
UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI SCIENZE DELL’INFORMAZIONE

SETTORE SCIENTIFICO DISCIPLINARE INF/01 INFORMATICA

DOTTORATO IN INFORMATICA

XXIV CICLO

Graph-based approaches for imbalanced
data in functional genomics

Tesi di Dottorato di Ricerca di:
Marco Frasca

Relatore:

Prof Alberto Bertoni

Correlatore:
Prof. Giorgio Valentini

Coordinatore del Dottorato:

Prof. Ernesto Damiani

Anno Accademico 2010/11

Aknowledgements

I wish to thank you. . .

Alberto Bertoni and Giorgio Valentini for their invaluable support;

Matteo Re for his pleasant presence,

and for aid that he gave me;

my parents for their peerless help;

my girlfriend Maryam for being by my side each moment;

my family,

my sister, my nephew and my niece.

Dedicated to my grandparents.

Contents

Introduction 4

1 Background 8

1.1 Gene Function Prediction: basic notions 8

1.1.1 Functional Ontologies 9

1.1.2 Gene/protein Function Prediction Problem 10

1.2 Machine Learning Methods for GFP 10

1.3 Data integration methods for GFP 15

2 COSNet: a cost sensitive algorithm for gene function pre-

diction 18

2.1 Introduction . 18

2.2 Gene Function Prediction as a semi-supervised learning problem 20

2.3 Hopfield Networks . 22

2.4 Learning Issues in Hopfield Networks for GFP 25

2.5 Sub-network Property . 27

2.6 COSNet . 29

2.6.1 Generating a Temporary Solution 30

2.6.2 Finding the Optimal Parameters 31

2.6.3 Finding the unknown labels by Network Dynamics . . 38

2.6.4 Time complexity . 42

2.6.5 Model regularization 43

2.6.6 COSNet covers GFP learning issues 45

2.6.7 Software Implementation 48

2.7 Experimental setting . 51

2.7.1 GFP in Yeast . 51

2.7.2 Results and Discussion 52

iv

3 LSI: an efficient cost-sensitive algorithm for network data

integration 57

3.1 Estimating network weights 59

3.2 Data Integration Schemes . 64

3.3 Experimental setting . 64

3.4 Results and Discussion . 68

3.4.1 GFP in Yeast . 68

3.4.2 GFP in Mouse . 72

Conclusions 82

v

Abstract

The Gene Function Prediction (GFP) problem consists in inferring bio-

logical properties for the genes whose function is unknown or only partially

known, and raises challenging issues from both a machine learning and a

computational biology standpoint.

The GFP problem can be formalized as a semi-supervised learning prob-

lem in an undirected graph. Indeed, given a graph with a partial graph la-

beling, where nodes represent genes, edges functional relationships between

genes, and labels their membership to functional classes, GFP consists in

inferring the unknown functional classes of genes, by exploiting the topolog-

ical relationships of the networks and the available a priori knowledge about

the functional properties of genes.

Several network-based machine learning algorithms have been proposed

for solving this problem, including Hopfield networks and label propagation

methods; however, some issues have been only partially considered, e.g. the

preservation of the prior knowledge and the unbalance between positive and

negative labels.

A first contribution of the thesis is the design of a Hopfield-based cost

sensitive neural network algorithm (COSNet) to address these learning is-

sues. The method factorizes the solution of the problem in two parts: 1) the

subnetwork composed by the labelled vertices is considered, and the network

parameters are estimated through a supervised algorithm; 2) the estimated

parameters are extended to the subnetwork composed of the unlabeled ver-

tices, and the attractor reached by the dynamics of this subnetwork allows

to predict the labeling of the unlabeled vertices.

The proposed method embeds in the neural algorithm the “a priori”

knowledge coded in the labelled part of the graph, and separates node labels

and neuron states, allowing to differentially weight positive and negative

node labels, and to perform a learning approach that takes into account the

“unbalance problem” that affects GFP.

A second contribution of this thesis is the development of a new algo-

rithm (LSI) which exploits some ideas of COSNet for evaluating the predic-

tive capability of each input network. By this algorithm we can estimate the

effectiveness of each source of data for predicting a specific class, and then

we can use this information to appropriately integrate multiple networks by

weighting them according to an appropriate integration scheme.

Both COSNet and LSI are computationally efficient and scale well with

the dimension of the data.

