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Università di Roma “La Sapienza”,

and I.N.F.N., Sezione di Roma, Italy.

Giulia Ricciardi3

Dipartimento di Scienze Fisiche,
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Abstract

We compare experimental spectra of radiative and semileptonic B decays with the predictions of a model
based on soft-gluon resummation to next-to-next-to-leading order and on a ghost-less time-like coupling. We
find a good agreement with photon spectra in the radiative decay and with hadron mass distributions in the
semileptonic one: the extracted values for αS (mZ) are in agreement with the current PDG average within at
most two standard deviations. The agreement is instead less good for the electron spectra measured by BaBar
and Belle in semileptonic decays for small electron energies (≤ 2.2 GeV): our spectrum is harder. We also show
that, in general, the inclusion of next-to-next-to-leading order effects is crucial for bringing the model closer to
the data and that the non-power expansion introduced in the framework of analytic coupling studies does not
accurately describe soft-gluon effects.

1e-mail address: Ugo.Aglietti@roma1.infn.it
2e-mail address: Giancarlo.Ferrera@roma1.infn.it
3e-mail address: Giulia.Ricciardi@na.infn.it

http://arXiv.org/abs/hep-ph/0608047v1


1 Introduction

The aim of this work is to analyze measured B decay spectra with a model based on (i) soft gluon resummation
to next-to-next-to-leading order and (ii) an effective QCD coupling having no Landau pole [1]. This coupling is
constructed by means of an extrapolation at low energy of the high-energy behavior of the standard coupling.
More technically, an analyticity principle is used.

B decay spectra are substantially affected by long-distance effects, the most important ones being the soft
interactions occurring in the fragmentation of the B meson into the b quark. The B meson — a colorless
composite particle — emits the spectator quark and radiates soft gluons,

B → b + sp + g1 + g2 + · · · + gn, (1)

to convert into the colored b quark which later decays because of weak interactions,

b → s + γ (2)

or
b → u + l + ν. (3)

Perturbation theory can describe the fragmentation of a b quark into a b quark with a fraction of the original
energy–momentum as an effect of multiple gluon radiation, but it clearly cannot describe that part of the
fragmentation involving the spectator quark. Physical intuition suggests that initial bound-state effects are
substantial for

m2
X ≈ mB ΛQCD ≈ 2 GeV2, (4)

which is experimentally interesting: that is the well known Fermi motion of the b quark in the B meson (mX

is the final invariant hadron mass). This non-perturbative effect — which classically can be pictured as a small
vibration of the b quark in the B meson because of the interactions with the spectator — has been formalized in
an effective field theory by means of the well-known shape function or structure function of the heavy flavors [2].
Many models have been constructed to describe Fermi-motion as a genuinely non-perturbative effect involving
the hadron structure [3]; perturbative corrections are included, if desired, later on and play in any case a
minor role. In this work we adopt a different philosophy: in essence, we assume that the fragmentation of
the lowest-lying beauty meson into the beauty quark and the spectator quark can be described as a radiation
process off the b with a proper coupling. Even though dynamics of light degrees of freedom in the B meson
is complicated, we assume that the related effects on semi-inclusive spectra are simple. More precisely, we
assume that bound-state effects can be incorporated into an effective QCD coupling, which is inserted in the
standard soft-gluon resummation formulas. We extrapolate therefore the perturbative QCD formulas to a non-
perturbative region by assuming that the relevant non-perturbative effects can be relegated into an effective
coupling. Since the perturbative formulas involve truncated expansions in the QCD coupling, it is clear that our
approach is meaningful as long as the effective coupling remains appreciably smaller than one in all the relevant
integration range. From Fig. 2 we see that our effective coupling is ≈ 0.5 for a typical soft scale k⊥ ≈ 0.5 GeV
(corresponding to xγ = 2Eγ/mB ≈ 0.9 in radiative B decays), i.e. it is reasonably smaller than one.

Since the whole fragmentation process is described in a perturbative framework, we do not distinguish
between the mass of the B meson and the pole mass of the b quark, i.e. we consistently set mb = mB. We also
assume that this effective coupling is universal, i.e. that it can be used to describe different processes, and that
it can be constructed on the basis of analyticity arguments. These are additional assumptions with respect to
the basic one, which could eventually be relaxed.

Let us remark that the resummed perturbative expansion for semi-inclusive quantities is incomplete even at
the formal level. For inclusive quantities characterized by a hard scale Q, the cross section can be written in a
consistent way as an expansion in the coupling at the scale Q,

σincl(Q) =

∞∑

n=0

cn αn
S(Q2), (5)
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where the cn’s are numerical coefficients of order one: no prescription is needed. Semi-inclusive processes are
instead multi-scale processes, characterized by fluctuations with transverse momenta up to Q; the physical origin
is very clear: a jet with a relatively large invariant mass mX (ΛQCD ≪ mX ≪ Q) can contain very soft partons,
with transverse momenta of the order of the hadronic scale. Unlike case (5), one has to face perturbative
contributions of the form ∫ Q2

≈ 0

dk2
⊥

k2
⊥

αS

(
k2
⊥

)
, (6)

where an ill-defined integration over the Landau pole is made, even for large Q ≫ ΛQCD. A prescription for
the low-energy behaviour of the coupling is therefore needed in any case. Even if quark confinement did not
exist and partons instead of hadrons were the asymptotic states, a prescription would anyway be necessary to
compute resummed cross-sections.

It is clear that our approach has intrinsic and obvious limitations. The mass of the proton, for example,
cannot clearly be computed by means of perturbative formulas with an effective coupling inserted in them: a
genuinely non-perturbative technique is mandatory in this case, such as lattice QCD. Our point is that, with
an effective coupling, we want to describe Fermi motion only, i.e. a specific non-perturbative effect, not all
non-perturbative effects. We do not aim for example at describing the K∗ peak which appears in the radiative
hadron mass distribution (see Fig. 3), or, equivalently, the π and ρ peaks which appear in the semileptonic one
(see Fig. 7 and Fig. 8). These peaks, occurring for

m2
X ≈ Λ2

QCD, (7)

are related to final-state hadronization, i.e. to the recombination of partons into hadrons. This effect has a
different nature with respect to Fermi motion and occurs at a different scale (cfr. eq. (4) with eq. (7)). With
our model, we just want to describe a broad peak in the hadron mass distribution occurring in region (4). A
possible difference between the photon spectra of, let’s say, B → Xsγ and Λb → Xsγ decays, could not be
described or naturally incorporated in our model, which is a kind of “spectator model for spectra”.

The validity of our approach cannot be judged a priori, but only a posteriori, by comparing its predictions
with experimental data. One may ask which is the advantage of our approach compared to the standard
one of postulating directly shapes for the non-perturbative components of the spectra and convolving them
with the perturbative ones in the minimal prescription [4]. The answer is that we want to take advantage of
the universality properties of QCD radiation, which are reflected in resummation formulas. In the standard
approach, one has to postulate ad-hoc and un-related shapes for the non-perturbative components entering
different observables, such as heavy flavor decay spectra, heavy flavor fragmentation, e+e− shape variables,
etc. If universal aspects of QCD dynamics — as measured in different processes — do exist, such aspects are
not easily uncovered with the standard approach. On the other hand, with our method, such an investigation
looks rather natural: to describe different processes, we use different perturbative formulas — quite often the
same formulas but with different coefficients — with the same effective coupling by assumption and we look
at the data [5]. Our philosophy involves a “one step” approach: we deal simultaneously with perturbative and
non-perturbative effects. The standard method is instead a “two-step” approach: one resums the perturbative
long-distance effects in a minimal way — picking up just the infrared logarithms — and then introduces a
physically motivated non-perturbative model.

Another advantage of our approach is that it allows for a simple extraction of the value of the standard
QCD coupling at a reference scale, f.i. αS (mZ), by comparing its predictions with measured B decay spectra.
That is because the model uses ordinary perturbative formulas with a prescription for the coupling in the
low-energy tail, and therefore there is not any double-counting problem in merging together short-distance and
long-distance effects. A peculiarity of our model is that it has no free parameters, apart of course the true QCD
ones, i.e. the hadronic scale ΛQCD and the quark masses mq’s. It is therefore “rigid”, in the sense that there
is not a natural way to tune it to fit the data.

The plan of the paper is as follows.

In sec. 2 we summarize the main features of the ghost-less QCD coupling, which is basically an extrapolation
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of the ordinary QCD coupling down to small momentum scales according to an analyticity principle which
removes the Landau pole.

In sec. 3 we construct the effective coupling controlling the evolution of gluon cascades, which are intrinsically
time-like processes. The absorptive effects related to the decay of the time-like gluons are included in this
effective coupling to all orders in perturbation theory.

Sec. 4 is the main one and describes the model based on soft gluon resummation in NNLO and on the effective
coupling constructed in the previous section. A discussion of the relevance of the next-to-next-to-leading-order
effects in our model is also presented. We also comment on the non-power expansion introduced in analytic
coupling studies.

In sec. 5 we apply the model to describe B → Xsγ decays. We compare its predictions with the invariant
hadron mass distribution measured by BaBar and with the inclusive photon spectrum measured by Cleo, BaBar
and Belle. Since these spectra are independent from each other, we obtain for each of them a value of αS(mZ)
which optimizes the agreement with the data.

In sec. 6 we apply the model to the charmless semileptonic decays B → Xulν. We compare our predictions
with the invariant hadron mass distribution measured by BaBar and Belle and with the charged lepton energy
spectrum measured by Cleo, BaBar and Belle. We extract values of αS(mZ) as discussed above.

Finally, in sec. 7 we draw our conclusions concerning the agreement of the model with the data. We also
consider natural developments and improvements.

There is also an appendix collecting formulas for the radiative decay and an appendix with tables of values
of the QCD form factor in our model for a set of values of αS(mZ).

