
REPRESENTATION OF A 2-POWER AS SUM OF k 2-POWERS:
THE ASYMPTOTIC BEHAVIOR

G. MOLTENI

Abstract. A k-representation of an integer ` is a representation of ` as sum
of k powers of 2, where representations differing by the order are considered
as distinct. Let W(σ, k) be the maximum number of such representations for
integers ` whose binary representation has exactly σ non-zero digits. W(σ, k) can
be recovered from W(1, k) via an explicit formula, thus in some sense W(1, k) is

the fundamental object. In this paper we prove that (W(1, k)/k!)1/k tends to a
computable limit as k diverges. This result improves previous bounds which were
obtained with purely combinatorial tools.
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1. Introduction and main result

Given an integer m ≥ 2, the m-ary Euler partition problem is a well-known
combinatorial problem dealing with the study of the number of representations of
an integer ` as sum of integral, nonnegative and non-decreasing powers of m, i.e.
with the quantities:

(1) bm,∞(`) := ]{sequences an ∈ N ∪ {0} ∀n :
∞∑

n=0

anmn = `}.

The asymptotic behavior of bm,∞(`) as ` diverges has been described independently
by many authors, such as Mahler [11], de Bruijn [2] and Knuth [9], who have found
it using different approaches that, however, are all rooted in the special form of its
generating function. The same result was also discussed in a paper by Erdős [3],
who proved it with elementary tools, and it can be deduced easily by the general
tauberian theorem of Ingham [8].
Reznick [16] has considered an interesting modification of the problem for the case
of m = 2, introducing a further integral parameter d and imposing the restriction
an < d to the coefficients in (1); the new sequences are then denoted by b2,d(`). The
parameter d adds a new level of complexity to the problem since the asymptotic
behavior of b2,d(`) changes considerably according to the parity of d: in fact, he
proved that the limit of the quotient log(b2,d(`))/ log ` exists when d is even, but
that, for d = 3, it oscillates in a bounded range [λ1, λ2] with λ1 < λ2, and suggested
that this phenomenon should persist for every odd d ≥ 3 with constants depending
on d. This conjecture was recently proved by Protasov [14, 15], who also described an
algebraic characterization of the λj constants allowing their systematic computation
in principle, and their effective computation for several values of d.

Another variation of this sort of problems is the following. We call k-representation
of an integer ` any string n = (n1, . . . , nk) of non-negative integers such that
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∑k
j=1 2nj = `, and U(`, k) is the number of k-representations of ` so that:

U(`, k) := ]{n = (n1, . . . , nk), nj ∈ N ∪ {0} ∀j :
k∑

j=1

2nj = `}.

The study of U(`, k) for a given k as a function of ` is a problem that has some
similarities with the constants b2,d(`). In a recent paper [12], we met the necessity
for the study of the opposite situation where both ` and k diverge. In fact, in that
work, an upper bound for max`{U(`, k)} as a function of k was the main tool for
the proof of a nontrivial cancellation in certain short exponential sums. Recently,
we discovered that the same quantities already appeared in a joint paper of Lehr,
Shallit and Tromp [10], who proved the upper bound max`{U(`, k)} ¿ k! 2k. In [12],
we proved a better bound using a different approach: we discuss it briefly now since
it is necessary for the comprehension of the content of the present paper.
For every fixed k, the chaotic behavior of U(`, k) with respect to ` disappears when
` is selected within a set of integers all having the same number of ones in their
binary representation. This fact suggests defining the quantity:

W(σ, k) := max
`: σ(`)=σ

{U(`, k)},

where σ(`) counts the number of ones appearing in the binary representation of `.
There is a simple formula connecting W(σ, k) to W(1, k) (see [12] for a proof):

(2)
W(σ, k)

k!
=

∑

k1,...,kσ≥1
k1+···+kσ=k

σ∏

j=1

W(1, kj)
kj !

,

that can also be written in the following iterative way:

W(σ, k)
k!

=
k−1∑

n=1

W(1, n)
n!

· W(σ − 1, k − n)
(k − n)!

.

The definition of W(1, k) as maxw{U(2w, k)} is not suitable for the computation
of its value; however, it has been proven that the maximum is reached for every
w ≥ k − 1 (see [12], but the same result is also given in [10]), and, based upon this
fact, in a joint paper with A. Giorgilli [5] we proved the following recursive formula:

Theorem. Let Mk,l be the two indexes sequence defined as

Mk,l = 0 if l ≥ k,(3a)

Mk,k−1 = 1 if k > 1,(3b)

Mk,l =
2l∑

s=1

(
k + l − 1
2l − s

)
Mk−l,s if 1 ≤ l < k − 1.(3c)

Then W(1, k) = Mk,1 for all k > 1.

The previous formulas allow us to compute very efficiently the values of max`{U(`, k)}
also for large k. This was an important fact that we used widely in [12] for a com-
putational part needed for the proof of the bounds:

(4) (1.75218)k ¿ max
`
{U(`, k)}/k! ≤ (1.75772)k.
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A second ingredient for the proof of (4) was the explicit bounds:

(5) 0.3316 · (1.1305)k ≤ W(1, k)/k! ≤ (1.71186)k−1 · k−1.6

that we proved with combinatorial tools (Theorem 13 in [10] gives the weaker bound
W(1, k)/k! ¿ 1.8k). Inequalities (4) and (5) were suitable for the applications in [12]
but are not conclusive regarding the behavior ofW(1, k) and U(`, k): numerical tests
show that (W(1, k)/k!)1/k tends very quickly toward a constant whose approximated
value is 1.19, while the bounds in (5) are far away from this value. According to [10],
this fact was mentioned by Knuth in a private communication with R. E. Tarjan,
where he also suggested the asymptotic behavior W(1, k) ∼ c1k

k−c2 for a suitable
couple of positive constants c1 and c2. The aim of the present paper is to prove the
following result.

Theorem 1. The limit of (W(1, k)/k!)1/k when k diverges exists, it can be computed
with arbitrary precision, and

1.192674341213466032221288982528755 . . .

is its value with thirty four correct digits.

Note that this result disproves the Knuth’s conjecture.
From (2), we obtain almost immediately the following generalization.

Corollary 1. The limit of (W(σ, k)/k!)1/k when k diverges exists for every fixed σ
and is independent of σ (and therefore coincides with the constant introduced in the
previous theorem).

In spite of this success in the improvement of (5), the theorem is not sufficient to
also improve (4). In fact, the value of σ giving the maximum in (2) is essentially of
the same order of k so that (max`{U(`, k)})1/k = (maxσ{W(σ, k)})1/k is affected not
only by λ := limk(W(1, k)/k!)1/k but also by the upper/lower limits ofW(1, k)/λkk!;
in fact, numerical tests suggest that this quotient tends to a number whose value is
approximatively 0.248, but unfortunately, our argument does not give any indication
about the existence of these constants.

The very simple formulation of the theorem is not reflected into its proof, that
is actually quite intricate. Roughly, it runs as follows: we introduce a family of
matrices S`, and the numbers Λr,` := ‖Sr

` ‖1/r, λ∞ := lim`→∞ limr→∞ Λr,`, and
Λ∞ := limr→∞ lim`→∞ Λr,`. We notice that λ` := limr→∞ Λr,` is the spectral radius
of S`, so that λ∞ is the limit of the spectral radii for the matrices S`; also Λ∞ admits a
similar interpretation for a certain element in a suitable infinite dimensional Banach
algebra. Then we prove that λ∞ is a lower bound for lim infk→∞(W(1, k)/k!)1/k and
that Λ∞ is an upper bound for lim supk→∞(W(1, k)/k!)1/k; thus, λ∞ is not greater
than Λ∞ and the theorem follows by the proof of their equality. For this task, we
introduce a second family of matrices F`(x) depending on a real parameter x and
whose spectral radius is 1 for a unique value x`. The matrices F`(x`) are very similar
to the transpose of the original matrices S`, and this implies that the constants x`

are asymptotically equal to 1/
√

λ` and, hence, tend to 1/
√

λ∞. Finally, and this
is the most complicated part of the argument, we show that Λ∞ is estimated from
above by (x` + o(1))−2 for infinitely many ` so that Λ∞ ≤ λ∞. This allows us to
conclude the proof since we have already proved the opposite inequality.

The proof is given in four distinct sections: the general setting in Section 2, the
lower bound in Sections 3 (where the existence of λ∞ and the validity of the lower
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inequality are proved) and 4 (where λ∞ is computed), and the upper bound and the
equality of λ∞ and Λ∞ in Section 5.

It is a tantalizing coincidence that the recent results of Protasov [14, 15] are also
based upon the spectral properties of a family of nonnegative matrices.
Many results that we prove in the following sections are given in a form that is
strictly related to the task of present paper, but we strongly believe that they could
be generalized to other problems: we leave such a general setting to a future paper.

2. Preliminary facts

We need to address some terminology and definitions. The symbol [ 1
n ]` denotes

the horizontal vector ( 1
n! ,

1
(n−1)! , . . .) with ` entries, where 1

m! is set to zero when
m < 0; In is the identity matrix of order n and Om×n is the m × n null matrix;
(n)m is the descending Pochhammer symbol, i.e., (n)0 := 1 and (n)m = n(n−1)m−1

when m ≥ 1; bxc denotes the maximum of {n ∈ Z : n ≤ x} and dxe the minimum of
{n ∈ Z : n ≥ x}; given two square matrices A and B of order lA and lB, respectively,
and having nonnegative entries, the notation A ≤ B means that lA ≤ lB and that
B contains a principal submatrix B′ of order lA such that the entries of B′ − A
are nonnegative; given a vector u ∈ Cn and a matrix A, ‖u‖ denotes the `1-norm
of u and ‖A‖k the `1-norm of the kth column of A; the norm of A is defined as
‖A‖ := sup‖u‖=1 ‖Au‖ and can be computed as the maximum of the norms of its

columns. Moreover, for every integer ` ≥ 2 and for every u = 1, . . . , `, we define A
(`)
u

as the square matrix of order ` whose uth row is [ 1
2u−1 ]` and every other row is zero.

Finally, S` denotes the square matrix of order `2:

S` :=
(

A
(`)
1 A

(`)
2 · · · A

(`)
`

I(`−1)` O(`−1)`×`

)
,

so that, for example

S2 =




1
1!

1
0! 0 0

0 0 1
3!

1
2!

1 0 0 0
0 1 0 0


 , S3 =




1
1!

1
0! 0 0 0 0 0 0 0

0 0 0 1
3!

1
2!

1
1! 0 0 0

0 0 0 0 0 0 1
5!

1
4!

1
3!

I6 O6×3


 .

The fact that representations differing by order are considered distinct in W(1, k)
implies that it grows at least as k!. It is convenient to eliminate this factorial term
at the beginning, turning our attention to the quotient W(1, k)/k!; for this reason,
we introduce the new sequence Nk,l := Mk,l/(k + l − 1)! so that W(1, k)/k! = Nk,1.
The formulas in (3), when written for Nk,l, become:

Nk,l = 0 if l ≥ k,(6a)

Nk,k−1 = 1/(2k − 2)! if k > 1,(6b)

Nk,l =
2l∑

s=1

Nk−l,s

(2l − s)!
if 1 ≤ l < k − 1.(6c)

These recursive relations involve infinitely many variables. We simplify them by
introducing a “cut-off” parameter, but we need a preliminary result giving a weak
upper bound for Nk,l.
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Lemma 1. Nk,l ≤ 2k−3

l!2
for every k and every l.

Better bounds can be proved with a more complicated argument, but they do not
simplify the proof of the theorem in any stage.

Proof. The proof is by induction on k. For k = 1, and for k ≥ 2, l ≥ k the claim is
evident because Nk,l = 0. It is true also for k = 2 and l = 1, as equality. Let k̄ ≥ 3
and suppose the claim for every k < k̄. The claim for l = k̄− 1 states (by (6b)) that

1
(2k̄−2)!

≤ 2k̄−3

((k̄−1)!)2
, i.e. that 2k̄−3

(2k̄−2
k̄−1

) ≥ 1, which is true. Finally, for l < k̄− 1 and
by induction and (6c) we have:

Nk̄,l =
2l∑

s=1

Nk̄−l,s

(2l − s)!
≤

2l∑

s=1

2k̄−l−3

(2l − s)!s!2
<

2k̄−l−3

(2l)!

2l∑

s=0

(
2l

s

)
=

2k̄+l−3

(2l)!
≤ 2k̄−3

l!2
.

