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Abstract

In this paper, we prove that a fuzzy set–valued Brownian motion Bt, as defined in Li and
Guan (2007), can be handle by an R

d–valued Wiener process bt, in the sense that Bt = Ibt ;
i.e. it actually is the indicator function of a Wiener process.
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1. Introduction

Stochastic (fuzzy) set–valued evolution is a relevant topic that was studied largely by
different authors and in different frameworks (e.g. Kloeden and Lorenz (2011); Li and Guan
(2007); Li et al. (2002); Mitoma et al. (2010); Molchanov (2005) and references therein). The
following question was stated in (Molchanov, 2005, Open Problem 1.24, p.316):

Define a set–valued analogue of the Wiener process and the corresponding stochas-
tic integral.

In Li and Guan (2007), the authors tackle the proposed problem defining a fuzzy set–valued
Brownian motion in Fkc, the family of convex fuzzy subsets of Rd with compact support. In
the sequel we prove that such a process is equivalent to consider simply a Wiener process in
R

d. This is based upon the fact that the Brownian motion is a zero–mean Gaussian (fuzzy
set–valued) process. In fact, it is widely known (cf. Li et al., 2002, Theorem 6.1.7) that a
Gaussian random fuzzy set decomposes according to

X = EX ⊕ Iξ, (1)

where EX is in the Aumann sense, ξ is a Gaussian random element in R
d with Eξ = 0 and

IA : Rd → {0, 1} denotes the indicator function of any A ⊆ R
d

IA(x) =

{

1, if x ∈ A,

0, otherwise.
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We write Ia instead of I{a}. Equation (1) means that X is just its expected value EX up to
a random Gaussian translation ξ. In other words, EX represents the “deterministic” part
of X whilst ξ represents its random part; this is a situation in which the randomness of X
is defuzzificated although X is still a fuzzy set with EX . Moreover, it is also known (cf.
Molchanov, 2005, Proposition 1.30, p.161) that a zero–mean random set is actually a random
element in R

d with zero–mean. Such a result can be easily extended to the fuzzy case (see
Corollary 8) and, jointly to decomposition (1), implies

X = I0 ⊕ Iξ = Iξ.

Roughly speaking, the definition of Brownian motion in Li and Guan (2007) for random
fuzzy sets drives down the complexity of the chosen (fuzzy) framework. In fact, a Gaussian
fuzzy random set with zero–mean is reduced to be a random Gaussian element in R

d. In
other words, in the case of a fuzzy Brownian motion, both the randomness of X and the
expectation EX are defuzzificated.

The paper is organized as follow. Section 2 is devoted to preliminaries such as random
fuzzy sets, embedding theorems and Brownian motion for fuzzy sets (according to Li and
Guan, 2007; Li et al., 2002). In Section 3 we prove the main result of the paper, whilst in
Appendix A we provide, using selections, an alternative proof to (Molchanov, 2005, Propo-
sition 1.30, p.161).

2. Preliminaries

We refer to Li et al. (2002) for what concerns classical results on fuzzy set–valued random
variable, and to Li and Guan (2007) for Gaussian and Brownian fuzzy set-valued processes.
Denote by Kkc the class of non–empty compact convex subsets of Rd, endowed with the
Hausdorff metric

δH(A,B) = max{sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖},

and the operations

A+B = {a+ b : a ∈ A, b ∈ B}, λ · A = λA = {λa : a ∈ A}.

A fuzzy set is a map ν : Rd → [0, 1]. Let Fkc denote the family of all fuzzy sets, which
satisfy the following conditions.

1. Each ν is an upper semicontinuous function, i.e. for each α ∈ (0, 1], the cut set να =
{x ∈ R

d : ν(x) ≥ α} is a closed subset of Rd.

2. The cut set ν1 = {x ∈ R
d : ν(x) = 1} 6= ∅.

3. The support set ν0+ = {x ∈ Rd : ν(x) > 0} of ν is compact; hence every να is compact
for α ∈ (0, 1].

4. For any α ∈ [0, 1], να is a convex subset of Rd.
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Let us endow Fkc with the metric

δ∞H (ν1, ν2) = sup{α ∈ [0, 1] : δH(ν
1
α, ν

2
α)}.

and the operations
(ν1 ⊕ ν2)α = ν1

α + ν2
α, (λ⊙ ν1)α = λ · ν1

α.

Let (Ω,F,P) be a complete probability space. A fuzzy set–valued random variable (FRV)
is a measurable function X : Ω → Fkc with respect to the δ∞H –Borel σ–algebra on Fkc.
It is known (cf. Colubi et al., 2002) that this measurability notion implies the levelwise
measurability; i.e. Xα : ω 7→ X(ω)α are random compact convex sets for every α ∈ (0, 1],
that is Xα is a Kkc–valued function measurable with respect to the δH–Borel σ–algebra. This
implication is used in the proof of Corollary 8.