2 Ghost-less Coupling

Let us begin considering QCD regularized with an ultra-violet cut-off Λ0 and with a bare coupling α0. The
correlation function 4 representing the quark-gluon interaction has a perturbative expansion of the form:

Γqq̄g

(
p2
1 = p2

2 = p2
3 = q2

)
= α0 + β0 α2

0 log
Λ2

0

−q2 − iε
+ α2

0 c + β2
0 α3

0 log2 Λ2
0

−q2 − iε
+ · · ·

=
α0

1 − β0 α0 log Λ2
0/ (−q2 − iε)

+ · · · (8)

where for simplicity’s sake we have considered the symmetric point p2
1 = p2

2 = p2
3. In the last member we

have resummed the well-known geometrical series of the leading logarithms. β0 = (11 − 2/3 nf) /(4π) is the
first-coefficient of the β-function, nf is the number of active flavors and c is a real constant whose explicit
expression is not relevant here. This Green function can be used to define the renormalized QCD coupling [6]:

Γqq̄g

(
p2
1 = p2

2 = p2
3 = q2

)
≃

α0

1 − β0 α0 log Λ2
0/ (−q2 − iε)

≡ α(−q2). (9)

To have a real coupling, one generally assumes a space-like configuration of the momenta,

q2 < 0 (10)

and to avoid explicit minus signs in the renormalization conditions, one defines, like in Deep-Inelastic-Scattering
(DIS): 5

Q2 ≡ − q2. (12)
4To be accurate, we consider the qq̄g correlation function amputated of all legs and written in terms of the renormalized fields.
5Note that Q2 > 0 in the space-like region while Q2 < 0 in the time-like one and the ε-prescription for Q2 is opposite to that

for q2:
Q2 ≡ Q2 − iε. (11)
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We then obtain the usual expression for the renormalized QCD coupling in leading order (LO):

αlo(Q
2) =

α0

1 − β0 α0 log Λ2
0/Q2

=
1

β0 log Q2/Λ2
QCD

, (13)

where on the last member we have introduced the QCD scale

Λ2
QCD ≡ Λ2

0 exp

[
−

1

β0 α0

]
. (14)

For notational simplicity, let us write Λ in place of ΛQCD from now on. The function on the r.h.s. of eq. (13)
has:

1. a cut for Q2 < 0 6, related to the decay of a time-like gluon into secondary partons,

g∗ → g g, q q̄, · · · . (15)

This singularity has therefore a clear physical meaning;

2. a simple pole for Q2 = Λ2, which does not have any physical meaning [7]. This singularity is often called
“Landau ghost” because of its original appearance in QED in the interacting electron propagator [8]. It
implies a formal divergence of the coupling and a breakdown of the perturbative scheme.

It has been suggested to replace the usual expression for the coupling in eq. (13) with a “ghost-less” or “analytic”
coupling ᾱ having the following properties [1]:

1. it has the same discontinuity along the cut as the standard coupling:

Disc ᾱ = Disc α (time − like region); (16)

2. it is analytic elsewhere in the complex plane.

Let us now consider the function

f(s) ≡
ᾱ(−s)

s + Q2
, (17)

where Q2 is a complex number not lying on the negative axis including the origin. By assumption, f(s) is
analytic in the complex s-plane cut along the positive axis s ≥ 0, except for a simple pole in

s = −Q2. (18)

We apply the residue theorem to f(s) integrated along a closed contour Γ avoiding the “physical” cut for s ≥ 0,
containing a circle of infinitesimal radius around the origin cǫ (ǫ → 0), a circle at infinity cr (r → ∞), a line
above the cut (s → s + iε) and a line below the cut (s → s − iε): see Fig. 1. Being the pole (18) the only
singularity inside the contour, we obtain the following expression for the analytic coupling: 7

ᾱ(Q2) =
1

2πi

∮

Γ

ᾱ(−s)

s + Q2
ds =

1

2πi

∮

cǫ

ᾱ(−s)

s + Q2
ds +

1

2πi

∮

cr

ᾱ(−s)

s + Q2
ds +

+
1

2πi

∫ ∞

0

ᾱ(−s − iε)

s + iε + Q2
ds +

1

2πi

∫ 0

∞

ᾱ(−s + iε)

s − iε + Q2
ds. (19)

6As usual, the logarithm function is cut along the negative semi-axis, so that: log(−1 ± iε) = ± iπ.
7Note that, had we taken Q2 ≤ 0, the pole (18) would have been located on the cut and the integral of f(s) over Γ would have

been zero.
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Figure 1: integration contour Γ used to construct the ghost-less coupling.

We assume that the contributions of cǫ and of cr vanish. Since s + Q2 6= 0 for s ≥ 0,

lim
ε→0+

[
ᾱ(−s − iε)

s + iε + Q2
−

ᾱ(−s + iε)

s − iε + Q2

]
=

1

s + Q2
lim

ε→0+
[ ᾱ(−s − iε) − ᾱ(−s + iε) ] =

1

s + Q2
Discs ᾱ(−s),

(20)
where the discontinuity of a function F (s) is defined in general as:

DiscsF (s) ≡ lim
ε→ 0+

[ F (s + iε) − F (s − iε) ] . (21)

Taking into account that for s ≥ 0 (see eq. (16))

Discs ᾱ(−s) = Discs α(−s), (22)

we obtain the following integral representation for the ghost-less coupling in terms of the standard one:

ᾱ(Q2) =
1

2πi

∫ ∞

0

ds

s + Q2
Discs α(−s). (23)

Eq. (23) is just a dispersion relation which, for clarity’s sake, has been fully derived from first principles. By
inserting on the last member the expression for the standard coupling at lowest order as given by eq. (13), we
obtain:

ᾱlo(Q
2) = lim

ε→0+

1

2πiβ0

∫ ∞

0

ds

s + Q2

[
1

log (−s/Λ2 − iε)
−

1

log (−s/Λ2 + iε)

]
. (24)

The integral above is elementary. It can also be computed with the residue theorem by considering the contour Γ
above. The circle of infinitesimal radius around the origin and the circle at infinity give vanishing contributions
to the integral. There are two simple poles in s = −Q2 and in s = −Λ2, so that:

ᾱlo(Q
2) =

1

β0

[
1

log Q2/Λ2
−

Λ2

Q2 − Λ2

]
. (25)

Let us make a few remarks:

1. comparing the r.h.s. of eqs. (13) and (25), we see that the “analyticization” procedure had the effect of
subtracting the infrared pole in Q2 = Λ2 by means of a power-suppressed term, in a minimal way;
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2. the analytic coupling has a constant limit at zero momentum transfer:

lim
Q2→0

ᾱlo(Q
2) =

1

β0
≈ O(1); (26)

3. the term added to the standard coupling,

−
1

β0

Λ2

Q2 − Λ2
, (27)

does not modify the high-energy behavior because it decays as an inverse power of the hard scale, i.e.
infinitely faster than any inverse power of the logarithm of Q2. In more formal terms, the added term
(27) is exponentially small in the coupling, and therefore is always missed in an asymptotic expansion for
Q2 → ∞:

Λ2

Q2 − Λ2
=

1

e1/[β0αlo(Q2)] − 1
≈ e−1/[β0αlo(Q2)]; (28)

4. since the power correction has no discontinuity in the time-like region Q2 < 0,

Disc
Λ2

Q2 − Λ2
= 0 for Q2 < 0, (29)

it trivially follows that the analytic coupling has the same discontinuity as the standard one, as originally
requested.

Let us now discuss the extension to next-to-leading order (NLO). The NLO correction to the standard coupling

δα(Q2) = −
β1

β3
0

log

(
log

Q2

Λ2

)
1

log2 Q2/Λ2
, (30)

where β1 is the second-order coefficient of the β-function in the normalization assumed in [9], involves:

1. the factor 1/ log2 Q2/Λ2, having a cut for Q2 < 0, related to the decay of the time-like gluon into on-shell
partons (see eq. (15)), and a double pole for Q2 = Λ2;

2. the factor log
(
log Q2/Λ2

)
, having a cut for Q2 < 0 related to the “internal” logarithm and another cut

for 0 < Q2 < Λ2 related to the “external” logarithm.

The singularities for Q2 = Λ2 and for 0 < Q2 < Λ2 are unphysical because they refer to the space-like region,
where the virtual gluon cannot decay into physical parton states. “Analyticization” can be made as in lowest
order: one requires that the analytic correction term has the same discontinuity for Q2 < 0 as the standard
one but it is regular elsewhere in the complex plane:

δᾱ(Q2) =
1

2πi

∫ ∞

0

ds

s + Q2
Discs δα(−s). (31)

The integral above — unlike the lowest-order case — is not elementary but it can easily be made numerically.
The following remarks are in order:

• the value of the analytic coupling at zero momentum transfer is not modified in higher order because:

lim
Q2 → 0

δᾱ(Q2) = 0; (32)

• it can be shown that δᾱ(Q2) has the same logarithmic terms as δα(Q2) [10], i.e. that the difference resides
in power-suppressed terms, as we have explicitly found for the leading order.
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The NLO coupling is defined as: ᾱnl = ᾱlo + δᾱ. Within our accuracy, the next-to-next-to-leading order
(NNLO) corrections to the coupling are also needed:

δα′(Q2) =
β2

1

β5
0

[
log2

(
log

Q2

Λ2

)
− log

(
log

Q2

Λ2

)
+

β0 β2 − β2
1

β2
1

]
1

log3 Q2/Λ2
, (33)

where β2 is the third-order coefficient of the β-function. One finds similar singularities as in the NLO case,
which are removed again according to principle of “minimal analyticity” already used:

δᾱ′(Q2) =
1

2πi

∫ ∞

0

ds

s + Q2
Discs δα′(−s). (34)

The NNLO analytic coupling reads (see Fig. 2):

ᾱ = ᾱlo + δᾱ + δᾱ′. (35)

Let us remark that an expansion in powers of the analytic coupling ᾱ is an asymptotic expansion — as in the
standard case — because the logarithmic structure of ᾱ is the same as that of α. As Fig. 2 clearly shows, the
standard coupling and the ghost-less one are barely distinguishable at large scales [1].

