
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Divergences test statistics for discretely observed diffusion processes

Alessandro De Gregorio a, Stefano M. Iacus b,�

a Department of Statistics, Probability and Applied Statistics, P.le Aldo Moro 5, 00185 Rome, Italy
b Department of Economics, Business and Statistics, Via Conservatorio 7, 20124 Milan, Italy

a r t i c l e i n f o

Article history:

Received 12 August 2008

Received in revised form

28 July 2009

Accepted 28 December 2009
Available online 7 January 2010

Keywords:

Diffusion processes

Empirical level

Hypotheses testing

f- Divergences

Generalized likelihood ratio test

a b s t r a c t

In this paper we propose the use of f-divergences as test statistics to verify simple

hypotheses about a one-dimensional parametric diffusion process dXt ¼ bðXt ;aÞdtþ

sðXt ;bÞ; a 2 Rp; b 2 Rq; p;q4 ¼ 1, from discrete observations fXti
; i¼ 0; . . . ;ng with

ti ¼ iDn , i¼ 0;1; . . . ;n, under the asymptotic scheme Dn-0, nDn-1 and nD2
n-0. The

class of f-divergences is wide and includes several special members like Kullback–

Leibler, Rényi, power and a-divergences. We derive the asymptotic distribution of the

test statistics based on the estimated f-divergences. The asymptotic distribution

depends on the regularity of the function f and in general it differs from the standard w2

distribution as in the i.i.d. case. Numerical analysis is used to show the small sample

properties of the test statistics in terms of estimated level and power of the test.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of parametric testing using f-divergences. Let X be a random variable and
fpðx; yÞ; y 2 Y � Rm

g, mZ1, a family of probability densities on the same measurable space. Let y and y0 be two points
in the interior of Y and define the f- divergence as follows:

Dfðy; y0Þ ¼ Ey0
f

pðX; yÞ
pðX;y0Þ

� �
¼

Z
f

pðx; yÞ
pðx; y0Þ

� �
pðx; y0Þdx: ð1:1Þ

The function f : ½0;1Þ-R, is assumed to be measurable, twice continuously differentiable, such that fð1Þ ¼ 0 and (1.1) is
well defined.

Examples of divergences of the form Daðy; y0Þ ¼Dfa
ðy;y0Þ are the a-divergences, defined by means of the following

function:

faðxÞ ¼
4ð1�xð1þaÞ=2Þ

1�a2
; �1oao1:

Note that Daðy0;yÞ ¼D�aðy; y0Þ. The class of a-divergences has been widely studied in statistics (see, e.g., Csiszár, 1967;
Amari, 1985) and it is a family of divergences which includes several members of particular interest. For example, in the
limit as a-�1, one obtains the well-known Kullback–Leibler distance

D�1ðy; y0Þ ¼�Ey0
log

pðX; yÞ
pðX; y0Þ

� �
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while for a¼ 0, the Hellinger distance (see, e.g., Beran, 1977; Simpson, 1989) emerges. As noticed in Chandra and Taniguchi
(2006), the a- divergence is also equivalent to Rényi’s (1961) divergence defined, for a 2 ð0;1Þ, as

Raðy; y0Þ ¼
1

1�a
log Ey0

pðX; yÞ
pðX; y0Þ

� �a

from which is easy to see that in the limit as a-1, Ra reduces to the Kullback–Leibler divergence. The transformation
cðRaÞ ¼ ðexpfða�1ÞRa�1g=ð1�aÞ returns the power-divergence studied in Cressie and Read (1984). Power-divergences can
be obtained choosing fðxÞ ¼flðxÞ in (1.1), with

flðxÞ ¼
xlþ1�lðx�1Þ�x

lðlþ1Þ
; l 2 R�f0;�1g: ð1:2Þ

Liese and Vajda (1987) provided extensive study of a modified version of Ra and Morales et al. (1997) considered test
statistics by means of f-divergences with convex fð�Þ for independent and identically distributed (i.i.d) observations. A
complete source of references about estimation and testing via f-divergences can be found in Pardo (2006). In this paper
we focus our attention on the f-divergences for one-dimensional ergodic diffusion process X ¼ Xt ; t 2 ½0; T�, solution of the
following stochastic differential equation:

dXt ¼ bða;XtÞdtþsðb;XtÞdWt ; X0 ¼ x0; ð1:3Þ

with y¼ ða;bÞ 2 Ya �Yb ¼Y, Ya � Rp and Yb � Rq, p; qZ1. We denote the discrete time observations from X by
Xn ¼ fXti

g0pipn, ti ¼ iDn; i¼ 0;1;2; . . . ;n, where Dn is the length of the steps. The asymptotics is Dn-0;nDn-1 and nD2
n-0

as n-1. We study the asymptotic properties of the estimated f- divergence for discretely observed diffusion processes
defined as

Dfð
~ynðXnÞ; y0Þ ¼f

fnðXn; ~ynðXnÞÞ

fnðXn; y0Þ

 !