¤
For every fixed integer ` > 1, the “cut-off” parameter, let ak,l and bk,l be the

sequences with k ∈ N and l ≤ ` which are defined respectively by:

ak,l = Nk,l if k, l ≤ `,(7a)

ak,l =
∑̀

s=1

ak−l,s

(2l − s)!
if l ≤ ` < k,(7b)

and by:

bk,l = Nk,l if k, l ≤ `,(8a)

bk,l =
∑̀

s=1

bk−l,s

(2l − s)!
+

2k

(` + 1)!2
δ2l>` if l ≤ ` < k,(8b)

where in both (7b) and (8b) we have adopted our convention saying that 1
(2l−s)! := 0

when 2l < s. The numbers ak,l and bk,l are, respectively, a lower bound and an
upper bound for Nk,l: the first claim follows at once from the inequality Nk,l ≥ 0,
while the second one follows from Lemma 1, proving that the contribution of the
sum

∑2l
s=`+1

Nk−l,s

(2l−s)! to the sum in (6c) is, at most:

2l∑

s=`+1

Nk−l,s

(2l − s)!
≤

2l∑

s=`+1

2k−l−3

(2l − s)! s!2
≤ 2k−l−3

(` + 1)!2

2l∑

s=`+1

1
(2l − s)!

≤ 2k

(` + 1)!2
.

The recursive laws (7) and (8) can be written in a more explicit way. Let us extend
the range of the sequences Nk,l, ak,l and bk,l to k = 0 by setting N0,l := a0,l := b0,l :=
0 for every l ≤ `, and let ak and bk in C`2 be defined for k ≥ ` as:

ak := (ak,1, . . . , ak,`, ak−1,1, . . . , ak−1,`, ak−2,1, . . . , ak−`,`)T,

bk := (bk,1, . . . , bk,`, bk−1,1, . . . , bk−1,`, bk−2,1, . . . , bk−`,`)T.

Then (7) becomes:

a` := (N`,1, . . . , N`,`, N`−1,1, . . . , N`−1,`, N`−2,1, . . . , N0,`)T,(9a)

ak = S`ak−1 if k > `,(9b)

and (8) becomes:

b` := (N`,1, . . . , N`,`, N`−1,1, . . . , N`−1,`, N`−2,1, . . . , N0,`)T,(10a)
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bk = S`bk−1 +
2k

(` + 1)!2
z, if k > `,(10b)

where

z := (0, . . . , 0︸ ︷︷ ︸
b`/2c

, 1, . . . , 1︸ ︷︷ ︸
d`/2e

, 0, . . . , 0︸ ︷︷ ︸
`2−`

)T.

As we see, both (9) and (10) are linear recursive relations ruled by the same matrix
S`. Let λ` be the spectral radius of S`; it controls the growth of the generic se-
quence a′k satisfying a′k = S`a

′
k−1, but the sequence ak comes with a specific initial

condition (9a), and it is not evident that the spectral radius controls the growth of
this particular sequence. We will prove that this follows by the non-negativity of a`

and the special structure of S`. Moreover, the inhomogeneous part in (10b) grows
as 2k/(` + 1)!2, while, in Section 4, we will see that λ` is strictly lower than 1.2. It
follows that, for every fixed `, the growth of the solutions of (10b) is dominated by
the exponential 2k, so no useful upper bound for Nk,l can be obtained in this way.
We will overcome this difficulty by taking advantage of the fact that the inhomoge-
neous part contains the term (` + 1)!2 in its denominator, so it can be small in size
if we allow ` to grow with k. In other words, we will be able to prove the upper
bound by exploring the uniformity of the solutions of (10) in `.

3. Lower bound

The matrix S` is non-negative and irreducible; i.e., there is not a permutation
P such that PS`P

T is block-triangular. In fact, this is equivalent to the following
claim (see [19], Th. 1.6).

Proposition 1. The directed graph G(S`) associated with S` is strongly connected
for every `.

The following diagram illustrates the claim for the matrices S2 and S3:

G(S2) : ?>=<89:;199 //?>=<89:;2 // ''?>=<89:;3gg ?>=<89:;4gg

G(S3) : ?>=<89:;199 //?>=<89:;2 '' (( ((?>=<89:;3 )) ** **?>=<89:;4ii ?>=<89:;5ii ?>=<89:;6ii ?>=<89:;7ii ?>=<89:;8ii ?>=<89:;9ii

Proof. We divide the proof in three steps:
Step 1. It is sufficient to prove that every node j with j ≤ ` is connected to every

node by a path, because every node j with j > ` is directly connected by an
arc to j − `.

Step 2. It is sufficient to prove that 1 is connected to every other node by a path,
because the paths 2 → ` + 1 → 1, 3 → 2` + 1 → ` + 1 → 1, 4 → 3` + 1 →
2` + 1 → ` + 1 → 1, and so on, connect the nodes 2, . . . , ` to 1.

Step 3. For every r ≤ `, there is an arc from r to each node in {(r− 1)`+1, . . . , (r−
1)` + min(2r, `)}. In particular, for every r ≤ ` − 1, there is an arc from r
to (r − 1)` + r + 1 and, hence, a path from r to r + 1 (by Step 1). Linking
together these paths, we get a new path from 1 to `, thus proving that there
are paths from 1 to each node in {(`−1)`+1, . . . , (`−1)`+ `}. Let q be any
node and let q̄ ∈ {1, . . . , `} with q = q̄ (mod `); we have just proved that
there is a path from 1 to `(` − 1) + q̄ and, according to Step 1, there is a
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path from `(`− 1) + q̄ to q; hence, the existence of a path from 1 to q is also
proved.

¤
The irreducibility of S` and the fact that it has a non-zero element in its main

diagonal (the upper left entry in S` is always 1) imply that S` is primitive, i.e.,
that Sr

` is a positive matrix for some power r (see [19], Th. 2.3). According to the
Perron-Frobenius theorem (see [19], Th. 2.1), the irreducibility of S` implies that λ`

is a simple eigenvalue of S`, and its primitivity implies that every other eigenvalue
has a strictly smaller absolute value. Furthermore, the definition of S` shows that
S`−1 is a principal submatrix of S` for every ` ≥ 3, i.e., that we recover S`−1 from
S` by erasing the jth row and jth column in S` for some set of js (for example,
we recover S2 erasing the jth row and the jth column in S3 for j ∈ {3, 6, 7, 8, 9}).
Under this condition, the Perron-Frobenius theorem also ensures that the spectral
radius of S`−1 is strictly lower than that of S`; in other words, the sequence {λ`}`

is strictly monotone. The sequence is also bounded (for example, by 2, as it follows
from Lemma 4 in Section 5); thus, it converges to a finite value. This fact proves
that λ∞ = lim`→∞ limr→∞ Λr,` = lim`→∞ λ` exists. Moreover, each λ` is strictly
greater than 1 since λ2 = 1.184 . . ..

Equation (9b) says that ak = Sk−`
` a` for every k, and (9a) that a` is a nonnegative

(and non-zero) vector: under these conditions, the primitivity of S` ensures (see [7],
Th. 8.5.1) that the quotient ak/λk

` converges to a positive vector. This means that
we can write ak,1 = (α` +o(1))λk

` for a suitable constant α` > 0 as k diverges. Based
on the bound W(1, k)/k! ≥ ak,1, we deduce that lim infk→+∞(W(1, k)/k!)1/k ≥ λ`

for every `, so that:

(11) lim inf
k→+∞

(W(1, k)/k!)1/k ≥ λ∞.

4. Characteristic polynomials and computation of λ∞

An elementary computation shows that the characteristic polynomial p`(x) of S`

(which is a sparse `2× `2 matrix) can be computed also as a determinant of an `× `
matrix according to the following formula:

p`(x) = det(xI`2 − S`) = det(x`I` − (x`−1A
(`)
1 + x`−2A

(`)
2 + · · ·+ xA

(`)
`−1 + A

(`)
` )).

If we set

(12) A`(x) := xA
(`)
1 + x2A

(`)
2 + · · ·+ x`A

(`)
` =




x
1!

x
0! 0 · · · 0

x2

3!
x2

2!
x2

1! · · · 0
x3

5!
x3

4!
x3

3! · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x`

(2`−1)!
x`

(2`−2)!
x`

(2`−3)! · · · x`

`!




and q`(x) := det(I` − A`(x)), then p`(x) = x`2q`(1/x) and every non-zero root of
p`(x) can be recovered as the inverse of a root of q`(x). Note that the degree of q`(x)
is

(
`+1
2

)
. Some examples:

q2(x) =
x3

3
− x2

2
− x + 1,

q3(x) = −x6

45
+

x5

24
+

x4

6
+

x3

6
− x2

2
− x + 1,
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q4(x) =
x10

4725
− x9

2160
− x8

360
− 5x7

504
− x6

360
+

x5

12
+

x4

8
+

x3

6
− x2

2
− x + 1,

q5(x) = − x15

4465125
+

x14

1814400
+

x13

226800
+

19x12

680400
+

47x11

518400
− 107x10

604800
− 31x9

20160
− 11x8

2520

− 29x7

5040
+

x6

180
+

3x5

40
+

x4

8
+

x3

6
− x2

2
− x + 1,

q6(x) =
x21

46414974375
− x20

17146080000
− x19

1714608000
− 101x18

18860688000
− 1703x17

50295168000

− 1613x16

25147584000
+

841x15

1524096000
+

97x14

25401600
+

827x13

59875200
+

169x12

4989600
− x11

120960

− 1307x10

3628800
− 643x9

362880
− 37x8

10080
− 11x7

2520
+

x6

240
+

3x5

40
+

x4

8
+

x3

6
− x2

2
− x + 1.

The above examples show that q`(x) and q`−1(x) share the coefficients of the first `
powers and that these coefficients are the greatest ones in size; therefore, we expect
that |q`(x)− q`−1(x)| could be considerably smaller than |q`(x)| and |q`−1(x)|. This
is the content of Lemma 3 here below. We need the following auxiliary inequality
that probably has some independent interest.

Lemma 2. Let 1 ≤ a1 ≤ a2 ≤ . . . ≤ ak be positive integers and let ai,j := 2ai − aj,
for every i, j ≤ k. Let σ be an arbitrary but fixed permutation of {1, . . . , k} and
suppose that aσ(j),j ≥ 0 for every j, then:

k∏

j=1

aσ(j),j ! ≥
k∏

j=1

aj,j !.

Proof. We prove the lemma by induction on k. For k = 1 the claim is trivial, so we
suppose k > 1. The claim immediately follows by induction when σ fixes k, hence
we can further assume that σ(k) 6= k. We write the inequality as:

[ ∏

j 6=k
j 6=σ−1(k)

aσ(j),j !
] ak,σ−1(k)!
aσ−1(k),σ−1(k)!

≥
[ ∏

j 6=k
j 6=σ−1(k)

aj,j !
] ak,k!
aσ(k),k!

,

i.e.,
[ ∏

j 6=k
j 6=σ−1(k)

aσ(j),j !
](2ak − aσ−1(k))!

aσ−1(k)!
≥

[ ∏

j 6=k
j 6=σ−1(k)

aj,j !
] ak!
(2aσ(k) − ak)!

.

Since 2ak − aσ−1(k) ≥ aσ−1(k) and ak ≥ 2aσ(k) − ak, we can write the inequality as:

(13)
[ ∏

j 6=k
j 6=σ−1(k)

aσ(j),j !
]
(2ak − aσ−1(k))(2ak−2aσ−1(k))

≥
[ ∏

j 6=k
j 6=σ−1(k)

aj,j !
]
(ak)(2ak−2aσ(k)).

Note that 2ak−aσ−1(k) ≥ ak, hence each factor of the form 2ak−aσ−1(k)−u coming
from (2ak − aσ−1(k))(2ak−2aσ−1(k))

to LHS is not lower than the corresponding factor
ak−u in (ak)(2ak−2aσ(k)) to RHS, when u ≤ min{2ak−2aσ−1(k), 2ak−2aσ(k)}. There
are three cases, according to the values of σ−1(k) and σ(k).
Case 1: σ−1(k) = σ(k). Then there are as many factors in (2ak−aσ−1(k))(2ak−2aσ−1(k))
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as in (ak)(2ak−2aσ(k)) so that (13) is implied by the inequality:

(14)
∏

j 6=k
j 6=σ−1(k)

aσ(j),j ! ≥
∏

j 6=k
j 6=σ−1(k)

aj,j !.