3 Effective Coupling for Gluon Cascade

As well known from perturbation theory, the emission of a gluon in a process is accompanied by an additional
factor α in the cross section, where α is the tree-level QCD coupling. In higher orders, one has to consider:

1. multiple emissions off the primary color charges — the heavy and the light quark in B decays;

2. secondary emissions off the radiated gluons.

Primary multiple emissions produce the exponentiation of the one-gluon distribution while secondary emissions
produce the decay of the radiated gluons into secondary partons — see eq. (15). In the case of form factors,
which are inclusive with respect to gluon decays, these higher-order terms have the main effect of replacing the
tree-level coupling with an effective coupling evaluated at the transverse momentum of the primary emitted
gluon [11]:

α → α̃(k2
⊥), (36)

where

α̃(k2
⊥) ≡

i

2π

∫ k2
⊥

0

ds Discs
α(−s)

s
. (37)

The coupling α̃(k2
⊥) is characteristic of the QCD cascade and it is given by the integral of the discontinuity of

the (interacting) gluon propagator over virtualities s cut-off by the primary gluon transverse momentum. Let
us remark that the cascade (or effective or time-like) coupling always refers to time-like kinematics.

The prescription at the root of our model is simply to replace the standard coupling on the r.h.s. of eq. (37)
with the ghost-less coupling constructed in the previous section:

α̃(k2
⊥) =

i

2π

∫ k2
⊥

0

ds Discs
ᾱ(−s)

s
. (38)

If we neglect the −iπ terms in the integral over the discontinuity — i.e. the absorptive effects — the cascade
coupling exactly reduces to the ghost-less one:

α̃(k2
⊥) → ᾱ(k2

⊥). (39)
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To render our model as accurate as possible, we include such absorptive effects and perform the integral on the
r.h.s. of eq. (38) exactly. By inserting the analytic coupling at LO in the integrand on the r.h.s. of eq. (38), we
obtain for the effective coupling:

α̃lo(k
2
⊥) =

1

2πiβ0

[
log

(
log

k2
⊥

Λ2
+ iπ

)
− log

(
log

k2
⊥

Λ2
− iπ

)]
. (40)

At NLO, one has to add the contribution:

δα̃(k2
⊥) =

β1

2πi β3
0

[
log

(
log k2

⊥/Λ2 + iπ
)

+ 1

log k2
⊥/Λ2 + iπ

−
log

(
log k2

⊥/Λ2 − iπ
)

+ 1

log k2
⊥/Λ2 − iπ

]
. (41)

The NNLO corrections read:

δα̃′(k2
⊥) = −

β2
1

4πiβ5
0

[
log2

(
log k2

⊥/Λ2 + iπ
)

(log k2
⊥/Λ2 + iπ)

2 −
log2

(
log k2

⊥/Λ2 − iπ
)

(log k2
⊥/Λ2 − iπ)

2

]
+

+
β2

1 − β0 β2

4πiβ5
0

[
1

(log k2
⊥/Λ2 + iπ)

2 −
1

(log k2
⊥/Λ2 − iπ)

2

]
. (42)

The time-like coupling in NNLO is simply the sum of the above terms:

α̃(k2
⊥) = α̃lo(k

2
⊥) + δα̃(k2

⊥) + δα̃′(k2
⊥). (43)

Let us make a few remarks:

1. the cascade coupling is very close to the ghost-less one for very small scales, let’s say less than 1 GeV
(see Fig. 2). That is partly a consequence of the fact that both couplings have the same limit at zero
momentum, 1/β0, and is partly accidental [1]. The cascade coupling is instead smaller than the standard
coupling or the ghost-less one in the perturbative region, at large scales, because it has an additional
negative third-order contribution ≈ − 1/ log3 Q2 — see next point;

2. the time-like coupling α̃ has an expansion in powers of the standard MS coupling α of the form:

α̃ = α −
(πβ0)

2

3
α3 −

5

6

β1

β0
(πβ0)

2
α4 + O(α5). (44)

The relation above can be considered as an ordinary change of scheme for the coupling starting at third
order;

3. the β̃ function for the time-like coupling, defined by the relation

d α̃

d log k2
⊥

= β̃(α̃) = − β̃0 α̃2 − β̃1 α̃3 − β̃2 α̃4 − · · · , (45)

has a negative third-order coefficient8,

β̃2 = β2 −
1

3
(πβ0)

2
β0 < 0, (46)

in agreement with the fact that the coupling saturates at small scales;

4. An expansion in powers of α̃(k2
⊥) is not an asymptotic expansion for k2

⊥ → ∞ because α̃ even at LO
contains infinitely many inverse powers of log k2

⊥.

8The first two coefficients are, as well known, invariant under a change of scheme: β̃0 = β0, β̃1 = β1.
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The decoupling relations for the time-like coupling differ from the ones for the standard MS coupling and read:

α̃nf
= α̃nf−1 −

(
11

72π2
−

17

54
+

nf

54

)
α̃ 3

nf−1, (47)

where α̃nf
is the time-like coupling with nf active flavors and α̃nf−1 with nf − 1. The above relation has to be

imposed at a scale µ such that m̄(µ) = µ, where m̄(µ) is the MS running mass of the decoupling quark.
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Figure 2: QCD couplings in NNLO for a fixed number of active flavors nf = 3 and Λ
(3)
QCD = 0.7 GeV. Dashed

line (green): standard coupling α(Q2); dotted line (blue): ghost-less or analytic coupling ᾱ(Q2); continuous line (red):
cascade or time-like coupling α̃(k2

⊥).

Let us end this section summarizing the basic steps taken in the construction of the effective coupling for
the gluon cascade of our model:

1. subtraction of the Landau pole from the ordinary QCD coupling;

2. inclusion of the absorptive effects related to the decay of time-like gluons in the coupling controlling jet
evolution.

3.1 Coupling in the DMW model

Let us now evaluate the quantity

α0 ≡
1

µI

∫ µI

0

dk⊥α̃
(
k2
⊥

)
(48)

parameterizing the leading non-perturbative effects in the Dokshitzer–Marchesini–Webber (DMW) model [5].
With µI = 2 GeV we obtain in our model α0 = 0.40 for α(mZ) = 0.12 and α0 = 0.44 for α(mZ) = 0.125.
In general, we find that α0 is roughly linear in α(mZ). A fit to e+e− shape variables data using next-to-leading
resummed formulas gives α0 ≃ 0.45 9.

9G. Salam: private communication.
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4 Threshold Resummation with Effective Coupling

In this section we describe a model for threshold resummation in semi-inclusive beauty decays based on the
effective coupling considered in the previous section. Basically, we replace in the resummation exponent the
standard coupling with the effective one.

4.1 N-space

In order to factorize multiple soft-gluon kinematic constraints, a transformation to N -space is required:

σN (α) =

∫ 1

0

(1 − t)N−1 σ(t; α) dt, (49)

where

σ(t; α) = δ(t) −
CF α

π

(
log t

t

)

+

−
7 CF α

4 π

(
1

t

)

+

+ O(α2), (50)

is the differential QCD form factor in the notation of [9]. CF = (N2
C − 1)/(2NC) = 4/3 with NC = 3 the

number of colors and the plus distributions are defined as usual as:

P (t)+ ≡ P (t) − δ(t)

∫ 1

0

P (t′) dt′. (51)

The form factor has an exponential form in N -space:

σN (α) = eGN (α), (52)

where the exponent of the form factor reads:

GN (α) =

∫ 1

0

dy

y

[
(1 − y)N−1 − 1

]
{∫ Q2y

Q2y2

dk2
⊥

k2
⊥

Ã
[
α̃(k2

⊥)
]

+ B̃
[
α̃(Q2y)

]
+ D̃

[
α̃(Q2y2)

]
}

, (53)

with Q = w mB being the hard scale and w ≡ 2EX/mB. The functions Ã(α̃), B̃(α̃) and D̃(α̃) have expansions
in powers of the effective coupling:

Ã(α̃) =

∞∑

n=1

Ãn α̃n = Ã1 α̃ + Ã2 α̃2 + Ã3 α̃3 + · · · ; (54)

B̃(α̃) =

∞∑

n=1

B̃n α̃n = B̃1 α̃ + B̃2 α̃2 + · · · ; (55)

D̃(α̃) =
∞∑

n=1

D̃n α̃n = D̃1 α̃ + D̃2 α̃2 + · · · . (56)

The resummation constants for the cascade coupling are obtained from the standard ones (usually in the MS
scheme) by imposing equalities such as:

Ã(α̃) = A(α), (57)

where

A(α) =

∞∑

n=1

An αn = A1 α + A2 α2 + A3 α3 + · · · (58)
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is the standard double-logarithmic function 10. Expressing the cascade coupling in terms of the standard one,
according to eq. (44), we obtain: 11

Ã1 = A1; (59)

Ã2 = A2; (60)

Ã3 = A3 +
(πβ0)

2

3
A1; (61)

Ã4 = A4 +
2

3
(πβ0)

2 A2 +
5

6

β1

β0
(πβ0)

2 A1. (62)

The first two coefficients A1 and A2 are the same for both couplings α and α̃, while the third-order one A3

is modified going to the time-like coupling by a contribution proportional to the first-order coefficient. For
nf = 3, Ã3 ≈ 1 is larger than A3 ≈ 0.3 by a factor 3, but it is still acceptably small.