where y0 2 Y; fnð�; �Þ is the approximated likelihood function proposed by Dacunha-Castelle and Florens-Zmirou (1986) and
~ynðXnÞ is any consistent and asymptotically normal estimator of y. The hypotheses testing problem considered in this paper
is the following:

H0 : y¼ y0 versus H1 : yay0:

Our statistical procedure rejects the null hypothesis if Dfð
~ynðXnÞ;y0Þ4c, for some critical threshold c. The threshold c is

determined using the asymptotic distribution of the test statistics Dfð
~ynðXnÞ; y0Þ. We prove that Dfð

~ynðXnÞ; y0Þ converges
in distribution to some function of the w2

pþq random variable. This result differs from the case of i.i.d. setting.
Up to our knowledge the only result concerning the use of divergences for discretely observed diffusion process is due to

Rivas et al. (2005) where they consider the model of Brownian motion with drift dXt ¼ a dtþb dWt where a and b are two
scalars. In that case, the exact likelihood of the observations is available in explicit form and it is the Gaussian law. Conversely,
in the general setup of this paper, the likelihood of the process in (1.3) is known only for three particular stochastic differential
equations, namely the Ornstein–Uhlenbeck diffusion, the geometric Brownian motion and the Cox–Ingersoll–Ross model. In all
other cases, the likelihood has to be approximated. We choose the approximation due to Dacunha-Castelle and Florens-Zmirou
(1986) and, to derive a proper estimator, we use the local Gaussian approximation proposed by Yoshida (1992) although our
result holds for any consistent and asymptotically Gaussian estimator. This approach has been suggested by the work on Akaike
information criteria for diffusion processes by Uchida and Yoshida (2005).

For continuous time observations from diffusion processes, Vajda (1990) considered the model dXðtÞ ¼�bðtÞXt dtþ

sðtÞdWt; Küchler and Sørensen (1997) and Morales et al. (2004) contain several results on the likelihood ratio test statistics
and Rényi statistics for exponential families. Explicit derivations of the Rényi information on the invariant law of ergodic
diffusion processes have been presented in De Gregorio and Iacus (2009). For small diffusion processes, with continuous time
observations, information criteria have been derived in Uchida and Yoshida (2004) using Malliavin calculus.

The problem of testing statistical hypotheses for general diffusion processes is still a developing stream of research.
Kutoyants (2004) and Dachian and Kutoyants (2008) considered the problem of testing statistical hypotheses for ergodic
diffusion models in continuous time; Kutoyants (1994) and Iacus and Kutoyants (2001) dealt with, respectively, parametric
and semiparametric hypotheses testing for small diffusion processes; Negri and Nishiyama (2009, 2010) propose a non-
parametric test based on score marked empirical process for both continuous and discrete time observation from small
diffusion processes. The same test statistics has been studied for the ergodic case in Masuda et al. (2008). Lee and Wee
(2008) considered the parametric version of the same test statistics for a simplified model. Aı̈t-Sahalia (1996), Giet and
Lubrano (2008) and Chen et al. (2008) introduced tests based on several distances between parametric and nonparametric
estimation of the invariant density of discretely observed ergodic diffusion processes. The present paper complements the
above references.

The paper is organized as follows. Section 2 introduces notation and regularity assumptions. Section 3 states the main
result. Section 4 contains numerical experiments to study the small sample performance of the proposed test statistics in
terms of empirical level and empirical power under some alternatives. The proofs are contained in Appendix A.
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2. Assumptions on diffusion model

We consider a one-dimensional diffusion processes X ¼ Xt ; t 2 ½0; T�, solution to

dXt ¼ bða;XtÞdtþsðb;XtÞdWt ; X0 ¼ x0; ð2:1Þ

where Wt is a Brownian motion. Let y¼ ða;bÞ 2 Ya �Yb ¼Y, where Ya and Yb are, respectively, compact convex subset of
Rp and Rq, p; qZ1. We assume that the drift function b : Ya �R-R and the diffusion coefficient s : Yb �R-Rþ are
known apart from the parameters a and b. Furthermore the process Xt is supposed ergodic for every y with invariant law
my, and observed at discrete times ti ¼ iDn; i¼ 0;1;2; . . . ;n, where Dn is the length of the steps. We denote the observations
by Xn ¼ fXti

g0pipn. The asymptotic is Dn-0, nDn-1 and nD2
n-0 as n-1.

In the definition of the f- divergence (1.1) the likelihood function of the process is needed, but as noted in the
introduction, it is usually not know. There are several ways to approximate the likelihood of a discretely observed diffusion
process (for a review see, e.g., Iacus, 2008, Chapter 3). In this paper, we use the approximation proposed by Dacunha-
Castelle and Florens-Zmirou (1986) although the result holds true (by changing some of the regularity conditions) for other
approximations, like, e.g. the one based on Hermite polynomial expansion by Aı̈t-Sahalia (2002) and even the local
Gaussian approximation (see Yoshida, 1992; Kessler, 1997). To write it in explicit way, we use the same setup as in Uchida
and Yoshida (2005). The following set of assumptions ensure the good behaviour of the approximated likelihood and the
existence of a weak solution of (2.1)

Assumption 2.1 (Regularity on the process).