COSNet and LSI have been applied to the genome-wide prediction of

1

gene functions in the yeast and mouse model organisms, achieving results

comparable with those obtained with state-of-the-art semi-supervised and

supervised machine learning methods.

2

3

Introduction

Functional annotation of genes is an important goal in post-genomics re-

search. However, despite the many recent technological advances that have

allowed the production of various types of molecular data at a genome-wide

scale, the function of large numbers of genes in fully sequenced genomes

still remains unknown. This is true even for six of the most-studied model

species, S. cerevisiae, C. elegans, D. melanogaster, A. thaliana, M. muscu-

lus, H. sapiens in which the proportion of genes whose functions are un-

known varies between around 10% for S. cerevisiae and around 75% for

M. musculus [41]. Accordingly, a fundamental problem in this context is

determining an effective and reliable strategy for discovering the biological

properties of uncharacterized genes.

In this context, for genes we also mean their products, like proteins and

RNAs; accordingly, in the following we will talk mainly about genes, and

about proteins when the biochemical, physiological and structural charac-

teristics of the translated proteins are considered. The problem of inferring

biomolecular functions for uncharacterized genes is called Gene Function

Prediction problem (GFP). The input data are usually represented through

an undirected weighted graph G = (V,W), where nodes v ∈ V correspond

to instances to be classified (genes), and W defines the weights of the edges

according to the “strength” or the evidence of the relationships between

pairs of nodes. Moreover, a classification of nodes in positives and negatives

is known for a subset S ⊂ V , and the aim is to find a classification for the

remaining nodes U = V \ S.

Many different machine learning approaches have been proposed for

GFP, including decision trees [10, 12], kernel based methods like SVMs [14,

15] and module-assisted approaches [42, 43, 49]. In particular, in recent

years several network-based approaches have been proposed, in which genes

relationships are represented through a network whose nodes represent genes

and whose edges represent the detected similarities between genes [25, 26,

31, 32].

4

The first and simplest algorithms proposed were based on “guilt-by-

association” methods, by which unlabeled nodes are set according to the ma-

jority or the weighted majority of the labels in their neighborhoods [26, 27].

By extending this approach, nodes can “propagate” their labels to their

neighbors iteratively by repeating this “label propagation” process until con-

vergence [33, 34, 35]. Algorithms based on the evaluation of the functional

flow in graphs [25, 32], on Markov [62] and Gaussian Random Fields [35, 36]

have been applied to the prediction of gene functions in biological networks.

Hopfield networks [87] shares common elements with label propagation

algorithms. Indeed labels are iteratively propagated across the neighbors

of each node and a quadratic cost function related to the consistency of

the labeling of the nodes w.r.t. the network topology is minimized by the

network dynamics. From this standpoint Hopfield networks and most of the

proposed network-based algorithms for the prediction of node labels can be

cast into a recently proposed common framework where a quadratic cost

objective function is minimized [38]. Nevertheless, there are some issues

that have been only partially considered in classifying networked data.

Many of the network-based approaches do not preserve prior information

coded in nodes labeling, providing as output labeling that might be “incon-

sistent” with the initial labeling. Moreover, traditional machine learning

algorithms usually suffer a decay in performance when applied on highly

unbalanced data sets [70, 71], and the problem of learning in presence of

unbalanced data is the so called Class Imbalance Problem.

The class imbalance problem has been tackled by sampling strategies,

that is either the minority class is oversampled or the majority class is un-

dersampled or some combination of both [73], and by Cost-Sensitive strate-

gies [72, 74]. In the GFP context, in order to address this problem some

simple class rescaling have been proposed so that the respective weights over

unlabeled examples match the prior class distribution estimated from labeled

examples [33, 36], and very few cost-sensitive approaches including a Gaus-

sian field approach [36] and Bayesian hierarchical ensemble method [75].

Finally, many approaches based on neural networks do not distinguish

between the node labels and the values of the neuron states [31], thus re-

sulting in a lower predictive capability of the network.

To address these issues, a first contribution of the thesis is a cost-sensitive

neural algorithm (COSNet), based on Hopfield neural networks, whose main

characteristics are the following:

1. Available a priori information is embedded in the neural network and

5

preserved by the network dynamics.

2. Labels and neuron states are conceptually separated. In this way a

class of Hopfield networks is introduced, having as parameters the

values of neuron states and the neuron thresholds.

