
Gaussian Mixture Model of Heart Rate Variability
Tommaso Costa1*, Giuseppe Boccignone2, Mario Ferraro3
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Abstract

Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic
nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV,
namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the
stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum.
Comparisons have been made also with synthetic data generated from different physiologically based models showing the
plausibility of the Gaussian mixture parameters.
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Introduction

Heart rate variability (HRV), the amount of fluctuations around
the mean heart rate, is a valuable tool to investigate the
sympathetic and parasympathetic functions of the autonomic
nervous system, see, for instance [1] and references therein. In
addition, heart rate variability is a key indicator of an individual
cardiovascular condition and a prognostic index in the course of
myocardial infarction, heart failure, diabetic neuropathy, essential
hypertension, etc. [2], [3], [4]. Thus is not surprising that it has
been the object of much research and that a variety of approaches
have been applied to its analysis.
The normal rhythm of the heart is controlled by processes of the

sinoatrial node (SA) modulated by innervations from both the
sympathetic and parasymphatetic (vagal) divisions of the auto-
nomic nervous system (ANS, a part of the nervous system that
non-voluntarily controls organs and system body). ANS has central
nuclei located in the brain stem and peripheral components
accessing internal organs. Symphatetic and parasymphatetic
systems that work as antagonists in their effect on target organs,
via chemical mediators: the acetylcholine released by parasympa-
thetic terminals slows the rate of the SA node, whereas the
norepinephrine released by sympathetic terminals speeds up the
SA node rhythm. The relative roles of the two systems can be
determined by blocking their activity with a pharmacologic
antagonist: sympathetic blockade can be obtained with guaneth-
idine or pronethalol, parasympathetic blockade with atropine.
The statistical behaviour of the heart rate can be analyzed by

replacing the complex waveform of an individual heartbeat
recorded with the time occurrence of the contraction (the time
of the peak of wave named QRS complex), which is a single
number. Mathematically, the heartbeat sequence is modeled by a
unmarked point process that reduces the computational complex-
ity of the problem and allows its analysis by well known methods.
Thus, the occurrence of a contraction at time ti is represented by
an impulse d(t{ti) so that the heartbeat sequence can be
expressed as

h(t)~
X

i

d(t{ti):

From this sequence the time intervals (R{R intervals) dtij~ti{tj ,
tiwtj between two successive peaks can be determined, as a

function of time t; thus a new time sequence is obtained and HRV
is precisely the variation of R{R intervals. Finally time intervals
are converted in beats per minute (bpm), an example is presented
in Fig. 1.
In general HRV has been studied by considering statistics of

R{R intervals (time domain analysis) or by spectral analysis of an
array of R{R intervals (frequency domain analysis) [5], [3], [6].
Time domain statistics use linear models to calculate the overall

variance or the variability between successive interbeat intervals:
typically they produce short-term variability (STV) indices
representing fast changes in heart rate and long-term variability
(LTV) indices taking into account slower fluctuations (fewer than 6
per minute). The time domain methods are computationally
simple, but are not able to discriminate between sympathetic and
para-sympathetic contributions of HRV that are known to operate
on HR in different frequency bands.
In fact, experiments of electrical stimulation of the vagus nerve

in dogs showed that vagal regulation modulates the HR up to
1:0 Hz, whereas symphatetic cardiac control operates only below
0:15 Hz [7]. In humans the parasymphatetic blockade eliminates
most HR fluctuations above 0:15 Hz, whereas the symphatetic
blockade reduces HR fluctuations below 0:15 Hz leaving those at
high frequency largely unaffected. Hence, HRV at high frequency
(HF) components is a satisfactory, partly incomplete, index of the
cardiac control, whereas low frequency (LF) components reflect
both symphatetic and parasymphatetic modulation [8].
Furthermore, extensive statistical studies [6] have shown that

the use of normalization of LF powers by total variance, or of the
LF/HF power ratio, increases the reliability of spectral parameters
(measured by the Spearman correlation) in reflecting sympathetic