We have found that the inclusion of the NNLO terms involving Ã3, B2 and D2 — in particular Ã3 – is
crucial for a good description of the experimental data. The NLO spectra are indeed peaked at too low hadron
invariant masses and a sizable and positive value for Ã3 suppresses the elastic region and shifts the spectra to
higher mX ’s. The model could be improved by including NNNLO terms, which require the knowledge of the
coefficients A4, B3 and D3; at present, only B3 is analytically known [12].

Our model has been constructed by means of a power expansion in a single (effective) coupling α̃, i.e. higher
orders are proportional to α̃n. In [1] and in [13] a non-power expansion had been proposed involving a different
coupling for any n, which has interesting theoretical properties. In second order (n = 2), for example, one has
the coupling

α̃2(k2
⊥) =

1

β2
0

(
π2 + log2 k2

⊥/Λ2
) (63)

in place of α̃(k2
⊥)2, with α̃(k2

⊥) given by eq. (40). We have found that the non-power expansion does not offer
a good description of the measured spectra. That is because

α̃2(k2
⊥) → 0 while α̃(k2

⊥)2 →
1

β2
0

≈ O(1) for k2
⊥ → 0. (64)

That implies that second-order effects are suppressed in the soft region with the non-power expansion compared
to the power expansion case. In general, the non-power expansion renders the higher-order effects very small
[1]. But, as discussed above, in beauty decays, sizable third-order effects are needed to take the theoretical
curves close to the data, disfavoring the non-power expansion.

In order to include as many corrections as possible — higher order log N terms, 1/N contributions, etc. —
in agreement with the philosophy described in the introduction, we make the integration over y in GN exactly,
in numerical way. This is possible because the time-like coupling α̃(k2

⊥), unlike the standard one, does not have
the Landau singularity and is regular for any k2

⊥ ≥ 0.

4.2 Inverse Transform

The form factor in momentum space is obtained by inverse transform:

σ(t; α) =

∫ C+i∞

C−i∞

dN

2πi
(1 − t)−N σN (α), (65)

where the constant C is chosen so that the integration contour in the N -plane lies to the right of all the
singularities of σN (α). In order to correctly implement multi-parton kinematics, the inverse transform from

10A compilation of the resummation constants in our normalization, with references to the original papers, can be found in [9].
11Analogous relations hold for the B̃i’s and the D̃i’s.
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N -space back to x-space is also made exactly in numerical way. Let us note that no prescription — such as
the minimal prescription in the standard formalism [4] — is needed in our model because σN (α) is analytic for
Re N > 0.

5 Radiative Decay

The event fraction or partially-integrated rate for the radiative B decay

B → Xs + γ (66)

can be written as [14, 15]:
1

Γ
(0)
r

∫ t

0

dΓr

dt′
dt′ = Kr(α)Σ(t; α) + Dr(t; α) (67)

where

t ≡
m2

X

m2
B

(68)

is a dimensionless variable,

Σ(t; α) =

∫ t

0

σ(t′; α) dt′ = 1 −
CF α

2π
log2 t −

7 CF α

4 π
log t + O(α2) (69)

is the partially-integrated form factor and

Γ(0)
r =

αem

π

G2
F m3

b m̄2
b

32π3
C2

7 (70)

is the lowest-order inclusive width. mb ≈ 5 GeV is the beauty pole mass while m̄b is the MS mass evaluated in
µ = mb. Their relation reads:

m̄b =

[
1 −

α(mb)CF

π
+ O(α2)

]
mb ≃ 0.9 mb. (71)

Kr(α) is a short-distance coefficient function specific for this process and having an expansion in powers of α:

Kr(α) = 1 + α K(1)
r + α2 K(2)

r + O(α3). (72)

The explicit expression of the first-order term reads:

K(1)
r =

1

2π

8∑

i=1

Ci

C7
Re ri, (73)

where the Ci’s are short-distance coefficient functions entering the effective b → sγ Hamiltonian, Hb→sγ , whose
numerical values are given in the appendix, and the ri’s are complex constants. Dr(t; α) is a process-dependent
remainder function, which is included to correctly describe also the high jet mass region t ≈ O(1). In our
leading-twist analysis, this function can be computed in perturbation theory and starts in first order:

Dr(t; α) = α D(1)
r (t) + α2 D(2)

r (t) + O(α3), (74)

with

D(1)
r (t) =

1

π

1,8∑

i≤j

Ci Cj

C2
7

f
(1)
ij (t). (75)

The fij(t)’s are functions whose explicit expression are given in the appendix.
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Since the total width Γr is infrared divergent beyond tree level, because of soft photon effects occurring in
the spectrum for t → 1, it is convenient to define an event fraction normalized to the partial rate

Γr(δ) ≡

∫ δ

0

dΓr

dt′
dt′, (76)

where δ < 1 is a parameter. That is also convenient for experimental reasons: due to large backgrounds, the
presently accessible range of hadron masses is at the most 0 < t < 0.3 (see later). The event fraction normalized
to Γr(δ) reads:

Rδ(t) =
1

Γr(δ)

∫ t

0

dΓr

dt′
dt′. (77)

For δ → 1, Rδ(t) tends to the standard event fraction Rr(t). The normalization condition is:

Rδ(δ) = 1. (78)

The differential spectrum is obtained by differentiation:

dΓr

dt
= Γr(δ)

dRδ

dt
. (79)

A resummed expression of the following form holds:

Rδ(t; α) = Cδ(α)Σδ(t; α) + Dδ(t; α), (80)

where we have defined the form factor

Σδ(t; α) ≡
Σ(t; α)

Σ(δ; α)
, (81)

which is normalized as
Σδ(δ; α) = 1. (82)

The normalization condition (78) gives:

Cδ(α) + Dδ(δ; α) = 1. (83)

The expansions of the coefficient function and the remainder function read:

Cδ(α) = 1 + α C
(1)
δ + α2 C

(2)
δ + O(α3); (84)

Dδ(t; α) = α D
(1)
δ (t) + α2 D

(2)
δ (t) + O(α3), (85)

with

C
(1)
δ = −

D
(1)
r (δ)

Σ(δ; α)
; D

(1)
δ (t) =

D
(1)
r (t)

Σ(δ; α)
. (86)

Note that we only expand Dr(t; α) in powers of α and not Σ(δ; α), because, for sufficient small δ, one can have

α log2 δ ≈ O(1), implying need for resummation to any order in α. For δ = 0.26, one obtains C
(1)
δ ≃ − 0.48,

i.e. a O(10%) correction to the tree-level coefficient function (Σ(t = 0.26; α) = 1.10).

5.1 Phenomenology

In Fig. 3 we compare the invariant hadron mass distribution for the radiative decay, dΓr/dmX , obtained with
our model with experimental data from the BaBar collaboration [16]. The data show a rather pronounced K∗

peak, which clearly cannot be accounted for in a perturbative QCD framework 12. We have therefore discarded

12To have a point-to-point description of the data, one has to include by hand the contribution of this resonance, by means of
one or more free parameters.
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in the analysis the data points with mX < 1.1 GeV 13. We obtain a minimum χ2 = 12 for αS(mZ) = 0.1255
for 13 data points, i.e. for 12 degrees of freedom (d.o.f.) because of the fixed normalization. Since we deal
with the standard QCD coupling, let us write αS from this section till the end of the paper. To improve the
agreement of the theory with the data and to estimate the error on αS(mZ), we have performed a Gaussian
smearing of ∆mX = 300 MeV of the data points and of the theoretical distribution, and we have discarded the
points with mX < 800 MeV. We obtain a minimum χ2 = 6.8 for αS(mZ) = 0.1205 for 15 d.o.f.. By taking
as an estimate of αS(mZ) the average of the above values and as an estimate of the error their difference, we
quote: 14

αS(mZ) = 0.123 ± 0.003 (mXs : BABAR) . (87)
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Figure 3: B → Xsγ invariant hadron mass distribution from BaBar compared to our model for αS(mZ) = 0.123. The
theory and the data are normalized to one in the experimentally accessible region.

In Fig. 4 we compare the photon energy spectrum computed in the framework of our model with data from
the Cleo Collaboration [17]. In the B rest-frame,

t = 1 −
2Eγ

mB
. (88)

The photon energies are however measured in the Υ(4S) rest frame, in which the B mesons have a small, non-
relativistic motion. In order to model the Doppler effect, we have convoluted the theoretical curve for Eγ —
computed with a B meson at rest — with a normal distribution of σγ = 150 MeV, as suggested by Cleo itself.
Let us note that the Doppler effect is sufficient to completely wash out the K∗ peak. We obtain a minimum
χ2 = 3.8 for αS(mZ) = 0.117 for 7 d.o.f.. Assuming complete independence of the experimental points, we
allow the χ2 to raise by one unit to estimate the error and we obtain:

αS(mZ) = 0.117 ± 0.004 (Eγ : CLEO, σγ = 150 MeV) . (89)

To check the modeling above of the Doppler effect, we have used the following method. We have converted the
mXs distribution by BaBar above to a photon spectrum in the B rest-frame and we have convoluted it with

13mK∗ = 892 MeV and ΓK∗ = 51 MeV.
14We have taken m̄b = 4.8 GeV, m̄c = 1.4 GeV and m̄s = 0.3 GeV in the decoupling relations. In general, changing the

MS masses in a reasonable range modifies the theoretical predictions in a negligible way. Increasing the MS masses is roughly
equivalent to a slight increase of αS(mZ ). That is because, lowering the renormalization scale, the QCD coupling rises faster for a
smaller number of active flavors.
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a normal distribution with a variable σγ , obtaining the points (xi, y
′
i(σγ), σ′

i). We have then minimized the
quantity

H (σγ) ≡
∑

i

[yi − y′
i(σγ)]

2

σ2
i + σ′ 2

i

(90)

with respect to σγ , where (xi, yi, σi) are the Cleo data 15. We have found a minimum of H(σγ) for σγ ≃ 100 MeV,
which gives similar results to the analysis with σγ = 150 MeV:

αS(mZ) = 0.118 ± 0.003 (Eγ : CLEO, σγ = 100 MeV) , (91)

with χ2 = 3.4. As intuitively expected, reducing σγ produces a shaper spectrum.
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Figure 4: B → Xsγ photon spectrum from Cleo compared to our model. Dotted line (blue): αS(mZ) = 0.118 and
σγ = 100 MeV to model the Doppler effect (see text); continuous line (black): αS(mZ) = 0.117 and σγ = 150 MeV.