3. The parameters of the network are learned from the data through

an efficient supervised algorithm, in order to take into account the

unbalance between positive and negative node labels.

4. The dynamics of the network is restricted to its unlabeled part, pre-

serving the minimization of the overall objective function and signifi-

cantly reducing the time complexity of the learning algorithm.

COSNet has been validated with a genome-wide/ontology-wide prediction

in the S.Cerevisiae model organism, by considering the FunCat ontology [6]

and five different types of yeast biomolecular data. The results shows that

the proposed algorithm achieves significantly better results in terms of F-

score (Wilcoxon signed-ranks test at 10−15 significance level) than other

state-of-the-art methods for GFP problem when high imbalanced data are

considered.

Each network used for validating COSNet describes a different type of

relationship between genes, ranging from genetic or physical interactions to

gene expression correlation. Unfortunately, single biological networks often

cover just a restricted set of proteins and are able to capture only a partial

view of their properties. Moreover, a network might be highly predictive for

a functional class but not for the others. Therefore, another open challenge

and fundamental aspect in GFP is the appropriate integration of different

data sources to construct high-coverage high-reliability networks. To this

aim, an efficient and effective automatic strategy to weight each single source

and to evaluate its reliability is needed.

Several approaches have been proposed to deal with this topic, e.g. func-

tional linkage networks integration [64], kernel fusion [66], vector space in-

tegration [61], and ensemble systems [89].

A second contribution of this thesis is the design of a new algorithm

(LSI) which exploits some ideas of COSNet for evaluating the predictive

capability of each input network. Each network is associated with a classifi-

cation problem into a two-dimensional space: each labeled node, represent-

ing a characterized biological entity of the network, becomes an instance to

be classified. By applying an efficient linear classifier to the transformed

6

two-dimensional data, we obtain a measure of the linear separability that is

used to weight the corresponding network. The found weights can then be

used to integrate the input networks by adopting an appropriate integration

scheme.

We applied the proposed method to the integration of multiple sources

of biomolecular data to predict the functional classes of genes in the yeast

and mouse model organisms at genome-wide level, using the FunCat and

Gene Ontology [5] ontologies. The results of the performance comparison

with other state-of-the-art methods shows the effectiveness of the proposed

approach.

In Chapter 1 we introduce the preliminary notions that characterize the

GFP context and describe the main machine learning approaches proposed

in literature for predicting gene functions.

In Chapter 2 we describe the algorithm COSNet (COst Sensitive neural

Network), its computational complexity and its validation on yeast organism.

Moreover, we also report the result relative to the comparison of COSNet

with the several algorithms proposed in the literature.

Chapter 3 is devoted to the description of LSI (Linear Separability Inte-

gration), a new algorithm for finding network reliability weights to integrate

different biomolecular sources, and to the relative experimental analysis on

two model organism (yeast and mouse).

The conclusions end the thesis.

7

Chapter 1

Background

In this Chapter we provide the preliminary notions related to the problem

of predicting functions of genes, and we describe the main machine learn-

ing algorithms proposed for the GFP problem and for integrating different

biological data sources.

1.1 Gene Function Prediction: basic notions

After the publication of the first complete genome sequence in 1995, the

bacterium Haemophilus influenzae Rd [1], followed by the first full eu-

karyote genome, the baker’s yeast, released in 1996 [2], many genome se-

quencing projects have been completed, including human genome sequenc-

ing (2001) [3, 4]. This have provided researchers with a large amount of new

biomolecular data (e.g. genes/proteins), and it has facilitated the transition

from molecular genetics, the study of single genes, to genomics, which in-

volves the study of genotype, transcriptome and proteome in a genome-wide

scale.

Many of the discovered proteins remain uncharacterized, i.e. we have

no information about their function, about their location in the cell and

about which proteins they interact with. In this context, an open challenge

is determining the function of DNA at the levels of genes, RNA transcripts

and gene functions. Recent studies try to ascertain the biochemical, cellular

and physiological properties of DNA, including genes and nongenic elements,

with a genome-wide approach.