PLoS ONE | www.plosone.org 1 May 2012 | Volume 7 | Issue 5 | e37731



cardiac modulation, particularly when the cardiac sympathetic
drive is activated [6]; for an in-depth discussion, see [9].
Because of this experimental evidence spectral analysis has

become an increasingly popular method to investigate heart rate
variability because it provides the basic information of how power
distributes as a function of frequency. Spectral analysis enables to
identify and measure the principal rhythmical fluctuations that
characterise the R{R time series and contain physiological
information; further, it has has been proven to provide important
and accurate information on sympathetic and vagal modulation of
sinus node in normal subjects and in patients with a variety of
organic heart diseases, see, for instance, [1].
The main algorithm used to calculate the power spectral

distribution are the fast fourier transform on uniformly resampled
data and the lomb periodogram based on non uniform sampling.
However the latter is not a consistent statistical estimator [10].
These methods are limited by implicit assumption of linearity

and stationarity. Biological oscillators rarely meet these require-
ments and then it is difficult, in certain conditions, discriminate the
two branches of the autonomic nervous system in a clear manner.
In this paper we argue that useful information on the role of

these two systems can be gained by decomposing the signal in
elementary components in the time domain, and that this can be
done by determining, via some statistical procedure (namely, a
greedy expectation maximization algorithm), the combination of
Gaussians that best approximate the data.
Mixture of Gaussians have been used previously in an

automatic classifier for electrocardiogram (ECG) based cardiac
abnormality detection [11] and in frequency domain to generate
realistic synthetic electrocardiogram signals [12]. Here, in a
different vein, we exploit them to appropriately represent and

characterize the multimodal marginal distribution of HRV series,
a feature arising from non linear correlations of the time series
that, in turn, are related to the peculiar physiological aspects of the
neuroautonomic control of the heart rate.

Mixture modelling of heart rate measurements
Consider a time series of heart rate measurements

x~fx1,x2, ! ! ! ,xTg, T being the number of time points in the
series, such as that represented in Fig. 1. Due to fluctuations of
various origin [5], it can be considered as generated from a
random process, where each xt is an instance, or realization, of a
random variable X . In the most simple case, one could assume
that the time series is a sequence of samples xt independently
drawn from one known distribution p(X~xtDh), e.g. Normal or
Poisson; then, the parameters h of such distribution could be easily
estimated from the observed samples. Unfortunately, this is not the
case as it can be simply noticed by inspecting the shape of the data
histogram (the empirical distribution representing the unknown
p(X Dh)), which is clearly multimodal.
Multimodality occurs because of non linear correlations of the

time series and, most important, due to the multi-component
structure of the physical process that originated the data [13].
To gain some insight on this issue, it is more convenient to

generally describe time series models as statistical models that
specify a structure of conditional dependencies on the joint
distribution p(X ,Z), where Z is a latent variable or hidden state
variable.
Conventional time series models are global models. They can be

linear, assuming that the next value xtz1 is a linear superposition
of preceding values [14], or they can be nonlinear. For instance,

Figure 1. A typical 24 hour heart rate time series. Beats per minutes are shown as a function of time.
doi:10.1371/journal.pone.0037731.g001
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nonlinear autoregressive processes (NLAR) have been widely used
[15], [16]; these models assume, in the simplest case (first order
model) that it is possible to generate xt at time t by taking into
account its conditional dependence on the previous value xt{1 and
on current state zt, namely xt is sampled as xt*p(xtDxt{1,zt)
where zt*p(ztDzt{1), the latter specifying the Markov dynamics of
state transitions. Such single, global, and traditionally univariate
models are well suited to problems with stationary dynamics.
However, the assumption of stationarity is violated in many real-
world time series, such as HRV series. An important sub-class of
nonstationarity is piece-wise stationarity (also called stationarity by
parts and multi-stationarity) where the series switches between
different regimes; in this case, state-space models with switching
dynamics (multiprocess dynamic linear models) can be exploited.
Typically, in switching models a discrete switching random
variable S is introduced, so that the state dynamics zt{1?zt
depends on the sampled regime, for instance zt*p(ztDzt{1,st)
where st*p(stDst{1).
Different variations can be constructed from this basic models

(see [13], for detailed discussion). But what is interesting, from the
standpoint of this work, is that both nonlinear autoregressive
processes and switching state-space models give rise to joint
distributions of lagged data, p(Xt,Xt{d), d being the time lag,
whose marginal distribution p(Xt)~