A FRV X is integrably bounded and we write X ∈ L1[Ω,F, µ;Fkc] = L1[Ω;Fkc], if
‖X0+‖H := δH(X0+, {0}) ∈ L1[Ω;R]. The expected value of X ∈ L1[Ω;Fkc], denoted by
E[X ], is a fuzzy set such that, for every α ∈ (0, 1],

(E[X ])α =

∫

Ω

Xαdµ = {E(f) : f ∈ L1[Ω;Rd], f ∈ Xα µ− a.e.}.

Embedding Theorem, Support function of a FRV and some useful properties. Let S d−1 be
the unit sphere in R

d. Let C(S d−1) denote the Banach space of all continuous functions v

on S d−1 with respect to the norm ‖v‖C = supx∈S d−1 |v(x)|. Let C := C([0, 1], C(S d−1)) be
the set of all functions f : [0, 1] → C(S d−1) such that f is bounded, left continuous with
respect to α ∈ (0, 1], right continuous at 0, and f has right limit for any α ∈ (0, 1). Then we
have that C is a Banach space with the norm ‖f‖C = supα∈[0,1] ‖f(α)‖C, and the following
embedding theorem holds.

Proposition 1. (Li et al., 2002, Theorem 6.1.2) There exists a function j : Fkc → C such
that:

1. j is an isometric mapping, i.e.

δ∞H (ν1, ν2) = ‖j(ν1)− j(ν2)‖C , ν1, ν2 ∈ Fkc,

2. j(rν1 ⊕ tν2) = rj(ν1) + tj(ν2), ν1, ν2 ∈ Fkc and r, t ≥ 0.

3. j(Fkc) is a closed subset in C.

As a matter of fact, we can define an injection j : Fkc → C that satisfies above proposition by
j(ν) = hν , i.e. j(ν)(x, α) = hν(x, α) for every (x, α) ∈ S d−1×[0, 1], where hν : S d−1×[0, 1] →
R is the support function associated to ν ∈ Fkc defined by

hν(x, α) =

{

hνα(x) if α > 0,
hν0+

(x) if α = 0,
for (x, α) ∈ S d−1 × [0, 1],

and where hK(x) = sup{〈x, a〉 : a ∈ K}, for any x ∈ S d−1 and K ∈ Kkc.
From Proposition 1 it follows that every FRV X can be regarded as a random element of C
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by considering j(X) = hX : (Ω,F) → (C,B
C
) with ω 7→ j(X(ω)) = (hX)(ω) = hX(ω), where

j(X(·)) is a measurable map with respect to B
C

(the Borel σ–algebra on C generated by
‖ · ‖C) since it is the composition of the Bδ∞

H
–measurable map X(·) with the continuous one

j(·). Moreover, it is known (cf. Li et al., 2002, Lemma 6.1.6) that whenever X ∈ L1[Ω;Fkc],
then hX(·)(x, α) ∈ L1[Ω;R] and E[hX(x, α)] = hE[X](x, α), for any (x, α) ∈ R

d × [0, 1].
We stress out that such a representation of a FRV X , by means of its support function j(X),
is a standard technic used widely in the (fuzzy) set–valued random variable framework (e.g.
Li et al., 2002) and it is extensively used in this paper as well.

Fuzzy set–valued Brownian motion. A FRV X : Ω → Fkc is Gaussian if hX is a Gaussian
random element of C (cf. Li et al., 2002, Definition 6.1.5). A random element hX taking
values in C is Gaussian if and only if, for any n ∈ N and f1, f2, . . . , fn ∈ C

∗
, the real vector–

valued random variable (f1(hX), f2(hX), . . . , fn(hX)) is Gaussian, where C
∗
is the topological

dual of C (i.e. the set of all continuous linear functionals on C).
It follows from the properties of hX and elements in C

∗
that X ⊕ Y is Gaussian if X and Y

are Gaussian FRV. Also λX is Gaussian whenever X is Gaussian and λ ∈ R.

Proposition 2. (Li et al., 2002, Theorem 6.1.7) A FRV X is Gaussian if and only if X is
representable in the form

X = E[X ]⊕ Iξ,

where ξ is a Gaussian random element of Rd with zero mean.