This part of genomics has been coined functional genomics, and has

spanned a whole generation of technologies and databases to provide data

necessary to make inferences characterized by high reliability. Analysis of

these data is now the key problem and we need computational techniques

8

which can scale to the size of the problems and are able to extract knowl-

edge from the data. Due to the nature of the newly available large-scale

data obtained from novel high-throughput technologies, networks of genes

are commonly used for describing the different biological sources. In these

networks nodes represent genes and edges represent the detected similar-

ities between genes. For example, protein-protein interaction (PPI) mea-

surements have created large-scale data on protein interaction across human

and many model species. Accordingly, gene networks have been largely used

for studying biomolecular properties of uncharacterized genes by exploiting

their topological relationships with already studied genes.

In this context, we first discuss the concept of gene function, then we

develop and apply machine learning methods to infer functions for unchar-

acterized genes.

The concept of gene function can be seen from different points of view: it

can be described as the chemical activity of its products, or as those partners

it interacts with, or where in the cell (or outside the cell) its products linger.

Functional ontologies represent an attempt at defining gene functions by

considering all these aspects.

1.1.1 Functional Ontologies

In order to support gene function definition, a number of structured ontolo-

gies has been developed, for example gene ontology (GO) [5], and FunCat

(Functional Categories) [6].

The GO ontology covers three domains: molecular function, biological

process and cellular component. Each domain is represented by a directed

acyclic graph (DAG) where nodes (terms) describe a particular aspect of

a molecular function, biological process or cellular component at different

levels of generality, and whose edges denote relations between nodes, such

as is-a or part-of relations.

The FunCat hierarchy instead is a simpler ontology represented by a

forest of trees, where again nodes represent the biomolecular properties of

genes and the edges represent hierarchical relationships between nodes.

An annotation in this context is simply an association between a gene or

gene product and a term. For both GO and FunCat, annotations follow the

true path rule: when a gene is annotated to an ontology term, it has to be

annotated to all the nodes on paths from this term to the root. Accordingly,

the main purpose is finding the correct set of functions for a given gene,

possibly reaching the leaf nodes in the ontology. Usually, a gene annotated

to a term (class) is considered a “positive example” for that term (class).

9

1.1.2 Gene/protein Function Prediction Problem

Gene function prediction (GFP) in its general formulation is a complex

classification problem characterized by the following items:

• each gene can be assigned to multiple classes in a multiclass, multilabel

classification scenario;

• classes are structured according to a predefined hierarchy;

• classes are usually unbalanced, with positive examples usually much

less than negatives, where a negative example is an instance not anno-

tated to the considered class and annotated to at least another class;

• multiple sources of data can be used to predict gene functions.

“Flat” approaches for GFP consider one class at a time, and they do no take

into account the decisions for the other classes. Because of the true path

rule, ontology-wide predictions with a flat approach may introduce incon-

sistencies in parent-child relationships between classes, and a hierarchical

approach may correct flat predictions in order to improve the accuracy and

the consistency of the overall annotations of genes [8]. In this work we just

concentrate on flat approaches for binary classification, relying on future

works the extension to hierarchical methods.

1.2 Machine Learning Methods for GFP

Due to the huge amount of data in modern databases, machine learning

methods have been introduced in the last years for dealing with gene function

prediction problem. In the following we briefly describe some approaches

proposed in the past decade for GFP, focusing mainly on network-based

methods.

Decision tree-based methods. Decision trees classifiers (DTC) are su-

pervised algorithms which recursively partition the data based on its at-

tributes, until some stopping condition is reached [9]. This recursive parti-

tioning gives rise to a tree-like structure. The decisions represent the internal

nodes of the tree and they are usually simple attribute tests, using one at-

tribute at a time to discriminate the data. New data can be classified by

tracing the path from the root node to each leaf node in the tree.

DTCs are very efficient even with large volumes of data. This is due to

the partitioning nature of the algorithm, each time working on smaller and

10

smaller pieces of the dataset and the fact that they usually only work with

simple attribute-value data which is easy to manipulate. DTCs vary both

on the criterion for choosing the best attribute for the decision at each node

and on their stopping and pruning criteria, i.e. how they decide when to

stop growing the tree and how far back to prune it afterwards.

Moreover, DTCs have been used also for a hierarchical multilabel clas-

sification, e.g. for predicting gene functions [10], by extending the classical

C4.5 decision tree algorithm for multiclass classification [11]. In particular,

in [12] was shown that separate decision tree models are less accurate than

a single decision tree trained to predict all classes at once.

