a point but as a portion of road. The question is whether the
dimension values are affected by such a change. We may observe that both
cases are possible: (a) The functional dependency between a measure and a
dimension is not affected by the change of spatial granularity of the measure if
the dimension value does not depend on the geometry of the measure. This is the
case for the dimension date of accident; since the date of an accident does not
depend on the geometry of the accident, the dimension value does not change
with the granularity. In this case we say that the date dimension is invariant; (b)
The opposite case occurs if a spatial relationships exists between the given
dimension and the spatial measure. For example, in the previous example, since
it is reasonable to assume that a relationship of spatial containment is implicitly
defined between the administrative unit and the accident, if the granularity of



18   Damiani & Spaccapietra

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

position changes, say the position is expressed not by a point but a line, it may
happen that the relationship of containment does not hold any longer. In such a
case, the value of the dimension level would vary with the measure of granularity.
Since this second case entails complex modelling, in order to keep the model
relatively simple, we assume that all dimensions are invariant with respect to
spatial measure granularity. Therefore, all levels of a spatial measure have the
same functional dependency from dimensions.

Aggregation of Spatial Measures

The second issue concerns the operators for the spatial aggregation of spatial
measures. Such operators compute, for example, the union and intersection of
a set of geometries, the geometry with maximum linear or aerial extent out of a
set of one-dimensional and two-dimensional geometries and the MBB (Minimum
Bounding Box) of a set of geometries. In general, in the SDW literature these
operators are supposed to be applied only to geometries and not to features.
Moreover, as previously remarked, a standard set of operators for spatial
aggregation has not been defined yet.

For the sake of generality, in our model we do not make any choice about the set
of possible operations. We only impose, since we allow representing spatial
measures as features, that the operators are applied to sets of features and return
a feature. Further, the result is a new or an existing feature, depending on the
nature of the operator. For example, the union (or merge) of a set of features,
say states, is a newly-created feature whose geometry is obtained from the
geometric union of the features’ geometries. Notice also that the type of the
result may be a newly-created feature type. In fact, the union of a set of states
is not itself a state and therefore the definition of a new type is required to hold
the resulting features.

Coarsening of Spatial Measures

The next issue is whether the result of a spatial aggregation can be represented
at different levels of detail. If so, data analysis would become much more
flexible, since the user would be enabled not only to aggregate spatial data but
also to dynamically decrease their granularity. To address this requirement, we
assume that the model includes not only operators for spatial aggregation but also
operators for decreasing the spatial granularity of features. We call these
operators coarsening operators. As previously stated, coarsening operators
include operators for cartographic generalization (Camossi & Bertolotto, 2003)
and fuzzyûcation operators. A simple example of fuzzyûcation is the operation
mapping of a point of coordinates (x,y) into a close point by reducing the number
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of decimal digits of the coordinates. These operators are used in our model for
building the hierarchy of spatial measures.

When a measure value is expressed according to a lower granularity, the
dimension values remain unchanged, since dimensions are assumed to be
invariant. As a simple example, consider the position of an accident. Suppose that
an aggregation operation, e.g., MBB computation, is performed over positions
grouped by date. The result is some new feature, say yearly accidents, with its
own polygonal geometry. At this point we can apply a coarsening operator and
thus a new measure value is dynamically obtained, functionally dependent on the
same dimension values. The process of grouping and abstraction can thus iterate.

Spatial Operators

Finally, we introduce the Spatial OLAP operators that are meant to support the
navigation in MuSD. Since numerous algebras have been proposed in the
literature for non-spatial DW, instead of defining a new set of operators from
scratch, we have selected an existing algebra and extended it. Namely, we have
chosen the algebra defined in Vassiliadis, 1998. The advantages of this algebra
are twofold: It is formally defined, and it is a good representative of the class of
algebras for cube-oriented models (Vassiliadis, 1998; Vassiliadis & Sellis, 1999),
which are close to our model.

Besides the basic operators defined in the original algebra (LevelClimbing,
Packing, FunctionApplication, Projection and Dicing), we introduce the follow-
ing operators: MeasureClimbing, SpatialFunctionApplication and CubeDisplay.
The MeasureClimbing operator is introduced to enable the scaling up of spatial
measures to different granularities; the SpatialFunctionApplication operator
performs aggregation of spatial measures; CubeDisplay simply visualizes a

Table 1. C
b
= Basic cube

Month Location Victims 
Jan 03 P1 4 
Jeb 03 P2 3 
Jan 03 P3 3 
May 03 P4 1 
Feb 04 P5 2 
Feb 04 P6 3 
Mar 04 P7 1 
May 04 P8 2 
May 04 P9 3 
May 04 P10 1 
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cube as a map. The application of these operators causes a transition from the
current state to a new state of the SDW. Therefore the navigation results from
the successive application of these operators.

