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Abstract

A simple method to find the instanton trajectories is developed. This method doemplay any ap-
proximation and “exact” instanton trajectories have been located foraealinear symmetric reactions.
Underlying the method is the notion of stability of periodic trajectories and thavbetof the action deriva-
tives. Applications to thermal rate constants calculations are presente@thghbat the method is suitable
for quantitative rate constant predictions. In deep tunneling regime gnghelassical rate underestimation
is about two orders of magnitude, the semiclassical instanton rate is withirgi@eris the exact quantum
mechanical value. Then, the consistent amount of tunneling involved uy lpeaticles transfer, as for the
collinear H+BrH reaction, shows that “corner-cutting” is not necegsgartunneling to occur, even ifitis a
sufficient condition to detect a significant presence of tunneling effects
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. INTRODUCTION

Quantum mechanical rate constant theory is the topic of siderable number of studies,
due to the vast experimental evidences that tunneling @ldes role not only in proton transfer,
but also in heavier atoms transfer at low temperatures [1,@Jantum thermal rate constant
formulation has also been central in W. H. Miller’s resear&ack in the late sixties and early
seventies, Miller showed in a series of papers how to reptepgantum observables, such as
tunneling, in terms of classical variables [3—7]. Theseltesvere welcomed with great interest by
the chemical dynamics community because in these papensarantuitive quantum phenomena
were explained with a coherent and self-consistent clalssicture. First, he showed that classical
dynamics on the inverted potential is a path approximatoiife Boltzmann density matrix [3, 8,
9]. This is equivalent to the celebrated “Euclidean actjdater called instanton action [10, 11].
Then, he formulated an exact quantum mechanical theoriaédhtermal rate constant calculations
[12]. The semiclassical (Wigner distribution) picture bfst formulation and related stationary
phase approximations brought him to derive the instantearthfor the rate constant calculation,
where only a single trajectory is needed to reproduce timgelffects [13].

Actually, tunneling was already represented at that timarmlytical continuation of the time
evolution [14]. Also, Langer et al. [15, 16] derived the nst#dle decaying time by analytical
continuation and, successively, their derivation wentauride name of “Im F” [17]. Only later, in
the mid-seventies, Coleman [18] and the physics communi@y1, 19] employed it in theoreti-
cal particle physics and called it “the instanton theorydnfdistinguoshould be made between
these theories, where tin@nimaof a double-well potential are assumed to be the instanton tu
ing points and the period is stretched to infinity [20], andsih instanton trajectories with finite
imaginary-time for thermal rate constant calculationse Tristanton theory is still nowadays used
by this community with proficiency [21-25].

When the instanton theory for thermal rate constant calicmiahas been developed by Miller,
applications [26] revealed how difficult it was to find instiam trajectories. For these reasons a
number of recipes to approximate such trajectories haspfre@osed. The “t-curve”, an instanton
path approximation where the vibrational coordinates \iigegl, describes tunneling mainly along
the reaction coordinate and it is not unique [27]. Laterhlauand coworkers [28], developed a
series of methods for calculating thermal rate constarties& are approximations of the original

instanton method, but easier to implement for complex reast One is the zero-curvature tunnel-



ing (ZCT) approximation [29] and another the small-curvatiunneling (SCT) (or “adiabatic” or
“slow-flip”) one, in which tunneling trajectory is on the tgthe minimum energy path. [30] Be-
side, there is the large-curvature ground-state tunné€li®@y) method [31], which is also known
under various names such as “direct path approximationgdsn” or “frozen bath” and “fast flip”
approximation and it fits the extreme case when the reactyectory cuts the corner between the
reactants and the products valleys. The SCT and LCT trangmissiefficients cover the whole
range of reaction-path curvatures, so it was natural toldpgetransmission coefficient which was
equal to the largest between the SCT and LCT tunneling prabebil This last approximation
is called microcanonical optimized multidimensional talimg (LOMT) method.[32] Finally, the
least-action ground-state tunneling (LAT) [33] was depeld as a more precise method. These
approximations are usually introduced on rather intuitjk@unds and judged by comparison with
guantum mechanical computations, when the latter areadlail However, when tunneling from
the ground state is involved rather than small tunnelingemions next to the barrier top, the
reaction probability is very sensitive to the choice of tlahp and neither one of the above ap-
proximations can quantitatively describe the rate constam find the exact instanton trajectory
and include the correct prefactor, going beyond its frequaitary approximation, is needed in
these cases.