Kernel methods. Kernels methods are based on measures of similarity

called kernel functions that allow us to perform classification, regression and

related tasks [13]. They work implicitly by mapping input data into a (usu-

ally) higher-dimensional feature space and by finding a suitable hypothesis

in this feature space. In the case of classification, this hypothesis is a hyper-

plane in feature space which separates two classes of input data; new data

points can then be classified into one of these two classes, depending on

the half-space they are located in. This so-called Support Vector Machine

(SVM) classifier maximizes the margin, i.e. the minimum distance between

the hyperplane and data points from both classes.

The transformation from input space into feature space shows three main

advantages: first, two classes of data points that are not linearly separable

in input space can become linearly separable if mapped into an adequate

feature space. Second, all calculations in feature space can be performed

implicitly via evaluating a kernel function on data points in input space; this

kernel function is a dot-product in feature space and represents a measure of

similarity between data points. Third, any type of data can be classified, as

long as a kernel function can be defined on it. Kernels have been developed

for data types such as vectors, graphs, trees and strings. Several kernel

functions can be combined into one joint kernel which integrates several

sources of information.

The enormous potential of kernel methods in gene function prediction is

reflected by a large number of publications over recent years. One common

approach is to define a kernel on genes to quantify their similarity based on

certain characteristics, e.g. their sequences, structures, chemical features,

special amino acid motifs or phylogenetic profiles. Cai et al. [14] represent

proteins as feature vectors comprising approximate chemical characteristics

of their sequences. Dobson and Doig [15] describe protein structures as

feature vectors including information about molecular surface, secondary

11

structure, ligands, bonds and surface clefts. Borgwardt et al. [16] integrate

both sequence and structure information into one graph model of proteins

that is further enriched by approximate chemical properties. In all three

studies, representations of proteins are then classified into functional classes

using SVMs.

Vert [17] proposes a tree kernel to analyze phylogenetic profiles by in-

corporating knowledge about the phylogenetic relationship among species.

Via SVMs and other kernel methods, Vert then detects functional relation-

ships based on these profiles. Ben Hur and Brutlag [18] define kernels based

on discrete functional motifs, i.e. proteins are deemed similar if they share

sequence patterns that have been found to be associated with certain func-

tions.

Kernel methods for structured output spaces. In this framework the

multilabel hierarchical classification problem is solved globally: the multi-

labels are viewed as elements of a structured space modeled by suitable

kernel functions [19, 20, 21]. In particular, given a feature space X and a

space of structured labels Y, the task is to learn a mapping f : X → Y

by an induced joint kernel function k that computes the “compatibility” of

a given input-output pair (x, y): for each test example x ∈ X we need to

determine the label y ∈ Y such that y = argmaxy∈Y k(x, y) [22].

A structured Perceptron, and a variant of the structured support vec-

tor machine [20], have been implemented in the GOstruct system and suc-

cessfully applied to the prediction of GO terms in mouse and other model

organisms [23]. Structured output maximum-margin algorithms have been

also applied to the tree-structured prediction of enzyme functions [19, 24].

Network-based methods. Also known in literature as label propagation

methods or functional association or linkage networks, these methods usu-

ally represent each dataset through an undirected graph G = (V,E), where

nodes v ∈ V correspond to genes and edges e ∈ E are weighted accord-

ing to the evidence of co-functionality implied by data source [25, 26]. By

exploiting “proximity relationships” between connected nodes, these algo-

rithms are able to transfer annotations from previously annotated (labeled)

nodes to unannotated (unlabeled) ones through a learning process inherently

transductive in nature.

Label propagation algorithms adopt different strategies to learn the un-

labeled nodes. Simple “guilt-by-association” methods [27, 28] are based on

the idea that nodes lying closer to one another in the network are more

likely to have the same biological function; accordingly they transfer to a

12

node the function most common in its direct neighborhood [29], or among

nodes within a particular radius [30]. Other approaches extends guilty-by-

association principle by exploiting the global topological structure of the

interaction network with the optimization of a global criterion. Vazquez et

al. [25] aim at assigning functions to nodes in the network by minimizing

the number of edges connecting nodes with different functions. This opti-

mization problem, which generalizes the computationally hard problem of

minimum multiway cut, has been heuristically solved using simulated an-

nealing. Karaoz et al. [31] face the same problem by handling each function

at a time. For each function they build a Hopfield network whose energy

function correspond to a global consistency criterion and whose connections

are weighted using gene expression data. The dynamic of the network lo-

cally minimizes the energy ensuring a solution with value at least half of the

optimum.

