
EMBO 
open 

Structure of the HECT:ubiquitin complex and its role
in ubiquitin chain elongation
Elena Maspero1, Sara Mari1, Eleonora Valentini1, Andrea Musacchio2, Alexander Fish3, Sebastiano Pasqualato2,4+

& Simona Polo1,5++

1IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 2Dipartimento di Oncologia Sperimentale, Istituto Europeo

di Oncologia, Milan, Italy, 3Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands,
4Crystallography Unit, IFOM-IEO Campus, Cogentech—Consortium for Genomic Technologies, and 5Dipartimento di Medicina,

Chirurgia ed Odontoiatria, Universita’ degli Studi di Milano, Milan, Italy

This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial No Derivative Works 3.0
Unported License, which permits distribution and reproduction in any medium, provided the original author and source are credited. This
license does not permit commercial exploitation or the creation of derivative works without specific permission.

Several mechanisms have been proposed for the synthesis of
substrate-linked ubiquitin chains. HECT ligases directly catalyse
protein ubiquitination and have been found to non-covalently
interact with ubiquitin. We report crystal structures of the Nedd4
HECT domain, alone and in complex with ubiquitin, which show
a new binding mode involving two surfaces on ubiquitin and both
subdomains of the HECT N-lobe. The structures suggest a model
for HECT-to-substrate ubiquitin transfer, in which the growing
chain on the substrate is kept close to the catalytic cysteine to
promote processivity. Mutational analysis highlights differences
between the processes of substrate polyubiquitination and
self-ubiquitination.
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INTRODUCTION
The ubiquitination process is carried out by an enzymatic cascade
that includes an activating enzyme (E1), a conjugating enzyme
(E2) and a ligase (E3; Dye & Schulman, 2007). The transfer of the

ubiquitin moiety from the thioester-linked E3 (in HECT-type
ligases) to the acceptor lysine on the substrate is the last step of this
process. Subsequent chain elongation requires the modification of
specific lysine residues in consecutive ubiquitin moieties. With
few exceptions (Petroski & Deshaies, 2005; Jin et al, 2008), little
is known about the mechanisms of ubiquitin-chain assembly,
although various models have been proposed (Hochstrasser, 2006).

The Nedd4 family of HECT domain E3 ligases is a well-
characterized class of enzymes that present a conserved modular
organization with an amino-terminal C2 domain that is crucial for
membrane localization, between two and four WW domains that
recognize substrates and adaptor proteins and a carboxy-terminal
catalytic HECT domain. In humans, there are nine members of
this family that are implicated in a range of biological processes
such as endocytosis, protein transport, viral budding, signalling,
cellular growth and proliferation (Rotin & Kumar, 2009). This
class of E3 enzymes seems to use a sequential addition
mechanism, by which ubiquitin molecules are added one
at a time from the catalytic cysteine to the distal lysine of the
growing chain (Kim & Huibregtse, 2009). A key question is how
E3 enzymes deal with the shifting position of the acceptor site
during chain elongation.

Two groups have recently identified a surface implicated in
non-covalent ubiquitin binding on the HECT-type E3 ligases Rsp5
and Smurf2 (French et al, 2009; Ogunjimi et al, 2010). This
surface was proposed to have a role in regulating polyubiquitina-
tion, although opposite mechanisms were suggested by the
groups, with the surface being required to either restrict the
length of polyubiquitin chains synthesized by the HECT domain
(French et al, 2009) or to promote polyubiquitination (Ogunjimi
et al, 2010). In this study, we show the crystal structure of the
HECT domain of Nedd4 alone and in complex with ubiquitin, and
we present molecular insights into the mechanism by which
Nedd4 catalyses polyubiquitination.
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RESULTS AND DISCUSSION
Structure of HECTNedd4 and HECTNedd4:ubiquitin
We characterized the interaction of the isolated HECT domain of
Nedd4 (HECTNedd4) with ubiquitin in detail. The ubiquitin-binding
ability resides in the N-lobe, does not show preference for Lys 63-
or Lys 48-polyubiquitin chains and requires the canonical
hydrophobic patch on ubiquitin, centred on Ile 44 (supplementary
Fig S1 online). We extended this analysis to the other mammalian
Nedd4 family members and found that only a subset of these
HECT domains binds to ubiquitin, namely Nedd4, Nedd4-like and
Smurf2 (Fig 1A).