The difficulties in finding the instanton trajectory in marnynension can be bypassed by con-
tinuously deforming the potential by changing its paramset&tarting from the situation where
the reactive coordinate is uncoupled and the instantortisnlis one dimensional, the parameters
are gradually changed up to the desired potential [1, 34yvé¥er this method can not laepriori
applied to any potential. Alternatively, correction terare added to the one-dimensional picture
by introducing coupling to the other vibrational degreefreédom (transverse normal modes) in
harmonic approximation [35].

The instanton idea was also at the origin of several quanteshanical theories formulations
or interpretations [36]. For example, the Ring-Polymer Malar Dynamics has been refined
using the instanton periodic trajectories [37]. The ingiandea was also employed for accurate
guantum transition state theories formulations, suchasgtiantum instanton one [38—45].

In this paper, | recall the original Miller's derivation ofi¢ semiclassical instanton method
and propose a way to find the instanton trajectories withowdking any sort of approximation
for the instanton path. Previous “exact” instanton calicokes have been limited to the collinear

H 4+ H, reaction [26]. Here, a different approach than the one uséle past is introduced and



employed, i.e. inspecting the classical action behaviatifédrent trajectory initial conditions.
This method allowed me to graphically determine, withinesal/digits of precision, the initial
conditions of the instanton trajectory. After locating Bwctrajectory, the quantities needed for
the rate calculation can be easily obtained. In this wayamtsn trajectories for a complete set of
symmetric collinear reactions are calculated and the ‘Bx@&dthout any approximation for the
prefactor terms) instanton rate expression is employeldamate calculation.

This paper is organized as follows. In Section 2 a derivatioime instanton rate in the energy
domain is shown and Miller’s original derivation is recalldn Section 3 a criterion for the mul-
tidimensional instanton path search is put forward andiegpb the symmetric collinear reaction
rate calculations shown in Section 4. Section 5 discus&esegults and Section 6 concludes the

paper.

II. RECALLING THE SEMICLASSICAL INSTANTON APPROXIMATION

Instanton dynamics was derived by Miller [13] to calculdtertmal rate constants in tunneling
regime. A possible quantum formulation of the rate consikamjiven in terms of the thermal
Boltzmann average of the cumulative reaction probabMitye ) at energye

1

k(T):W(T)/OWN(E)eXp[—E/kBT]dE (I1.1)

whereksg is the Boltzmann constant ai@} (T) is the reactants partition function.

In a tunneling regime, i.e. for a classical forbidden prscélse energy is such th&t < V.,
whereV, is the potential at the top of the barrier. The well-knownfrégk-Wenzel-Kramers-
Brillouin (JWKB) approximation [46, 47] offers a possible fautation of a quantum probability

transition in terms of classical variables [14],

N(E) :exp{—&éa} (1.2)

where the exponent is

02 1/2
B(E) = Im dg(2m[E -V (q)]) (1.3)
a1
T is the trajectory total time at enerdy, q; andgy are the multidimensional turning points and

they delimit the tunneling region or what is also called thre€raction region” [1, 13].



After substituting Equations (I1.2) and (11.3) into the eagxpression Equation (11.1), the inte-
gration inE is done by steepest descent approximation. The stationarg pointE = E (f3) is
given by inverting the following equation [4]

B (E) = 2990
02 m 1/2_
-2 [ 0 (gyg—g) =@ 9

which determines the periad(E) of the instanton trajectory. Equation (11.4) is pivot in fiaston
theory: It relates the temperature with the imaginary tireequ of the instanton trajectory, no
matter what shape the potential barrier is. In order to ceteghe steepest descent integration the
second order derivative is calculated

d?0(E) dr(E) A

“2T4EZ T dE "~ E'(B)