Under the hypothesis σ−1(k) = σ(k) the restriction of σ to the set {1,. . ., k}\{σ−1(k),
k} is a permutation, hence (14) holds true by inductive hypothesis.
Case 2: σ−1(k) < σ(k). Then (13) is implied by the inequality:

[ ∏

j 6=k
j 6=σ−1(k)

aσ(j),j !
]
(2aσ(k) − aσ−1(k))(2aσ(k)−2aσ−1(k))

≥
[ ∏

j 6=k
j 6=σ−1(k)

aj,j !
]
.

Since (2aσ(k) − aσ−1(k))(2aσ(k)−2aσ−1(k))
=

aσ(k),σ−1(k)!

aσ−1(k),σ−1(k)!
, this inequality is equivalent

to:

(15)
[ ∏

j 6=k
j 6=σ−1(k)

aσ(j),j !
]
aσ(k),σ−1(k)! ≥

[ ∏

j 6=k
j 6=σ−1(k)

aj,j !
]
aσ−1(k),σ−1(k)!.

Case 3: σ−1(k) > σ(k). Then (13) is implied by the inequality:

(16)
∏

j 6=k
j 6=σ−1(k)

aσ(j),j ! ≥
[ ∏

j 6=k
j 6=σ−1(k)

aj,j !
]
(2aσ−1(k) − ak)(2aσ−1(k)−2aσ(k)).

We note that (2aσ−1(k) − ak)(2aσ−1(k)−2aσ(k)) =
aσ−1(k),k!

aσ(k),k! , where aσ−1(k),k is nonneg-

ative because the assumption σ−1(k) > σ(k) implies that aσ−1(k),k ≥ aσ(k),k. Also
aσ(k),σ−1(k) is nonnegative, because aσ(k),σ−1(k) ≥ aσ(k),k. We prove now that:

(17)
aσ−1(k),k!
aσ(k),k!

≤ aσ−1(k),σ−1(k)!
aσ(k),σ−1(k)!

.

In fact, in terms of the original sequence aj the inequality in (17) means that:

(2aσ−1(k) − ak)!
(2aσ(k) − ak)!

≤ aσ−1(k)!
(2aσ(k) − aσ−1(k))!

.

Under the condition σ(k) < σ−1(k) < k it becomes:

(2aσ−1(k) − ak)(2aσ−1(k)−2aσ(k)) ≤ (aσ−1(k))(2aσ−1(k)−2aσ(k))

which is evident, because 2aσ−1(k) − ak ≤ aσ−1(k). Concluding, substituting (17)
in (16) we see that also in this case the original inequality (13) is implied by (15).
This means that by proving (15) we prove both Case 2 and Case 3. To this purpose
we define σ̃(j) for j = 1, . . . , k − 1 as follows: σ̃(j) := σ(j) if j 6= σ−1(k), and
σ̃(σ−1(k)) := σ(k). Then σ̃ is a permutation of {1, . . . , k − 1} and (15) can be
written as: ∏

j 6=k

aσ̃(j),j ! ≥
∏

j 6=k

aj,j !.

This inequality holds true, by inductive hypothesis, since it involves only k − 1
numbers. ¤
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Lemma 3. For every ` > 2 and every x we have:

(18) |q`(x)− q`−1(x)| ≤ e|x|`
`!

[
1 +

+∞∑

n=1

⌊√
2n

⌋n+1

n!
|x|n

]
.

In particular,

(19) max
|x|≤1

|q`(x)− q`−1(x)| ≤ eC

`!

where C := 1 +
∑+∞

n=1

⌊√
2n

⌋n+1
/n! = 33.15 . . ., so that:

(20) max
|x|≤1

|q`(x)− q6(x)| ≤ eC

+∞∑

u=7

1
u!
≤ e2C

7!
≤ 0.05 ∀` ≥ 6.

Note that (18) confirms the correctness of our previous remark about the equality
of the coefficients of xj with j < ` in q`−1(x) and q`(x).

Proof. Consider the representation of q`(x) as determinant of the matrix I`−A`(x)
(see (12)), that we compute using the Laplace formula with respect to the last line,
obtaining:

q`(x) =
∑̀

m=1

(−1)`+m(δm=` − x`

(2`−m)!
) · T`,m(x),

where T`,m(x) denotes the polynomial which is the `,m cofactor. In this formula
T`,`(x) is the cofactor of the lower-right entry, hence it is equal to the determinant
of I`−1 −A`−1(x) and therefore coincides with q`−1(x). It follows that:

(21) q`(x)− q`−1(x) = −
∑̀

m=1

(−1)`+m x`

(2`−m)!
T`,m(x)

implying that:

(22) |q`(x)− q`−1(x)| ≤ |x|`
∑̀

m=1

1
(2`−m)!

|T`,m(x)|.

To complete the proof we need a bound for |T`,m(x)|. For every positive integer n
let P(n) be the set of partitions of n in distinct parts and for every π ∈ P(n), let
Mπ be the submatrix of −A`(1) that we obtain by intersecting the rows and the
columns whose indexes are in π. For example,

π = (4, 5, 7) =⇒ Mπ = −



1/4! 1/3! 1/1!
1/6! 1/5! 1/3!
1/10! 1/9! 1/7!


 .

It is easy to verify that:

T`,m(x) = δm=` +
(`
2)∑

n=1

[ ∑∗

π∈P(n)

det Mπ

]
xn
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where
∑∗ means that the sum is restricted to those partitions π which do not contain

m. We bound this sum trivially as:

(23) |T`,m(x)| ≤ 1 +
(`
2)∑

n=1

[ ∑

π∈P(n)

| det Mπ|
]
|x|n,

where now the inner sum is extended to the whole set of partitions in distinct parts
(not only to those ones avoiding m). In particular, RHS in (23) is independent of
m.
Let a1 < a2 < · · · < ak be the sequence describing π: each entry mi,j of −Mπ is
equal to 1/ai,j ! where ai,j = 2ai − aj and where 1/ai,j ! is set to 0 when ai,j < 0.
By Lemma 2, each product

∏k
j=1 mσ(j),j which is not zero is not greater than the

product of the terms coming from the main diagonal. Hence the determinant of Mπ

is bounded by k!/a1! · · · ak!, so that:
∑

π∈P(n)

| detMπ| ≤
∑

k=1

∑
a1,...,ak

a1<···<ak
a1+···+ak=n

k!
a1! · · · ak!

.

The strict inequality a1 < · · · < ak forces k to be lower than
√

2n, therefore:

∑

π∈P(n)

| detMπ| ≤
√

2n∑

k=1

k!
n!

∑
a1,...,ak

a1<···<ak
a1+···+ak=n

n!
a1! · · · ak!

.

The factor k! can be included in the inner sum by substituting the prescription
a1 < · · · < ak with the unordered one: au 6= av for every u 6= v. The resulting sum
can be bounded by

∑
a1,...,ak≥0

a1+···+ak=n

n!
a1!···ak! whose value is kn, therefore we have proved

that:
∑

π∈P(n)

|det Mπ| ≤
√

2n∑

k=1

kn

n!
≤

⌊√
2n

⌋n+1

n!
.

Substituting this inequality in (23) and then in (22) we conclude that:

|q`(x)− q`−1(x)| ≤ |x|`
∑̀

m=1

1
(2`−m)!

[
1 +

(`
2)∑

n=1

⌊√
2n

⌋n+1

n!
|x|n

]
,

which gives (18), because
∑`

m=1
1

(2`−m)! ≤ e
`! . ¤

Remark. The last estimations proving Lemma 3 are not optimal and could easily
be improved, although at the cost of some complications in the presentation of the
final result.

Now we show how to estimate the difference |λ−1
` − λ−1∞ |; in this way, we will be

able to compute the value of λ∞ with arbitrary precision (see Formula (24) below).
This is an important point in our proof: the value of λ∞ will appear in several
explicit inequalities in the next section devoted to the proof of the equality of λ∞
and Λ∞. Some of them need computations that we refer to a software but are
possible only as a consequence of our ability to detect both the value of λ∞ and the
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rate of convergence of λ` to λ∞.
We know that λ−1

` is a root of q`(x) in (0, 1); therefore:

|q`(λ−1
`−1)− q`−1(λ−1

`−1)| = |q`(λ−1
`−1)− q`(λ−1

` )| = |λ−1
`−1 − λ−1

` | · |q′`(ζ)|,
where ζ ∈ (λ−1

` , λ−1
`−1) ⊂ (0, 1). A bound for |λ−1

`−1 − λ−1
` | will come from an upper

bound for |q`(x)− q`−1(x)| and a lower bound for |q′`(x)|, both in (0, 1). The upper
bound is provided by Lemma 3: suppose we have already computed λ−1

`′ ; then we
know that λ−1

` < λ−1
`′ for every ` > `′, and from (18) we have:

|q`(λ−1
`−1)− q`−1(λ−1

`−1)| ≤
eλ−`

`′

`!

[
1 +

+∞∑

n=1

⌊√
2n

⌋n+1

n!
λ−n

`′

]
∀` > `′.

Starting with (21) and using the same argument proving (18), we get that:

|q′u(x)− q′u−1(x)| ≤ e|x|u−1

u!

[
u +

+∞∑

n=1

(u + n)

⌊√
2n

⌋n+1

n!
|x|n

]
∀u,

so that in |x| ≤ 1 we have:

|q′u(x)− q′u−1(x)| ≤ e

u!

[
u +

+∞∑

n=1

(u + n)

⌊√
2n

⌋n+1

n!

]
∀u.

Adding this inequality for u = `′ + 1, . . . , ` we get:

max
|x|≤1

|q′`(x)− q′`′(x)| ≤ e2C

`′!
+

e2D

(`′ + 1)!
,

where C is the constant appearing in Lemma 3 and D :=
∑+∞

n=1

⌊√
2n

⌋n+1
/(n−1)! =

199.64 . . .. This formula proves that:

|q′`(x)− q′10(x)| ≤ 0.001

in |x| ≤ 1, for every ` ≥ 10. Since minx∈(0,1) |q′10(x)| ≥ 0.678 (a fact which is proved
using PARIgp [13] for the necessary computations), we obtain that |q′`(x)| ≥ 0.677
in (0, 1) for every ` ≥ 10. Concluding, we have proved that:

|λ−1
`−1 − λ−1

` | ≤ e

0.677
λ−`

`′

`!

[
1 +

+∞∑

n=1

⌊√
2n

⌋n+1

n!
λ−n

`′

]
∀` > `′ ≥ 10

and adding these inequalities we finally obtain that:

|λ−1
` − λ−1

∞ | ≤ e

0.677

+∞∑

u=`+1

λ−u
`′

u!

[
1 +

+∞∑

n=1

⌊√
2n

⌋n+1

n!
λ−n

`′

]

≤ e

0.677
λ−`−1

`′ e1/λ`′

(` + 1)!

[
1 +

+∞∑

n=1

⌊√
2n

⌋n+1

n!
λ−n

`′

]
∀` > `′ ≥ 10.(24)

A preliminary computation shows that λ−1
10 < 0.839, hence the previous formula with

`′ = 10 and ` = 30 gives |λ−1
30 − λ−1∞ | ≤ 6.6 · 10−35. Computing λ−1

30 and recalling
that λ−1∞ < λ−1

30 we finally have:

λ∞ = 1.192674341213466032221288982528755 . . .

with thirty four correct digits.
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Remark. Since the minimum value for |q6(x)| in |x| = 1 is reached at x = 1 and is
0.13 . . ., based on (20) it follows that:

|q`(x)− q6(x)| < |q6(x)| |x| = 1

for every ` ≥ 6. By Rouché’s theorem, this proves that each polynomial q`(x) with
` ≥ 6 has a unique root in |x| ≤ 1 since this is what occurs to q6(x); this implies
that each eigenvalue of S` that is not λ` is strictly lower than 1 in absolute value.
This fact and the value of λ∞ we have just computed show that there is a uniform
(i.e., independent of `) gap between the maximal eigenvalue λ` of S` and the other
eigenvalues. This fact is not an essential part of our argument, but later we will
introduce a new family of matrices that are strictly related to the S` matrices: the
existence of a gap in the eigenvalues of also these matrices (see Lemma 10) will be
fundamental for the conclusion of the proof of the theorem.

5. Upper bound and equality of λ∞ and Λ∞

We start with a simple but important remark: in each column of S` there are two
non-zero entries, at most; in the first and the second column these entries are equal
to 1, while in the other columns one entry is not greater than 1 and the second one
(if present) is equal to 1. Hence, we have proved that:

Lemma 4. Λ1,` = ‖S`‖ = 2 for every `.