In Fig. 5 we compare the predictions of our model with a spectrum from the BaBar collaboration [18]. The
BaBar spectrum is somewhat softer than the Cleo one — even though the difference is within one standard
deviation; we have interpreted this difference as a resolution effect and we have convoluted our theoretical curve
with a normal distribution with a slightly larger standard deviation, σγ = 200 MeV 16. We obtain a minimum
χ2 = 5.1 for 9 d.o.f.. Performing a similar analysis as for the Cleo data, we obtain:

αS(mZ) = 0.129 ± 0.005 (Eγ : BABAR, σγ = 200 MeV) . (92)

Following the minimization procedure above for the Cleo spectrum (see eq. (90)), we obtain also for the BaBar
photon spectrum σγ ≃ 100 MeV, to give:

αS(mZ) = 0.130 ± 0.008 (Eγ : BABAR, σγ = 100 MeV) , (93)

with χ2 = 8.0. Let us note that σγ and αS(mZ) are slightly anti-correlated because by increasing αS(mZ)
more radiation is emitted with a smearing effect similar to the one of increasing σγ .

The same analysis on the BaBar photon spectrum can be repeated for the Belle one [19] (see Fig. 6). The
minimization of H(σγ) gives in this case σγ ≃ 200 MeV. We obtain a minimum of χ2 = 5.3 for 8 d.o.f., to give

αS(mZ) = 0.130 ± 0.005 (Eγ : BELLE, σγ = 200 MeV) . (94)

15Let us remark however that the two spectra entering eq. (90) are independent on each other.
16A more sophisticated analysis from the experimentalists, including the true resolution functions, is strongly encouraged!

15



-1

 0

 1

 2

 3

 4

 5

 6

 7

-0.1 -0.05  0  0.05  0.1  0.15  0.2  0.25  0.3

1/
Γ r

 d
Γ r

 / 
dt

t =  mX
2 / mB

2

BABAR

-1

 0

 1

 2

 3

 4

 5

 6

 7

-0.1 -0.05  0  0.05  0.1  0.15  0.2  0.25  0.3

1/
Γ r

 d
Γ r

 / 
dt

t =  mX
2 / mB

2

-1

 0

 1

 2

 3

 4

 5

 6

 7

-0.1 -0.05  0  0.05  0.1  0.15  0.2  0.25  0.3

1/
Γ r

 d
Γ r

 / 
dt

t =  mX
2 / mB

2

-1

 0

 1

 2

 3

 4

 5

 6

 7

-0.1 -0.05  0  0.05  0.1  0.15  0.2  0.25  0.3

1/
Γ r

 d
Γ r

 / 
dt

t =  mX
2 / mB

2

Figure 5: B → Xsγ photon spectrum from BaBar compared to our model. Dotted line (blue): αS(mZ) = 0.130 and
σγ = 100 MeV; continuous line (black): αS(mZ) = 0.129 and σγ = 200 MeV.
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Figure 6: B → Xsγ photon spectrum from Belle compared to our model for αS(mZ) = 0.130 and σγ = 200 MeV.
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The over-all picture is that there is a good agreement of our model with the data in the region mX > 1 GeV,
below which single resonances such as K and K∗ are expected to have a substantial effect in the dynamics. The
extracted values of αS(mZ) are in agreement with the world average

αS(mZ) = 0.1176 ± 0.0020 (PDG06) . (95)

at most within two standard deviations.

6 Semileptonic decay

Resummed expressions for the triple-differential distribution in the inclusive charmless semileptonic B decays,

B → Xu + l + ν, (96)

as well as for many double and single distributions have been given in [14, 9, 20, 21], so we do not repeat them
here 17. To compare with semileptonic data, we just supplement these resummed expressions with the QCD
form factor σ computed within our model.

6.1 Hadron mass distribution
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Figure 7: invariant hadron mass distribution in semileptonic decays from BaBar compared to our model for αS(mZ) =
0.119.

In Fig. 7 we compare the invariant hadron mass distribution in the semileptonic decay (96) in our model
with data from the BaBar collaboration [23]. We discard the point with mX < 400 MeV, which is dominated
by the π peak, and the points with mX > 2.6 GeV, which give basically no information on the signal 18. We
obtain a minimum χ2 = 1.1 for 5 d.o.f. and, using the method of the previous section, we obtain:

αS(mZ) = 0.119 ± 0.003 (mXu : BABAR) . (97)

Since the ρ width is larger than that of the K∗, Γρ ≃ 150 MeV ≃ 3ΓK∗ , and the binning is rather large
(∆mX = 400 MeV), we do not apply any smearing procedure in this case.

17A slightly different formalism, which uses light-cone variables and is equivalent to ours in leading twist, has been developed in
[22].

18Let us stress that for mX > 1.7 GeV experimental errors become very large because of the large background coming from
semileptonic b → c transitions which have mX ≥ mD = 1.867 GeV.
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Figure 8: invariant hadron mass distribution in semileptonic decay from Belle compared to our model for αS(mZ) =
0.123.

In Fig. 8 we present a similar plot with Belle data [24]. To extract αS(mZ), we discard the first 7 points,
having mX < 0.8 GeV. We obtain a minimum χ2 = 5.3 with 7 d.o.f., to give αS(mZ) = 0.123 ± 0.006. Since
the binning is smaller for Belle (∆mX = 120 MeV) than for BaBar, the ρ peak is pretty visible now. To reduce
the resonance effect, we convolve our theoretical curve and the experimental data with a normal distribution of
σ = 300 MeV, as we have made with the mXs spectrum in the previous section. By discarding the first four
points, we obtain a minimum χ2 = 0.41 for 10 d.o.f. to give αS(mZ) = 0.115 ± 0.004. Combining the above
measures as we have made for the mXs spectrum, we quote:

αS(mZ) = 0.119 ± 0.004 (mXu : BELLE) . (98)

Let us note that semileptonic distributions peak at smaller hadron masses than radiative ones because they
have a smaller average hadron energy [9]:

〈EX〉sl ≃ 0.7 〈EX〉rd. (99)

For αS(mZ) = 0.123, we find for the peak positions in our model:

mXu ≈ 1.3 GeV while mXs ≈ 1.7 GeV. (100)

We end this section by noting that the extracted values of αS(mZ) from the above measurements are in
agreement with each other as well with the reference value within one standard deviation.

6.2 Electron spectrum

The electron spectrum in the decay (96) is affected by a large background for

Ee <
mB

2

(
1 −

m2
D

m2
B

)
≃ 2.31 GeV (101)

coming from the decays
B → Xc + l + ν. (102)
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This background is larger than the signal by two orders of magnitude because |Vub|
2/|Vcb|

2 ∼ 10−2. In order to
avoid the large errors coming from its subtraction, we have normalized the theory and the data to one in the
region Ee > 2.31 GeV. Instead of the electron energy, we prefer to use the variable

x̄e ≡ 1 −
2Ee

mB
, (103)

which is equal to zero for the largest electron energy. The charm background occurs for x̄e > 0.125. To include
the Doppler effect, we convolve our spectra with a normal distribution of standard deviation σe = 100 MeV.
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Figure 9: electron spectrum in semileptonic charmless B decay from Cleo compared to our model with αS(mZ) = 0.118.
The data and the theory are normalized to one in the charm background free region 0 < x̄e < 0.125.

In Fig. 9 we compare the electron spectrum in our model 19 with data from the Cleo Collaboration [25]. We
obtain a minimum χ2 = 30 for 13 d.o.f. and with the analysis described above we obtain:

αS(mZ) = 0.117 ± 0.005 (Ee : CLEO) . (104)

The over-all agreement of the model with the data is acceptable in all the measured range of electron energies.
In the region affected by the charm background, experimental errors become however very large.

In Fig. 10 we compare our prediction with the electron spectrum measured by the BaBar collaboration
[26]. In the χ2 analysis we remove the 4 points with the smallest electron energies, which are affected by the
subtraction of the charm background. We obtain a minimum χ2 = 16 for 9 d.o.f. and we obtain

αS(mZ) = 0.119 ± 0.005 (Ee : BABAR) . (105)

In Fig. 11 we compare our model with Belle data [27]. For the χ2 analysis we have discarded the seven
points with the largest x̄e, i.e. with smallest electron energies. We obtain a minimum χ2 = 7 for 8 d.o.f. for
αS(mZ) ≈ 0.135. Since the χ2 is a rather irregular function of αS(mZ) in this case — without a well-shaped
minimum — we are not able to estimate the error.

Finally, in Fig. 12 we compare our model for αS(mZ) = 0.119 with a preliminary measure of the electron
spectrum of the BaBar collaboration extending down to Ee = 1.1 GeV [28]. As it is clearly seen, the theoretical
spectrum is harder than the experimental one. We do not known whether this discrepancy is related to a
deficiency of our model or to an under-estimated charm background.

19Let us note that the tree-level electron spectrum has a maximum for x̄e = 0, at the largest electron energy, where it is flat.
The shift of the maximum inside the kinematical domain, in x̄e ≈ 0.2, is a Sudakov effect. Because of infrared divergencies, soft
radiation is always emitted and the high energy electron recoils against a neutrino and a massive up-quark jet, instead of a massless
one.