(I1.5)

where the equivalence in Equation (I.4) betwgérand the imaginary time is used. Another

way to derive Equation (11.4) is shown in Appendix A. In comsion, the rate of Equation (11.1)

b
T e e, -pe(p) - 2P (16)
“Q (M 2m P ] '
or by writing the prefactor in terms & (E) is
1 1 2nh
“T) = o mam\ 207 €B)
X exp{—BE(B)—&ﬁ(mq. (1.7)

This is the JWKB results for thermal rate in classical forleiddegime and it shows how imaginary
time and periodic motion are able to describe the thermal dat Equation (11.3) the integral de-
pends both on the barrier height and width. Therefore, thetirey particle has to choose between
the short way with a high barrier and the long passage wittwablarrier. The actual tunneling
path is a compromise between these two factors.

As mentioned in the Introduction, Miller derived a fully cstent semiclassical expression of
the rate in tunneling regime. The idea was strictly relatethé original Transition State Theory
(TST) one. Miller’s derivation is recalled in Appendix B atigk reader should refer to his original
papers for details [4, 13]. His final result is very similarEquation (11.7) and it resembles the
TST one,



F-1 1
il:l 2sinh(u; (E) /2] (11.8)

wherei =1,....,F — 1 are the degrees of freedom perpendicular to the reactiomicate,u; (E)

the stability parameters [13] and
. (T(E) .
P(E) = RBE—i [ dip(t) 4()
hg _
= [ dtH (p().a(r) (119)

is the action of trajectories with enery= —p (1)2/2m+V (q(1)) andT = it is the analytical
continuation of the real time evolution. Equation (11.8}h& working expression of this paper for
the rate constants calculation. The integﬁé@ dtp(t) q(t) is also called “least actior§ a. The

action and the energy in Equation (11.8) are related as wlftene) classical mechanics

i [T(E)
so@m= & loem -1 [ a0 ao]

. (T(E) .
_ E(B)+[ - idk d;;(t)q(t)]E,(B)

= E(B) (11.10)

where Equation (VI1.13) was employed () in Equation (l1.8) is the equivalent of the activation

energy in TST. In fact, the whole Equation (11.8) exhibitsiateresting resemble to conventional
TST. When the stability parameters aréE (f)) = ha 8 in harmonic approximation, whefey }
are the vibrational frequencies of the transition statentthe producﬂf;l1 gives the partition
function of the activated complex in harmonic approximatio

The analytical continuation introduced naturally by thatishary phase approximation of
Equation (VI.12) has an interesting physical interpretat3, 48]. After applying the Wick's
rotation to the classical equation of motion [3]

t = —it (.12)

+dv (;)fr))
the instanton dynamics becomes equivalent to performiagsaal mechanics on the inverted

mk(T) = (11.12)

potential. The solution of Equation (11.12) are the instamtrajectories and their momenta are
P=m(dx/dt) = —im(dx/dt) = —ip (1.13)
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and the instanton action

0(x1(0) (7). E) =
hpB 1 .
[} dr | zpman +v @) (1.14)

wherex; (0) andx; (1) are the turning points. In particulax; (0) is the inversion point for a
real-time classical trajectory impinging the barrier frime reactants ang (7) from the products.
The reader will note that the integrand of Equation (I1.84)he Hamiltonian in terms of the pure

imaginary time and the instanton action becomes

hg

¢(E) = 5 dt H (p(1),q(1)), (11.15)

which is also called “Euclidean action” [10, 21].

. ACRITERION FOR THE MULTIDIMENSIONAL SEARCH OF INSTANTON TRAJ ECTO-
RIES

As mentioned in the Introduction, a major obstacle to théam®n application is the deter-
mination of the trajectory. In this section a criterion fatermining the instanton trajectory is
derived. This method allows me to test several combinatedsymmetric collinear reactions.

