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a b s t r a c t

A new distance to classify time series is proposed. The underlying generating process is
assumed to be a diffusion process solution to stochastic differential equations and observed
at discrete times. The mesh of observations is not required to shrink to zero. The new
dissimilarity measure is based on the L1 distance between theMarkov operators estimated
on two observed paths. Simulation experiments are used to analyze the performance of the
proposed distance under several conditions including perturbation and misspecification.
As an example, real financial data from NYSE/NASDAQ stocks are analyzed and evidence
is provided that the new distance seems capable to catch differences in both the drift
and diffusion coefficients better than other commonly used non-parametric distances.
Corresponding software is available in the add-on package sde for the R statistical
environment.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there has been a lot of interest in mining time series data. Although many measures of dissimilarity are
available in the literature (see e.g. Liao, 2005, for a review) most of them ignore the underlying structure of the stochastic
model which drives the data. Among the fewmeasures which take into account the properties of the data generatingmodel,
we can mention Hirukawa (2006) which considers non-Gaussian locally stationary sequences; Piccolo (1990) proposed an
AR metrics, Corduas and Piccolo (2008) used this distance to develop a clustering algorithm; Maharaj (1999) extended this
metric to themultivariate case and Otranto (2008) adapted it to GARCHmodels. Caiado et al. (2006) used an approach based
on periodograms; Xiong and Yeung (2002) proposed amodel based clustering for mixtures of ARMAmodels. Kakizawa et al.
(1998) and Alonso et al. (2006) performed clustering based on several information measures constructed on the estimated
densities of the processes.

Needless to say, starting from the Black and Scholes (1973) and Merton (1973) theory, most of the models of modern
finance rely on continuous time processes. In particular, the dynamics of underlying process used in option pricing is
assumed to be a diffusion process solution to some stochastic differential equation. This paper proposes a new distance
which is particularly tailored to discretely observed diffusion processes but not restricted to financial data. Indeed,
diffusion processes are basic models in many fields like: physics (Papanicolaou, 1995), astronomy (Schuecker et al., 2001),
mechanics (Kushner, 1967), economics (Bergstrom, 1990), geology (Ditlevsen et al., 2002), genetic analysis (Holland, 1976),
ecology (Holmes, 2004), cognitive psychology (Tuerlink et al., 2001), neurology (Holden, 1976), biology (Ricciardi, 1977),
biomedical sciences (Banks, 1975), epidemiology (Bailey, 1957), political analysis and social processes (Cobb, 1981) and
many other fields of science and engineering.

This new dissimilarity is based on a new application of the results by Hansen et al. (1998) on identification of diffusion
processed observed at discrete time when the time mesh ∆ between observations is not necessarily shrinking to zero. The
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theory proposed in Hansen et al. (1998) has been used in Kessler and Sørensen (1999) and Gobet et al. (2004) in parametric
and non-parametric estimation of diffusion processes, respectively. The theory is based on the fact that, when the process is
not observed at high frequency (i.e.∆ �→ 0) the observed data form a trueMarkov process for which it is possible to identify
the Markov operator P∆. The continuous time model is instead characterized by the infinitesimal generator Lb,σ , where b

and σ are, respectively, the drift and diffusion coefficients of the process {Xt , t ≥ 0} solution to the stochastic differential
equation dXt = b(Xt)dt + σ(Xt)dWt . The two operators – P∆ and Lb,σ – are equivalent in the sense of functional analysis.
Therefore, if one can estimate theMarkov operator from the data, one can also possibly identify the process and, in particular,
the couple (b, σ ). The identification step of this procedure needs some care (see e.g. Gobet et al., 2004) but this second step
is not necessary in our approach. In the present paper, we make use only of the Markov operator to construct a distance
between two observed processes (or better, between their Markov operators). Some form of ergodicity or stationarity of
the underlying process is usually required, although these hypotheses can be relaxed in several directions, as for example
mentioned in Kessler and Sørensen (1999), without affecting the results.

The paper is organized as follows. Section 2 introduces themodel and the assumptions. TheMarkov operator is presented
in Section 3. Section 4 studies the performance of the method. First, the behavior of the operator is analyzed on simulated
pathswith orwithout perturbation andmisspecification for different sample sizes. Finally, real data from the NYSE/NASDAQ
are analyzed. All the results include a comparison with three other dissimilarity measures, namely, the Euclidean distance,
the Short-Time Series distance and the Dynamic Time Warping distance. Section 5 contains a brief explanation of the
software which implements the proposed metric.