P
Xt{d

p(Xt,Xt{d) is a
multimodal distribution. An example is provided in Fig. 2 in
terms of empirical joint density distribution (bivariate histogram) of
a HRV time series at lag d~10.
Thus, by modelling the multimodal marginal distribution p(X )

of HRV data, it is possible to achieve useful insights on the process
that generated the data. For example, a similar approach has been
addressed in the field of solar radiation models [13], where the two
modes in the distribution of the radiation time series were shown

to be produced by cloudy times, when radiation is indirect, and
cloud-free times, when radiation is direct. In the same vein, a
similar application has been reported in [17] to distinguish
physical regimes underlying equatorial Pacific sea surface temper-
ature data, and for modelling BOLD signals in fMRI [18].
For modelling complex multimodal probability distributions,

mixture models are widely used. Taking a generative view, a data
sequence xt,t~1, ! ! ! ,T can be sampled from a mixture model by
iterating the following two steps:

1. sample which component ẑzt among the K available is going to
generate the data:

ẑzt*p(zt); ð1Þ

2. sample the actual data xt

xt*p(xtDẑzt) ð2Þ

Here p(zt) and p(xtDzt) are Multinomial distributions, respectively;
by using a 1-of-K representation for the state variable zt, namely
zt~fztkgKk~1 and ztk[f0,1g, that is ztk~1 indicates that xt has
been generated from the k-th mixture component,

p(zt)~ P
K

k~1
p
ztk
k , ð3Þ

with pk~p(zt~k)~p(ztk~1) representing the prior probability
of choosing the k-th component and

Figure 2. A bivariate histogram computed from the HRV time series, which approximates the joint density P(Xt,Xt{d), where d is the
time lag (in the example d~10). The univariate histogram on the left stands for the marginal distribution P(Xt).
doi:10.1371/journal.pone.0037731.g002
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p(xtDzt)~ P
k

k~1
p(xtDhk)ztk , ð4Þ

where p(xtDhk)~p(xtDh,ztk~1) is the k-th component distribution
characterized by parameters hk.
It is easily seen that the marginal distribution p(xt) can be

written in terms of the linear combination of some number K of
simpler, component distributions by marginalizing the joint
distribution p(xt,zt) over all possible states of zt:

p(xt)~
X

zt

p(zt)p(xtDzt)~
XK

k~1

pkp(xtDhk) ð5Þ

where probabilities p~fpkgKk~1 are named in this linear
superposition representation the mixing coefficients, satisfing

0ƒpkƒ1 and
PK

k~1 pk~1.
In particular, for modelling arbitrary multimodal marginal

distributions, Gaussian or normal components have been widely
used:

p(xtDmk,sk)~N (xtDmk,sk)~
1ffiffiffiffiffiffi
2p

p
sk

exp({
(x{mk)

2

2s2k
) ð6Þ

here parameters hk~fmk,skg, in case of univariate components,
denote the mean and the variance of the k-th Gaussian
component, respectively.
Learning the mixture, namely, estimating the weights pk and

the parameters hk of each component, can in principle be carried
out through maximisation of the likelihood with respect to such
parameters, or more conveniently by maximizing the log-
likelihood

L~
XT

t~1

log
XK

k~1

pkN (xtDmk,sk); ð7Þ

the latter is difficult to optimize because it contains the logarithm
function of the sum. A suitable method to perform log-likelihood
maximization of a mixture is the Expectation-Maximization (EM)
algorithm [19].
The EM algorithm is simple to implement although it suffers

from known limitations: there is no widely accepted good method
for initializing the parameters; due to its local nature, it can get
trapped in local maxima of the likelihood function; further, it
assumes a known number K of mixing components, an
assumption that does not hold for the work presented here.
To overcome the model selection problem one could resort to

conventional approaches based on cross-validation that are
computationally expensive, are wasteful of data, and give noisy
estimates for the optimal number of components. A fully Bayesian
treatment, based on Markov chain Monte Carlo methods for
instance, will return a posterior distribution over the number of
components. More viable solutions are variants of the Variational
Bayes Expectation-Maximization algorithm [20] that require the
introduction of continuous hyper-parameters whose values are
chosen to maximize the marginal likelihood, or more complex
procedures currently under study in the field of nonparametric
Bayesian methods such as Dirichlet Process Mixtures under the
assumption of an infinite mixture model [21], [22].
More simply, we have adopted a greedy variant of the EM

algorithm [23]; [24]. An important benefit of the greedy method,

compared to the previous ones, is the production of a sequence of
mixtures, which resolves the sensitivity to initialization of state-of-
the-art methods, and has running time linear in the number of
data points and quadratic in the final number of mixture
components; also, it facilitates model selection.
The basic idea is straightforward: instead of starting with a

random configuration of all components and improve upon this
configuration with EM, the mixture is built from one initial
component by iteratively adding new components obtained
through a splitting of older components. More precisely, by
starting with the optimal one-component mixture (K~1), whose
parameters are trivially computed, following steps are repeated
until a stopping criterion is met: 1) find a new optimal component
N (xtDhKz1) and the corresponding mixing parameter pKz1 so
that the log-likelihood embedding the Kz1 components