Search of instanton trajectories is far from trivial in mahsnensions. Hereafter some general
considerations are given in order to develop a method fomgchultidimensional instanton peri-
odic trajectories. Let’s consider a bi-dimensional systemch as a collinear reaction. At any time

t, the trajectory is located in coordinates space @} = (g1 (t), g2(t)) and the total energy is

1, .,
E =5 (da®+02%) +V (o, %) (In.1)

where the mass is unitary aMi(qi,qp) is the potential energy. Four arbitrary constants are in-
volved in the solution of these differential equations oftim. Dropping the constant additive
tot, the epoch in the orbit, one is left with® distinct orbits. There are a numberof of these
orbits that share the same total eneEgyThen, this set of periodic orbits can be further divided
into “ordinary” and “singular” ones. In the first case, it isgsible to find other periodic orbits with
the same energy that can be transformed into the original orbit by infiniteal transformations.

In the second case, there are no such orbits. For the collsstaf reactions considered in this



paper, the instanton trajectories are bi-dimensionakgtibeen proved that all periodic trajectories
in two dimensions are singular ones [49].

In order to locate the instanton trajectories, | will emptbg classical action’s properties for
periodic trajectories. Since Newton dynamics is perforptieel Hamiltonian action on the inverted
potential depends on the initial positions and momenta,camthe total time. Total time is fixed

to be equal tdB8 and the action is

B
o(d, p’, AB) :/o (p(d,p, 1) q(d,p',t) —H (p(d,p, ) a(d,p',t))). (I1.2)

By taking the first derivative of Equation (I11.2) respect teetinitial position with fixed initial

momenta and time, and by using Hamilton equations, | obtain

1] 0) aq(hB) ,
s — p (R . :
o |y s p(hB) o0 p (1.3)

Equation (111.3) is in general different from zero, except & trajectory of period, i.e. the
instanton one. | will use this property to locate the instarttajectories at different temperatures.
| would expect also to find only one initial set of conditiorts the first derivative to be zero,
because in two dimensions instantons trajectories arellgingnes.[49]

The mass-scaled normal modes coordinates are adoptedeHotlbwing collinear reactions,
H+ H»; H+ BrH; Cl+ HCI; Cl+ DCI, the PotLib database is employed, [50] and the surface
dividing the reactants from the products is given by the sytnimstretch coordinate subspace, i.e.
any asymmetric stretch displacement moves the system awmytte dividing surface. This is the
dashed vertical line in Figure 1 and the transition statedated at the cross placed on the same
Figure. [Place Figure 1 here] Thus, any asymmetric stretitbiing the transition state either into
the products or the reactants valley and the instantonctajes will cross the dividing surface
perpendicularly. Accordingly to Equation (111.3), the seta for the singular periodic instanton
trajectories is conducted by starting classical trajeesoat the dividing surface with momentum
perpendicular to the surface itself on the inverted po#énlihis choice guarantees that after half
period the trajectory will have the same momentum but witbagite direction, as requested by the
symmetry of the potential. The momentum fixes the total gnefghe trajectory and ultimately
the temperature for the rate constant calculation. Ifytial grid of very dense initial points was
set along the dividing surface and trajectories were ruriistafrom these points with the same
momentum. None of these trajectories turned out to be perigthce the grid was not dense

enough. To better explain how dense this grid should be ieraalfind the instanton trajectory,
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in Figure 1 three trajectories with the same momenta antreggdrom very close initial positions
at the dividing surface are reported. It is not possible stiguish by naked eye each path up
to the turning point. Nevertheless, at the turning poinésttiree trajectories behave dramatically
differently and only the red one is periodic. This strongelggency on the initial conditions, which
is the hallmark of chaotic systems, makes the search faanbmt trajectories by looking at their
initial conditions an extremely unstable numerical prableMoreover, there is no idea priori
where the instanton trajectory maybe even roughly locat@edt using Equation (111.3). Hence, it
is necessary to elaborate a different approach for findisigirion trajectories than simply setting
up a grid of initial conditions.