A related approach proposed by Nabieva et al. [32] introduced the con-

cept of “network flow” in order to take into account both local and global

effects. By considering one function at a time, they treat each annotated

node as source of the “functional flow”, and the weight of each edge as its

capacity. Then they simulate the spread of functional flow by using an iter-

ative algorithm and assign to each unannotated node a score for having the

function based on the amount of flow it received during the simulation.

Due to the inherent dependency on the neighborhood structure, ap-

proaches based on Markov Random Fields have been proposed by Deng

et al. [62]. In order to define the probability for a gene to be assigned with

a certain function, the authors build a model based on the assumption that

the function of a protein is independent of all other proteins given the func-

tions of its immediate neighbors. The model parameters are estimated using

quasi-likelihood method and setting a particular combination of parameter

values yields the optimization criterion used by Karaoz et al. [31].

Another related approach is a label propagation method based on Gaus-

sian kernel proposed by Zhu and Ghahramani [33], in which they iteratively

propagate labels from labeled nodes to unlabeled ones until convergence.

During the propagation the initial labeling is preserved. Zhou et al. [34]

modify this approach by allowing labeled nodes to change their initial label,

with the addition of a penalty term to ensure consistency with initial la-

beling. Tsuda et al. [35] used this approach to integrate multiple networks.

By minimizing the same quadratic cost criterion, they select the most infor-

mative networks and at the same time infer prediction scores for unlabeled

nodes. Finally, Mostafavi et al. [36] introduced two different optimization

problems for predicting scores and integrating multiple networks for a single

13

functional class and for groups of related classes [37].

Bengio et al. [38] showed that different graph-based algorithms, includ-

ing those described above, can be cast into a common framework where a

quadratic cost objective function is minimized. In this framework closed

form solutions can be derived by solving a linear system of size equal to the

cardinality of nodes (proteins), or using fast iterative procedures such as the

Jacobi method [39].

Finally, a network-based approach, alternative to label propagation and

exhibiting strong theoretical predictive guarantees in the so-called mistake

bound model, has been recently proposed by [40].

Module-assisted methods. We want also to briefly mention some ap-

proaches not based solely on the guilty by association rule. As summarized

by Sharan et al. [41], module-assisted approaches first cluster the network

into modules according to some properties and then annotate genes inside

a module based on known annotations of other genes in the module. The

module detection phase can be based just on topological information [42],

on hierarchical clustering approaches [43, 44], or on graph clustering meth-

ods [46, 45, 47]. Moreover, several approaches have not tried to find new

complexes, but just to predict new members for partially known gene com-

plexes [49, 48, 50]

Once the modules have been identified, simple strategies can be applied

for assigning functions within the module, e.g. assigning to each gene in the

module the functions shared by the majority of genes.

Hierarchical ensemble methods. These methods attempt to take ad-

vantage of the intrinsic hierarchical nature of GFP, explicitly considering

the relationships between functional classes [12, 51, 52, 53, 54]. Hierarchical

ensemble methods generally work via a two-step strategy:

1. Flat learning of the protein function on a per-term basis (a set of

independent classification problems)

2. Combination of the predictions by exploiting the relationships between

terms that govern the hierarchy of the functional classes.

In principle, any supervised learning algorithm can be used for step 1. Step 2

requires a proper combination of the predictions made at step 1.

Based on this algorithmic scheme, Barutcuoglu et al. [55] proposed an

ensemble algorithm that initially provides flat (possibly inconsistent) pre-

dictions for each class, and then combine them through a Bayesian network

14

scheme acting as a “collaborative” error-correction step over all nodes. As an

extension of this approach, two local strategies that take into account the

relationships between GO nodes and a composite ensemble method have

been proposed [106]. Different strategies to hierarchically reconcile the out-

put of an ensemble of learning machines trained to predict separately each

GO term have been proposed by [8]: the results demonstrated that hierar-

chical multilabel methods can play a crucial role in improving gene function

prediction performances.

1.3 Data integration methods for GFP

The vast amount and variety of genomic and proteomic data generated from

the study of model organisms provides the opportunity to predict the func-

tional properties of genes by using different heterogeneous biological data

sources/networks.