2. Model and assumptions

Let I = (l, r), −∞ � l < r � +∞ be the state space of a time-homogeneous diffusion process {Xt , t � 0} solution to a
stochastic differential of the form

dXt = b(Xt)dt + σ(Xt)dWt , (1)

with some initial condition X0 = x0. In Eq. (1) the functions b : I → R and σ : I → (0, ∞) represent, respectively, the drift
and diffusion coefficients, while {Wt , t ≥ 0} is a standard Brownian motion.

Assumption 1. The drift and diffusion coefficient are such that the stochastic differential equation (1) admits a uniqueweak
solution Xt (see, e.g., Karatzas and Shrevre, 1988).

Let us introduce the scale function and speed measure, defined respectively as

s(x) = exp
�
−2

�
x

x̃

b(y)

σ 2(y)
dy

�
, (2)

with x̃ any value in the state space (l, r), and

m(x) = 1
σ 2(x)s(x)

. (3)

Assumption 2. We assume that

C0 =
�

r

l

m(x)dx < ∞.

Let, x∗ be an arbitrary point in the state space of Xt such that
�

r

x∗
s(x)dx = +∞,

�
x
∗

l

s(x)dx = −∞.

If one or both of the above integrals are finite, the corresponding boundary is assumed to be instantaneously reflecting.

If the Assumptions 1 and 2 are satisfied, then the process Xt solution to (1) has an invariant law given by

µb,σ (x) = m(x)

C0
=

exp
�
2

�
x

x̃

b(y)

σ 2(y)
dy

�

C0σ 2(x)
. (4)

The above conditions are quite standard to perform inference for stochastic differential equations.
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3. The Markov operator distance

Consider now the regularly sampled data Xi = X(i∆), i = 0, . . . ,N , from the sample path of {Xt , 0 ≤ t ≤ T }, where
∆ > 0 and not shrinking to 0 and such that T = N∆. The process X = {Xi}i=0,...,N is a Markov process and, under mild
regularity conditions, all the mathematical properties of the model are embodied in the transition operator defined as
follows

P∆f (x) = E{f (Xi)|Xi−1 = x}.
Notice that P∆ depends on the transition density from Xi−1 to Xi, so we explicitly put the dependence on ∆ in the notation.
This operator is associated with the infinitesimal generator of the diffusion, namely the following operator on the space of
continuous and twice differentiable functions f (·)

Lb,σ f (x) = σ 2(x)

2
f
��(x) + b(x)f �(x).

When the invariant density µ = µb,σ (·) of the process Xt exists, the operator is unbounded but self-adjoint negative on
L
2(µ) = {f :

�
|f |2dµ < ∞} and the functional calculus gives the correspondence (in terms of operator notation)

P∆ = exp{∆Lµ}. (5)

This relation has been first noticed by Hansen et al. (1998) and Chen et al. (1997). It was then used in statistics to derive
estimating functions by Kessler and Sørensen (1999). Indeed, to estimate, parametrically, the coefficients σ(x) = σθ (x) and
b = bθ (x) of (1) it suffices to note that

Lθ f (x) = σ 2
θ (x)

2
f
��(x) + bθ (x)f

�(x)

can be seen as an eigenvalue problem Lθψθ (x) = κθψθ (x) and the pair (κθ , ψθ ) satisfies

P∆ψθ(Xi) = E{ψθ(Xi+1)|Xi} = exp(κθ∆)ψθ(Xi).

If the solution of the above eigenvalue problem exists, it is possible to impose a set of moment conditions from which
estimating functions can be obtained. More recently, under a low sampling rate, the result (5) was used to estimate, non-
parametrically, the drift and diffusion coefficient by Aït-Sahalia (1996) and Gobet et al. (2004).

In this paper, we propose to use an estimator of P∆, and from this object build a distance between discretely observed
diffusion processes.