L~
XT

t~1

log pKz1N (xtDhKz1)z(1{pKz1)
XK

k~1

pkN (xtDhk)

" #

ð8Þ

is maximized with respect to parameters hKz1,pKz1; 2) set the
new mixture as

p(xtDp,h)~pKz1N (xtDhKz1)z(1{pKz1)
XK

k~1

pkN (xtDhk) ð9Þ

and let K~Kz1; 3) update the new mixture p(xtDp,h) of Kz1
components using EM;
In step 2), dealing with the insertion of a new component, the

method constructs a fixed number of candidates per existing
mixture component; the candidate that maximizes the log-
likelihood when mixed into the existing mixture is retained (for
details see [24]).
The method stops the partial updates if the change in log-

likelihood of the resulting (Kz1)-component mixtures drops
below some threshold or if some maximal number of iterations is
reached, or if a desired number of components Kmax is obtained
(for instance, along experiments we set Kmax~10, which was in
practice never reached).
Clearly, the stopping criterion could be any model complexity

selection criterion (like Minimum Description Length, Akaike
Information Criterion, Cross Validation, etc.), so that the optimal
number K of components is automatically determined. However,
an advantage of the greedy method is that it produces a sequence
of mixtures that can be used to perform model complexity
selection as the mixtures are learned. In particular a kurtosis-based
selection criterion, like the one in [25], can be used here.

Results

Experiments have been conducted on both real data and
synthetic data. Real data analysis was performed on ECG
recordings collected with the procedure described in the section
on material and methods. Analysis of synthetic data generated by
using well known models of physiological aspects of the
neuroautonomic control of the heart rate, [26–27], has been
aimed to further verify the physiological plausibility of the
Gaussian mixture parameters learned via the Greedy EM
algorithm. The rationale behind this analysis is that synthetic
data obtained from models governed by such parameters should
be consistent with the experimental ones.

Gaussian Mixture Model of Heart Rate Variability
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Real data
A typical time series of heart signals is displayed in Fig. 1 and

the corresponding histogram is shown in Fig. 3.
Finally Fig. 4 presents the results of the analysis, where each

gaussian is multiplied by its weight: here only four components are
shown, three with weights larger than 0:1, the fourth being less
than 0:044. It is apparent from the figure that just the first three
components are important in determining the mixture.
It should be noted that heart rate is positive definite, whereas

Gaussians may assume negative values: however, by inspection of
the location of the data from the marginal distribution and the
related fitting obtained through the Gaussian mixture model
learned from HRV data, the probability of generating negative
data is negligible.
The relevance of just three weights is not limited to individual

recordings, but it is confirmed by the averages, over all subjects, of
weights values, shown, in decreasing order of magnitude, in Fig. 5.
Further information on the structure of R{R signals can be

gained by considering mean and variances of the Gaussians. The
trend of the means plotted in the order of decreasing weights is
almost monotonically increasing, see Fig. 6, the first three
components of the mixture having the smallest mean values. This
shows that components with beat/minute values larger than 80
play no significant role in the determination of R{R intervals.
Variances do not show a definite trend, see Fig. 7, but it should

be noted that the first component has by far the largest variance
(almost by a factor 2). That means that its values extend on a large
part of the rate interval and therefore it gives (by far) the largest
contribution to the power spectrum of the signal.
As a test, we have computed the power spectrum of the time

series, averaged of all subjects: it shows, in the range 0:05{0:3 Hz
the well known 1=f trend that has been observed in several studies
and has been ascribed to complex mechanisms such as intermit-
tency [28] and self-organized criticality [29], see Fig. 8.
The same trend can be obtained from the power spectrum of a

time series of R{R signals generated by applying the sampling
procedure specified via Eqns. (1), (2), (3) and (4) and by using just
the three most relevant Gaussians as derived from the data.
In conclusion, heart rate variability can be explained by a