(i) There exists a positive constant C such that

jbða0; xÞ�bða0; yÞjþjsðb0; xÞ�sðb0; yÞjrCjx�yj:

(ii) infb;xs2ðb; xÞ40.
(iii) The process X is ergodic for every y with invariant probability measure my.
(iv) For all mZ0 and for all y, suptEjXtj

mo1.
(v) For every y, the coefficients bða; xÞ and sðb; xÞ are five times differentiable with respect to x and the derivatives are

bounded by a polynomial function in x, uniformly in y.
(vi) The coefficients bða; xÞ and sðb; xÞ and all their partial derivatives respect to x up to order 2 are three times

differentiable with respect to y for all x in the state space. All derivatives with respect to y are bounded by a
polynomial function in x, uniformly in y.

In order to define the approximated likelihood, we need to introduce the following functions:

sðx;bÞ ¼
Z x

0

du

sðb;uÞ ; Bðx; yÞ ¼
bða; xÞ
sðb; xÞ�

1

2

@

@x
sðb; xÞ;

~Bðx; yÞ ¼ B
1

sðb; xÞ
; y

� �
; ~hðx; yÞ ¼

@2

@x2
~Bðx; yÞþ

@

@x
~Bðx; yÞ:

Assumption 2.2 (Regularity for the approximation, see Uchida and Yoshida, 2005). For i¼ 0;1;2;3 we have

(i) ð@i=@yi
Þ ~hðx;yÞ ¼Oðjxj2Þ as x-1.

(ii) infxð@i=@yi
Þ ~hðx;yÞ4�1.

(iii) supysupxjð@
i=@yi
Þð@5=@x5Þ ~hðx; yÞjrMo1.

(iv) There exists g40 such that for every y and j¼ 1; . . . ;4, jð@i=@yi
Þð@j=@yj

Þ ~Bðx; yÞj ¼Oðj ~Bðx;yÞjgÞ as jxj-1.

Assumption 2.3 (Identifiability). If the coefficients bða; xÞ ¼ bða0; xÞ and s2ðb; xÞ ¼ s2ðb0; xÞ for all x (my0
Falmost surely),

then a¼ a0 and b¼ b0.

Under Assumptions 2.1 and 2.2 Dacunha-Castelle and Florens-Zmirou (1986) introduced the following approximation of
the transition density f of the process X from y to x at lag t

f ðt; x; y;yÞ ¼
1ffiffiffiffiffiffiffiffi

2pt
p

sðb; yÞ
exp �

S2ðx; y;bÞ
2t

þHðx; y; yÞþt ~gðx; y; yÞ
� �

ð2:2Þ

and its logarithm becomes

lðt; x; y; yÞ ¼�
1

2
logð2ptÞ�logsðb; yÞ� S2ðx; y;bÞ

2t
þHðx; y; yÞþt ~gðx; y; yÞ;
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where

Sðx; y;bÞ ¼
Z y

x

du

sðb;uÞ ; Hðx; y; yÞ ¼
Z y

x

bða;uÞ
s2ðb;uÞ

�
1

2

@

@x
sðb;uÞ

sðb;uÞ

8><
>:

9>=
>;du;

~gðx; y; yÞ ¼ �
1

2
Cðx; yÞþCðy; yÞþ

1

3
Bðx; yÞBðy; yÞ

� �
;

Cðx; yÞ ¼
1

3
B2ðx;yÞþ

1

2
sðb; xÞ @

@x
Bðx;yÞ:

The approximated likelihood and log-likelihood functions of the observations Xn become, respectively,

fnðXn; yÞ ¼
Yn

i ¼ 1

f ðDn;Xti
;Xti�1

; yÞ ð2:3Þ

and

lnðXn;yÞ ¼
Xn

i ¼ 1

lðDn;Xti
;Xti�1

; yÞ:

3. Construction of the test statistics and results

Clearly, the quantity Dfðy; y0Þ measures the discrepancy between two parametric models and represents an ideal
candidate to construct a test statistics. Let ~ynðXnÞ be any consistent estimator of y0 and such that

G�1=2
ð ~ynðXnÞ�y0Þ-

d
Nð0; I ðy0Þ

�1
Þ; ð3:1Þ

where I ðy0Þ is the positive definite and invertible Fisher information matrix at y0 equal to

I ðy0Þ ¼
ðIkj

b ðy0ÞÞk;j ¼ 1;...;p 0

0 ðIkj
s ðy0ÞÞk;j ¼ 1;...;q

0
@

1
A;

where

Ikj
b ðy0Þ ¼

Z
1

s2ðb0; xÞ

@bða0; xÞ

@ak

@bða0; xÞ

@aj
my0
ðdxÞ;