To understand how ubiquitin binds to the HECT, we determined
the crystal structure of the HECTNedd4 in isolation (at 2.5 Å) and
in complex with ubiquitin (at 2.7 Å) by molecular replacement
(supplementary Table S1 online and supplementary Fig S2 online).
In both structures, HECTNedd4 displays the typical HECT fold
(Huang et al, 1999; Verdecia et al, 2003; Ogunjimi et al, 2005)
composed of two lobes connected by a flexible hinge (Fig 1B,C).
The N-lobe, an elongated array of helices and b-hairpins, consists
of two moieties, known as the large and small subdomains (Fig 1B).
The small subdomain, which hosts the E2-binding site, comprises
helices a6–a8 and b-sheets b5–b6 (Huang et al, 1999; Kamadurai
et al, 2009). The large subdomain of the N-lobe is present below
the C-lobe, an a/b sandwich domain that carries the catalytic
cysteine. The orientation of the C-lobe differs in the two HECTNedd4

structures, and both orientations are distinct from those of
previously reported HECT domain structures (supplementary
Fig S3 online). This highlights the freedom of movement of the
C-lobe, which is key for the catalytic function of HECT domains
(Verdecia et al, 2003; Kamadurai et al, 2009).

Non-covalent ubiquitin binding to HECTNedd4 conceals a
solvent-accessible interaction surface area on ubiquitin of
approximately 900 Å2, the largest surface identified so far for
ubiquitin-binding domains (supplementary Table S2 online).
Ubiquitin makes contact with Glu 554 and neighbouring residues
of helix a1; Tyr 604, Tyr 605 and Tyr 610 from the region
comprising helix a30 and strand b3; Asn 628 and Glu 629 from
helix a40 and the ensuing loop; and Phe 707 and neighbouring
residues of the b5–b6 beta hairpin. These residues are distributed
in both the small and the large subdomains of the N-lobe
(Figs 1E,2A). In the absence of ubiquitin, the relative orientation of
the small and large subdomains is not fixed and varies for different
structures (Huang et al, 1999; Verdecia et al, 2003; Ogunjimi
et al, 2005). Ubiquitin binding might therefore be expected
to stabilize a specific reciprocal orientation of the N-lobe
subdomains. Indeed, superposition of the large subdomains
of HECTNedd4 and HECTNedd4:ubiquitin (root mean square
deviation of 0.6 Å over 181 Ca) clearly indicates a relative
movement of the b5–b6 hairpin of the small subdomain in the
HECTNedd4:ubiquitin structure by approximately 5 Å towards the
large subdomain of the N-lobe (Fig 1D).

As predicted by the defective behaviour of the I44A ubiquitin
mutant (supplementary Fig S1C online), the interaction surface on
ubiquitin involves the canonical Ile 44 hydrophobic patch, which
also includes Gly 47, Leu 8 and Val 70 (Fig 2A). However, the
surface of interaction is not limited to this patch, but extends to a
‘second hydrophobic patch’, including the residues Ile 36/Leu 71/
Leu 73, the role of which has recently been discussed in the
context of the E2-to-HECT ubiquitin transfer (Kamadurai et al,

2009; Fig 2A; supplementary Fig S4 online). The Asn 628, Tyr 634
and Glu 554 side chains on Nedd4 form hydrogen bonds with the
main chain nitrogen atoms of ubiquitin-Leu 73, Arg 74 and Gly 75,
whereas the ubiquitin-Leu 73 side chain is stacked between
Tyr 634 and Tyr 605 of Nedd4.

We generated Nedd4 mutants that substantiate the functional
importance of both interacting patches on ubiquitin. Mutation
of Tyr 605 to Ala (Y605A) or Phe 707 to Ala (F707A) almost
abolished HECTNedd4 binding to Lys 63 ubiquitin (Fig 2B). Phe 707
to Tyr (F707Y), Asn 628 to Ala (N628A) or Glu 629 to Ala (E629A)
mutations had milder effects, preserving the association with
higher molecular weight Lys 63 ubiquitin to varying degrees
(Fig 2B). We confirmed these results by measuring the interaction
between the HECT domains and monomeric and dimeric
ubiquitin by fluorescence polarization and surface plasmon
resonance (SPR) assay (Fig 2C; supplementary Fig S1D–F online).
Both ubiquitin ligands interact with the HECT with rapid kinetics
(fast Kon and Koff rate constants, data not shown). Wild-type
HECTNedd4 displays a moderate affinity (KD approximately 11 mM)
in the range of those reported for ubiquitin-binding domains
(supplementary Table S2 online), whereas Y605A and F707A
mutations show from 20- to 30-fold decreases in binding (Fig 2C;
supplementary Fig S1F online).