For a given L
2-orthonormal basis {φj, j ∈ J} of L2([l, r]), where J is an index set, following Gobet et al. (2004) it is possible

to obtain the matrix P̂∆(X) = [(P̂∆)j,k(X)]j,k∈J , which is an estimator of �P∆φj, φk�µb,σ
, where

(P̂∆)j,k(X) = 1
2N

N�

i=1

�
φj(Xi−1)φk(Xi) + φk(Xi−1)φj(Xi)

�
, j, k ∈ J. (6)

The terms (P̂∆)j,k are approximations of �P∆φj, φk�µb,σ
, that is, the action of the transition operator on the state space with

respect of the unknown scalar product �·, ·�µb,σ
and hence can be used as ‘‘proxy’’ of the probability structure of the model.

Therefore, we introduce the following dissimilarity measure.

Definition 1. Let X and Y be discrete time observations from two diffusion processes. The Markov Operator distance is
defined as

dMO(X, Y) =
���P̂∆(X) − P̂∆(Y)

���
1

=
�

j,k∈J

���(P̂∆)j,k(X) − (P̂∆)j,k(Y)
��� , (7)

where (P̂∆)j,k(·) is calculated as in (6) separately for X and Y.

Notice that dMO(X, Y) is the element-wise L
1 distance for matrices, not simply a dissimilarity measure (i.e. it also respects

the triangular inequality).

Remark 1. Like the invariant density µb,σ , the Markov operator itself cannot perfectly identify the underlying process,
in the sense that, for some (b1, σ1) there might exist another couple (b2, σ2) such that µb1,σ1(x) = µb2,σ2(x). The same
considerations apply to the infinitesimal generator and hence to the Markov operator. Nevertheless, the distance dMO helps
in finding similarities between two (ormore) processes in termsof the action of theirMarkov operators. TheMarkov operator
also takes into account the probabilistic properties of the observed sequence, which is the natural way to make inference
from discretely observed diffusion processes.
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4. Performance of the Markov operator distance

In this section we use four different distances in both the analysis of synthetic and real data. Due to the fact that dMO

is model based but completely nonparametric, we decide to compare its performance against other fully non-parametric
metrics only. We avoid the use of metrics which require pre-estimates of parameters, model selection, etc. (e.g. the ARIMA-
like metrics, Piccolo, 1990). Although these distances have been proved to be useful when the underlying generating model
is a true discrete time series (Otranto, 2008), they fall outside our framework.

We denote by X = {Xi, i = 1, . . . ,N} and Y = {Yi, i = 1, . . . ,N} two discretely observed data from continuous time
diffusion processes. We compare the following distances.

The Markov-operator distance

The Markov operator distance dMO is calculated using formula (7). As in Reiß (2003) we deal with a basis 50 orthonormal
B-splines on a compact support of degree 10 (see Ramsay and Silverman, 2005). As compact support, we consider the
observed support of all simulated diffusion paths enlarged by 10%. In the analysis of synthetic data, the support is just
the interval [0, 1].

Short-time-series distance

The Short-Time-Series distance proposed by Möller-Levet et al. (1978) is based on the idea to consider each time series
as a piecewise linear function and compare the slopes between all the interpolants. It reads as

dSTS(X, Y ) =

����
N�

i=1

�
Xi − Xi−1

∆
− Yi − Yi−1

∆

�2

.

This measure is essentially designed to discover similarities in the volatility between two time series regardless of the
average level of the process (i.e. one process and a shifted version of it will have zero distance).

The Euclidean distance

The usual Euclidean distance

dEUC (X, Y ) =

����
N�

i=1
(Xi − Yi)

2

is one of the most used in the applied literature. We use it only for comparison purposes.

Dynamic time warping distance

The Euclidean distance is very sensitive to distortion in time axis and may lead to poor results for sequences which are
similar, but locally out of phase (Corduas, 2007). The Dynamic Time Warping (DTW) distance was introduced originally
in speech recognition analysis (Sakoe and Chiba, 1978; Wang and Gasser, 1997). DTW allows for non-linear alignments
between time series not necessarily of the same length. Essentially, all shifts between two time series are attempted and
each time a cost function is applied (e.g. a weighted Euclidean distance between the shifted series). The minimum of the
cost function over all possible shifts is the dynamic time warping distance dDTW . In our applications, we use the Euclidean
distance in the cost function and the algorithm as implemented in the R package dtw (Giorgino, 2009).