The number 2 is not an eigenvalue of S` because each λ` is bounded by λ∞, whose
value is 1.19 . . .. Hence (10b) has the solution wk = 2kw, where w is 1

(`+1)!2
[I`2 −

1
2S`]−1z. We need a bound, uniform in `, for the size of w, but the definition of
w in terms of S` is not suitable for this purpose as a consequence of the previous
lemma. We can overcome this difficulty by exploiting the special structure of S` in
the following way. For each vector y ∈ C`2 , let yred in C` be the projection of y
along the first ` coordinates. The last `2 − ` entries in z are null and the last `2 − `
rows of S` are (I`2−`, O(`2−`)×`); hence, w has the form:

(25) w =




wred

wred/2
· · ·

wred/2`−1


 ,

where wred satisfies the reduced system:

wred = A`(1
2)wred +

1
(` + 1)!2

zred

and therefore:

wred =
1

(` + 1)!2
[I` −A`(1

2)]−1zred.

In this way, w has been related to the inverse of a different matrix, and this new
relation allows us to prove the following bound.

Lemma 5. ‖wk‖ ¿ 2k

`!2
, uniformly in k and `.

Proof. By (25) it is sufficient to prove that ‖wred‖ ¿ 1/`!2 uniformly in `. The col-
umn in A`(x) having the greatest norm is the second one (this is evident from (12))
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whose norm is
∑`−1

s=0 |x|s+1/(2s)!. Hence ‖A`(1/2)‖ ≤ Ch(1/
√

2)/2 < 1, indepen-
dently of `. As a consequence, (I` −A`(1

2))−1 is given by the usual power series in
A`(1

2) and

‖(I` −A`(1
2))−1‖ ≤ 1

1− ‖A`(1
2)‖ ≤

2
2− Ch(1/

√
2)

∀`.

Therefore,

‖wred‖ ≤ 1
(` + 1)!2

‖(I` −A`(1
2))−1‖ · ‖zred‖ ¿ 1

`!2
.

¤
The difference vk := bk −wk satisfies the homogeneous system:

v` := b` −w`, vk = S`vk−1 ∀k > `,

therefore vk = Sk−`
` v`. The vector b` is defined by the entries of Nk,l for k, l ≤ `

(see (10a)); hence, ‖b`‖ ¿ 2` uniformly in ` in accordance with Lemma 1; this bound
and Lemma 5 give for v` the bound ‖v`‖ ¿ 2`. We need an analogous upper bound
for ‖vk‖ when k > `. The norm of S` is larger than its spectral radius λ`, so there is
no possibility to prove that ‖vk‖ ¿ λk−`

` 2`. However, for every positive integer r, we
have the identity vk = Sk−`

` v` = (Sr
` )
b(k−`)/rc(S`)r[(k−`)/r−b(k−`)/rc]v`; recalling that

Λr,` = ‖Sr
` ‖1/r ≥ 1 and according to Lemma 4, we deduce that ‖vk‖ ¿ Λk−`

r,` 2`+r.
Adding the bounds for vk and for wk, we obtain for the solution bk of the original
system the bound Λk−`

r,` 2`+r + 2k

`!2
, uniformly in k and `; thus, there exists a positive

constant α such that:

bk,1 ≤ α
[
Λk−`

r,` 2`+r +
2k

`!2
]

producing the bound:

(26) (bk,1)1/k ≤ α1/kΛr,`

[
2`+r +

2k

`!2
]1/k

.

We do not obtain any useful bound if we keep r and ` fixed in (26) when k diverges,
and some kind of uniformity in these parameters must be exploited.
We know that S`−1 ≤ S`; hence, ‖Sr

`−1‖ ≤ ‖Sr
` ‖ for every ` and r: according to

our notation, this means that Λr,`−1 ≤ Λr,`. Moreover, Λr,` ≤ Λ1,` = 2 for every r
and `; hence, lim`→∞ Λr,` exists for every fixed r: we denote it by Λr,∞. We take
` = bk/(2 log2 k)c in (26). Then, 2` ≤ 2k/(2 log2 k) and 2k/`!2 ¿ 2k log log k/ log k so
that, by taking the limit k →∞, we conclude that

(27) lim sup
k→∞

(bk,1)1/k ≤ Λr,∞ ∀r.

LHS in (27) is independent of r; hence, we look for that value of r giving the better
upper bound. The following lemma shows that an optimal r does not exist and we
get better bounds as r is larger.

Lemma 6. The limit Λ∞ = limr→∞ Λr,∞ exists and is lower than each Λr,∞.

Proof. For ` ≥ 2, let M` be the set of matrices `2 × `2, considered as Banach space
with respect to the norm ‖ · ‖. Let M be the subset of sequences (M2,M3, . . .) in
⊕`M` for which sup` ‖M`‖ is finite. This set is an algebra with respect to the point-
wise product and sum and becomes a Banach algebra when we introduce the norm
9(M2, M3, . . .)9 := sup` ‖M`‖. According to Lemma 4, the collection (S2, S3, . . . )



REPRESENTATION OF A 2-POWER AS SUM. . . 15

defines an element in M. The norm (in M) of the rth power of (S2, S3, . . . ) is
sup` ‖Sr

` ‖, and this number is Λr
r,∞ (because ‖Sr

` ‖ = Λr
r,` and Λr,`−1 ≤ Λr,` for every

r and `). Then, the existence of the limit of Λr,∞ as r diverges is now a direct
consequence of Gelfand’s formula for the spectral radius of the element (S2, S3, . . . )
in M (see [18], Th. 18.9). This fact also proves that Λ∞ ≤ Λr,∞ for every r. ¤

Lemma 6 and (27) give the upper bound:

(28) lim sup
k→∞

(W(1, k)/k!)1/k ≤ Λ∞.

Given (11) and (28), we will prove the theorem by proving that Λ∞ and λ∞ are
equal. The construction we have used to prove Lemma 6 suggests a possible way to
reach this goal: by definition, λ∞ is not lower than every spectral radius λ`; hence, if
λ ∈ C is fixed with |λ| > λ∞, then every matrix (λI`2−S`)−1 exists in M`. However,
the sequence ((λI22 − S2)−1, (λI32 − S3)−1, . . .) defines an element in M if and only
if the norms ‖(λI`2−S`)−1‖ are bounded. If we can prove this fact, then we can also
conclude that Λ∞, the spectral radius in M of (S2, S3, . . . ), is not greater than |λ|.
Given the arbitrariness of λ, this means that Λ∞ ≤ λ∞ (and, hence, that Λ∞ = λ∞
because the inequality Λ∞ ≥ λ∞ is evident). The argument can be easily reversed,
thus proving that Λ∞ equals λ∞ if and only if ‖(λI`2 − S`)−1‖ is bounded in `, for
every λ with |λ| > λ∞. However, we have no simple argument proving that those
norms are really bounded, and the proof of the equality of Λ∞ with λ∞ proceeds in
a different way.

The following proposition shows that the value of ‖Sr
` ‖ grows with ` but becomes

constant for ` ≥ 2r for every fixed r (greater than 22, but only as a consequence of
some technical assumptions); this claim is essentially a generalization of the previous
Lemma 4. An explicit bound for Λr,∞ is deduced.

Proposition 2. Let di,u for i ≥ 0 and u ≥ 1 be defined as:

(29) di,u = 0 if u > 2i, di,u =
i∑

κ=du/2e

1
(2κ− u)!

(1 + di−κ,κ) if u ≤ 2i.

Then, for every r ≥ 22

(30) Λr
r,∞ = ‖Sr

2r‖ = 1 + max
j≤r

{r−1∑

κ=0

1
(2κ)!

(1 + dr−1−κ,j+κ)
}

.

Moreover, we have the bound:

(31) Λr
r,∞ = ‖Sr

2r‖ ≤ 1 + Ch(1)(1 + max
j<2r

dr−1,j).

With a bit of extra work it is possible to prove that the range for j in (31) can
be restricted to the even integers lower than r/2; moreover, our computations show
that for r ≤ 3 ·104 the maximum is actually attained at j = 2, but we have not been
able to prove that this is true in general.

Proof. We split the proof into several steps; the first ones (1–7) prove that the norm
of Sr

` is independent of ` when ` ≥ 2r so that Λr
r,∞ = ‖Sr

2r‖, while the last step
proves formula (30) giving ‖Sr

2r‖ in terms of the sequence di,u.
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Step 1. Let ` be fixed and let A
(`)
r,j be the double sequence of square matrices of order

` defined recursively as:

A
(`)
1,j :=

{
A

(`)
j if j ≤ `

O`×` if j > `
, A

(`)
r+1,j := A

(`)
r,1A

(`)
1,j + A

(`)
r,j+1.

Then, for ` > r we have:

(32) Sr
` =




A
(`)
r,1 A

(`)
r,2 · · · A

(`)
r,`

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A
(`)
2,1 A

(`)
2,2 · · · A

(`)
2,`

A
(`)
1,1 A

(`)
1,2 · · · A

(`)
1,`

I(`−r)` O(`−r)`×r`




.

This fact is evident when r = 1 and can be proved by induction on r using
the decomposition of Sr+1

` as Sr
` S`.

Let B
(`)
0,j := O`×` for every j, and B

(`)
r,j :=

∑r
k=1 A

(`)
k,j when r ≥ 1. Then:

B
(`)
r,j =

r∑

k=1

A
(`)
k,j = A

(`)
1,j +

r∑

k=2

A
(`)
k,j = A

(`)
1,j +

r−1∑

k=1

A
(`)
k,1A

(`)
1,j +

r−1∑

k=1

A
(`)
k,j+1,

thus

(33) B
(`)
r,j = (I` + B

(`)
r−1,1)A

(`)
1,j + B

(`)
r−1,j+1.

Iterating this equality we get also that:

(34) B
(`)
r,j =

r∑

k=1

(I` + B
(`)
r−k,1)A

(`)
1,j+k−1.

The interest for the matrices B
(`)
r,j comes from the identity:

(35) ‖Sr
` ‖ = max{α, β}, where

{
α := 1 + maxj≤`−r ‖B(`)

r,j ‖
β := maxj>`−r ‖B(`)

r,j ‖
,

which follows by (32) and the fact that the matrices A
(`)
r,j are nonnegative.

Step 2. For every r and j, the kth column in B
(`)
r,j is null when k > 2r + 2j − 2.

Proof. By induction on r. When r = 1 the claim holds because B
(`)
1,j =

A
(`)
1,j = A

(`)
j has a unique non zero row, the jth one, and this row is [ 1

2j−1 ]`
whose kth entry is zero if k > 2j. Suppose the claim holds for r, and that
k > 2(r + 1) + 2j − 2. By (33) we have:

‖B(`)
r+1,j‖k = ‖A(`)

1,j‖k + ‖B(`)
r,1A

(`)
1,j‖k + ‖B(`)

r,j+1‖k

= ‖A(`)
1,j‖k +

1
(2j − k)!

‖B(`)
r,1‖j + ‖B(`)

r,j+1‖k.

In this decomposition ‖B(`)
r,j+1‖k is zero by inductive hypothesis (because k >

2r +2(j +1)− 2), and also ‖A(`)
1,j‖k and 1

(2j−k)! are zero, because k > 2j. ¤
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Step 3. From (33) we obtain that B
(`)
r,j ≤ (I` + B

(`)
r,1)A

(`)
1,j + B

(`)
r,j+1, because every A

(`)
r,j

is nonnegative. Iterating this inequality we get:

B
(`)
r,j ≤ (I` + B

(`)
r,1)(A

(`)
1,j + · · ·+ A

(`)
1,`).

By (35) we know that ‖I` + B
(`)
r,1‖ ≤ ‖Sr

` ‖, and ‖A(`)
1,j + · · · + A

(`)
1,`‖ is lower

than Ch(1)− 1 when 2j ≥ ` + 2, hence the previous inequality gives:

(36) ‖B(`)
r,j ‖ ≤ (Ch(1)− 1)‖Sr

` ‖, if 2j ≥ ` + 2.

We do not know the exact value of ‖Sr
` ‖, however ‖Sr

` ‖1/r is always greater
than λ` (the spectral radius of S`) and this sequence grows with `, hence
‖Sr

` ‖1/r ≥ λ2 = 1.184 . . .. Therefore, if r ≥ 6 we have ‖Sr
` ‖ ≥ λ6

2 > (2 −
Ch(1))−1 and from (36) we get that:

(37) 1 + ‖B(`)
r,j ‖ < ‖Sr

` ‖ when 2j ≥ ` + 2 and r ≥ 6.