mixture of just three Gaussians; what remains to be investigated is

the relation between the Gaussian components and the action of
sympathetic and parasympathetic systems.
As remarked in the Introduction, there is an ample evidence

that the dynamics of sympathetic and parasympathetic systems
occurs in different frequency bands. Now, if a specific Gaussian
captures the action of one of the two systems, keeping in mind that
the spectrum (PSD, power spectral distribution) represents the
contribution to variance of the different frequency bands [30] one
should expect a correlation of the PSD at the three bands of very
low, low and high frequency with the variance of three gaussians
calculated for the time series of each subject.
The results, reported in table 1, show significant correlations

(pv0:05) between the variance of the first two gaussian and the
power spectrum of the low and high frequency bands, respectively.
This suggest that the two gaussians with the largest weights are
related to the activation of the symphatetic and parasymphatetic
component of the autonomic system.

Synthetic data
The fact that just three Gaussian components of the signal are

enough to explain most of the variability of heart rate, suggests
that they may correspond to the three major inputs, namely those
coming from the sinoatrial node, responsible for the initiation of
each heart beat, and from the parasympathetic and sympathetic
branches of the autonomous nervous system. If this is the case our
results should be reproduced by models that make variability of
heart rate to depend on the activity of only these three inputs.
Such is the case, for instance, when a simple model is used

adapted from the well know class of integral pulse and frequency
modulation models (IPFM) [31]. In IPFM the input signal is
integrated until a threshold R is reached at which a pulse is
generated at time tk; the integrator is then set to zero and the
process is repeated. The general form of the IPFM model is

ðtk

tk{1

m0zm(t)ð Þdt~R, k~1, . . .K , ð10Þ

where it is assumed that m0 is a term accounting for the sinoatrial
node and m(t) is the input signal representing the autonomic
activity, described as

m(t)~cs sin(vst)zcp sin(vpt)zg ð11Þ

where vs and vp are the frequencies of the oscillators describing
the sympathetic and para-sympathetic branches of the ANS, cs cp
are weights and g is Gaussian noise. We have used this model to
simulate large samples of HRV records and these synthetic data
have been eventually analyzed with the same algorithm used for
the experimental data.
Gaussian mixture modelling produced just three Gaussians with

weights larger than 0:05; furthermore their values and those
obtained from experimental data are not significantly different (t-
test, df~9,t~{:13,pw0:32).
These results may be not surprising since the model contains

explicitly neural oscillators, thus as a further test, we have used a
quite different type of model proposed in [27] and [32], where
changes in the interbeat interval t are described by:

t(nz1){t(n)~I0(n,t0)zIz(n,tz)z
XN

j~1

I j{(n,tj{), ð12Þ

where I0, Iz and I{ are inputs coming the sinoatrial node, the

Figure 3. An histogram of a 24 hour heart rate time series,
showing the number of occurences of bpm values.
doi:10.1371/journal.pone.0037731.g003
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Figure 4. Gaussian Mixture Model of a 24 hour heart rate. Here the components corresponding to the 4 largest weights are presented. Note
that the fourth weight is much smaller than the others (v0:005). The red lines represent the gaussians multiplied by their weights and the black
curve the result of the mixture.
doi:10.1371/journal.pone.0037731.g004

Figure 5. Values, averaged over time series from 120 subjects,
of the weights as determined by the algorithm, in decreasing
order of magnitude. Bars indicate the standard deviation of the
mean (error bars).
doi:10.1371/journal.pone.0037731.g005

Figure 6. Averages, over time series from 120 subjects, of
mean values of gaussians, as a function of the order of the
weights. Bars are the error bars.
doi:10.1371/journal.pone.0037731.g006
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parasympathetic and sympathetic fibres, respectively, whereas
t0,tz,t{ are time constants.
Each of the inputs in (12) is given the form

Ik(n)~
wk(1zg), if t(n)vtk,

{wk(1zg), if t(n)§tk,

#
ð13Þ

where wk is the strength of the feedback input biasing t to return a
preferred level tk, and g represents uncorrelated noise. In turn tk
are random step-like function of time drawn from an uniform
distribution and constrained within a certain interval. (see [32],
[27] for further details). From a statistical standpoint, this model
can be seen as a state-space model with switching dynamics (see
discussion in Section 2).
Statistical analysis on large samples of simulated data shows

again that the Gaussian decomposition yields just three weights
larger than 0:05, and that there is not significant difference from
those obtained from the empirical data (t-test, (df~9,
t~{:120,pw0:9).
It is well known that there exist several factors affecting heart

rate, for example see [9], but what these models show is that in
HRV data the main component derived by the gaussian mixture
can be well described by the three major inputs that influence the
heart rate: symphatetic and pharasymphatetic control plus the
oscillation of the sinoatrial node.