As explained above, trajectories are tested by varying ong/parameten,, which is the ini-
tial position along the dividing surface, whitg is kept fixed at the dividing surface location.
Momentum componemnp; perpendicular to the dividing surface is the only componerite dif-
ferent from zero and it is fixed at each temperature. The wanis of the trajectory actions and
derivatives with respect to this parameter are reportedguarE 2.[Place Figure 2 here] The initial
conditions of the periodic trajectory represented in red lnd arrows in Figure 2 is determined
by the action first derivative (middle panel of Figure 2) whis equal to zero when the trajectory
is periodic, or by the change of slope of the action itselipmpanel in Figure 2). This last con-
sideration is true both for the Hamilton action and the I@asibn. Since the discontinuity of the
first derivative occurs in a lambda-type fashion, there amnél similarities with the specific heat
behavior during a second order phase transition. The sederivhtive stresses this behavior by
tending to infinity. These plots and considerations allomgi@phical determination of the initial
conditions of the instanton trajectory. Subsequentlydhzsn be refined up to several digits to
obtain periodic trajectories. This search has been corduntone dimension, i.e. by reducing
the set of initial conditions to a single one. However, thehnd can be extended in two dimen-
sions. By varying the initial momentum perpendicular to thedihg surfaceps; (0) versus the
position along the surfaag (0), instanton trajectories are graphically determined bytipig the
stability matrix eigenvalues as in Figure 3 [Place FigureeBeh The set of initial conditions for
periodic trajectories is given by the combinationpf(0) andgs (0) along the line marked by the
eigenvalues. At any given temperature, it is possible toutate the corresponding energy and the
initial momentumpy (0), and locate the initial positiog (0) from a plot of the type of Figure 3.
A possible procedure in many dimensions is first to locatermesition state, then to test trajec-

tories of a small time period starting from several pointgtmndividing surface and surrounding



the transition state point. The instanton trajectory wallbcated by inspecting the action first or
second derivative for these starting points. [Place Figunere] It is also quite instructive to look
at the instanton trajectories phase space plots reportegjime 4: On one hand this plot strictly
checks the accuracy of the orbits after the trajectory iSouseveral periods; on the other hand, it
is interesting to note that on the reactive (asymmetric)hése-space plot the trajectory exhibits
a kind of cusp at the turning points. This is the source of tieotic behavior reported above and
it is amplified at low temperatures because of the longer pared.

Following this procedure, the instanton trajectories offiypes of collinear reactions at several
temperatures were found and plotted in Jacobi’'s coordénat&igure 5. [Place Figure 5 here]
The reactions were chosen in order to test the ability of tiseanton theory to calculate the rate
constants of the light-heavy-light combination {HBrH), the light-light-light combination (H-
H»), the heavy-light-heavy combination (€IHCI) and isotope effects (Gt DCI). The skew
Jacobi angle is representative of the different masses ioatndn and it ranges from about 13°
for Cl + HCI, to exactly 60° for H+ H, and almost 90° for H- BrH. A common feature of
all instanton trajectories in Figure 5 is that for smalg periods, i.e. higher temperatures, the
initial momentum gradually goes to zero and the initial posi shifts towards the Transition
State (TS) location. Eventually, when the total enefgipecomes equal to the potential energy
of the TS, the initial momentum ig(0) = 0 and the infinitesimal instanton trajectory is the TS
point. The cross-over temperatureTis= hw*/27kg, wherew? is the frequency of the inverted
potential along the reactive coordinate at the TS geomé&wy.T > Tc, the instanton trajectory
exhibits imaginary turning points. Another common feattegards the instanton turning points:
These are located along the minimum energy path (MEP), asrshioFigure 5 [51]. During a
wavepacket propagation simulation, the packet would beddraveling and centered on the top of
the MEP and to be reflected or transmitted at these pointggh-heavy-light combination (such
as H+ BrH) where a heavy mass is transferred presents an instaatbrwtich quite closely
reflects the MEP shape. Instead, when a heavy-light-heagtiom occurs (such as &IHCI)
and a light mass is transferred, the instanton trajectopads from the classical MEP profile. In
this case the instanton trajectory resembles a shortcot frmducts to reactants by “cutting the
corner”.[52-55] An impressive amount of energy should Ensfo climb across the barrier along
this classical path. Instead, tunneling effects open thser“for free”. A less significant “corner-
cutting” occurs for a light-light-light (H- H») collinear reaction. Nevertheless, tunneling is severe

in this case as well, and it persists above room temperafure350K). In general, the smaller the
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skew angle is, the stronger is the coupling between the mddeally, an isotopic substitution is
presented in the panel (€IDCI). Here, at any temperature the arc length between thantest
trajectory turning points is much shorter than in the hyerogransfer case and it can be deduced
that tunneling is significantly less deeper than the-EICI reaction.