Ikj
s ðy0Þ ¼ 2

Z
1

s2ðb0; xÞ

@sðb0; xÞ

@bk

@sðb0; xÞ

@bj

my0
ðdxÞ:

We denote by G the ðpþqÞ � ðpþqÞ matrix

G¼

1

nDn
Ip 0

0
1

n
Iq

0
BB@

1
CCA;

where Ip is the p� p identity matrix.
To construct the test statistics by means of an estimate of the f- divergence in (1.1), we make use of the approximated

likelihood fnðXn; yÞ and replace y by any consistent and asymptotically Gaussian estimator ~ynðXnÞ. Having only one single
observation of Xn, i.e. only one observed trajectory, we estimate (1.1) with

Dfð
~ynðXnÞ; y0Þ ¼f

fnðXn; ~ynðXnÞÞ

fnðXn; y0Þ

 !
: ð3:2Þ

Conversely to the i.i.d. case, there is no expected value in (3.2). We will discuss this point after the presentation of Theorem
3.1. We consider the following hypotheses testing problem:

H0 : y¼ y0 versus H1 : yay0:

Our statistical procedure rejects the null hypothesis if Dfð
~ynðXnÞ; y0Þ4c, for some critical threshold c. Next theorem gives

the asymptotic distribution of Dfð
~ynðXnÞ; y0Þ from which it is possible to determine the threshold c.

Consider the divergence defined in (3.2) and let f : ½0;1Þ-R be measurable, twice continuously differentiable and
such that fð1Þ ¼ 0. We denote by Cf ¼f0ð1Þ and Kf ¼f00ð1Þ the first two derivatives at point 1. Assume that at least one
among Cf and Kf is not zero.

ARTICLE IN PRESS

A. De Gregorio, S.M. Iacus / Journal of Statistical Planning and Inference 140 (2010) 1744–1753 1747



Author's personal copy

Theorem 3.1. Under H0 : y¼ y0, Assumptions 2.1–2.3, convergence (3.1), we have that

Dfð
~ynðXnÞ;y0Þ-

d 1
2ðCfxpþqþðCfþKfÞx

2
pþqÞ; ð3:3Þ

where xpþq � w2
pþq is the Chi-squared random variable with pþq degrees of freedom.

Remark 3.1. The proof of Theorem 3.1 is based on Taylor expansion up to second order like in the i.i.d. case. But if one uses
first order approximation, it is easy to obtain that Dfð

~ynðXnÞ; y0Þ-
d

Cfw2
pþq when Cfa0.

Remark 3.2. If we consider the limit as a-�1 for faðxÞ of the a-divergences, i.e. we consider the Kullback–Leibler
divergence, we have

f�1ðxÞ :¼ lim
a-�1

faðxÞ ¼�logðxÞ

for which Cf ¼�1 and Kf ¼ 1. In that case, (3.3) reduces to the standard result for the likelihood ratio test statistics. For the
power-divergences, with f as in (1.2), it is easy to verify that Cf ¼f0ð1Þ ¼ 0 and the asymptotic distribution differs from
the usual i.i.d. setting, i.e. Dfð

~ynðXnÞ; y0Þ-
d 1

2KfZpþq.

The convergence in Theorem 3.1 may appear somewhat strange if one thinks about the usual results on f-divergences
for i.i.d. observations. The main difference in diffusion models, is that our estimate of the divergence has not the usual form
of an expected value, i.e. it estimates the expected value with one observation only. This is why, in the i.i.d case, the first
term in the Taylor expansion of Df vanishes being the expected value of the score function, while in our case it remains
only the score function which, as usual, converges to a Gaussian random variable. For the same reason, in the second term
of the Taylor expansion, in the i.i.d. case the expected value of the second order derivative appears which converges to the
Fisher information and, in our case, we have no expected value, hence the convergence to the square of the w2 emerges.

If one wants to emulate the standard results for the i.i.d. case, it is still possible to work on the invariant density of the
diffusion process. In that case, the f- divergence takes the usual form of the i.i.d. case because the invariant density have an
explicit form. Indeed, let

sðx;yÞ ¼ exp �2

Z x

~x

bðy; yÞ
s2ðy; yÞ

dy

� �
; mðx; yÞ ¼

1

s2ðy; xÞsðx; yÞ

be the scale and speed functions of the diffusion, with ~x some value in the state space of the diffusion process. Let
M¼

R
mðx; yÞdxo1, then pðx; yÞ ¼mðx; yÞ=M is the invariant density of the diffusion process. In this case, it is possible to

define the f- divergence as

Dfð
~yn; y0Þ ¼

Z
f

pðx; ~ynÞ

pðx; y0Þ

 !
pðx; y0Þdx

and the standard results follows.