Assume that {Ft : t ≥ 0} is a σ–filtration satisfying the usual condition (complete and
right continuous). {Xt : t ≥ 0} is called an adaptive fuzzy set–valued stochastic process
if for any t ∈ R+, Xt is an Ft–measurable FRV. An adaptive fuzzy set–valued stochastic
process {Xt : t ≥ 0} is called Gaussian if, for any t ∈ R+, Xt is Gaussian. Thus, an
adaptive fuzzy set–valued stochastic process X = {Xt : t ≥ 0} is Gaussian if and only if
{(f1(hXt

), . . . , fn(hXt
)) : t ≥ 0} is a real vector–valued Gaussian process, for any n ∈ N and

f1, f2, . . . , fn ∈ C
∗
.

Definition 3. An adaptive fuzzy set–valued stochastic process {Bt : t ∈ R+} is called a
fuzzy set–valued Brownian motion if and only if {hBt

: t ∈ R+} is a Brownian motion in C.

Proposition 4. Assume that a fuzzy set–valued stochastic process {Bt : t ≥ 0} satisfies
B0 = I0. Then {Bt : t ≥ 0} is a fuzzy set–valued Brownian motion if and only if it is a
Gaussian process and, for any s, t ≥ 0 and f1, . . . , fn ∈ C

∗
and i, j ∈ {1, . . . , n} with i 6= j,

1. E[fi(hBt
)] = 0,

2. E[fi(hBt
)fi(hBs

)] = t ∧ s,

3. E[fi(hBt
)fj(hBs

)] = 0.

The following results provide properties of a fuzzy Brownian motion similar to those of the
real case.
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Proposition 5. (Li and Guan, 2007, Theorem 4.3 and Theorem 4.4) Let {Bt}t≥0 be a
fuzzy set–valued Brownian motion. The following hold.

1. {Bt+t0}t≥0 is a fuzzy set–valued Brownian motion for any t0 ≥ 0.

2. {ν ⊕ Bt}t≥0 is a fuzzy set-valued Brownian motion for any fuzzy set ν ∈ Fk.

3. { 1√
λ
Bλt}t≥0 is a fuzzy set-valued Brownian motion for any λ > 0.

4. {tB 1√
t

}t≥0 is a fuzzy set-valued Brownian motion.

5. If Ft = σ{Bs : s ≤ t}, then {Bt,Ft}t≥0 is a fuzzy set–valued martingale.

3. A FRV Brownian motion is a Wiener process in R
d

This section is devoted to prove Theorem 6: the main result of this paper.

Theorem 6. A fuzzy set–valued process {Bt : t ≥ 0} is a Brownian motion, if and only if,
for each t ≥ 0,

Bt = Ibt , µ–a.e.

where {bt : t ≥ 0} is a Wiener process in R
d.

According to Definition 3 a fuzzy set–valued Brownian motion Bt is a process taking values
in F (that is a functional space over R

d). On the other hand, the previous result provides
a way to handle a fuzzy set–valued Brownian motion simply using a random vector of Rd.
In other words, we observe a “complexity reduction”(from F to R

d) or a “defuzzification of
randomness”.
In view of Theorem 6, Property 2 in Proposition 5 is not completely true. More precisely, it
claims that, for any ν ∈ Fkc, {ν ⊕ Bt}t≥0 is a fuzzy set-valued Brownian motion as well as
{Bt}t≥0. On the other hand, by Theorem 6, let {bt}t≥0 and {b′t}t≥0 be the Wiener processes
associated to {Bt}t≥0 and {ν⊕Bt}t≥0 respectively. For any t ≥ 0, it holds Ib′t = ν⊕Bt = ν⊕Ibt

µ–a.e.. Passing to the support function and computing expectation, we get, for t ≥ 0,

hIb′
t
−bt

= hν µ–a.e., and hI
E[b′

t
−bt]

= hI0 = hν ,

that is ν = I0. As a consequence, Property 2 in Proposition 5 must be rewrite as: {ν⊕Bt}t≥0

is a fuzzy set-valued Brownian motion if and only if ν = I0.
Actually the “complexity reduction” stated in Theorem 6 is strictly related to the char-
acterization of Gaussian FRV (cf. Proposition 2), to Property 1 of Proposition 4, and to
Corollary 8.

Proposition 7. Let X be a random compact convex set with ‖X‖H ∈ L1[Ω;R] and let
a ∈ R

d.
∫

Ω
Xdµ = {a} if and only if there exists a x ∈ L1[Ω;Rd] such that X = {x} µ–a.e.

and
∫

Ω
xdµ = a.