19
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Figure 10: electron spectrum in semileptonic decay from BaBar compared to our model with αS(mZ) = 0.119. The
data and the theory are normalized to one in the charm background free region 0 < x̄e < 0.125.
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Figure 12: electron spectrum in semileptonic decay extending down to 1.1 GeV from BaBar (preliminary) compared to
our model with αS(mZ) = 0.119. The data and the theory are normalized to one in the charm background free region
0 < x̄e < 0.125.

We may summarize our analysis of the electron spectra by saying that the agreement theory-data is less clear
in this case. The agreement is acceptable in the charm background free region, i.e. for 2.31 < Ee < 2.64 GeV;
the errors in the measure of αS(mZ) are however larger than in previous cases. There is not a good agreement
with the preliminary BaBar spectrum for small electron energies: our model predicts a broad maximum around
Ee = 2.1 GeV, while the data seem to peak at lower energies.

7 Conclusions

We have presented a model for the QCD form factor describing radiative and semileptonic B decay spectra
based on soft-gluon resummation to next-to-next-to-leading logarithmic accuracy and on a power expansion
in an ghost-less time-like coupling. The latter is free from infrared singularities (Landau ghost) and resumes
absorptive effects in gluon cascades to all orders.

The agreement with invariant hadron mass distributions in radiative and semi-leptonic decays measured by
Cleo, BaBar and Belle is in general a good one. The χ2/d.o.f. values are acceptable and the extracted values
of αS(mZ) are in agreement with the current PDG average within two at most standard deviations.

The agreement with the electron spectra in semi-leptonic decays is in general is, in general, not as good.
Even restricting the analysis to the end-point region free from the charm background (2.31÷2.64 GeV), χ2/d.o.f.
values are larger and the extracted values of αS(mZ) are generally less accurate than in previous cases. The
preliminary BaBar measure of the electron spectrum down to 1.1 GeV is not in good agreement with our
model, which predicts a harder spectrum, with a broad maximum around 2.1 GeV. We do not know whether
the discrepancy is to be attributed to a deficiency of our model or to an under-subtracted charm background.
In the former case, one could think to a non-perturbative component which is accidentally larger in the electron
spectrum than in other semi-leptonic or radiative spectra.

In general, the model seems to work quite well, validating the idea that Fermi-motion effects can be described
in a resummed pQCD framework with an effective QCD coupling, which remains reasonably smaller than one
in the relevant integration domain. Since the effective coupling is constructed by means of an extrapolation at
low energy of the standard coupling, non-perturbative Fermi-motion effects are connected in a smooth way to
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the perturbative ones — namely soft gluon radiation — in our model. More accurate data on any distribution
sensitive to soft-gluon effects are needed to put the model to a stringent test. Theoretical predictions could
be sharpened in the future by including second-order corrections to the coefficient functions and remainder
functions, as soon as they become available; that would allow to work within a complete NNLO approximation.

We have found that the inclusion of the NNLO effects in our model is crucial for a good description of
the data; the model could be improved by including NNNLO terms. We have also found that the non-power
expansion proposed in [1, 13] does not accurately describe soft-gluon effects.

Let us end with a general comment. We find it remarkable that with such a simple model as the one we
have formulated, without any adjustable parameter, it is possible to extract reasonable values of αS(mZ) from
spectra with a hard scale of just a few GeV.
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A Coefficient Functions and Remainder Functions for the Radiative

Decay

The coefficient functions Ci of the local operators Oi entering the effective Hamiltonian

Hb→sγ =

8∑

i=1

Ci Oi (106)

can be taken as:

(C1, C2, C3, C4, C5, C6, C7, C8) = (− 0.480, 1.023, − 0.0045, − 0.0640, 0.0004, 0.0009, − 0.304, − 0.148).
(107)

The analytic expressions of the Ci’s as functions of mb, mt, mW and αS(mZ) as well as of the Oi’s can be found
in [29] 20. The coefficients Ci for i = 3, 4, 5, 6 are very small, implying that the contributions of the related
operators can be neglected.

The functions entering the leading-order remainder function D
(1)
r (t) read in our conventions:

f11(t) = +
1

36
f22(t); (108)

f12(t) = −
1

3
f22(t); (109)

f17(t) = −
1

6
f27(t); (110)

f18(t) = −
1

6
f28(t); (111)

20Unlike previous works ([14] and [15]), we always insert in the formulas the corrected C7 = C
(0)
7 + αS/(4π) C

(1)
7 .
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f22(t) = +
16

27
k

{
t

∫ (1−t)/k

0

dv (1 − k v)

∣∣∣∣
G(v)

v
+

1

2

∣∣∣∣
2

+

∫ 1/k

(1−t)/k

dv (1 − k v)2
∣∣∣∣
G(v)

v
+

1

2

∣∣∣∣
2
}

; (112)

f27(t) = −
8

9
k2

{
t

∫ (1−t)/k

0

dv Re
[
G(v) +

v

2

]
+

∫ 1/k

(1−t)/k

dv (1 − k v)Re
[
G(v) +

v

2

]}
; (113)

f28(t) = −
1

3
f27(t); (114)

f77(t) = +
t

9

[
30 + 3 t − 2 t2 − 3 (4 − t) log t

]
; (115)

f78(t) = −
2

27

[
2 π2 − 27 t + 3 t2 − t3 + 12 t log t − 12 Li2(1 − t)

]
; (116)

f88(t) = +
1

81

{
− 2π2 + t [21 + (9 − 2 t) t] + 24 log(1 − t) − 6 log

mb

ms
[t (2 + t) + 4 log(1 − t)] +

− 3 t (2 + t) log t + 12 Li2(1 − t)
}

. (117)

We have defined:

G(v) =

{
−2 arctan2

(√
v

4−v

)
v < 4;

2 log2
[√

v+
√

v−4
2

]
− 2πi log

[√
v+

√
v−4

2

]
− π2

2 v ≥ 4,
(118)

and

k =
m2

c

m2
b

. (119)

B QCD form factor

In this appendix we tabulate the values of the QCD form factor σ(u; w) in our model as a function of the
infrared variable

u ≡
EX −

√
E2

X − m2
X

EX +
√

E2
X − m2

X

≃
m2

X

4E2
X

(for mX ≪ EX) (120)

and of the total final hadron energy

w ≡
2EX

mB
(121)

for αS(mZ) = 0.115, 0.120 and 0.125. The hard scale in the process is

Q = w mB. (122)

In the radiative case one sets t = u and w = 1 while in the semileptonic case the form factor as a function of w
(0 < w < 1) is needed [9, 20, 21]. By using the following tables, the reader can obtain the form factor for all
the values of u and w by means of a straightforward interpolation, avoiding the delicate numerical integrations
related to the Mellin transform and to the inverse Mellin transform. In agreement with physical intuition, by
lowering the hard scale, the peak of the form factor broadens and shifts to larger u’s because of the coupling
growth.

23



σ(u; w) : αS(mZ) = 0.115

u w = 0.10 w = 0.28 w = 0.46 w = 0.64 w = 0.82 w = 1.00

0.01 2.89 × 10-6 5.094 × 10-6 1.218 × 10-5 1.088× 10-4 8.073 × 10-4 3.825 × 10-3

0.02 3.063× 10-6 1.028 × 10-4 3.525 × 10-3 3.077× 10-2 1.344 × 10-1 3.923 × 10-1

0.03 3.686× 10-6 3.574 × 10-3 6.732 × 10-2 3.688× 10-1 1.12 2.426
0.04 4.715× 10-5 3.068 × 10-2 3.597 × 10-1 1.407 3.295 5.788
0.05 4.848× 10-4 1.277 × 10-1 1.03 3.102 5.948 8.903
0.06 2.577× 10-3 3.485 × 10-1 2.065 5.029 8.209 1.082 × 101

0.07 9.099× 10-3 7.256 × 10-1 3.313 6.749 9.64 1.145 × 101

0.08 2.451× 10-2 1.256 4.578 8.002 1.021× 101 1.111 × 101

0.09 5.449× 10-2 1.905 5.697 8.713 1.008× 101 1.019 × 101

0.10 1.052× 10-1 2.621 6.568 8.929 9.493 9.004
0.11 1.821× 10-1 3.346 7.152 8.754 8.637 7.748
0.12 2.894× 10-1 4.031 7.456 8.304 7.661 6.549
0.13 4.296× 10-1 4.636 7.511 7.681 6.669 5.469
0.14 6.029× 10-1 5.135 7.366 6.964 5.725 4.531
0.15 8.075× 10-1 5.516 7.067 6.213 4.863 3.734
0.16 1.04 5.776 6.661 5.472 4.099 3.065
0.17 1.295 5.92 6.186 4.769 3.435 2.51
0.18 1.568 5.958 5.673 4.119 2.864 2.05
0.19 1.851 5.902 5.145 3.532 2.379 1.67
0.20 2.138 5.769 4.621 3.008 1.968 1.356
0.21 2.423 5.571 4.114 2.548 1.621 1.097
0.22 2.7 5.325 3.635 2.146 1.329 8.814 × 10-1