Remark 3.3. In our application, to derive and estimator, we consider further the local Gaussian approximation of the same
transition density (see, Yoshida, 1992)

gnðXn; yÞ ¼
Xn

i ¼ 1

gnðDn;Xti�1
;Xti

; yÞ; ð3:4Þ

where

gðt; y; x; yÞ ¼�
1

2
logð2ptÞ�logsðb; xÞ� ½y�x�tbða; xÞ�2

2ts2ðb; xÞ
:

The approximate maximum likelihood estimator ŷnðXnÞ based on (3.4) is then defined as

ŷnðXnÞ ¼ arg sup
y

gnðXn; yÞ: ð3:5Þ

Under the condition nD2
n-0 (see Theorem 1 in Kessler, 1997) the estimator ŷnðXnÞ in (3.5) satisfies (3.1). Hence, the result

of Theorem 3.1 applies for ~ynðXnÞ ¼ ŷnðXnÞ.

Remark 3.4. In Theorem 3.1 there is no need to impose Cf ¼ 0 and Kf ¼ 1 as, e.g. in Morales et al. (1997). Of course, in our
case the constants Cf and Kf enter in the asymptotic distribution of the test statistics. The convergence result is also
interesting because, contrary to the i.i.d case, the rate of convergence of the estimators of y for the drift and diffusion
coefficients are different and are, respectively, equal to

ffiffiffiffiffiffiffiffiffi
nDn

p
and

ffiffiffi
n
p

.

Remark 3.5. Assumptions 2.2 may appear a bit complicated to check, but the result in Theorem 3.1 holds even if one uses
the local Gaussian approximation in Yoshida (1992) or the Hermite polynomial expansion in Aı̈t-Sahalia (2002) instead of
(2.3). In that case one just need to replace Assumption 2.2 with the corresponding regularity conditions. The proof of
Theorem 3.1 remains unchanged.
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4. Numerical analysis

Although asymptotic properties have been obtained, what really matters in application is the behaviour of the test
statistics under fine sample setup. We study the empirical performance of the test for small samples in terms of level of the
test and power under some alternatives. In the analysis we consider the estimator (3.5) and compare the power
divergences

DlðŷnðXnÞ;y0Þ ¼fl
fnðXn; ŷnðXnÞÞ

fnðXn; y0Þ

 !
;

with flðxÞ ¼ ðx
lþ1�x�lðx�1ÞÞ=ðlðlþ1ÞÞ, Cl ¼ 0, Kl ¼ 1 and l 2 f�0:99;�1:20;�1:50;�1:75;�2:00;�2:50g, and the general-

ized likelihood ratio test

DlogðŷnðXnÞ; y0Þ ¼ �log
fnðXn; ŷnðXnÞÞ

fnðXn; y0Þ

 !
:

For Dlog and Dl, the threshold of the rejection region of the test are calculated, respectively, using the true quantiles of the
w2

pþq random variable and using formula (3.3) and the empirical quantiles of (3.3) of 100,000 simulations of the random
variable w2

pþq.
We evaluate the empirical level of the test calculated as the number of times the test rejects the null hypothesis under

the true model, i.e.

ân ¼
1

M

XM
i ¼ 1

1fDf 4 cag;

where 1A is the indicator function of set A, M¼ 10;000 is the number of simulations and ca is the ð1�aÞ% quantile of the
proper distribution. Similarly we calculate the power of the test under alternative models as

b̂n ¼
1

M

XM
i ¼ 1

1fDf 4cag:

The simulation setup is the same as the ones proposed in Pritsker (1998) and Chen et al. (2008). The parameters of the
chosen models under the null hypotheses H0 and the alternatives H1, have been set according to these authors. In
particular VAS0 corresponds to the model estimated by Aı̈t-Sahalia (1996) for real interest rates data. In our experiments
we consider then the following two families of stochastic processes:

The Vasicek (VAS) model: dXt ¼ kða�XtÞdtþsdWt , where, in finance, s is interpreted as volatility, a is the long-run
equilibrium value of the process and k is the speed of reversion. Let

H0 : y¼ y0 ¼ ðk0;a0;s2
0Þ ¼ ð0:85837;0:089102;0:0021854Þ model VAS0

we consider two different alternative hypotheses H1

H1 : y¼ y1 ¼ ð4 � k0;a0;4 � s2
0Þ model VAS1

and

H1 : y¼ y1 ¼ ð
1
4 k0;a0;

1
4 � s

2
0Þ model VAS2:

The interesting facts are that VAS0, VAS1 and VAS2 have all the same stationary distributions Nða0;s2
0=ð2k0ÞÞ, a Gaussian

transition density

N a0þðx0�a0Þe
�kt ;

s2
0ð1�e�2ktÞ

2k0

� �

and covariance function given by

CovðXs;XtÞ ¼
s2

0

2k0
e�kðsþ tÞðe�2kminðs;tÞ�1Þ:

Moreover, both show a strong dependency of the covariance as a function of k, which makes this model interesting in
comparison with the i.i.d. setting.