[Place Figure 6 here ] In Figure 6 the trajectories of Figueeéreported in bond coordinates
(the two distances between the three atoms on a line) refergystem. During the transfer of a
Bromine atom, synergistic variations of both coordinatesuacinstead, in the heavy-light-heavy
cases ( CkHCI and Cl+ DCI) the heavy atoms are stopped while the light one is trareste
In those cases, the instanton trajectory is well describethé equatiorR; + R, = C, whereC
is a constant an&; is a bond coordinate. With an isotopic substitution, tumuekffects are re-
markably quenched: For the €IDCI reaction, the critical temperature: Ts already reached at
T = 250K. Question remains whether one can estimate how mughttlegunneling is for each
one of these reactions. [Place Figure 7 here] In Figure 7 dn@ton of the potentiaV/ (q (1))
along the instanton orbit is reported for half period tregeg at T = 150K. The zero potential
value corresponds to the reactants and products geometeadh reaction. Thus, the tunneling
potential profile for the C+- HCl and CH-DCI can be directly compared and it can be deduced that
tunneling is deeper for the first case because the variatitregotential during the instanton ex-
cursion is about two times the isotopic reaction one. Contppaizotential variation is experienced
for the H+ BrH reaction, while this is only about half of that one occogrduring the H- H» re-
action. Two important observations are possible basedesethesults. First, deep tunneling can
occur without having a “corner-cutting” trajectory. Sedo@an instanton path that resembles the

MEP is not necessarily including less tunneling amount #haarner-cutting path.

IV. THERMAL RATE CONSTANTS CALCULATIONS

The thermal rate constants are calculated accordingly tatan (11.8). After finding the in-
stanton trajectory, the stability parametaréE) are obtained by diagonalizing the stability matrix
after one period of evolution and the instanton actioiie) according to Equation (11.9). The
first derivate of the energl (B) is obtained in two steps. First the value®ff) is calculated
for several temperatures within the range of interest.d@kigure 8 here] Then, the first deriva-
tive of E () is calculated from the fitted curves. Figure 8 shows that #iieevofE (f3) and of

its variation is smooth for all collinear reactions. In FiguB, tunneling effects persist at room
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temperatures (at & 300K, 8 = 1052 a.u.) for the collinear reaction-HH», while they are im-
portant mainly at low temperatures for the other reactibmshe same Figure, the isotope effects
can be appreciated by comparing the greer-EICI energy profile with the cyan one for the
Cl+ DCl reaction. The isotopic substitution quenches signitigathe contribution of tunneling,
considering that the rate is exponentially energy dependem TS model. Both a cubic polyno-
mial and Chebyshev-series representation was employed&rage the spline equation.[56] The
Chebyshev-series representation turned out to be moréleelisince it avoids spurious oscilla-
tions. In the Chebyshev approach, the variable is normalized scaled to an interval-1,1]
and the Chebyshev coefficients are calculated. Then, a poiahds extracted from the set of
coefficients. This procedure turned out to reduce roundingre and to be numerically stable,
i.e. to converge for several different collections of eyadgta. This fitting procedure was applied
for interpolations (and not for extrapolations) of the \edwfE () and an order equal to 4 was
accurate enough not to change the value of the rates witheraedigits if higher order splines
would have been employed. Finaly (8) was calculated by finite differences.