Hereinafter we illustrate the operational meaning of these additional operators.
For the sake of completeness, we present first the three fundamental operators
of the native algebra used to perform data aggregation and rollup.

In what follows, we use the emsuing conventions:  S indicates the schema, and
ST denotes the set of states for S, of the form <SL, C> where SL is the schema
level <DLv

1
, ..., DLv

i
, ..., DLv

n
, M

1
, ..., M

m
, Slv> and C, a cube for that schema

level. Moreover, the dot notation SL.DLv
i
 is used to denote the DLv

i 
component

of the schema level. The examples refer to the schema presented in Example 4
(limited to one dimension) and to the basic cube reported in Table 1.

Level Climbing

In accordance with the definition of Vassiliadis, the LevelClimbing operation
replaces all values of a set of dimensions with dimension values of coarser
dimension levels. In other terms, given a state S = <SL, C>, the operation causes

Table 2. Cube 1

Year Location Victims 
03 P1 4 
03 P2 3 
03 P3 3 
03 P4 1 
04 P5 2 
04 P6 3 
04 P7 1 
04 P8 2 
04 P9 3 
04 P10 1 

Table 3. Cube 2

year Location #Victims 
03 {P1,P2,P3,P4} {4,2,3,1,2,1} 
04 {P5,P6,P7,P8,P9,P19} {3,3,1,3} 
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a transition to a new state <SL’, C’> in which SL’ is the schema level including
the coarser dimension level, and C’ is the cube containing the coarser values for
the given level. In our model, the operation can be formally defined as follows:

Definition 9 (LevelClimbing):  The LevelClimbing operator is defined by the
mapping:  LevelClimbing: ST x D x LV→ ST such that, given a state SL, a
dimension D

i
 and a level lv

i
 of D

i
, LevelClimbing(<SL, Cb>, D

i
, lv

i
) = <SL’, Cb

>  with lv
i 
=  SL’.Dlvi.

Example 6: Let SL be the following schema levels: SL= <Month, AccidentPoint,
Victims>. Cube 1 in Table 1 results from the execution of  Level_Climbing (<SL,
Basic_cube>, Time, Year).

Packing

The Packing operator, as defined in the original algebra, groups into a single tuple
multiple tuples having the same dimension values. Since the domain of measures
is multi-valued, after the operation the values of measures are sets. The new
state shows the same schema level and a different cube. Formally:

Definition 10 (Packing): The Packing operator is defined by the mapping:
Packing: ST→ ST such that Packing(<SL, C>) = <SL, C’>

Example 7: Cube 2 in Table 3 results from the operation: Pack (SL,Cube1)

FunctionApplication

The FunctionApplication operator, which belongs to the original algebra, applies
an aggregation function, such as the standard avg and sum, to the non-spatial
measures of the current state. The result is a new cube for the same schema
level. Let M be the set of non-spatial measures and AOP the set of aggregation
operators.

Table 4. Cube 3

year #Victims Location 
03 13 Area1 
04 10 Area2 
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Deûnition 11 (FunctionApplication): The FunctionApplication operator is
defined by the mapping: FunctionApplication: ST x AOP x  M→ ST, such that
denoting with op(C, Mi) the cube resulting from the application of the aggregation
operator op to the measure Mi of cube C, FunctionApplication(<DLv1, …, DLvn,
M1, …, Mi,…, Mm, Slv>, op, Mi) = <SL, C’> with cube C’ = op(C, Mi).

SpatialFunctionApplication

This operator extends the original algebra to perform spatial aggregation of
spatial measures. The operation is similar to the previous Function Application.
The difference is that the operator is meant to aggregate spatial measure values.

Definition 12 (SpatialFunctionApplication): Let SOP be the set of spatial
aggregation operators. TheSpatialFunctionApplication operator is defined by the
mapping:

SpatialFunctionApplication: ST x  SOP→  ST such that, denoting with op(C, Slv)
the cube resulting from the application of the spatial aggregation operator sop to
the spatial measure level Slv of cube C, SpatialFunctionApplication(<DLv

1
, …,

DLv
n
, M

1
, …, M

m
, Slv >, sop) = <SL, C’> with C’ = sop(C, Slv).

Example 8: Cube 3 in Table 4  results from the application of two aggregation
operators, respectively on the measures victims and AccidentPoint. The result
of the spatial aggregation is a set of features of a new feature type.