The Cox–Ingersoll–Ross (CIR) model: dXt ¼ kða�XtÞdtþs
ffiffiffiffiffi
Xt

p
dWt . Let ðk0;a0;s2

0Þ ¼ ð0:89218;0:09045;0:032742Þ, we
consider different values of the parameters under H0 and H1 like in the Vasicek case, i.e.

Model y¼ ðk;a;s2Þ

CIR0 y0 ¼ ðk0;a0 ;s2
0Þ

CIR1 y1 ¼ ð
1
2 � k0 ;a0;

1
2 � s

2
0Þ

CIR2 y1 ¼ ð
1
4 � k0 ;a0;

1
4 � s

2
0Þ
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The CIR model has a transition density of w2- type, hence local Gaussian approximation is less likely to hold for non
negligible values of Dn, so this may impact the performance of the estimator ŷn. Notice that the general CIR model does not
satisfy Assumption 2.1(ii), but for our particular choice of the parameter set, the process is strictly positive for all x, so the
approximation holds.

We study the empirical level and the empirical power of the different test statistics for different values of Dn 2

f0:1;0:001g and n 2 f50;100;500g. For each trajectory we simulate 1000 observations and extract only that last n

observations. Disregarding the first part of the trajectory ensures that the process is in the stationary state.
The results of these simulations are reported in Tables 1 and 2. We point out that in the tables in the column ‘‘model (a,

n)’’ the a corresponds to the true level of the test used to calculate ca. The column Dlog reports the empirical level and
power for the generalized likelihood test which is our benchmark and the remaining columns the same quantities for the
power-divergences Dl for different values of l.

Summary of the analysis for the Vasicek model: It emerges that for l¼�0:99, the power divergence cannot identify as
wrong model VAS1 for small sample size n¼ 50 and Dn ¼ 0:001 (Table 1, row 2), although this is not the case for the other
values of l and the likelihood ratio test.

In general power divergences for l in f�0:99;�1:20;�1:50;�1:75;�2:00g have always very small empirical level and
high empirical power under the selected alternatives.

The power divergences are, on average, better than the likelihood ratio test in terms of both empirical level â and power
b̂ under the selected alternatives.

Summary of the analysis for the CIR model: As seen from Table 2, the same average considerations apply to the case of CIR
model. The difference is that, for small sample size, all test statistics have low power under the alternative CIR1 while CIR2

does not present particular problems.

5. Conclusions

It seems that, as in the i.i.d. case, also for discretely observed diffusion processes the f-divergences may compete or
improve the performance of the standard likelihood ratio statistics. In particular, the power divergences are in general
quite good in terms of estimated level and power of the test even for moderate sample sizes (e.g. nZ100 in our
simulations).

The package sde for the R statistical environment (R Development Core Team, 2009) and freely available at
http://cran.R-Project.org contains the function sdeDiv which implements the f- divergence test statistics.
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Appendix A. Proofs

The following important lemmas are useful to prove Theorem 3.1.

Lemma A.1 (Kessler, 1997). Under Assumptions 2.1–2.3, the following hold true:

G1=2rygnðXn; y0Þ-
d

Nð0; I ðy0ÞÞ: ðA:1Þ

Lemma A.2 (Uchida and Yoshida, 2005). Under the Assumptions 2.1–2.3, the following hold true:

G1=2rylnðXn; y0Þ ¼G1=2rygnðXn; y0Þþopð1Þ: ðA:2Þ

Lemma A.3 (Uchida and Yoshida, 2005). Under Assumptions 2.1–2.3, the following hold true:

G1=2r
2
ylnðXn; y0ÞG1=2-

p
�I ðy0Þ: ðA:3Þ

Proof of Theorem 3.1. We start by applying delta method. We denote the gradient vector by ry ¼ ½@=@yi�, i¼ 1; . . . ;pþq

and similarly the Hessian matrix by r2
y ¼ ½@

2=@yi@yj�, i; j¼ 1; . . . ; pþq. We have

Dfð
~ynðXnÞ;y0Þ ¼Dfðy0;y0Þþ½G1=2ryDfðy0; y0Þ�

TG�1=2
ð ~ynðXnÞ�y0Þþ

1

2
½G�1=2

ð ~ynðXnÞ�y0Þ�
TG1=2r

2
yDfðy0; y0ÞG1=2

�G�1=2
ð ~ynðXnÞ�y0Þþopð1Þ: ðA:4Þ

Notice that Dfðy0; y0Þ ¼ 0 and, for k¼ 1; . . . ; pþq,

@

@yk
f

fnð�;yÞ
fnð�; y0Þ

� �� �
¼

1

fnð�; y0Þ
f0

fnð�; yÞ
fnð�; y0Þ

� �
@fnð�; yÞ
@yk
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and, for k; j¼ 1; . . . ; pþq,

@2

@yk@yj
f

fnð�; yÞ
fnð�; y0Þ

� �� �
¼

1

f 2
n ð�; y0Þ

f0 0
fnð�; yÞ
fnð�; y0Þ

� �
@fnð�; yÞ
@yk

@fnð�; yÞ
@yj

þ
1

fnð�; y0Þ
f0

fnð�; yÞ
fnð�; y0Þ

� �
@2fnð�;yÞ
@yk@yj

:

Therefore

ryDfðy0; y0Þ ¼ CfrylnðXn; yÞ
		
y ¼ y0

¼ CfrylnðXn; y0Þ ðA:5Þ
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Table 1
Numbers represent probability of rejection under the true generating model, with ca calculated under H0.