The thermal rate constants calculated by Equation (Il 8yeported in Figure 9. [Place Figure
9 here] On each panel the black squares are the exact quardghamcal results and the cyan
diamonds the classical TST ones [57-59]. On the same pdrei®d circles are the results of
the semiclassical instanton trajectories from EquatiaB)(l On the upper left panel, the rates of
the H+ BrH are reported. The contribution of tunneling is by far mongportant than in other
collinear systems and the failure of the TST is striking.téasl, the instanton theory reproduces
quite well the exact rate, even at very low temperatures &ttex discrepancy between classical
and quantum rate is about two orders of magnitude. Thes#gesa remarkable since obtained
with a single classical trajectory, while other real-tinggrsclassical simulations usually employ
many thousands of trajectories when tunneling is so se¥éeinstanton results are quite accurate
for the H+ H rates in the upper right panel of Figure 9 as well. In this ¢hsenstanton trajectory
search was limited at F 200K because the chaotic nature of the potential was grealignced at
low temperatures (long simulation times). In the case ofavjdight-heavy combination (lower
panels of the same Figure) the semiclassical instantottsese somehow more accurate for the
Cl+ DCl than the Ch-HCI one. The overestimate of the classical TST at high tentpersiis due
to the huge recrossing effects occurring for this reactidhese temperatures.

Overall this set of simulations assess the ability of theiskssical instanton to predict the

reaction rate constants even in deep tunneling regime.
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V. DISCUSSIONS

During the past thirty years, several ways for finding théanton trajectories have been used.
Nevertheless, the accuracy of these metheglsusthe “exact” instanton one has been rarely
tested, because of the difficulties in finding the instantajettories. More often approximate
instanton methods have been compared with exact quanturnamieal results or not compared
at all with any other method. | think that agreement with quamresults can be sometime fortu-
itous. Only a direct comparison with the “exact” instantoagectory results can reveal the level
of accuracy of an approximate instanton method. The reptdisented here can offer a common
playground where this comparison occurs. Previous resdte limited to the collinear H Ho,
while in this paper a set of collinear thermal rate constémtseactions of the type light-heavy-

light, light-light-light, heavy-light-heavy and isotapsubstitution have been calculated.

VI. CONCLUSIONS

In this paper we have recalled Miller's instanton derivatend instanton thermal rate con-
stant formulation. A way to find instanton trajectories fgmsnetric collinear reactions has been
presented and thermal rates are calculated. Agreemene&etguantum results and instanton
ones is quite impressive, considering that a single claksijectory is used here. For example,
when classical TST underestimates the thermal rate by tdersiof magnitude, the instanton rate
is within few percents of accuracy. Further investigatiforsextending the present method for

asymmetric reactions should be considered.
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Appendix A

Another way to reach the result in Eq. (11.5) is to start frdra HHamilton-Jacobi equation for a

classical real time motion where

S HH(P(,9(1) =0 VD)

and after deriving each equation side by the imaginary tone,obtains

PS5 2,
smp/2e - PO o

and this can be simplified as follow

0 208 g
(ﬁB/Z ﬁdE ﬁ
4 0 /' 2
woE" P (—E ) RC
4 2 S 2 _
which is equivalent to the equality
2
S = — h : (VI.4)

JE? 2E'(B)
Appendix B

Here | recall Miller’'s derivation of the thermal rate congtdormula using the instanton ap-
proximation.
First, a dividing surface is introduced and a Wigner phasealistribution is adopted for the

classical trajectories sampling. Then, the rate is wriitethe following form

(T) = o dad (a0 3 sl el e P ). (v15)

where the integral is confined to the dividing surface by tira®s deltad (gs) and the reactive flux
is weighted by the Boltzmann distribution. Then, itis usébulecall the Gutzwiller’s trace formula
[60], where the element of matrix of the Green’s funct®(E) are expressed in terms of periodic

classical trajectories in a multidimensional phase sgace). In particular, by selecting the
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degree of freedomys in which periodic orbits are stable and integrating ovepalsible periodic

trajectories, the following relation holds

/dqz/doe /dqc (@l G(E)|a) =

gSta(E)
ﬁ|QS| kZ (= ) 8
r! 2sinh| k u(E)/2 (V1.6)

whereG(E) = (E— H)‘l, thek—sum is over multiple passes of the periodic trajectory, fuRél
(i=1,..,F —1 andF are the number of degrees of freedom) are the stability patenof the

periodic trajectories [13, 615 a (E) is the least action calculated in the entire pefTod)

T(E)
SA(E) = /0 dtp(t)-a(t)