Proof. See (Molchanov, 2005, Proposition 1.30, p.161) or Appendix A. �

Corollary 8. Let X be in L1[Ω;Fkc] and let a ∈ R
d. EX = Ia if and only if there exists a

x ∈ L1[Ω;Rd] such that X = Ix µ–a.e. and
∫

Ω
xdµ = a.
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Proof. By definition of expectation, EX = Ia is equivalent to E[Xα] = (E[X ])α = {a}, for
each α ∈ (0, 1], that, by Proposition 7, is equivalent to say that, for each α ∈ (0, 1], Xα is
µ–a.e. a random singleton (in general depending on α) with mean value a; i.e. Xα = {xα}
µ–a.e. with xα being a random element of Rd and with E[xα] = a. By definition of α–level
sets for fuzzy set, {xα} = Xα ⊇ Xβ = {xβ} for any 0 ≤ α ≤ β ≤ 1; i.e. xα = xβ for any
α, β ∈ (0, 1] and hence, setting x = x1, X = Ix µ–a.e.. �

Lemma 9. For each (x, α) ∈ R
d × [0, 1], the following map belongs to C

∗

ϕx,α : C → R

s 7→ ϕx,α(s) = s(x, α).

Proof. It is easy to check that ϕx,α is linear. By linearity, it is sufficient to prove the
continuity at 0 ∈ C: for each ε > 0 and h ∈ C such that ‖h‖C < ε,

|ϕx,α(h)− ϕx,α(0)| = |ϕx,α(h)| = |h(α, x)| ≤ ‖h‖C < ε.

�

Proof of Theorem 6. Consider the “if”part. Let {bt}t≥0 be a Wiener process in R
d and

{Bt}t≥0 be defined by Bt := Ibt for any t ≥ 0. Since IBt
= I0⊕ Ibt for t ≥ 0, by Proposition 2,

Bt is a Gaussian FRV for any t ≥ 0 and hence {Bt}t≥0 is a Gaussian process on Fkc as well
as {hBt

}t≥0 is a Gaussian process on C. By Definition 3, it remains to prove that {hBt
}t≥0

has stationary independent zero mean increments. In particular, let t1 ≥ s1 ≥ t2 ≥ s2 ≥ 0,
then hBt1

− hBs1
= hIbt1

− hIbs1
= hIbt1−s1

is clearly independent of hBt2
− hBs2

= hIbt2−s2
,

and if h ≥ 0, then hBt1+h
− hBt1

has the same probability law of hBt2+h
− hBt2

. Finally, let
us consider

E[hBt1
− hBs1

] = hIE(bt1−s1
)
= hI0 ≡ 0

that completes the proof of the “if”part.
In order to prove the “only if”part let us consider the fuzzy set–valued Brownian motion

{Bt : t ≥ 0}. According to Proposition 4 and Proposition 2, for any t ≥ 0 and f ∈ C
∗
, it

satisfies

0 = E[f(hBt
)] = E[f(hE[Bt]⊕Iξt

)].

where ξt is an Gaussian random element of Rd with Eξt = 0. By the fact that, for any
ν1, ν2 ∈ Fkc, hν1⊕ν2 = hν1 + hν2 (cf. Proposition 1), using the linearity of the expectation
and of f , we get

0 = E[f(hE[Bt])] + E[f(hIξt
)] = f(hE[Bt]) + f(E[hIξt

])

= f(hE[Bt]) + f(hIE[ξt]
) = f(hE[Bt]), (2)

for any t ≥ 0 and f ∈ C
∗
, where for the last two equalities we use hEX = EhX and the

fact that ξt is zero mean. By the arbitrariness of f ∈ C
∗
in (2), hE[Bt] ≡ 0. More precisely,
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if this was not the case, there would exist (α, x) ∈ [0, 1] × R
d such that hE[Bt](α, x) 6= 0

and, one could consider the map ϕx,α, defined by ϕx,α(s) = s(x, α); it is an element of C
∗

(cf. Lemma 9) with ϕx,α(hE[Bt]) 6= 0 that would contradict Equation (2). As a consequence,
E[Bt] = I0 for each t ≥ 0 and, by Proposition 2 or by Corollary 8, Bt = I0 ⊕ Iξt = Iξt µ–a.e.
for each t ≥ 0 with ξt being a Gaussian zero mean random element of Rd. Moreover, {ξt}t≥0 is
a process with stationary independent zero mean increments, because {Bt}t≥0 and {hBt

}t≥0

are so, and hence {ξt}t≥0 is a Brownian motion in R
d. The thesis is complete considering

the process {bt}t≥0 defined by bt = ξt for all t ≥ 0. �

Note that Proof of Theorem 6 only uses the fact that {Bt}t≥0 is a Gaussian process for
which any finite distribution, at any time t, has null expectation.