Model (a;nÞ Dlog l¼�0:99 l¼�1:20 l¼�1:50 l¼�1:75 l¼�2:00 l¼�2:50

VAS0 ð0:01;50Þ 0.01 0.00 0.00 0.00 0.01 0.02 0.04

VAS1 ð0:01;50Þ 1.00 0.00 0.99 1.00 1.00 1.00 1.00

VAS2 ð0:01;50Þ 1.00 0.40 1.00 1.00 1.00 1.00 1.00

VAS0 ð0:05;50Þ 0.04 0.00 0.00 0.00 0.01 0.03 0.06

VAS1 ð0:05;50Þ 1.00 0.67 1.00 1.00 1.00 1.00 1.00

VAS2 ð0:05;50Þ 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 ð0:01;100Þ 0.01 0.00 0.00 0.00 0.01 0.02 0.04

VAS1 ð0:01;100Þ 1.00 0.23 1.00 1.00 1.00 1.00 1.00

VAS2 ð0:01;100Þ 1.00 0.88 1.00 1.00 1.00 1.00 1.00

VAS0 ð0:05;100Þ 0.04 0.00 0.00 0.00 0.01 0.03 0.06

VAS1 ð0:05;100Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS2 ð0:05;100Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 ð0:01;500Þ 0.02 0.00 0.00 0.00 0.01 0.03 0.08

VAS1 ð0:01;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS2 ð0:01;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 ð0:05;500Þ 0.07 0.00 0.00 0.01 0.03 0.06 0.12

VAS1 ð0:05;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS2 ð0:05;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 ð0:01;50Þ 0.01 0.00 0.00 0.00 0.01 0.02 0.05

VAS1 ð0:01;50Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS2 ð0:01;50Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 ð0:05;50Þ 0.05 0.00 0.00 0.00 0.02 0.03 0.09

VAS1 ð0:05;50Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS2 ð0:05;50Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 ð0:01;100Þ 0.01 0.00 0.00 0.00 0.00 0.01 0.05

VAS1 ð0:01;100Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS2 ð0:01;100Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 ð0:05;100Þ 0.04 0.00 0.00 0.00 0.01 0.03 0.08

VAS1 ð0:05;100Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS2 ð0:05;100Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 ð0:01;500Þ 0.00 0.00 0.00 0.00 0.00 0.01 0.02

VAS1 ð0:01;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS2 ð0:01;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS0 ð0:05;500Þ 0.02 0.00 0.00 0.00 0.01 0.01 0.04

VAS1 ð0:05;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

VAS2 ð0:05;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Therefore, the values are â under model ‘‘0’’ and b̂ otherwise. Estimates calculated on 10,000 experiments. Estimated power-divergences for Dn ¼ 0:001

(upper table) and Dn ¼ 0:1 (bottom table).
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and

r2
yDfðy0; y0Þ ¼ KfrylnðXn; y0Þ½rylnðXn; y0Þ�

TþCf
1

f ðXn; y0Þ
r2

yf ðXn; y0Þ

¼ ðKfþCfÞrylnðXn; y0Þ½rylnðXn; y0Þ�
TþCfr

2
ylnðXn; y0Þ: ðA:6Þ

Plugging in (A.4) the terms (A.5) and (A.6) and making use of Lemmas A.1–A.3 and Slutsky’s theorem we get

Dfð
~ynðXnÞ;y0Þ-

d 1
2½CfxpþqþðCfþKfÞx

2
pþq�;
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Table 2
Numbers represent probability of rejection under the true model, with rejection region calculated under H0.