Role of ubiquitin binding in Nedd4 activity
Next, we analysed the catalytic activity of Nedd4 HECT mutants.
In principle, the ubiquitin-binding surface might have a role at
three stages of the E3 catalysis: binding to the E2, transthiolation
process from E2 to E3 or substrate ubiquitination. We tested all of
these possibilities using the isolated HECT, which retains the
ability to ubiquitinate itself as well as substrates, albeit with
reduced efficiency (not shown).

Pull-down and SPR assays showed that mutants have no
significant impairment in binding with either the apo or the
ubiquitin thioester-linked form of E2 enzyme Ube2D3 (Fig 3A and
data not shown). Indeed, the E2 binding is built on an adjacent but
non-overlapping surface on the large subdomain of the N-lobe
(Huang et al, 1999; Fig 4C). We then tested the importance of
the ubiquitin-binding surface in the E2-to-HECT transthiolation
process by using a pulse-chase protocol (Fig 3B). Again, no
appreciable transthiolation defects were observed for the mutants,
supporting the notion that the ubiquitin-binding surface is not
involved in the upstream steps of the enzymatic cascade. Of note,
the thioester HECTBubiquitin bond is unstable and the ubiquitin
moiety is immediately transferred to the lysine/s of the HECT, as
demonstrated by the appearance of higher molecular-weight
proteins that are resistant to dithiothreitol treatment (Fig 3B,
lower panels).

These results led us to propose that the ubiquitin-binding
surface on the HECT might act to bind a ubiquitin moiety that is
already conjugated to a substrate, thus promoting polyubiquitina-
tion. Indeed, when we assayed F707A and Y605A in an in vitro
ubiquitination reaction, we found that mutations in the ubiquitin-
binding surface strongly impaired free-chain formation and
ubiquitination of all the substrates tested (Fig 3C; supplementary
Fig S5 online). The mutant enzymes were efficient in the first cycle
of substrate ubiquitination and in ubiquitin dimer formation, using
free ubiquitin as a pseudosubstrate (Fig 3C; supplementary Fig S5
online). This was confirmed by using a ubiquitin Lys 0 mutant and
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quantification of the results repeated as fold differences between
wild-type HECT and mutants (supplementary Fig S5A online).
Interestingly, F707A and Y605A mutations did not affect self-
ubiquitination of Nedd4 (Fig 3B, lower panels and Fig 3D),
indicating that this in cis reaction is a catalytically distinct
process that cannot be used as a surrogate assay for ligase activity
on substrates.

Most HECT E3s synthesize polyubiquitin chains with specific
linkages (Wang et al, 2006; Kim et al, 2007). To gain insight into

the type of chains synthesized by Nedd4, we tested substrate
ubiquitination using ubiquitin-bearing individual lysine-to-argi-
nine mutations (KR mutants). We found that Nedd4 has a strong
preference for building Lys 63-chains on substrates, a feature
retained by the F707A mutant (Fig 4A). Consistent with previous
data, however, F707A has defective chain elongation on substrate
and shorter free chains, regardless of the type of ubiquitin used
(Fig 4A). Therefore, we conclude that the ubiquitin-binding
surface on the HECT acts to promote substrate polyubiquitination,
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Lys 48-polyubiquitin chains (not shown). (B) Overall structure of HECTNedd4 (N-lobe, blue; C-lobe, green). The red dotted line indicates the boundary
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but it does not dictate the preference for a specific lysine during
elongation. Indeed, recent observations suggest that the C-lobe,
rather than the ubiquitin-binding N-lobe, is the crucial determi-
nant of lysine selection during elongation (Kim & Huibregtse,
2009).

CONCLUSIONS
Collectively, our results support the hypothesis that the ubiquitin-
binding surface is required for the processivity of the poly-
ubiquitination reaction (Ogunjimi et al, 2010), rather than for
limiting chain elongation, as suggested previously (French et al,
2009). How can this occur? It is tempting to envision a model in
which the distal ubiquitin on the substrate occupies this surface,
promoting retention of the ubiquitinated substrate to the E3, and
also keeping the small subdomain of the N-lobe in a conformation
that favours processive ubiquitin addition. This could be achieved
by either reducing the gap between the catalytic cysteine of the
HECT and the C-terminus of ubiquitin linked to the E2 enzyme
(Kamadurai et al, 2009) or by facilitating the transfer of a

subsequent ubiquitin to the HECT-bound substrate. In support of
this model, we found that the non-covalent ubiquitin-binding
surface that we mapped remains accessible in the complex of the
HECT domain of Nedd4-like with the ubiquitin-loaded E2
(Kamadurai et al, 2009; Fig 4C).