Measure Climbing

The MeasureClimbing operator enables the scaling of spatial measures to a
coarser granularity. The effect of the operation is twofold: a) it dynamically
applies a coarsening operator to the values of the current spatial measure level
to obtain coarser values; and b) it causes a transition to a new state defined by
a schema level with a coarser measure level.

Table 5. Cube 4

Year #Victims FuzzyLocation 
03 13 Id  
04 10 Id2 
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Defnition 13 (MeasureClimbing): Let COP be the set of coarsening opera-
tors. The MeasureClimbing  operator is defined by the mapping: MeasureClimbing
: ST x COP→ ST such that denoting with:

• op(Slv): a coarsening operator applied to the values of a spatial measure
level Slv

• SL =<DLv
1
, ..., DLv

i
, ..., DLv

n
, M

1
, ..., M

m
, Slv>

• SL’ =< DLv
1
, ..., DLv

i
, ..., DLv

n
, M

1
, ..., M

m
, Slv’ >

MeasureClimbing(SL, op)=SL’ with Slv’ = op(Slv);

Example 9: Cube 4 in Table 5 results from the application of the MeasureClimbing
operator to the previous cube. The operation applies a coarsening operator to the
spatial measure and thus changes the level of the spatial measure, reducing the
level of detail. In Cube 4, “FuzzyLocation” is the name of the new measure level.

DisplayCube

This operator is introduced to allow the display of the spatial features contained
in the current cube in the form of  a cartographic map. Let MAP be the set of
maps.

Defnition 14 (DisplayCube): The operator is defined by the mapping:
DisplayCube: ST àMAP so that, denoting with m, a map: DisplayCube(<SL, C>)
=m.

As a concluding remark on the proposed algebra, we would like to stress that the
model is actually a general framework that needs to be instantiated with a
specific set of aggregation and coarsening operators to become operationally
meaningful. The definition of such set of operators is, however, a major research
issue.

Future Trends

Although SMD models for spatial data with geometry address important
requirements, such models are not sufficiently rich to deal with more complex
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requirements posed by innovative applications. In particular, current SDW
technology is not able to deal with complex objects. By complex spatial objects,
we mean objects that cannot be represented in terms of simple geometries, like
points and polygons. Complex spatial objects are, for example, continuous fields,
objects with topology, spatio-temporal objects, etc. Specific categories of spatio-
temporal objects that can be useful in several applications are diverse trajecto-
ries of moving entities. A trajectory is typically modelled as a sequence of
consecutive locations in a space (Vlachos, 2002). Such locations are acquired by
using tracking devices installed on vehicles and on portable equipment. Trajec-
tories are useful to represent the location of spatial facts describing events that
have a temporal and spatial evolution. For example, in logistics, trajectories could
model the “location” of freight deliveries. In such a case, the delivery would
represent the spatial fact, characterized by a number of properties, such as the
freight and destination, and would include as a spatial attribute the trajectory
performed by the vehicle to arrive at destination. By analyzing the trajectories,
for example, more effective routes could be detected. Trajectories result from
the connection of the tracked locations based on some interpolation function. In
the simplest case, the tracked locations correspond to points in space whereas
the interpolating function determines the segments connecting such points.
However, in general, locations and interpolating functions may require a more
complex deûnition (Yu et al., 2004). A major research issue is how to obtain
summarized data out of a database of trajectories. The problem is complex
because it requires the comparison and classification of trajectories. For that
purpose, the notion of trajectory similarity is used. It means that trajectories are
classified to be the same when they are sufficiently similar. Different measures
of similarity have been proposed in the literature (Vlachos et al., 2002). A spatial
data warehouse of trajectories could provide the unifying representation frame-
work to integrate data mining techniques for data classification.

Conclusion

Spatial data warehousing is a relatively recent technology responding to the need
of providing users with a set of operations for easily exploring large amounts of
spatial data, possibly represented at different levels of semantic and geometric
detail, as well as for aggregating spatial data into synthetic information most
suitable for decision-making. We have discussed a novel research issue regard-
ing the modelling of spatial measures defined at multiple levels of granularity.
Since spatial data are naturally available at different granularities, it seems
reasonable to extend the notion of spatial measure to take account of this
requirement. The MuSD model we have defined consists of a set of represen-
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tation constructs and a set of operators. The model is defined at the conceptual
level in order to provide a more flexible and general representation. Next steps
include the specialization of the model to account for some specific coarsening
operators and the mapping of the conceptual model onto a logical data model as
a basis for the development of a prototype.
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