This means that for ` ≥ 2r and r ≥ 6 in the formula (35) for the norm of Sr
`

only the matrices B
(`)
r,j with j ≤ d`/2e matter, and it becomes:

(38) ‖Sr
` ‖ = 1 + max

j≤d`/2e
‖B(`)

r,j ‖ = 1 + max
j≤d`/2e

max
u≤`

‖B(`)
r,j ‖u, when ` ≥ 2r, r ≥ 6.

Step 4. We prove that:

(39) B
(`)
r,j =

(
B

(`−1)
r,j ∗

O1×`−1 0

)
when ` > r + j − 1.

Proof. By induction on r. When r = 1 the claim follows at once by the
definition of A

(`)
j and the equality B

(`)
1,j = A

(`)
j . Let the claim be true for r

and suppose that ` > (r + 1) + j − 1. Then ` > r + (j + 1) − 1, therefore
the last row of B

(`)
r,1 , A

(`)
1,j and B

(`)
r,j+1 is null and the claim for B

(`)
r+1,j follows

by (33). ¤

Step 5. From (34) we have for the norm of the uth column in B
(`)
r,j the representation:

‖B(`)
r,j ‖u =

r+j−1∑

κ=j

1
(2κ− u)!

(1 + ‖B(`)
r+j−1−κ,1‖κ).

In this sum the terms with κ < u/2 do not contribute, hence:

‖B(`)
r,j ‖u =

r+j−1∑

κ=max{j,du/2e}

1
(2κ− u)!

(1 + ‖B(`)
r+j−1−κ,1‖κ) ∀u, r, `.(40)

This formula shows that ‖B(`)
r,j ‖u depends only on r + j when j ≤ du/2e; in

particular, ‖B(`)
r,j ‖u = ‖B(`)

r+j−1,1‖u when j ≤ du/2e.
Step 6. By (38) we can restrict our attention to the matrices B

(`)
r,j with j ≤ d`/2e.

Under this assumption and furthermore assuming that r ≥ 22 and ` ≥ 2r,
we prove now that 1 + ‖B(`)

r,j ‖` < ‖Sr
` ‖, i.e. that the starred column in (39)

does not contribute to the norm of Sr
` and can be neglected.
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Proof. When j ≤ d`/2e we have ‖B(`)
r,j ‖` = ‖B(`)

r+j−1,1‖`, by Step 5. Further-

more, by (40) we see that in order to evaluate ‖B(`)
r+j−1,1‖` we must evaluate

‖B(`)
r+j−1−κ,1‖κ: this suggests an iterative process, here. For every integer t,

we define the constants ht and κt as:

κ0 = `, h0 = r + j − 1,

κt ∈ [dκt−1/2e , ht−1], ht = ht−1 − κt.

Then, by (40) again, we have for every t ≥ 1 that:

(41) ‖B(`)
ht−1,1‖κt−1 =

ht−1∑

κt=dκt−1/2e

1
(2κt − κt−1)!

(1 + ‖B(`)
ht,1

‖κt).

Suppose that (2u+1−1)κt−u > 2u+1ht−u holds for some integer u ∈ [0, t−1],
then κt > 2ht. In fact, this is evident if u = 0, and

(2u+2 − 1)κt−u−1 > 2u+2ht−u−1 ⇐⇒ (2u+1 − 1)
κt−u−1

2
> 2u+1(ht−u−1 − κt−u−1

2
)

which implies that (2u+1 − 1)κt−u > 2u+1ht−u; the claim follows now by a
descent argument on u. In particular, if (2t − 1)κ1 > 2th1, then κt > 2ht

(take u = t− 1 in the previous argument). Since κ1 ≥ d`/2e and h1 ≤ r− 1,
we obtain that κt > 2ht when ` > 2t+1

2t−1 (r − 1), so that ‖B(`)
ht,1

‖κt = 0 (by
Step 2), under that hypothesis. By induction on t, using (41), we deduce
that:

if ` >
2t+1

2t − 1
(r − 1) then ‖B(`)

h0,1‖κ0 ≤ γt,

where γt is the sequence defined as:

γ0 = 0, γs+1 = (1 + γs)Ch(1) ∀s ≥ 0.

Hence we have proved that:

if ` >
2t+1

2t − 1
(r − 1) then ‖B(`)

r,j ‖` = ‖B(`)
h0,1‖κ0 ≤

Ch(1)
Ch(1)− 1

(Ch(1))t,

because γs ≤ Ch(1)
Ch(1)−1 (Ch(1))s for every integer s. Moreover, ‖Sr

` ‖ ≥ λr
2 and

λ2 = 1.184 . . ., therefore if r > t log Ch(1)
log λ2

+ 10 then

1 + ‖B(`)
r,j ‖` ≤ 1 +

Ch(1)
Ch(1)− 1

(Ch(1))t < λr
2 ≤ ‖Sr

` ‖.

We have obtained this inequality under the assumptions ` > 2t+1

2t−1 (r−1) and

r > t log Ch(1)
log λ2

+ 10, and these inequalities hold for some t when ` ≥ 2r and
r ≥ 22. ¤

Step 7. Let ` ≥ 2r + 1 and r ≥ 22. Then by (38) we have both

‖Sr
`−1‖ − 1 = max

j≤d(`−1)/2e
max

u≤`−1
‖B(`−1)

r,j ‖u,(42)

and

‖Sr
` ‖ − 1 = max

j≤d`/2e
max
u≤`

‖B(`)
r,j ‖u.(43)
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In (42) we can extend the range of j to j ≤ d`/2e: this is evident when `
is even, thus suppose ` = 2q + 1 for some integer q ≥ r. The extension to
j ≤ d`/2e adds a unique term to the range: that one with j = q + 1, but
‖B(`−1)

r,q+1‖ < ‖Sr
`−1‖ − 1 by (37), because 2(q + 1) ≥ (`− 1) + 2.

Moreover, by Step 6 and under the present assumptions we have ‖B(`)
r,j ‖` <

‖Sr
` ‖−1, therefore in (43) we can restrict u to u ≤ `−1. Furthermore, by (39)

we have also that ‖B(`)
r,j ‖u = ‖B(`−1)

r,j ‖u when u ≤ `− 1: these remarks prove

that RHS in (42) and (43) are both equal to maxj≤d`/2emaxu≤`−1 ‖B(`−1)
r,j ‖u,

so that the equality ‖Sr
`−1‖ = ‖Sr

` ‖ follows.
Step 8. Let r ≥ 22; the previous steps and (38) prove that:

(44) Λr
r,∞ = ‖Sr

2r‖ = 1 + max
j≤r

max
u≤2r

‖B(2r)
r,j ‖u.

We prove now that in this formula we can restrict u to the unique value 2j,
i.e. that:

(45) Λr
r,∞ = ‖Sr

2r‖ = 1 + max
j≤r

‖B(2r)
r,j ‖2j .

In fact, when u ≤ 2j, by (40) we have:

‖B(2r)
r,j ‖u =

r+j−1∑

κ=j

1
(2κ− u)!

(1 + ‖B(2r)
r+j−1−κ,1‖κ)

≤
r+j−1∑

κ=j

1
(2κ− 2j)!

(1 + ‖B(2r)
r+j−1−κ,1‖κ) = ‖B(2r)

r,j ‖2j ,

so that the columns of index below 2j are dominated by the 2jth one. More-
over, the recursive law for A

(2r)
r,j gives ‖A(2r)

r,j ‖u ≥ ‖A(2r)
r−1,j+1‖u for every

r, j and u. Iterating this inequality we get ‖A(2r)
r,j ‖u ≥ ‖A(2r)

1,r+j−1‖u =
1

(2r+2j−2−u)! proving that ‖A(2r)
r,j ‖u is always strictly positive. This implies

that ‖Sr−1
2r ‖ is strictly lower than ‖Sr

2r‖. In fact,

‖Sr−1
2r ‖ = ‖Sr−1

2r−1‖ by (44),

= 1 + max
j≤r

‖B(2r−1)
r−1,j ‖ by (38),

≤ 1 + max
j≤r

‖B(2r)
r−1,j‖ by (39),

< 1 + max
j≤r

‖B(2r)
r,j ‖ because ‖A(2r)

r,j ‖u > 0 for every r, j and u,

= ‖Sr
2r‖ by (38).

Suppose now u > 2j (and then j < r). Then ‖B(2r)
r,j ‖u = ‖B(2r)

r−1,j+1‖u by (40),
and by (38):

‖Sr−1
2r ‖ = 1 + max

j≤r
max
u≤2r

‖B(2r)
r−1,j‖u,

so that ‖B(2r)
r−1,j+1‖u ≤ ‖Sr−1

2r ‖ − 1 when j < r. Therefore, under those
assumptions we get:

1 + ‖B(2r)
r,j ‖u = 1 + ‖B(2r)

r−1,j+1‖u ≤ ‖Sr−1
2r ‖ < ‖Sr

2r‖, when u > 2j.
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This shows that in (44) only the columns u ≤ 2j matter, so that (45) is
proved.
Introducing in (45) the formula (40) for ‖B(2r)

r,j ‖2j we get:

Λr
r,∞ = ‖Sr

2r‖ = 1 + max
j≤r

{r+j−1∑

κ=j

1
(2κ− 2j)!

(1 + ‖B(2r)
r+j−1−κ,1‖κ)

}
,

which becomes (30) by setting di,u := ‖B(2r)
i,1 ‖u: the recursive law (29) for

di,u is an immediate consequence of (40). At last, the bound in (31) follows
by (30) and the fact that dr−1−κ,j+κ ≤ dr−1,j+κ for every r, j and κ.

¤

The previous proposition reduces the search of an upper bound for Λ∞ to a search
of an upper bound for di,u. The recursive definition (29) suggests the need to look
for a bound of the form:

(46) di,u ≤ αβi ∀i, u.

In fact, it can be proved with α = 50 and β = 1.8. However, the values of di,u

for fixed i and u varying in 1, . . . , 2i manifest a very complex behavior that is not
captured by any bound of the form (46). For example, the following picture shows
that the quotients di,u+1/di,u have a complicated and band-like structure:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2000  4000  6000  8000  10000

Figure: values of d10000,u+1/d10000,u for u ≤ 10000.

Moreover, similar pictures with different values of i show that this structure is es-
sentially independent of the value of i when it is large enough. These facts suggest
the existence of an upper bound similar to (46) but with a coefficient α which is a
periodic function of u, i.e., the existence of an integer `, of an `-periodic function
ᾱ : N→ R+, and of a constant β` such that:

(47) di,u ≤ ᾱ`(u)βi
` ∀i, u.
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If this bound is confirmed, then due to the boundedness of the coefficients ᾱ`(u) and
via (31), we can conclude that:

(48) Λ∞ ≤ β`.

Suppose that for certain `, ᾱ` and β the upper bound in (47) holds up to i− 1, with
i > `. Then, the recursive definition of di,u gives:

di,u ≤ Ch(1) +
i∑

κ=du/2e

di−κ,κ

(2κ− u)!

≤ Ch(1) +
i∑

κ=du/2e
ᾱ`(κ)

βi−κ

(2κ− u)!

≤ Ch(1) +
∑̀

j=1

ᾱ`(j)
+∞∑

κ≥du/2e
κ=j (mod `)

βi−κ

(2κ− u)!

≤ Ch(1) + βi−u/2
∑̀

j=1

ᾱ`(j)Fu,j(β−1/2)

where

Fu,j(x) :=
+∞∑

κ≥du/2e
κ=j (mod `)

x2κ−u

(2κ− u)!
=

+∞∑

κ≥max{0,2j−u}
κ=2j−u (mod 2`)

xκ

κ!
=: G

(2`)
2j−u(x).

Hence, the inequality di,u ≤ ᾱ`(u)βi holds whenever

Ch(1)
βi

+ β−u/2
∑̀

j=1

ᾱ`(j)Fu,j(β−1/2) ≤ ᾱ`(u) ∀u ≤ 2i.

The constant β is certainly larger then 1, ᾱ` is `-periodic by hypothesis and Fu,j is
2`-periodic in u, therefore the inequality will follow at once if

(49)
Ch(1)

β
+ β−u/2

∑̀

j=1

ᾱ`(j)Fu,j(β−1/2) ≤ ᾱ`(u) u = 1, . . . , 2`.