Our data support the notion that Nedd4 adopts a simple
sequential-addition model to build a chain on a substrate; after the
first ubiquitin is attached, the chain is elongated through Lys 63
linkage, because of the ability of the N-lobe to maintain the
growing polyubiquitin chain in close proximity. A similar
conclusion about the role of the HECT ubiquitin-binding site in
promoting chain elongation was reached in the accompanying
study by Kim et al (2011) on Rsp5. Although the position of Lys 63
on bound ubiquitin does not seem to be able to orient the growing
chain towards the E2 catalytic cysteine (Fig 4B), the average B
factors for the ubiquitin molecules are considerably higher than
those of their HECT counterparts (approximately 76 A2 for
ubiquitin molecules, approximately 48 A2 for HECT domains;
supplementary Table S1 online), suggesting freedom of movement
of ubiquitin on its docking site. This could imply that the binding of
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ubiquitin to the E3 is strong enough to promote polyubiquitination,
yet loose enough to allow chain growth, possibly through a
slippage mechanism by which the ubiquitin-binding surface
specifically binds to the distal ubiquitin at the end of the chain.
The moderate affinity and fast kinetic rates of the HECT:ubiquitin
interaction fit well with such a mechanism. Future structural studies
with Nedd4 in complex with a ubiquitinated substrate might be
required to provide a definitive picture of this dynamic process.

The detailed molecular view provided by our structure allows
the identification of the crucial residues required for binding
(Fig 1E), which can be used to predict the HECT E3 enzymes that
are able to bind to ubiquitin. It remains to be established whether
the presence of this binding surface might determine the
mechanism of chain synthesis adopted by the different HECT
ligases to become processive.

At our level of understanding, generalizing the mechanisms
that underlie polyubiquitination would be premature, but it is

interesting to note from the comparison of the small Nedd4 family
of E3, that nature has used a variety of protein architectures to
ensure specificity.

METHODS
Crystallization and structure determination. Crystals of HECTNedd4

and HECTNedd4:ubiquitin complex were obtained by sitting-drop
vapour diffusion at 20 1C, using a Honeybee Cartesian robot in 96-
well plates. Diffraction-quality crystals were obtained by optimizing
the initial conditions in 24-well plates, hanging drops at 20 1C.
Crystals were all optimized by microseeding. For HECTNedd4, the
optimized conditions were 100 mM Na-MES, pH 6.0, 2–4% PEG
400 or PEG 600, 30–60 mM CaCl2 or MgCl2, 5 mM tris(2-
carboxyethyl)phosphine, with protein concentration in the 2.5–
5 mg/ml range. Crystals were cryoprotected in 100 mM Na-MES,
pH 6.0, 4% PEG 400, supplemented with 20% ethylene glycol. The
structure was solved with a data set collected at the European
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showing comparable loading of GST proteins. Lower panel: free ubiquitin chain formation during the reaction. IB was performed as indicated. Lower

panel: 1mg of ubiquitin KR mutants were loaded for comparison and visualized by Coomassie staining. (B) Position of ubiquitin lysines in the Nedd4

HECT/ubiquitin complex. HECT N-lobe is shown as surface representation, whereas the C-lobe and ubiquitin are shown as cartoon representations.

Ubiquitin lysine side chains are indicated in sticks. Six of the seven ubiquitin lysines are shown, K 6 being in the back. (C) Model of Ubch5BBUb:C-

lobe complex (Kamadurai et al, 2009) binding to the N-lobe:ubiquitin complex. Details are in the supplementary Methods online. C 867 on the HECT

and K 63 on the Ub are shown. ENaC, epithelial Naþ channel; GST, glutathione S-transferase; IB, immunoblotting; KR, lysine-to-arginine mutation;

Ub, ubiquitin; WT, wild type.
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Synchrotron Radiation Facility (ESRF) at beamline ID14-2. For the
HECTNedd4:ubiquitin complex, initial crystals were obtained in
100 mM Na-HEPES, pH 7–8, 10–20% PEG 2000 MME, 5 mM
tris(2-carboxyethyl)phosphine, with proteins purified individually,
then mixed in a 1:1 molar ratio and a concentration of approximately
30 mg/ml. To obtain good-quality diffraction and to overcome
twinning, the complex was crystallized in the presence of excess
ubiquitin (600–900mM of complex, 1.2� –2.3� ubiquitin molar
excess), lower concentration of PEG 2000 MME (2–10%), and the
crystals were carefully frozen by equilibrating them into cryo-buffer
(100 mM Na-HEPES, pH 7.5, 10% PEG 2000 MME) with increasing
concentrations of glycerol, reaching a final concentration of
20%. The structure was solved with a data set collected at the
ESRF at beamline ID14-1 on a crystal grown in a 1.9� ubiquitin
molar excess.