We want to point out that, although one can associate a fuzzy set–valued Brownian
motion at any Brownian motion in C (using embedding j in Proposition 1), in general,
the contrary is not possible. In particular, (Fkc,⊕, ·) can be viewed, by means of j, as a
proper subset and subcone of the vector space (C,+, ·). As a consequence, while a Gaussian
element in C can also take “negative”values (with respect to +), this could not happen in
Fkc because the fuzzy sets that admit inverse elements with respect to ⊕ have the form
Ia. Roughly speaking, embedding j could not carry back all the possible “fluctuations”of
gaussian element, and the only Gaussian elements that could pull back by j are actually
defuzzificated.

Appendix A. Proof of Proposition 7

In (Molchanov, 2005, Proposition 1.30, p.161) the author proposed a proof of Proposi-
tion 7, in the case of random closed sets, that involves the support function. Here we propose
a different approach, via random sets selections, which simply relies on Hahn–Banach The-
orem, and that leads to the same result (with compactness and convexity hypothesis that
could be dropped).

For the sake of generality, here we consider X to be a separable Banach space with BX its
borel σ–algebra, and (Ω,F) to be a measurable space endowed with a positive finite measure
µ. Till now X was Rd and µ was a probability measure.
We need the following two lemmas. Roughly speaking, the former says that any non–null
vector in X can be separated from zero using a suitable countable family of elements of X∗

(it is a classical expression of the hyperplane separation theorem implied by the geometric
Hahn–Banach Theorem (cf. Lax, 2002, Theorem 5, p.23)). The second lemma says that, for
any couple of different (on some set of positive measure) integrable random elements in X,
there exists an element of X∗ that separates (on a set of positive measure) these two random
elements of X.

Lemma 10. There exists {φn}n∈N ⊂ X∗ such that whenever x ∈ X \ {0} there exists n ∈ N

for which φn(x) 6= 0.

Lemma 11. Let x1, x2 ∈ L1[Ω;X] and A = {ω ∈ Ω : x1(ω) 6= x2(ω)} with µ(A) > 0. Then
there exists ϕ ∈ X∗ such that

Aϕ = {ω ∈ Ω : ϕ[x1(ω)] > ϕ[x2(ω)]}
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has positive measure (i.e. µ(Aϕ) > 0).

Proof. Let x = (x1 − x2) then A = {ω ∈ Ω : x(ω) 6= 0} and let {φn}n∈N ⊂ X∗ as in
Lemma 10. We claim that there exists n ∈ N such that µ(Aφn

) + µ(A−φn
) > 0. Otherwise,

if An = Aφn
∪A−φn

, we have

µ(An) ≤ µ(Aφn
) + µ(A−φn

) = 0, ∀n ∈ N.

Now we prove that A ⊆
⋃

n∈N An: let ω ∈ A then x(ω) 6= 0 and, by Lemma 10, there exists
n ∈ N such that φn(x(ω)) 6= 0. Hence φn(x(ω)) > 0 or φn(x(ω)) < 0 i.e. ω ∈ An and thus
A ⊆

⋃

n∈N An.
This means that µ(A) ≤ µ(

⋃

n∈N An) = 0 that contradicts hypothesis (µ(A) > 0) and
concludes the proof. �

Proof of Proposition 7. The “if” part is trivial. Conversely, let SX be the family of
integrable selections of X , that is SX = {x ∈ L1[Ω;X] : x ∈ X µ− a.e.}, and let us suppose
that

∫

Ω
xdµ = a holds for all x ∈ SX , where integral is in the Bochner sense. Let us recall

that a Bochner integrable map is also Pettis integrable and by definition (e.g. Talagrand,
1984) we have

∫

Ω

φ(x)dµ = φ(a), ∀φ ∈ X∗, ∀x ∈ SX . (A.1)

Now, let us suppose that x1, x2 are distinct elements of SX i.e. A = {ω ∈ Ω : x1(ω) 6= x2(ω)}
has positive measure. Then, by Lemma 11, there exists ϕ ∈ X∗ such that Aϕ = {ω ∈ Ω :
ϕ[x1(ω)] > ϕ[x2(ω)]} has positive measure. Let us consider xϕ = IAϕ

x1 + IAC
ϕ
x2. Clearly xϕ

is a selection of X (i.e. xϕ ∈ SX), and

∫

Ω

ϕ(xϕ)dµ =

∫

Aϕ

ϕ(x1)dµ+

∫

AC
ϕ

ϕ(x2)dµ

>

∫

Aϕ

ϕ(x2)dµ+

∫

AC
ϕ

ϕ(x2)dµ = ϕ(a)

which contradicts Pettis integrability (A.1). �
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