Suppose that `, α` : N→ C and β satisfy:

(50) β−u/2
∑̀

j=1

α`(j)Fu,j(β−1/2) < α`(u) u = 1, . . . , 2`,

then it is always possible to set a positive constant γ such that (49) holds with
ᾱ` = γα`; furthermore, γ can also be chosen large enough so that the inequality
di,u ≤ ᾱ`(u)βi holds for every i ≤ ` and u ≤ 2i. Thus, if we are able to find `, α`

and β such that (50) holds, then we have immediately an inequality of the form (47)
and the upper bound (48). This means that our goal now is to find ` and α` such
that (50) holds with β as small as possible.
The inequalities in (50) can be written in a more compact way. Let F` and F ` be
the square matrices of order ` defined by:

F`(x) := (xuFu,j(x))`,`
u=1,j=1, F `(x) := (xuFu,j(x))2`,`

u=`+1,j=1.



22 G. MOLTENI

Then (50) reads

(51) F`(x)α(`) < α(`), and F `(x)α(`) < α(`),

where α(`) denotes the vector (α`(1), . . . , α`(`))T, and x = 1/
√

β. This means that,
for a given `, we are looking for an x such that (51) holds true for some vector α(`)

with positive entries. The next result shows that we can satisfy the first inequality
in (51) with an x arbitrarily close to 1/

√
λ∞ if ` is large enough; the next main

difficulty will be proving that, under some circumstances, the same values also satisfy
the second inequality.

Lemma 7. There exists a unique x` ∈ (0, 1) such that F`(x`) has 1 as eigenvalue
and a positive vector α(`) as eigenvector. Moreover,

(52) |x` − 1/
√

λ∞| ≤ 1.1
0.677

(x2
`e√
`

)`
∀` ≥ 16,

so that x` tends to 1/
√

λ∞ as ` diverges and |x`− 1/
√

λ∞| ≤ 10−3 for every ` ≥ 16.

It is convenient to introduce x̄ to denote the constant 0.917, so that Lemma 7 and
the explicit evaluation in Section 4 imply x` ≤ x̄ for every ` ≥ 16. Moreover, here
and later in Lemma 10, we adopt the notation f(x) = O(g(x)) as equivalent to
|f(x)| ≤ g(x).

Proof. The matrix F`(x) coincides essentially with the transpose of the matrix
A`(x2), which is defined in (12). In fact, the u, j entry in AT

` (x2) coincides with
the first term of the power series representing xuG

(2`)
2j−u(x) when 2j − u ≥ 0 and is 0

otherwise so that F`(x)−AT
` (x2) = B`(x) with:

B`(x) := {xuG
(2`)
2`+2j−u(x)}`,`

u=1,j=1.

We notice that:

(53) xuG
(2`)
2`+2j−u(x) =

+∞∑

t=0

x2`+2j+2`t

(2` + 2j − u + 2`t)!
≤ x2`+2j

(2` + 2j − u)!
G

(2`)
0 (x),

and that:

G
(2`)
0 (x) =

+∞∑

t=0

x2`t

(2`t)!
≤ 1 +

1
(2`)!

+∞∑

t=1

x2`t

t!
= 1 +

ex2` − 1
(2`)!

≤ 2

for x ∈ [0, 1] and ` ≥ 1, so that each entry in B`(x) is lower than 2x2`/(` + 2)!.
Now we compute det(I` − F`(x)), i.e. det(I` − AT

` (x2) − B`(x)), using the Laplace
formula with respect to the last column. When, in this formula, we take only
elements in AT

` (x2), we reproduce det(I` −AT
` (x2)), which is q`(x2). Therefore, the

difference det(I − F`(x)) − q`(x2) is due to the terms coming from B`(x). These
terms contribute in two different ways. The first contribution is of the form:

∑̀

u=1

[B`(x)]u,` · {u, `-cofactor}.

The second one is of the form:

∑̀

u=1

[I` −AT
` (x2)]u,` ·

{terms of the u, `-cofactor containing
at least one factor from B`(x)

}
.
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The absolute value of every u, j entry in I` − F`(x) is lower than 2 when u ∈
{2j, 2j − 1} and than 1 in each other case; hence, using the Hadamard inequality
(see [1], Th. II.3.17), the cofactor in the first contribution can be bounded as (22 +
22 + `−3)(`−1)/2, while the terms of the second contribution are bounded by `2(22 +
22 + ` − 4)(`−2)/22x2`/(` + 2)! (because there are (` − 1)2 possible choices for the
position where the B`(x) is taken, every such term is bounded using Hadamard, and
each entry in B`(x) is lower than 2x2`/(` + 2)!). As a consequence,

| det(I` −F`(x))− q`(x2)|

≤
∑̀

u=1

[B`(x)]u,` · (` + 5)(`−1)/2 +
∑̀

u=1

|[I` −AT
` (x2)]u,`| · 2x2`

(` + 2)!
· `2(` + 4)(`−2)/2.

Using (53) and recalling that `! ≥ e(`/e)`, we get:

≤
∑̀

u=1

2x4`

(4`− u)!
· (` + 5)

`−1
2 +

[ `−1∑

u=1

x2`

(2`− u)!
+ (1− x2`

`!
)
]
· 2x2``2(` + 4)

`−2
2

(` + 2)!

≤ 2e5/2x4`

√
` + 5

((e/3)3

`5/2

)`
+

2x4`

(` + 1)2
( e2

`3/2

)`
+

2ex2`

` + 4

( e√
`

)`
.

This bound proves that:

det(I` −F`(x)) = q`(x2) + O
((x2e√

`

)`)
∀x ∈ [0, 1]

when ` ≥ 16.
This identity shows that det(I` − F`(1)) is negative when ` ≥ 16 because q`(1) <
−0.08 for every ` ≥ 6 (based on Lemma 3, we know that |q`(1)− q6(1)| < 0.05 when
` ≥ 6 and a computation shows that q6(1) < −0.13), and

(
e√
`

)`
< 0.01. Therefore,

the equation:
det(λI` −F`(1)) = 0

admits a real solution λ greater than 1 and the spectral radius of F`(1) itself is strictly
larger than 1. Since the spectral radius of F`(x) is a continuous and monotone
function of x (as a consequence of the Perron-Frobenius theorem) and since F`(0)
is the null matrix, we conclude that there exists a unique x` ∈ (0, 1) for which
the spectral radius of F`(x`) is equal to 1, at least when ` ≥ 16. According to
the Perron-Frobenius theorem, 1 is an eigenvalue for F`(x`), and its eigenspace is
spanned by a positive vector α(`). Finally, the relations:

0 = det(I` −F`(x`)) = q`(x2
` ) + O

((x2
`e√
`

)`)
and 0 = q`(λ−1

` )

give:

(λ−1
` − x2

`)q
′
`(ζ) = q`(λ−1

` )− q`(x2
`) = O

((x2
`e√
`

)`)
,

for a suitable ζ ∈ (0, 1). The derivative of q`(x) is greater than 0.677 uniformly in
x ∈ (0, 1) and ` (see Section 4), and |λ−1

` − λ−1∞ | ≤ 1.51
0.677

(
e
`

)` as ` ≥ 16 (by (24)).
With the previous inequality, we get:

|x` −
√

1/λ∞| ≤
√

λ∞
0.677

[(x2
`e√
`

)`
+ 1.51

(e

`

)`]
.
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For ` ≥ 16, this inequality shows that x` ≥
√

1/λ∞ − 10−3. We get (52) by
substituting this lower bound in the previous inequality and using the value of λ∞
we computed in Section 4. ¤

Given the result in the previous lemma, our strategy is now evident: proving that
the eigenvector α(`) also satisfies the second requirement F `(x′`)α

(`) < α(`) for a
suitable x′` ≤ x` with x′` − x` = o(1), at least for infinitely many `. We will reach
this goal with a careful analysis of the matrix F`.
From now on, we assume that ` is even. We write

F`(x) as
(H`(x) K`(x)
I`(x) L`(x)

)
,

where each submatrix is a square matrix of order `/2. For x ∈ [0, x̄] we have:

‖F`‖, ‖H`‖, ‖HT
` ‖ ≤ e, ‖K`‖ ≤ x`/2

(`/2 + 1)!
, ‖I`‖ ≤ ex`/2, ‖L`‖ ≤ x`.

Moreover, as a consequence of the identity G
(2`)
a (x) = G

(4`)
a (x) + G

(4`)
a+2`(x) we get

the important relations:

F` = H2` +K2`, F ` = I2` + L2`,

which suggest that it will be possible to study F ` via a careful study of F2`. This is
the main motivation of the next lemma.
Let J` be the square matrix of order ` whose entries are equal to 1 and recall that:

AJ` ≤ ‖AT‖J`, J`A ≤ ‖A‖J`, J`J` = `J`,

for every square matrix A of order `.

Lemma 8. For every ` ≥ 64, for every k ≥ 0 and for every x ∈ [0, x̄], we have:

F2k

2` (x) =

(
H2k

2` (x) + O
( (2e)2

k
x`

(`+1)!

)
J` O

( (2e)2
k
x`

(`+1)!

)
J`

O
(
(2e)2

k
x`

)
J` O

(
(2e)2

k
x2`

)
J`

)
,

and

F2k

` (x) = H2k

2` (x) + O
((2e)2

k
x`

(` + 1)!

)
J`.

Proof. By induction on k. Let ak, bk, ck and dk recursively defined by a0 = 0, b0 = 1,
c0 = e, d0 = 1 and





ak+1 = 2e2k
ak + a2

k
x`

`! + bkckx
``

bk+1 = bk(e2k
+ ak

x`

`! + dkx
2``)

ck+1 = ck(e2k
+ ak

x`

`! + dkx
2``)

dk+1 = bkck
1
`! + d2

kx
2``.

∀k ≥ 0.

Then the equality:

F2k

2` =

(
H2k

2` + O
(
ak

x`

(`+1)!

)
J` O

(
bk

x`

(`+1)!

)
J`

O
(
ckx

`
)
J` O

(
dkx

2`
)
J`

)

is proved for every k, as a consequence of the equality F2k+1

2` = (F2k

2` )2. The inequal-
ities ak ≤ (2e)2

k−1, bk ≤ (2e)2
k−1, ck ≤ 1

2(2e)2
k

and dk ≤ (2e)2
k−1 hold for k = 0
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and k = 1 (here the restriction x ∈ [0, x̄] is used). By induction, let the inequalities
be true for a k ≥ 1. Then, the inequalities will be true also for k + 1 if:




2 · 2−2k
+ x`

2e`! + 1
2x`` ≤ 1

2−2k
+ x`

2e`! + 1
2ex

2`` ≤ 1
1

2`! + 1
2ex

2`` ≤ 1.

Since we are assuming k ≥ 1 and x ≤ x̄, it is immediate to see that these conditions
are true for every ` ≥ 64. This concludes the proof of the first claim; the second
one is proved in similar way, using the identity F`(x) = H2`(x)+K2`(x) = H2`(x)+
O

(
x`

(`+1)!

)
J`. ¤

The previous lemma shows that F2k

` and the first ` components of F2k

2` are very
similar. Let 1` denote the vector (1, 1, . . . , 1)T with ` entries, and given a vector v
with an even number of entries, let v+ and v− be the first (second, resp.) half part
of v, so that v =:

(
v+

v−
)
.

Lemma 9. For every ` ≥ 64 and for every k ≥ 0,
[
F2k

2` (x2`)12`

]+
−F2k

` (x`)1` = O
(
`2(2e)2

k
(
x̄2e√

`
)`

)
1`.

Proof. By Lemmas 7 and 8 we know that:

(54)
[
F2k

2` (x2`)12`

]+
−F2k

` (x`)1` =
[
H2k

2` (x2`)−H2k

2` (x`) + O
(
(2e)2

k x̄`

`!

)]
1`,

when ` ≥ 64. Now, let A and B be square matrices, then for every k:

‖|A2k −B2k |1‖ ≤ (‖A‖+ ‖BT‖)2k−1‖|A−B|1‖,
where |C| denotes the matrix whose entries are the absolute values of those ones of
C. This identity can be proved by induction on k starting by the equality A2−B2 =
A(A−B) + (A−B)B implying the claim for k = 1.
Using this bound for A = H2k

2` (x2`) and B = H2k

2` (x`), we get:

(55) ‖|H2k

2` (x2`)−H2k

2` (x`)|1`‖ ≤ (2e)2
k−1‖|H2`(x2`)−H2`(x`)|1`‖.