4.1. Analysis of synthetic data

We simulate 23 paths according to the six different models Mj, j = 1, . . . , 6, obtained via the combinations of drift bk
and diffusion coefficients σk, k = 1, . . . , 4 presented in the following table

σ1(x) σ2(x) σ3(x) σ4(x)

b1(x) M1 M4
b2(x) M2 M3
b3(x) M5
b4(x) M6

where

b1(x) = 1 − 2x, b2(x) = 1.5(0.9 − x), b3(x) = 1.5(0.5 − x), b4(x) = 5(0.05 − x)
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and
σ1(x) = 0.5 + 2x(1 − x), σ2(x) =

�
0.55x(1 − x),

σ3(x) =
�
0.1x(1 − x), σ4(x) =

�
0.8x(1 − x).

For each model Mj we simulate a different number nj of trajectories to have an unbalanced simulation design, i.e. we set
n1 = 5, n2 = 3, n3 = 4, n4 = 3, n5 = 4, n6 = 1. We explicitly avoid a balanced design (i.e. all ni equal) to increase the
difficulty of the task. Indeed, the cluster algorithm, not only has to identify the number of cluster, but these clusters have
different sizes as well. Further, we take one trajectory generatedwithmodelM1, say X1, and reverse it around the line y = 1,
i.e. if 1 − X

1 = X̃
1, hence X̃

1 has drift −b1(x) and the same quadratic variation of X1. So it still belongs to the class M1 with
respect to volatility. We also consider an additional trajectory simulated using model M1 but with a different initial value.
By the ergodic property of the simulated path, its invariant law still belongs to modelM1. Therefore, we have n1 = 7.

We simulate eachpathusing (second)Milstein scheme (see e.g. Kloden et al., 2000or Iacus, 2008)with time lag δ = 1e−3.
Observations have been then resampled at rate ∆ = 0.01 and observed paths of length N = 500 and N = 1000 have been
used in the analysis in order to capture sample size effects.

Due to the fact that the number of clusters is known in advance (i.e. K = 6) we used a cluster similarity index proposed
in Gravilov et al. (2000) defined as follows. Given two clustering C = C1, . . . , CK (the real clusters formed by our sixmodels)
and C

� = C
�
1, . . . , C

�
K � (the clustering obtained using one of the above distances), we compute the following similarities

sim(Ci, C
�
j
) = 2

|Ci ∩ C
�
j
|

|Ci| + |C �
j
| , i = 1, . . . , K , j = 1, . . . , K �,

and the final cluster similarity index is given by the formula

Sim(C, C �) = 1
K

K�

i=1

max
j=1,...,K �

sim(Ci, C
�
j
). (8)

In the application to real data, we also apply the symmetrized version of the index, namely (Sim(C, C �) + Sim(C �, C))/2,
because the real number of clusters is not known in advance. In formula (8) K and K

� may be different, although in our next
two experiments they will be the same number. The similarity index will return 0 if the two clusterings are completely
dissimilar and 1 if they are the same. The index is not symmetric, so we will always use as argument C the true clustering
and as C � the clustering obtained applying one of the four distances. We performed four different experiments. In all cases
we run hierarchical clustering with the complete linkage method.

The four experiments are performed according to the following steps:

Experiment 1: Non perturbed, correctly specified

Simulate according the above scheme 25 trajectories; calculate the distance matrices dMO, dSTS , dEUC and dDTW and run
clustering. Cut the dendrograms into K = K

� = 6 groups. Calculate the Sim index for each clustering solution.

Experiment 2: Non perturbed, miss specified

Simulate according the above scheme 25 trajectories; calculate the four distances and run cluster analysis. Cut the
dendrograms into K

� = 5 groups, real number of groups K = 6. Calculate the Sim index for each clustering solution.

Experiment 3: Perturbed, correctly specified

Simulate according the above scheme 25 trajectories. Perturbate the experiment, adding 2 trajectories from an ARIMA(1,
0, 1) process with mean 0.5 and AR coefficient 0.9, MA coefficient = −0.22, with Gaussian innovations N(0, 0.01) (the
parameters of the model are chosen in a way that the simulated trajectories look qualitatively similar to the ones in the
Experiment 1). Calculate the four distances, use the same clustering approach as in Experiment 1, set K = 7 and cut the
dendrograms into K

� = 7 groups.