X-ray diffraction data were processed with HKL2000
(Otwinowski & Minor, 1997) or XDS (Kabsch, 2010). Both
structures were solved by molecular replacement with Phaser
within the CCP4 suite (CCP4, 1994), using as a search model the
HECT domain of Nedd4-like (Protein Data Bank entry 2oni) in the
case of HECTNedd4, and HECTNedd4 and a high-resolution structure
of ubiquitin (Protein Data Bank entry 1ubi) in the case of
HECTNedd4:ubiquitin complex. Initial models were refined with
the CNS suite (Brunger, 2007), Refmac (Murshudov et al, 1997),
the Phenix suite (Adams et al, 2010) and manual building in Coot
(Emsley et al, 2010). For the HECTNedd4:ubiquitin complex, non-
crystallographic symmetry (NCS) restraints were used in refine-
ment. In the first cycles of refinement carried out with Refmac,
HECT molecules were divided into two NCS groups (the N-lobe
and the C-lobe), and ubiquitin molecules were the third NCS
group. For further refinement cycles carried out with phenix.re-
fine, five NCS groups were used: ubiquitin molecules and HECT
domain residues 522:699, 724:778, 785:828 and 850:891, thus
not subjecting HECT domain loops to NCS restraints. Structure
representations were generated with Pymol (DeLano Scientific
LLC). HECTNedd4 crystallized in spacegroup C2, whereas
HECTNedd4:ubiquitin crystallized in spacegroup P21, with two
complexes per asymmetrical unit. The two complexes differ
slightly in the orientation of the HECTNedd4 C-lobe with respect
to the N-lobe, and the relative orientation of HECTNedd4 with
respect to ubiquitin, but the interactions discussed here are
present in both complexes. Superpositions of pairs of domains of
the asymmetrical unit indicate that they are almost identical (root
mean square deviations of N-lobes: 0.36 Å over 260 Ca; C-lobes:
0.63 Å over 115 Ca; Ubs: 0.25 Å over 76 Ca).
Ubiquitination assay. Ubiquitination assays were performed with
HECT domains produced as glutathione S-transferase (GST) fusion
proteins and cleaved with PreScission protease. The E2 enzyme
Ube2D3, was produced as a His6-fusion protein and eluted from
Ni-NTA Agarose beads (Qiagen). Reaction mixtures contained
purified enzymes (20 nM E1, 250 nM of purified His6-tagged
Ube2D3, 250 nM HECTNedd4), 300 nM of substrate (g epithelial
Naþ channel and LMP2A were produced as GST fusion proteins
and used attached to glutathione beads) and 1 mM of ubiquitin in
ubiquitination buffer (25 mM Tris–HCl, pH 7.6, 5 mM MgCl2,
100 mM NaCl, 0.2 mM dithiothreitol, 2 mM ATP). Reactions were
incubated at 37 1C. At the indicated time point, samples were
centrifuged to separate the pellet—containing the ubiquitinated
substrates—and the supernatant—containing the enzymes and the

soluble ubiquitin chains, if produced. The pellet was washed
four times in YY buffer (50 mM Na-HEPES pH 7.5, 150 mM NaCl,
1 mM EDTA, 10% glycerol, 1% triton X-100) before loading on
SDS–polyacrylamide gel electrophoresis gel. For self-ubiquitina-
tion reaction, the mixtures contained 20 nM E1, 250 nM of
purified His6-tagged Ube2D3, 250 nM of GST-HECTNedd4 and
0.5 mM of ubiquitin in ubiquitination buffer. Detection was
performed by immunoblotting using specific antibody. Coomas-
sie-stained membrane was used to show loading of GST-fusion
protein after immunoblotting.

Reagents and constructs, protein expression and purification,
transthiolation assay, pull-down experiments, fluorescence
polarization assay and SPR are described in the supplementary
Methods online.
Accession codes: Coordinates for HECTNedd4 and the HECTNedd4:
ubiquitin complex have been deposited at the Protein Data Bank
under accession codes 2xbf and 2xbb, respectively.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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