Figure 7. Variances of Gaussians, averaged over time series
from 120 subjects, as a function of the order of the weights.
Bars indicate the standard deviation of the mean (error bars).
doi:10.1371/journal.pone.0037731.g007

Figure 8. Power spectrum, averaged over 120 subjects, of the heart rate time series, over 24 hours records. The scale is log-log. The
slope, b~{1:84 is computed in the range ½0:05,0:3%.
doi:10.1371/journal.pone.0037731.g008

Table 1. Correlation analysis results.

Measures LF HF

s21 0.37 n.s

s22 n.s 0.25

Significant correlations (pv0:05) between the variance of the first two Gaussian
and the PSD of the low and high frequency bands.
doi:10.1371/journal.pone.0037731.t001
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Thus our results further support the evidence of a major role of
these three components in producing the variability observed
experimentally.

Discussion

In this paper we have presented a novel method to analyze
heart rate variability, based on a Gaussian mixture decomposition
of the signal. This approach presents several advantages: first,
given enough Gaussian components, mixtures can approximate
arbitrary complex distributions and the mixture model covers the
data well (dominant patterns in the data are captured by
component distributions).
Furthermore, the use of gaussians allow a straightforward

interpretation of the properties exhibited by the power spectrum.
In addition well-studied statistical inference techniques are

available to determine the parameters of the mixture, that here
have been learned via maximum likelihood in a greedy fashion,
namely, by incrementally adding components to the mixture up to
a desired number of components K .
Results show that just three Gaussians (i.e., K~3) are enough to

predict heart rate variability, and that the mean and variance
values of the relevant components are coherent with physiological
measurements.
Means of the main components provide a lower bound of the

beat/minute values relevant in the formation of R{R time series,
while variances supply a link with frequency structure of the signal.
This link has been used in a correlation analysis whose results
suggest a possible identification of the activity of the different
branches of the ANS with the components of the Gaussian
mixtures.
Finally we have also found that the decreasing trend 1=f ,

observed in the data, can be derived by using the learned Gaussian
mixtures as a generative model. This result is relevant because it is
a further evidence that this approach indeed extracts the relevant
structure of the process.
Most often probabilistic models cannot explain by themselves

the physical processes generating the data, one exception being the
kinetic-molecular movement within a gas. Indeed the physics of
the phenomenon under study can be accounted for by models
involving solution of the appropriate governing equations.
In this perspective, we have investigated the relation of this

probabilistic model with well known models used in the literature

[26–27] to simulate the action of sinoatrial cells, and sympathetic
and parasympathetic systems. The results show that the parameter
learned from the data when plugged in dynamic model produce
synthetic data consisten with real ones.

Materials and Methods

Participants
A hundred healthy volunteers, 50 males and 50 females, (age

range 18–40, average 24.73, SD 4.35), took part in the recording
session. They had no history of cardiac injury or psychological
diseases and all took part voluntary and gave an informed consent.
Prior to the studies, they were acclimated to the settings, and
practiced with the apparatus. They refrained from alcohol or
caffeine intake and strenuous physical activity for 12 h preceding
the study sessions. All of the participants gave their informed
written consent, in line with the Declaration of Helsinki, and the
study was approved by the Ethic Committee of the Department of
Psychology, Turin University.

Procedure
Electrocardiogram recordings were obtained using a Holter

Lifecard CF (Del Mar Reynolds Medical Ltd.). Each participant
was asked to wear the Holter for 24 hours and to come back the
following day at between 5 and 6 p.m. to return the device. During
debriefing, a researcher checked the apparatus and asked further
questions as necessary.

Data reduction
The QRS detection and arrhythmia analysis were performed

using a DelMar Avionics arrhythmia analyzer (Impresario). No
arrhythmia was detected in the data analyzed. The presence of
artifacts was checked manually, although no abnormalities were
found in any subject. The R{R intervals were then calculated as
the time interval between two consecutive R-waves.
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