0.23 2.963 5.042 3.187 1.798 1.083 7.027× 10-1

0.24 3.208 4.734 2.776 1.498 8.765 × 10-1 5.537 × 10-1

0.25 3.43 4.411 2.401 1.24 7.021 × 10-1 4.293 × 10-1

0.26 3.627 4.081 2.063 1.019 5.55 × 10-1 3.249 × 10-1

0.27 3.797 3.75 1.761 8.29 × 10-1 4.307 × 10-1 2.372 × 10-1

0.28 3.937 3.423 1.491 6.665× 10-1 3.255 × 10-1 1.632 × 10-1

0.29 4.048 3.105 1.253 5.273× 10-1 2.363 × 10-1 1.005 × 10-1

0.30 4.128 2.798 1.042 4.079× 10-1 1.606 × 10-1 4.656 × 10-2

0.31 4.18 2.504 8.571× 10-1 3.057× 10-1 9.62 × 10-2 1.027 × 10-4

0.32 4.202 2.227 6.948× 10-1 2.18 × 10-1 4.139 × 10-2 −3.977× 10-2

0.33 4.197 1.965 5.528× 10-1 1.427× 10-1 −5.313× 10-3 −7.377× 10-2

0.34 4.166 1.722 4.29 × 10-1 7.814× 10-2 −4.524× 10-2 −1.026× 10-1

0.35 4.112 1.496 3.211× 10-1 2.272× 10-2 −7.955× 10-2 −1.27 × 10-1

0.36 4.035 1.287 2.274× 10-1 −2.485 × 10-2 −1.093× 10-1 −1.476× 10-1

0.37 3.938 1.096 1.463× 10-1 −6.568 × 10-2 −1.353× 10-1 −1.649× 10-1

0.38 3.824 9.216 × 10-1 7.613 × 10-2 −1.007 × 10-1 −1.578× 10-1 −1.796× 10-1

0.39 3.693 7.63 × 10-1 1.552 × 10-2 −1.307 × 10-1 −1.771× 10-1 −1.918× 10-1

0.40 3.55 6.195 × 10-1 −3.678× 10-2 −1.564 × 10-1 −1.936× 10-1 −2.021× 10-1

0.50 1.791 −1.934× 10-1 −2.85× 10-1 −2.775 × 10-1 −2.596× 10-1 −2.42 × 10-1

0.60 3.035× 10-1 −3.989× 10-1 −3.229× 10-1 −2.851 × 10-1 −2.551× 10-1 −2.346× 10-1

0.70 −4.713× 10-1 −4.072× 10-1 −3.088× 10-1 −2.615 × 10-1 −2.335× 10-1 −2.15 × 10-1

0.80 −7.243× 10-1 −3.596× 10-1 −2.718× 10-1 −2.311 × 10-1 −2.076× 10-1 −1.92 × 10-1

0.90 −6.43 × 10-1 −2.953× 10-1 −2.286× 10-1 −1.975 × 10-1 −1.792× 10-1 −1.653× 10-1

0.98 −4.249× 10-1 −2.458× 10-1 −2.017× 10-1 −1.803 × 10-1 −1.672× 10-1 −1.58 × 10-1
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σ(u; w) : αS(mZ) = 0.120

u w = 0.10 w = 0.28 w = 0.46 w = 0.64 w = 0.82 w = 1.00

0.01 2.575× 10-6 4.491 × 10-6 6.691 × 10-6 2.153× 10-5 1.321 × 10-4 6.542 × 10-4

0.02 2.748× 10-6 2.286 × 10-5 7.371 × 10-4 7.231× 10-3 3.539 × 10-2 1.147 × 10-1

0.03 2.992× 10-6 8.639 × 10-4 1.881 × 10-2 1.185× 10-1 4.081 × 10-1 9.901 × 10-1

0.04 1.341× 10-5 8.992 × 10-3 1.247 × 10-1 5.674× 10-1 1.517 2.995
0.05 1.359× 10-4 4.372 × 10-2 4.23 × 10-1 1.493 3.282 5.527
0.06 8.021× 10-4 1.357 × 10-1 9.753 × 10-1 2.797 5.245 7.775
0.07 3.121× 10-3 3.155 × 10-1 1.761 4.239 6.961 9.285
0.08 9.146× 10-3 6.013 × 10-1 2.695 5.582 8.182 9.98
0.09 2.192× 10-2 9.932 × 10-1 3.67 6.663 8.849 9.991
0.10 4.521× 10-2 1.475 4.587 7.407 9.021 9.516
0.11 8.315× 10-2 2.018 5.373 7.812 8.805 8.74
0.12 1.397× 10-1 2.589 5.986 7.916 8.316 7.817
0.13 2.181× 10-1 3.157 6.41 7.774 7.657 6.855
0.14 3.208× 10-1 3.692 6.65 7.447 6.911 5.924
0.15 4.489× 10-1 4.171 6.724 6.991 6.141 5.062
0.16 6.024× 10-1 4.58 6.657 6.453 5.388 4.29
0.17 7.799× 10-1 4.909 6.474 5.873 4.681 3.612
0.18 9.791× 10-1 5.155 6.201 5.282 4.033 3.024
0.19 1.197 5.317 5.862 4.702 3.451 2.521
0.20 1.429 5.401 5.478 4.149 2.935 2.093
0.21 1.671 5.413 5.067 3.633 2.482 1.73
0.22 1.918 5.361 4.643 3.159 2.089 1.423
0.23 2.167 5.254 4.219 2.729 1.748 1.163
0.24 2.412 5.1 3.803 2.343 1.454 9.444 × 10-1

0.25 2.649 4.909 3.404 1.999 1.201 7.596× 10-1

0.26 2.875 4.689 3.025 1.695 9.845 × 10-1 6.034 × 10-1

0.27 3.085 4.446 2.67 1.427 7.986 × 10-1 4.712 × 10-1

0.28 3.278 4.186 2.34 1.193 6.394 × 10-1 3.593 × 10-1

0.29 3.451 3.916 2.037 9.873× 10-1 5.031 × 10-1 2.641 × 10-1

0.30 3.602 3.64 1.761 8.082× 10-1 3.864 × 10-1 1.828 × 10-1

0.31 3.73 3.362 1.51 6.522× 10-1 2.864 × 10-1 1.127 × 10-1

0.32 3.834 3.086 1.283 5.165× 10-1 2.008 × 10-1 5.236 × 10-2

0.33 3.913 2.815 1.08 3.986× 10-1 1.274 × 10-1 5.426 × 10-4

0.34 3.968 2.552 8.978× 10-1 2.963× 10-1 6.449 × 10-2 −4.377× 10-2

0.35 3.999 2.298 7.355× 10-1 2.076× 10-1 1.037 × 10-2 −8.151× 10-2

0.36 4.007 2.055 5.915× 10-1 1.308× 10-1 −3.641× 10-2 −1.136× 10-1

0.37 3.992 1.824 4.64 × 10-1 6.426× 10-2 −7.71× 10-2 −1.407× 10-1

0.38 3.956 1.607 3.515× 10-1 6.723× 10-3 −1.125× 10-1 −1.636× 10-1

0.39 3.9 1.403 2.527× 10-1 −4.299 × 10-2 −1.433× 10-1 −1.83 × 10-1

0.40 3.826 1.212 1.659× 10-1 −8.59 × 10-2 −1.697× 10-1 −1.993× 10-1

0.50 2.42 −9.317× 10-3 −2.727× 10-1 −2.938 × 10-1 −2.836× 10-1 −2.655× 10-1

0.60 7.765× 10-1 −4.072× 10-1 −3.595× 10-1 −3.213 × 10-1 −2.858× 10-1 −2.61 × 10-1

0.70 −3.087× 10-1 −4.693× 10-1 −3.545× 10-1 −2.965 × 10-1 −2.617× 10-1 −2.388× 10-1

0.80 −7.857× 10-1 −4.228× 10-1 −3.12× 10-1 −2.604 × 10-1 −2.312× 10-1 −2.12 × 10-1

0.90 −7.863× 10-1 −3.432× 10-1 −2.588× 10-1 −2.199 × 10-1 −1.975× 10-1 −1.808× 10-1

0.98 −5.003× 10-1 −2.753× 10-1 −2.213× 10-1 −1.96 × 10-1 −1.805× 10-1 −1.699× 10-1
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σ(u; w) : αS(mZ) = 0.125

u w = 0.10 w = 0.28 w = 0.46 w = 0.64 w = 0.82 w = 1.00

0.01 2.309× 10-6 4.039 × 10-6 5.47 × 10-6 8.764× 10-6 2.845 × 10-5 1.247 × 10-4

0.02 2.46 × 10-6 8.166 × 10-6 1.706 × 10-4 1.785× 10-3 9.505 × 10-3 3.339 × 10-2

0.03 2.641× 10-6 2.309 × 10-4 5.49 × 10-3 3.839× 10-2 1.458 × 10-1 3.871 × 10-1

0.04 5.702× 10-6 2.809 × 10-3 4.39 × 10-2 2.243× 10-1 6.666 × 10-1 1.448
0.05 4.474× 10-5 1.562 × 10-2 1.727 × 10-1 6.899× 10-1 1.695 3.153
0.06 2.796× 10-4 5.422 × 10-2 4.501 × 10-1 1.47 3.092 5.072
0.07 1.174× 10-3 1.387 × 10-1 9.02 × 10-1 2.485 4.589 6.778
0.08 3.689× 10-3 2.875 × 10-1 1.512 3.596 5.938 8.023
0.09 9.412× 10-3 5.117 × 10-1 2.231 4.665 6.988 8.735
0.10 2.055× 10-2 8.124 × 10-1 2.996 5.587 7.678 8.96
0.11 3.98 × 10-2 1.181 3.745 6.303 8.017 8.791
0.12 7.011× 10-2 1.603 4.429 6.79 8.05 8.34
0.13 1.144× 10-1 2.057 5.012 7.056 7.838 7.71
0.14 1.752× 10-1 2.524 5.473 7.121 7.447 6.985
0.15 2.547× 10-1 2.982 5.805 7.019 6.935 6.228
0.16 3.542× 10-1 3.415 6.01 6.781 6.354 5.482
0.17 4.742× 10-1 3.809 6.098 6.443 5.743 4.777
0.18 6.145× 10-1 4.152 6.082 6.034 5.133 4.127
0.19 7.741× 10-1 4.439 5.975 5.582 4.544 3.54
0.20 9.512× 10-1 4.666 5.794 5.108 3.99 3.017
0.21 1.143 4.832 5.554 4.63 3.477 2.558
0.22 1.348 4.939 5.268 4.161 3.011 2.156
0.23 1.561 4.99 4.95 3.71 2.591 1.808
0.24 1.781 4.989 4.611 3.285 2.216 1.507
0.25 2.002 4.942 4.26 2.889 1.883 1.247
0.26 2.223 4.855 3.907 2.525 1.59 1.024
0.27 2.438 4.731 3.558 2.192 1.333 8.328× 10-1