— 2 ["dq /2mE -V (q)). (VI.7)
1

Then, using the relation
. -1
—BH — _— [ dEePEG(E V1.8
e P — _~ [dEePEG () (V1.8

/dqz/dq;---/dqp (ale PEla) =

%ﬁ/dE e L i (1T RSB

Equation (V1.6) becomes

|dis| k—
I_! 2sinh| k u(E) /2 (V1.9)
After substituting Equation (VI.9) in to Equation (VI1.5he following rate expression was ob-
tained
k(T)—;/dE e—BE/d }5( )P (E) (VI1.10)
= 21hQ (T) B30 71E), '
where
< kfleiks_A(E)/ﬁ'L1 1 (VI.11)
P(E)= -1 . :
(E) k;( ) il:l 2sinhk u (E) /2]

is the semiclassical cumulative reaction probability fegk periodic trajectories of enerdy. The
integration ings is easily performed at the dividing surface, and Equatiohl(®) assumes the

more familiar expression
1
- - - BE
k(M) =5= (T)/dEe P(E). (VI.12)
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Once again the energy integration is performed by usingtdepsst descent and the semiclassical
rate expression corresponding to Equation (11.7) is foughecifically, firstk is fixed k = 1)

in Equation (VI.11), since the multiple crossings conttibo is negligible. Then the stationary
points are such that

B = i—dstjAE(E)

which is similar to Equation (11.4). By performing the secathekivative of the stationary phase,

Equation (V1.12) was approximated by

—iT(E)=1(E) (VI1.13)

_ 1 1 o e 0B
k(T)_Qr(T)Znﬁ 2nE’ (B)e®

F-1 1
ill 2sinh[u; (E) /2] (VI.14)

whereE = E () is determined by the stationary condition in Equation (8).and the products

M. run over all the degrees of freedom except the reactive one.
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Figure captions:

Figure 1:Classical trajectories on the inverted potentiad eymmetric (ABA type) collinear
reaction: Red line and arrows represent the instanton toajeovertical dashed line the dividing
surface, cross the transition state location. Inigiahvalues are 2.351 (green), 2.347 (instanton)
and 2.344 (blue) trajectories for the H+BrH potential in masaled normal mode coordinate.

Figure 2: Value of the Hamilton action (continuos black Jined least action (dashed red line)
respect to the initial trajectory positiony) along the dividing surfaceg{ = 0) for the collinear
H +H, LSTH PES. A discontinuity of the first derivatives indicathe periodic trajectory condi-
tions.

Figure 3: Monodromy matrix eigenvalues for initial posittoand momenta in the case of
collinear H+ Ha reaction. The line showed by the eigenvalues peaks detesttiie set of periodic
trajectories initial conditions.

Figure 4: Phase space plot of a typical instanton trajectasft panel for the asymmetric
stretch subspace and right panel for the symmetric one.

Figure 5: Instanton trajectories for four types of colline@actions in Jacobi’'s coordinates.
The transition state is located at the origin. The followmadpr-code is employed to denote each
temperature: AT = 10K, the trajectory is cyan, at = 15K red, atT = 17K violet, atT =
20K green, afl = 225K brown, atT = 25K blue, atT = 27K turquoise, all = 30K orange
and atfT = 35K it is magenta.

Figure 6: Same as in Figure 5 but with bond coordinates reéergystem.

Figure 7: Variation of the potenti® (q1 (7),q2 (7)) along the instanton trajectory: Black con-
tinuos line for the H+ BrH reaction; red dotted line for the HH> reaction; green dashed line for
the Cl+ HCl reaction; cyan dot-dashed line for the{€DCI reaction.

Figure 8: Instanton energsersus = 1/kgT, wherekg is the Boltzmann constant. Red circles
for the H4 Hy reaction; Green circles for the GIHCI reaction; Cyan circles for the Gl DCI
reaction; Black circles for the K BrH reaction; The dashed lines are Transition States energy f
each reaction, i.e. the top of the potential barrier.

Figure 9: Rate constants for collinear reactions: black sepufor the exact values, red circles

the semiclassical instanton values and cyan diamondsdbsicél transition state theory values.
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Figure3
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