Moreover,

(56) H2`(x2`)−H2`(x`) = O
(
`|x2` − x`|

)
J`,

because the derivative (xuG
(4`)
2j−u(x))′ = uxu−1G

(4`)
2j−u(x) + xuG

(4`)
2j−u−1(x) is bounded

by e(` + 1) for u ≤ `, j ≤ 2` and x ∈ [0, 1]. The claim follows by (54–56) and
Lemma 7. ¤

To fully exploit the identity in Lemma 9 we need to understand the behavior of
the powers of F`(x`) when they are applied to the vector 1`. According to the Perron
result, this sequence converges to an eigenvector of the 1-eigenspace. We need to
know the rate of this convergence; for this purpose we need a bound for the second
(in size) eigenvalue of F`(x`). There is a large body of literature addressing this
problem (such as [4], [6] and [17]); nevertheless, these general results, when applied
to the matrix F`(x`), produce bounds that are too weak for our purpose. Thus, the
following lemma is an essential step in our argument.

Lemma 10. Let ` ≥ 32. Then, the eigenvalues of F`(x`) not equal to 1 are smaller
than 1/2 in absolute value.
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Proof. Let q̄`(x) := det(I` − xF`(x`)). According to the definition of x`, x = 1 is a
root of q̄`(x) and the claim is equivalent to the fact that every other root of q̄` is
greater than 2 in absolute value. We prove this fact as a consequence of the Rouché’s
theorem applied to the inequality:

(57) |q̄`(x)− q̄32(x)| < |q̄32(x)| |x| = 2

that we prove using an approach similar to that one for Lemma 3, and the circum-
stance that 1 is the unique root of q̄32(x) having an absolute value lower than 2.
More details will be given later.
We recall the decomposition F`(x) = AT

` (x2) + B`(x) that we already used for the
proof of Lemma 7. The matrices AT

`+1(x
2) and AT

` (x2) are quite similar; therefore,
we compute q̄`+1(x) putting in evidence the part I`+1−xAT

`+1(x
2
`+1), which is similar

to the analogous part appearing in q̄`(x), and we write:

q̄`+1(x) = det(I`+1 − xF`(x`+1)) = det(I`+1 − xAT
`+1(x

2
`) + C`+1(x))

where
C`+1(x) := xAT

`+1(x
2
`)− xAT

`+1(x
2
`+1)− xB`+1(x`+1).

For ` ≥ 16 we can assume x` ≤ x̄, by Lemma 7. Therefore, the u, j entry in C`+1 is
bounded by:

|x|
( |x2j

`+1 − x2j
` |

(2j − u)!
+

2x̄2j+2`+2

(2j − u + 2` + 2)!

)

and since 2jx̄2j−1 < 4.63 for every j, we deduce that each entry is bounded by:

|x|
(
4.63|x`+1 − x`|+ 2x̄4+2`

(` + 3)!

)

≤ |x|
(
4.63 · 1.7

( x̄2e√
`

)`
+ 4.63 · 1.7

( x̄2e√
` + 1

)`+1
+

2x̄4+2`

(` + 3)!

)

≤ 16|x|
( x̄2e√

`

)`
,

a quantity that for convenience we denote by λ. Hence,

q̄`+1(x) = det(I`+1 − xAT
`+1(x

2
`) + O(λ)J`+1).

Now we expand the determinant in powers of λ. The coefficient of λk is bounded
by the sum of the determinants of the principal minors of I`+1 − xAT

`+1(x
2
`) having

dimension ` + 1− k. Each minor can be estimated via the Hadamard bound as:

≤
∏

j∈ minor

(1 + |x| ‖jth column in AT(x2
`)‖2) ≤

`+1∏

j=1

(1 + |x| ‖jth column in AT(x2
`)‖2).

Since

‖jth column in AT(x2
`)‖2 ≤ x2j

`

( `+1∑

u=1

1/(2j − u)!2
)1/2 ≤ x2j

`

√
e,

each minor is bounded by:
`+1∏

j=1

(1 + |x|x2j
`

√
e) ≤

`+1∏

j=1

exp(|x|x2j
`

√
e) ≤ exp

( |x|x̄2√e

1− x̄2

)
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so that:

q̄`+1(x) = det(I`+1 − xAT
`+1(x

2
`)) + O

( `+1∑

k=1

λk

(
` + 1

k

)
exp

( |x|x̄2√e

1− x̄2

))

= det(I`+1 − xAT
`+1(x

2
`)) + O

(
((1 + λ)`+1 − 1) exp

( |x|x̄2√e

1− x̄2

))
.

Computing det(I`+1 − xAT
`+1(x

2
`)) via the Laplace formula with respect to the last

column, we get det(I` − xAT
` (x2

`)) (which is obtained as cofactor of the ` + 1, ` + 1
entry), plus a quantity R coming from the contribute of the other terms in the last
column, and that therefore can be bounded as:

|R| ≤
`+1∑

u=1

x̄2`+2

(2` + 2− u)!
· |cofactor of u, ` + 1 entry|.

The previous argument shows that the cofactor is bounded by exp
( |x|x̄2√e

1−x̄2

)
, thus:

|R| ≤ ex̄2`+2

(` + 1)!
exp

( |x|x̄2√e

1− x̄2

)
≤

( x̄2e

`

)`
exp

( |x|x̄2√e

1− x̄2

)
.

In this way we have proved that:

(58) q̄`+1(x)− det(I`− xAT
` (x2

`)) = O
((

(1 + λ)`+1− 1 +
( x̄2e

`

)`)
exp

( |x|x̄2√e

1− x̄2

))
.

An analogous argument shows that:

(59) q̄`(x) = det(I` − xAT
` (x2

`)) + O
(
((1 + λ′)` − 1) exp

( |x|x̄2√e

1− x̄2

))
,

with

λ′ :=
2x̄2

e(` + 1)2
( x̄2e

`

)`
.

By (58–59) we get:

|q̄`+1(x)− q̄`(x)| ≤ (
((1 + λ)`+1 − 1) +

( x̄2e

`

)` + ((1 + λ′)` − 1)
)
exp

( |x|x̄2√e

1− x̄2

)
.

Adding these inequalities we get:

(60) |q̄`(x)− q̄32(x)| ≤ 0.02 |x| = 2,

for every ` ≥ 32.
On the other hand, the polynomial q̄32(x) can be computed explicitly (with PARIgp),
and only the powers ≤ 3 have significatively large coefficients. In fact,

q̄32(x) = 1− 1.313x + 0.326x2 − 0.013x3 + O(7 · 10−3), |x| = 2.

It is now easy to verify that |q̄32(x)| ≥ 0.4 along the circle |x| = 2 so that (57) follows
by (60). At last, a new application of the Rouché theorem proves that q̄32(x) has a
unique root below 2, since the roots of 1− 1.313x + 0.326x2 − 0.013x3 are 1, ≈ 3.79
and ≈ 20.28. ¤

Now we have at our disposal the tools to understand the convergence of F2k
(x`)1`.

Numerical tests suggest that the eigenvalues of F`(x`) are real, positive, and simple,
but we are unable to prove it in general. Lacking proof of these properties, our
argument is a bit more complicated.
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Let v1 denote a 1-eigenvector of F`(x`), with real and positive entries. Let ε > 0 be
an arbitrary constant, and let R` = R`(ε) be a square matrix such that:

i) R`v1 = 0.
ii) ‖R`‖ ≤ 1.
iii) Let ηj,ε for j = 1, . . . , ` denote the eigenvalues of F`(x`) + εR`, with η1,ε = 1

for every ε, then |ηj,ε − ηj,0| ≤ 10−2 for every j.
iv) The eigenvalues ηj,ε are simple.

Such a matrix R` exists. In fact, the orthogonal complement of v1 is preserved by
F`(x`); hence, we can identify the matrices satisfying i with the matrices acting on
v⊥1 → v⊥1 . Under this identification and based on continuity the conditions ii and
iii are satisfied by any matrix in a suitable open neighborhood of the null matrix,
and the matrices failing iv belong to a closed and zero-measured subset.
For every j ≥ 2, let vj,ε be an eigenvector of F`(x`) + εR` with eigenvalue ηj,ε. Let

1` = a1v1 +
∑̀

k=2

ajvj,ε

be the decomposition of 1` in the basis of the eigenvectors vj,ε. Being simple, the
orthogonality of the distinct eigenvectors gives the equality aj‖vj,ε‖2

2 = 〈1`, vj,ε〉, for
every j. Moreover, 〈1`,v1〉 = ‖v1‖ (because the entries of v1 are nonnegative), and
|〈1`,vj,ε〉| ≤ ‖vj,ε‖ in general, therefore:

a1 =
‖v1‖
‖v1‖2

2

, |aj | ≤ ‖vj,ε‖
‖vj,ε‖2

2

∀j.

We have proved that the eigenvalues of F`(x`) are lower than 1/2 in absolute value
when ` ≥ 32, therefore for such ` and for every k we have by i–iv :

(F`(x`) + εR`)2
k
1` =

‖v1‖
‖v1‖2

2

v1 + O
(∑̀

j=2

‖vj,ε‖2

‖vj,ε‖2
2

0.512k
)
1`.

The Cauchy-Schwarz inequality gives ‖vj,ε‖ ≤
√

`‖vj,ε‖2, hence:

(F`(x`) + εR`)2
k
1` =

‖v1‖
‖v1‖2

2

v1 + O
(
`2 0.512k)

1`.

RHS here is independent of ε, therefore setting ε → 0 we conclude that:

F2k

` (x`)1` =
‖v1‖
‖v1‖2

2

v1 + O
(
`2 0.512k)

1`.

Let α(`) denote the eigenvector ‖v1‖
‖v1‖22

v1. Then, the previous equality and Lemma 9
give:

(61) α(2`)+ −α(`) = O
(
`2 0.512k

+ `2(2e)2
k( x̄2e√

`

)`
)
1`

for every ` ≥ 64 and for every k. By choosing k in such a way that 0.512k ≈
(2e)2

k
(x̄2e/

√
`)` in (61) we get:

(62) α(2`)+ −α(`) = O(`−0.14 `)1`,

when ` is large enough. We complete α(`) to an infinite sequence by queueing
infinitely many zeros. Suppose that ` diverges along the 2 powers; then (62) proves
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that there exists a new sequence α(∞) of nonnegative numbers such that α
(`)
j → α

(∞)
j

for every fixed j. The following argument proves that the convergence is not only
termwise, but also in the `1(N)-norm: this claim needs an ad hoc proof, since (62)
involves only the ‘plus’ part of α(2`).
The relation F2`(x2`)α(2`) = α(2`) implies that:

(63) I2`(x2`)α(2`)+ + L2`(x2`)α(2`)− = α(2`)−.

The norm of L2`(x2`) is lower than x2`
2`; in particular, it is lower than 1 so that

I2`−L2`(x2`) is invertible with inverse equal to
∑+∞

k=0 Lk
2`(x2`) and norm lower than

(1− x2`
2`)

−1. Hence (63) can be solved for α(2`)−, giving:

(64) α(2`)− = (1− L2`(x2`))−1I2`(x2`)α(2`)+

and

(65) ‖α(2`)−‖ ≤ e

1− x2`
2`

x`
2` ‖α(2`)+‖ ≤ 2ex`

2` ‖α(2`)+‖ ∀` ≥ 64.

As a consequence, by (62):

‖α(2`)‖ = ‖α(2`)+‖+ ‖α(2`)−‖ ≤ (1 + 2ex`
2`)‖α(2`)+‖

≤ (1 + 2ex̄`)(‖α(`)‖+ b`−c`)

for a couple of positive constants b and c, when ` ≥ 64. When written for the
sequence of 2 powers this recursive bound implies that:

‖α(2k+1)‖ ≤ (1 + 2ex̄2k
)(‖α(2k)‖+ b2−ck2k

)

giving

‖α(2k)‖ ≤ ‖α(2k0)‖
k−1∏

s=4

(1 + 2ex̄2s
) + b

k−1∑

s=4

2−cs2s
k−1∏

w=s+1

(1 + 2ex̄2w
)

for every k ≥ 5. The convergence of the infinite product and of the series here above
prove that the norms ‖α(`)‖ are uniformly bounded when ` runs along the 2 powers.
From (65) we deduce that α(2`)− ¿ x̄` so that (by (62)):

(66) ‖α(2`) −α(`)‖ ¿ `(`−0.14 ` + x̄`).

This shows that the vectors {α(`)}` power of 2 form a Cauchy sequence in `1(N) and
in particular that α(∞) itself is summable.

Now we prove that the first entry in α(∞) is strictly positive, later we will see that
this implies that each entry in α(∞) is strictly positive as well.

Lemma 11. α
(∞)
1 > 0.