0.28 2.647 4.577 3.217 1.891 1.108 6.686× 10-1

0.29 2.844 4.399 2.89 1.619 9.118 × 10-1 5.278 × 10-1

0.30 3.029 4.199 2.579 1.376 7.41 × 10-1 4.067 × 10-1

0.31 3.199 3.984 2.286 1.159 5.926 × 10-1 3.022 × 10-1

0.32 3.352 3.757 2.012 9.665× 10-1 4.639 × 10-1 2.117 × 10-1

0.33 3.486 3.522 1.758 7.956× 10-1 3.523 × 10-1 1.334 × 10-1

0.34 3.601 3.282 1.523 6.446× 10-1 2.557 × 10-1 6.584 × 10-2

0.35 3.696 3.04 1.308 5.114× 10-1 1.719 × 10-1 7.763 × 10-3

0.36 3.769 2.8 1.112 3.943× 10-1 9.927 × 10-2 −4.2 × 10-2

0.37 3.822 2.563 9.342× 10-1 2.914× 10-1 3.593 × 10-2 −8.451× 10-2

0.38 3.855 2.331 7.732× 10-1 2.013× 10-1 −1.942× 10-2 −1.207× 10-1

0.39 3.866 2.106 6.284× 10-1 1.224× 10-1 −6.775× 10-2 −1.515× 10-1

0.40 3.858 1.89 4.984× 10-1 5.351× 10-2 −1.098× 10-1 −1.775× 10-1

0.50 2.917 2.99 × 10-1 −2.15× 10-1 −2.945 × 10-1 −3.031× 10-1 −2.883× 10-1

0.60 1.277 −3.637× 10-1 −3.894× 10-1 −3.592 × 10-1 −3.194× 10-1 −2.902× 10-1

0.70 −6.465× 10-2 −5.265× 10-1 −4.05× 10-1 −3.365 × 10-1 −2.936× 10-1 −2.656× 10-1

0.80 −7.947× 10-1 −4.951× 10-1 −3.589× 10-1 −2.94 × 10-1 −2.578× 10-1 −2.344× 10-1

0.90 −9.333× 10-1 −3.996× 10-1 −2.936× 10-1 −2.452 × 10-1 −2.179× 10-1 −1.978× 10-1

0.98 −5.886× 10-1 −3.088× 10-1 −2.428× 10-1 −2.128 × 10-1 −1.947× 10-1 −1.826× 10-1

26



References

[1] For a review of the theoretical activity, see for example: D. V. Shirkov, Nucl. Phys. Proc. Suppl. 152 (2006)
51 [arXiv:hep-ph/0408272].

[2] I. I. Y. Bigi, M. A. Shifman, N. G. Uraltsev and A. I. Vainshtein, Int. J. Mod. Phys. A 9 (1994) 2467
[arXiv:hep-ph/9312359].

[3] For a recent analysis see for example: O. Buchmuller and H. Flacher, Phys. Rev. D 73 (2006) 073008
[arXiv:hep-ph/0507253].

[4] S. Catani, M. L. Mangano, P. Nason and L. Trentadue, Nucl. Phys. B 478 (1996) 273
[arXiv:hep-ph/9604351].

[5] A similar philosophy has been applied to the description of e+e− shape variables in: Y. L. Dokshitzer,
G. Marchesini and B. R. Webber, Nucl. Phys. B 469 (1996) 93 [arXiv:hep-ph/9512336]; the main difference
is that we do not have free parameters. A similar philosophy has also been exploited in the frame of the
renormalon calculus in: J. R. Andersen and E. Gardi, JHEP 0601 (2006) 097 [arXiv:hep-ph/0509360]; the
main difference is that we consider a set of summable corrections by means of the analyticity principle.

[6] For a discussion of the kinematics involved in the renormalization of the QCD coupling, see for example:
Y. L. Dokshitzer, V. A. Khoze, A. H. Mueller and S. I. Troian, Basics of Perturbative QCD, Editions
Frontieres, Paris (1991), chapter one.

[7] U. Aglietti and Z. Ligeti, Phys. Lett. B 364 (1995) 75 [arXiv:hep-ph/9503209].

[8] See for example: L. Landau and E. Lifshitz, Teoria Quantistica Relativistica, vol.4, Editori Riuniti (1978),
last chapter.

[9] U. Aglietti, G. Ricciardi and G. Ferrera, Phys. Rev. D 74 (2006) 034004 [arXiv:hep-ph/0507285].

[10] A. Y. Alekseev, Phys. Rev. D 61 (2000) 114005; A. I. Alekseev, arXiv:hep-ph/0011178.

[11] D. Amati, A. Bassetto, M. Ciafaloni, G. Marchesini and G. Veneziano, Nucl. Phys. B 173 (1980) 429.

[12] S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B 726 (2005) 317 [arXiv:hep-ph/0506288].

[13] U. Aglietti and G. Ricciardi, Phys. Rev. D 70 (2004) 114008 [arXiv:hep-ph/0407225].

[14] U. Aglietti, Nucl. Phys. B 610 (2001) 293 [arXiv:hep-ph/0104020].

[15] U. Aglietti, M. Ciuchini and P. Gambino, Nucl. Phys. B 637 (2002) 427 [arXiv:hep-ph/0204140].

[16] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 72 (2005) 052004 [arXiv:hep-ex/0508004].

[17] S. Chen et al. [CLEO Collaboration], Phys. Rev. Lett. 87 (2001) 251807 [arXiv:hep-ex/0108032].

[18] B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0507001.

[19] P. Koppenburg et al. [BELLE Collaboration], Phys. Rev. Lett. 93 (2004) 061803 [arXiv:hep-ex/0403004].

[20] U. Aglietti, G. Ricciardi and G. Ferrera, Phys. Rev. D 74 (2006) 034005 [arXiv:hep-ph/0509095].

[21] U. Aglietti, G. Ricciardi and G. Ferrera, Phys. Rev. D 74 (2006) 034006 [arXiv:hep-ph/0509271].

[22] B. O. Lange, M. Neubert and G. Paz, Phys. Rev. D 72 (2005) 073006 [arXiv:hep-ph/0504071].

[23] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 96 (2006) 221801 [arXiv:hep-ex/0601046].

[24] I. Bizjak et al. [Belle Collaboration], Phys. Rev. Lett. 95 (2005) 241801 [arXiv:hep-ex/0505088].

[25] A. Bornheim et al. [CLEO Collaboration], Phys. Rev. Lett. 88 (2002) 231803 [arXiv:hep-ex/0202019].

27

http://arXiv.org/abs/hep-ph/0408272
http://arXiv.org/abs/hep-ph/9312359
http://arXiv.org/abs/hep-ph/0507253
http://arXiv.org/abs/hep-ph/9604351
http://arXiv.org/abs/hep-ph/9512336
http://arXiv.org/abs/hep-ph/0509360
http://arXiv.org/abs/hep-ph/9503209
http://arXiv.org/abs/hep-ph/0507285
http://arXiv.org/abs/hep-ph/0011178
http://arXiv.org/abs/hep-ph/0506288
http://arXiv.org/abs/hep-ph/0407225
http://arXiv.org/abs/hep-ph/0104020
http://arXiv.org/abs/hep-ph/0204140
http://arXiv.org/abs/hep-ex/0508004
http://arXiv.org/abs/hep-ex/0108032
http://arXiv.org/abs/hep-ex/0507001
http://arXiv.org/abs/hep-ex/0403004
http://arXiv.org/abs/hep-ph/0509095
http://arXiv.org/abs/hep-ph/0509271
http://arXiv.org/abs/hep-ph/0504071
http://arXiv.org/abs/hep-ex/0601046
http://arXiv.org/abs/hep-ex/0505088
http://arXiv.org/abs/hep-ex/0202019


[26] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 73 (2006) 012006 [arXiv:hep-ex/0509040].

[27] A. Limosani et al. [Belle Collaboration], Phys. Lett. B 621 (2005) 28 [arXiv:hep-ex/0504046].

[28] B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0408075.

[29] K. G. Chetyrkin, M. Misiak and M. Munz, Phys. Lett. B 400 (1997) 206 [Erratum-ibid. B 425 (1998)
414] [arXiv:hep-ph/9612313]; P. Gambino, M. Gorbahn and U. Haisch, Nucl. Phys. B 673 (2003) 238
[arXiv:hep-ph/0306079].

28

http://arXiv.org/abs/hep-ex/0509040
http://arXiv.org/abs/hep-ex/0504046
http://arXiv.org/abs/hep-ex/0408075
http://arXiv.org/abs/hep-ph/9612313
http://arXiv.org/abs/hep-ph/0306079

	Introduction
	Ghost-less Coupling
	Effective Coupling for Gluon Cascade
	Coupling in the DMW model

	Threshold Resummation with Effective Coupling
	N-space
	Inverse Transform

	Radiative Decay
	Phenomenology

	Semileptonic decay
	Hadron mass distribution
	Electron spectrum

	Conclusions
	Coefficient Functions and Remainder Functions for the Radiative Decay
	QCD form factor