Experiment 4: Perturbed, miss specified

Proceed as in Experiment 3, set K = 7 and cut the dendrograms K � = 6 groups.
Each experiment is replicated only 100 times and the average value of the cluster similarity index Sim is reported in Ta-

ble 1 for different sample sizesN = 500 (up) andN = 1000 (down). The number of replications is limited due to excessively
long computational time of the DTW distance in dimension 23. To test the stability of the Monte Carlo results of the first
few 100 replications, we drop dDTW from the Monte Carlo analysis and replicate each of the four experiments 5000 times.
Table 1 also reports, in parenthesis, the average values but calculated over the 5000 replications.

Experiment 3 corresponds to a perturbation of the diffusion setup with an ARIMA process, while Experiment 4
corresponds to a misspecified setting: there are K = 7 real clusters, but we induce misclassification, selecting only K

� = 6
groups. In Experiment 2 there is only misspecification where the number of real groups K is higher than the number of the
groups generated with the cluster K �.

As emerges from the analysis of Table 1we see that all methods perform better in Experiment 1, although a clear ordering
– for all experiments – emerges in the different metrics to discover the correct groups: dMO ≺ dDTW ≺ dEUC ≺ dSTS , where
d1 ≺ d2 means: ‘‘distance d1 classifies better than d2’’. In the case of perturbation (Experiment 3) one should expect that the
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Table 1
Results of the simulation experiments. Average values of the Sim index over 100 replications and, with the exclusion of the dDTW distance, 5000 replications
(in parentheses). ∆ = 0.01, sample size N = 500 (up) and N = 1000 (bottom).

Experiment dMO dEUC dSTS dDTW

Non perturbed, correctly specified 0.84 0.49 0.27 0.69
(0.83) (0.49) (0.27) (–)

Non perturbed, miss specified 070 0.44 0.24 0.60
(0.69) (0.43) (0.24) (–)

Perturbed, correctly specified 0.81 0.45 0.39 0.65
(0.81) (0.45) (0.39) (–)

Perturbed, miss specified 0.71 0.41 0.37 0.58
(0.70) (0.41) (0.37) (–)

Non perturbed, correctly specified 0.94 0.51 0.27 0.69
(0.93) (0.50) (0.26) (–)

Non perturbed, miss specified 0.75 0.45 0.24 0.63
(0.75) (0.45) (0.24) (–)

Perturbed, correctly specified 0.91 0.47 0.39 0.67
(0.90) (0.46) (0.39) (–)

Perturbed, miss specified 0.78 0.43 0.37 0.59
(0.78) (0.42) (0.37) (–)

Markov Operator distance should fail to detect the ARIMA group, and instead should not expect any change in performance
of the other metrics because they do not assume a particular stochastic structure of the model. But Table 1 shows that
all methods are equally affected and dMO looks quite robust. Although there is a decrease of performance of dMO in the
misspecified case (Experiment 4), the dMO distance still performs much better than the other competitors. All methods
increase performance as the number of observationsN increases, but the enhancement of the dMO is particularly remarkable.
This is due to the property of the estimator of theMarkov Operator, which gets better and better as the sample size increases.

In conclusion, in order to classify diffusion processes by means of discrete time observations, dMO seems to be the best
distance.

4.2. Analysis of real data

As an example of application of thismethod to real data, we consider time series of daily closing quotes, from 2006-01-03
to 2007-12-31, for the following 20 financial assets: Microsoft Corporation (MSOFT in the plots), Advanced Micro Devices
Inc. (AMD), Dell Inc. (DELL), Intel Corporation (INTEL), Hewlett-Packard Co. (HP), Sony Corp. (SONY), Motorola Inc. (MOTO),
Nokia Corp. (NOKIA), Electronic Arts Inc. (EA), LG Display Co., Ltd. (LG), Borland Software Corp. (BORL), Koninklijke Philips
Electronics NV (PHILIPS), Symantec Corporation (SYMATEC), JPMorgan Chase & Co. (JMP), Merrill Lynch & Co., Inc. (MLINCH),
Deutsche Bank AG (DB), Citigroup Inc. (CITI), Bank of America Corporation (BAC), Goldman Sachs Group Inc. (GSACHS) and
Exxon Mobil Corp. (EXXON). Quotes come from NYSE/NASDAQ. Source Yahoo.com. Missing values (the same 19 festivity
days over 520 daily data) have been linearly interpolated. These assets come from both electronic hardware, appliance
and software vendors or producers, financial institutions of different types, and a petrol company. Fig. 1 represents the
20 paths of the assets all on the same scale in order to make them comparable by visual inspection. It is clear that some
titles have larger volatility than others and possibly there are some outliers (e.g. BORL) in terms of both trend and volatility.
For example, looking at financial companies, one can notice that MLINCH, DB and GSACHS, although, at different volatility
levels, all present the same (cyclic) drift behavior over time. Furthermore, CIT and BAC seem quite close in terms of volatility
and drift. But visual inspection alone is not sufficient, so we try to discover clusters using the four distances introduced in
Section 4.