Proof. Let β(`) be the positive eigenvector of FT
` (x`), normalized in such a way that

〈β(`),α(`)〉 = 1. Then F2k

` (x`) for k →∞ converges to α(`)β(`)T (see [7], Th. 8.2.11);
in particular:

(67) ‖α(`)‖ = ‖F∞` (x`)1`‖ = ‖α(`)β(`)T1`‖ =
∑

j,j′
α

(`)
j β

(`)
j′ ≥ 〈β(`), α(`)〉 = 1.
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Moreover, the first line in F`(x`)α(`) = α(`) reads
∑`

j=1 x`G
(2`)
2j−1(x`)α

(`)
j = α

(`)
1 .

Using Lemma 7 and (66) it is easy to verify that this relation as ` diverges along
powers of 2 becomes:

+∞∑

j=1

λ−j∞
(2j − 1)!

α
(∞)
j = α

(∞)
1 .

Suppose α
(∞)
1 = 0. Then the previous equality implies that α

(∞)
j = 0 for every j,

because we know that α
(∞)
j ≥ 0, which nevertheless contradicts (67). ¤

Remark. With PARIgp we have computed α
(64)
1 and verified that it is > 0.95. Thus,

keeping track of the constants in (62) it is possible to prove that α
(`)
1 ≥ 0.94 for

every 2-power ` greater than 64.

From now on, we assume that ` is a 2 power, in order to take advantage of the
convergence of α(`) to α(∞) and of the uniform boundness of their norms. Under
this hypothesis we prove a positive lower bound for the entries of α(`).

Lemma 12.
α(`)

u À x
2u+2dlog2 ue
` ∀`, ∀u ≤ `.

Proof. The uth row in F`(x`)α(`) = α(`) reads:

α(`)
u =

∑̀

j=1

xu
` G

(2`)
2j−u(x`)α

(`)
j .

Thus, isolating the contribution of the term with j = du/2e and recalling that
G

(2`)
0 (x`) > 1, G

(2`)
1 (x`) > x`, we get:

α(`)
u ≥ xu

` G
(2`)
2du/2e−u(x`)α

(`)
du/2e ≥ x

2du/2e
` α

(`)
du/2e, ∀u ≤ `.

Iterating this inequality we obtain:

α(`)
u ≥ x

2
∑dlog2 ue

k=1 du/2ke
` α

(`)
1 ≥ x

2u+2dlog2 ue
` α

(`)
1 , ∀u ≤ `,

which is the claim since α
(`)
1 is bounded from below by a positive constant, by

Lemma 11. ¤
We use the uniform bound for the norms ‖α(`)‖ to prove an upper bound for the

‘minus’ components of α(`), stronger than the previous one in (65).

Lemma 13. There exist a positive constant c and an integer `0 such that:

α(`)−
u ¿ `cx`+2u

` ∀` ≥ `0, ∀u ≤ `/2.

Proof. We split the proof in five steps.

Step 1. Let β := I`(x`)α(`)+. Then βu ¿ x
`
2+u

` for every ` and u.
In fact,

βu =
`/2∑

j=1

x
`
2+u

` G
(2`)

2j− `
2−u

(x`)α
(`)+
j .

The uniform boundness of ‖α(`)‖ and the bound
∑`/2

j=1 G
(2`)

2j− `
2−u

(x`) ≤ ex`

give the claim.
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Step 2. Prove that α
(`)−
u ¿ x

`/2+u
` , for every ` and u ≤ `/2.

In fact, (64) gives:

α(`)− = β + (1− L`(x`))−1L`(x`)β.

We know that ‖L`(x`)‖ ≤ x`
` and β ¿ x

`/2
` , therefore ‖(1−L`(x`))−1L`(x`)β‖

¿ x
3`/2
` , thus:

α(`)−
u = βu + O(x3`/2

` ) ¿ x
`/2+u
`

because u ≤ `/2.

Step 3. Improve the bound on β to βu ¿ x
3
4 (`+2u)

` , for every ` and u.
In fact,

βu =
`/2∑

j=1

x
`/2+u
` G

(2`)
2j−`/2−u(x`)α

(`)+
j

=
`/2∑

j=1

x
`/2+u
`

+∞∑

t=0,t:
2j−`/2−u+2`t≥0

x
2j−`/2−u+2`t
`

(2j − `/2− u + 2`t)!
α

(`)+
j

=
`/2∑

j=1

x
`/2+u
`

x
2j−`/2−u
`

(2j − `/2− u)!
δ2j≥`/2+uα

(`)+
j

+
`/2∑

j=1

x
`/2+u
`

+∞∑

t=0

x
2j−`/2−u+2`+2`t
`

(2j − `/2− u + 2` + 2`t)!
α

(`)+
j .

The uniform boundness of ‖α(`)‖ and the bound 2j − `/2 − u + 2` ≥ ` + 2
(because u ≤ `/2 and j ≥ 1) give:

βu ¿
x2`

`

`!
+ x

`/2+u
`

`/2∑

j≥ `
4+

u
2

α
(`)+
j

(2j − `/2− u)!
.

We know that α(`)+ = α(`/2)+O((`/2)−1.4`/2)1`/2 by (62), and for j ≥ `
4 + u

2

we have α
(`/2)
j = α

(`/2)−
j−`/4 ¿ x

`/4+(j−`/4)
`/2 = xj

`/2, by Step 2. Therefore:

βu ¿
x2`

`

`!
+ (`/2)−1.4`/2 + x

`/2+u
`

`/2∑

j≥ `
4+

u
2

xj
`/2

(2j − `/2− u)!

¿ x2`
`

`!
+ (`/2)−1.4`/2 + x

`/2+u
` x

`/4+u/2
`/2 .

By Lemma 7, x` − x`/2 = O
(

x̄2e√
`/2

)`/2 (for ` ≥ 32), therefore the claim

follows.
Step 4. Using the argument in Step 2 we deduce that α

(`)−
u ¿ x

3
4
(`+2u)

` .

Step 5. Using the bound in Step 4 for α
(`)−
u in Step 3 we get βu ¿ x

(1−2−3)(`+2u)
`

and then the analogous upper bound for αu; iterating this procedure k times
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we get:

α(`)−
u ¿ qkx

(1−2−k)(`+2u)
`

where q is a suitable constant which is independent of k and can be made
independent of ` and u if ` is large enough (actually, q = 6 works). Setting
k in such a way that 2k ³ ` we get the claim.

¤
Lemma 14. There exist a positive constant c′ such that:

`c′x`
` α(`)+ À α(`)−.

Proof. By Lemmas 12 and 13 it is sufficient to prove that there exists c′ > 0 such
that:

`c′x`
` x

2u+2dlog2 ue
` À `cx`+2u

` ∀u ≤ `/2.

Any c′ which is greater than c−2 log2 x` for every large ` (e.g., c′ = c+1) works. ¤

Finally we can prove our main result.

Lemma 15. There exists `0 and a positive constant γ such that:

F `(x′`)α
(2`)+ ≤ α(2`)+ ∀` ≥ `0

for x′` := x2`(1− γ log2 `
` ).

Proof. We look for an x such that F `(x)α(2`)+ ≤ α(2`)+, with x − x2` = o(1). We
know that F ` = I2` + L2`, therefore the inequality can be written as:

(68) I2`(x)α(2`)+ + L2`(x)α(2`)+ ≤ α(2`)+.

For every x ≤ x2` we have I2`(x)α(2`)+ ≤ α(2`)− by (63), hence (68) is implied by:

α(2`)− ≤ 1
2α(2`)+, L2`(x)α(2`)+ ≤ 1

2α(2`)+.

The first inequality does not involve x and holds for ` large enough, by Lemma 14.
For the second one, we see that:

[
L2`(x)α(2`)+

]
u

=
∑̀

j=1

x`+uG
(4`)
2(j+`)−`−u(x)α(2`)+

j ¿ x`+u,

because the components α
(2`)+
j are bounded uniformly on ` and j. Recalling Lemma

12, hence, it is sufficient to find x ≤ x2` such that:

cx`+u ≤ x
2u+2dlog2 ue
2`

holds for all u ≤ `, where c is a constant independent of ` and u. We meet this
condition by choosing:

x := x2`(1− γ log2 `
` ),

for a suitable positive constant γ independent of ` and u. In fact, for such an x the
inequality becomes:

x
`−u−2dlog2 ue
2` (1− γ log2 `

` )`+u ≤ 1/c.

The greatest value of LHS is attained for u = ` in the first factor and u = 0 in the
second one, therefore it is sufficient to have:

x
−2dlog2 `e
2` (1− γ log2 `

` )` ≤ 1/c.
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This inequality holds whenever ` is large enough if we set γ > −2 log x2` for every `
(and this is possible uniformly in `, by Lemma 7) because in this case LHS tends to
0 as ` diverges. ¤
We can now conclude the proof of the theorem. By (62) the inequality in Lemma 15
can be written as:

F `(x′`)α
(`) + O(`−0.14 `)F `(x′`)1` ≤ α(`) + O(`−0.14 `)1` ∀` ≥ `0.

Since F `(x′`)1` ≤ ‖F `(x′`)
T‖1` ¿ 1` independently of `, this means that:

(69) F `(x′`)α
(`) + O(`−0.14 `)1` ≤ α(`) ∀` ≥ `0.

Now we show that we can find x′′` ≤ x′` with x′′` −x′` = o(1) and such that F `(x′′` )α
(`)

is lower than LHS in (69). In fact, let h ∈ (0, 1/10) that we will fix later. Then

F `(x′` − h) = F `(x′`)− hD
where D is a matrix whose u, j entry is the derivative of xuG

(2`)
2j−u(x), and hence

uxu−1G
(2`)
2j−u(x) + xuG

(2`)
2j−u−1(x), computed at a point in [x′` − h, x′`], and hence in

(1/2, 1). Suppose u even. Then the term with j = u/2 is greater than uxu−1G
(2`)
0 (x)

≥ uxu−1G
(2`)
0 (1/2) ≥ 1/2u. If u is odd the same happens to the term with j =

(u + 1)/2, therefore in every row of D there is an entry which is greater than 1/2u.
This implies that:

F `(x′` − h)α(`) ≤ F `(x′`)α
(`) − hmin

u
{α(`)

u }




1/2
1/22

. . .
1/2`


 .

Therefore x′′` := x′` − h satisfies F `(x′′` )α
(`) ≤ α(`) whenever:

hmin
u
{α(`)

u }




1/2
1/22

. . .
1/2`


 ≥ c`−0.14 `1`,

where c is the fixed constant whose value is implicit in (69). Recalling Lemma 12,
it is sufficient to set h such that:

hx
2`+2dlog2 `e
`




1/2
1/22

. . .
1/2`


 ≥ c′`−0.14 `1`,

and if we choose h = 1/` this inequality is true for ` large enough.
Let x̌` := min{x′′` , x`}, then we have both

F `(x̌`)α(`) ≤ F `(x′′` )α
(`) ≤ α(`) and F`(x̌`)α(`) ≤ F`(x`)α(`) = α(`),

for all ` ≥ `0. Therefore any constant below x̌` satisfies (51), giving the upper
bound Λ∞ ≤ x̌−2

` for every 2-power `, large enough. Since x̌` → 1/
√

λ∞, we get
that Λ∞ ≤ λ∞, which concludes the proof of the theorem.

The sequence F`(x`) can be made to a sequence of operators `∞(N) → `1(N),
uniformly converging to the compact operator F : `∞(N) → `1(N), whose u, j entry
is λ−j∞ /(2j − u)!. Restricting F to `2(N) → `2(N), we get a new operator having
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α(∞) as eigenvector, with an eigenvalue equal to 1. This fact addresses the question
of whether it is possible to use F and its eigenvector α(∞) to prove that Λ∞ ≤ λ∞,
perhaps as a consequence of the formula (29) for di,u. For example, we can try to
prove a bound of the form di,u ¿η α

(∞)
u (λ∞+ η)i for every i and u, for every η > 0.

This bound is the natural extension of (47) and produces an immediate proof of the
theorem, according to (31). Nevertheless, it would imply that:

(λ∞ + η)−i ¿η α
(∞)
2i

because di,2i ≥ 1, according to (29), which is impossible for η < λ2∞−λ∞ since from
Lemmas 12 and 13 it follows that:

λ
−u−dlog2 ue
∞ ¿ α(∞)

u ¿ ucλ−u
∞ ∀u

for a suitable constant c.
These difficulties show, in some sense, why our proof has followed from a judicious
use of the interpolating vectors α(`) and of some very tricky properties of them, and
is not just based on the existence of F and α(∞).
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