Model (a;nÞ Dlog l¼�0:99 l¼�1:20 l¼�1:50 l¼�1:75 l¼�2:00 l¼�2:50

CIR0 ð0:01;50Þ 0.03 0.00 0.00 0.00 0.02 0.05 0.13

CIR1 ð0:01;50Þ 0.63 0.00 0.01 0.28 0.55 0.71 0.87

CIR2 ð0:01;50Þ 1.00 0.00 0.81 1.00 1.00 1.00 1.00

CIR0 ð0:05;50Þ 0.12 0.00 0.00 0.01 0.04 0.09 0.19

CIR1 ð0:05;50Þ 0.86 0.00 0.09 0.48 0.70 0.81 0.92

CIR2 ð0:05;50Þ 1.00 0.00 0.97 1.00 1.00 1.00 1.00

CIR0 ð0:01;100Þ 0.03 0.00 0.00 0.00 0.02 0.05 0.14

CIR1 ð0:01;100Þ 0.97 0.00 0.21 0.83 0.95 0.98 0.99

CIR2 ð0:01;100Þ 1.00 0.00 1.00 1.00 1.00 1.00 1.00

CIR0 ð0:05;100Þ 0.12 0.00 0.00 0.01 0.05 0.09 0.20

CIR1 ð0:05;100Þ 0.99 0.00 0.53 0.93 0.98 0.99 1.00

CIR2 ð0:05;100Þ 1.00 0.24 1.00 1.00 1.00 1.00 1.00

CIR0 ð0:01;500Þ 0.03 0.00 0.00 0.00 0.02 0.04 0.10

CIR1 ð0:01;500Þ 1.00 0.00 1.00 1.00 1.00 1.00 1.00

CIR2 ð0:01;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CIR0 ð0:05;500Þ 0.09 0.00 0.00 0.01 0.04 0.07 0.15

CIR1 ð0:05;500Þ 1.00 0.95 1.00 1.00 1.00 1.00 1.00

CIR2 ð0:05;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CIR0 ð0:01;50Þ 0.01 0.00 0.00 0.00 0.01 0.02 0.06

CIR1 ð0:01;50Þ 0.80 0.00 0.06 0.52 0.75 0.86 0.94

CIR2 ð0:01;50Þ 1.00 0.00 0.99 1.00 1.00 1.00 1.00

CIR0 ð0:05;50Þ 0.05 0.00 0.00 0.00 0.02 0.04 0.09

CIR1 ð0:05;50Þ 0.94 0.00 0.23 0.70 0.85 0.92 0.96

CIR2 ð0:05;50Þ 1.00 0.06 1.00 1.00 1.00 1.00 1.00

CIR0 ð0:01;100Þ 0.01 0.00 0.00 0.00 0.01 0.02 0.05

CIR1 ð0:01;100Þ 0.99 0.00 0.56 0.96 0.99 1.00 1.00

CIR2 ð0:01;100Þ 1.00 0.00 1.00 1.00 1.00 1.00 1.00

CIR0 ð0:05;100Þ 0.04 0.00 0.00 0.00 0.02 0.03 0.08

CIR1 ð0:05;100Þ 1.00 0.00 0.83 0.99 1.00 1.00 1.00

CIR2 ð0:05;100Þ 1.00 0.97 1.00 1.00 1.00 1.00 1.00

CIR0 ð0:01;500Þ 0.00 0.00 0.00 0.00 0.00 0.01 0.02

CIR1 ð0:01;500Þ 1.00 0.00 1.00 1.00 1.00 1.00 1.00

CIR2 ð0:01;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CIR0 ð0:05;500Þ 0.02 0.00 0.00 0.00 0.01 0.02 0.04

CIR1 ð0:05;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CIR2 ð0:05;500Þ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Therefore, the values are â under model ‘‘0’’ and b̂ otherwise. Estimates calculated on 10,000 experiments. Estimated power-divergences for Dn ¼ 0:001

(upper table) and Dn ¼ 0:1 (bottom table).

A. De Gregorio, S.M. Iacus / Journal of Statistical Planning and Inference 140 (2010) 1744–17531752



Author's personal copy

where xpþq � w2
pþq. It is easy to verify that the density function of the r.v. x2

pþq is equal to

fx2
pþ q
ðzÞ ¼

ð1=2ÞðpþqÞ=2

G
pþq

2


 � ffiffiffi
z
p ðpþqÞ=2�1

e�
ffiffi
z
p
=2 1

2
ffiffiffi
z
p ; z40: & ðA:7Þ
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De Gregorio, A., Iacus, S.M., 2009. Rényi information for ergodic diffusion processes. Inform. Sci. 179, 279–291.
Giet, L., Lubrano, M., 2008. A minimum Hellinger distance estimator for stochastic differential equations: an application to statistical inference for

continuous time interest rate models. Comput. Statist. Data Anal. 52, 2945–2965.
Iacus, S.M., 2008. Simulation and Inference for Stochastic Differential Equations. Springer, New York.
Iacus, S.M., Kutoyants, Y., 2001. Semiparametric hypotheses testing for dynamical systems with small noise. Math. Methods Statist. 10 (1), 105–120.
Kessler, M., 1997. Estimation of an ergodic diffusion from discrete observations. Scand. J. Statist. 24, 211–229.
Kutoyants, Y., 1994. Identification of Dynamical Systems with Small Noise. Kluwer, Dordrecht.
Kutoyants, Y., 2004. Statistical Inference for Ergodic Diffusion Processes. Springer, London.
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Rényi, A., 1961. On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Probability and Mathematical Statistics,

vol. 1, University of California, Berkeley, pp. 547–461.
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