In Fig. 2 the dendrogram for the dMO distance, identifies 5 or 6 groups and in particular isolates BORL and ‘‘DB+GSACHS’’
into separate clusters very clearly (the difference between 5 and 6 groups is that, in the 6 groups clustering, ‘‘MLINCH +
EXXON’’ are put in a separate cluster). To isolate the BORL asset via the dendrograms of dL2 and dDTW , we need to cut it
into at least 6 groups. The counter effect of this cutting is that DB and GSACHS go into different clusters for these metrics.
The metric dSTS does not appear to give a sharp indication on how to separate clusters. We have then decided to cut all the
dendrograms into 6 groups.

The similarity matrix in Table 2 shows that dL2 and dDTW form the same groups, i.e. they are essentially the same metric
for this data set. The clustering made using dMO is only partially in agreement with dL2 and dDTW (84%). The difference is
mainly in the placement of the subgroups ‘‘HP + PHILIPS’’ and ‘‘MSOFT + DELL’’. Further, the dMO distance considers ‘‘DB +
GSACHS’’ together, whichmakes sense for this distance, probably because these two time series have the highest volatilities.

EA goes together with SONY in all dendrograms, which is not an unrealistic evidence in that the company essentially
produces software for game consoles. Also for CITI, BAC and JPM the methods agree on their placement.

4.3. Summary

In conclusion, all but the dSTS distance provide similar evidence. Nevertheless,we think dMO easily separates BORL (outlier)
and ‘‘GSACHS + DB’’, while, with the other two competitors, in order to separate BORL, we need to force an additional
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Fig. 1. Paths of the 20 assets considered: from 2006-01-03 to 2007-12-31.

Table 2
Similarity matrix between the clusters formed by different metrics. Similarity calculated according to the similarity index defined in (8) (left table) and its
symmetrized version (right table).

dMO dL2 dSTS dDTW dMO dL2 dSTS dDTW

dMO 1.00 0.84 0.60 0.84 dMO 1.00 0.81 0.54 0.81
dL2 0.79 1.00 0.71 1.00 dL2 1.00 0.69 1.00
dSTS 0.48 0.67 1.00 0.67 dSTS 1.00 0.69
dDTW 0.79 1.00 0.71 1.00 dDTW 1.00

splitting which separates GSACHS and DB. This looks quite unfortunate from a substantial point of view. Of course, this is
merely an exercise and the analysis cannot go deeper than this from a simple cluster analysis. In fact, other financial and
economics considerations have to be made, but these considerations fall outside the aim of the present paper. Still, the
simulation analysis of the previous section seems to ensure that the proposed method is robust to misspecification and
perturbation, and quite efficient in the presence of correct specification.
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Fig. 2. Clustering according to different distances. Distances normalized to 1 just for graphical representation. Although themarkers of the terminal nodes
go below the zero line (see e.g. right-bottom plot), the final nodes are obtained cutting the dendrogram above the zero line, which is represented as a
dotted line just to help visualization.

5. Software

This metric is freely available as the function MOdist in the add-on package sde for the R statistical environment (R
Development Core Team, 2009). The function MOdist outputs an object of class dist which can be used as
input to any clustering procedure implemented in R. The software can be installed from within R with command
install.packages(‘‘sde’’). The following code is an example of use in a R session:
> library(sde)

> data(quotes)

> plot(quotes)

> d <- MOdist(quotes)

> cl <- hclust(d)

> plot(cl)

In the above R code, data(quotes) loads the NYSE/NASDAQ data of previous section.
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