When using single sources for predicting gene functions, the predictions

often cover just a restricted set of genes and take into account only the

limited biomolecular standpoint characterizing that source. Some single

sources are also affected by noise, due to the inherent nature of sequencing

techniques [57]. Moreover, some sources may be useful for learning a specific

functional class, while being irrelevant to others. Clearly all these aspects

may lead to unreliable predictions. Therefore, another open challenge and

fundamental aspect in GFP is the integration of different data sources to

construct high-coverage high-reliability networks.

To this aim, an efficient and effective automatic strategy to weight each

single source and to evaluate its reliability is needed. Several works pointed

out that data integration plays a central role to improve the accuracy in

GFP [58].

The main approaches proposed in the literature can be schematically

grouped in four categories [59]:

1. Functional association networks integration

2. Vector subspace integration

3. Kernel fusion

4. Ensemble methods

Functional association networks integration. In functional asso-

ciation networks, different graphs are combined to obtain the composite

15

resulting network [31, 64]. This network is then processed by a transduc-

tion algorithm that assigns all missing labels. The first approaches have

been conjunctive/disjunctive techniques [26], that is respectively adding an

edge when in all the networks two genes are linked together or when a link

between the two genes is present in at least one functional network, and

probabilistic evidence integration schemes [63].

More recently, function specific composite networks have been constructed

by weighting each data source: Tsuda et al. [35] solved this problem by si-

multaneously optimize the Gaussian Random Fields applied to each data set

and the weights associated to each network, while Myers et al. [65] construct

a combined network by applying a Naive Bayes classifier.

Another network-based approach models data fusion as a constrained

linear regression problem [36]. Recently, the same authors showed that

better performances can be achieved by optimizing weights on subsets of

related GO terms exploiting the relationships between functional classes [37].

Vector Space Integration. In vector space integration vectorial data

are concatenated to combine different data sources [7]. For instance, [61]

concatenate different vectors, each one corresponding to a different source

of genomic data, in order to obtain a larger vector that is used to train a

standard SVM. A similar approach has been proposed in [106], but they

separately normalized each data source in order to take into account the

data distribution in each individual vector space.

Kernel fusion. Thanks to the closure property with respect to the

sum and other algebraic operators, kernels provide another valuable research

direction for the integration of biomolecular data. Besides combining kernels

linearly with fixed coefficients [61], one may also use semi-definite program-

ming to learn the coefficients [66]. As methods based on semi-definite pro-

gramming do not scale well to multiple data sources, more efficient methods

for multiple kernel learning have been recently proposed [67, 68]. Kernel

fusion methods, both with and without weighting the data sources, have

been successfully applied to the classification of gene functions [60, 69, 104]

Ensemble methods. Ensemble methods use multiple models to ob-

tain predictive performances better than those that could be obtained from

any of the constituent models. Even if it seems quite natural to apply en-

semble methods to genomic data fusion [59], only a few ensemble methods

have been so far applied to this task. Some examples include “late integra-

tion” of kernels trained on different sources [61], Naive Bayes integration

16

of the outputs of SVMs trained with multiple sources [106], and logistic

regression for combining the output of several SVMs trained with different

biomolecular data and kernels [8].

17

Chapter 2

COSNet: a cost sensitive

algorithm for gene function

prediction

2.1 Introduction

Many of the network-based methods described in Chapter 1 do not preserve

prior information coded in the initial labeling, i.e. they can change the ini-

tial labeling for known genes [31, 34], and are unable to effectively predict

node labels when data are unbalanced, that is when a category has much

more examples than the other one [31, 33, 35]. In this chapter we cope with

these learning issues by developing a new cost-sensitive neural algorithm

(COSNet), based on parametrized Hopfield networks, which deals with the

class imbalance problem and better exploits the prior knowledge.

In Section 2.2 the gene function prediction problem is formalized as

a semi-supervised learning problem, then Hopfield networks and the main

issues related to this type of recurrent neural network are discussed in Sec-

tions 2.3 and 2.4. In Section 2.5 we introduce the concept of “restriction” of

network dynamics to a subset of nodes and analyze how it can be used either

for preserving the prior information or for reducing time complexity, whereas

our algorithm COSNet (COst Sensitive neural Network) is discussed in Sec-

tion 2.6. In the same section we show that COSNet covers the main Hopfield

networks learning issues, and in particular a statistical analysis highlights

that the network parameters selected by COSNet lead to significantly lower

values of the energy function w.r.t. the non cost-sensitive version of the Hop-

field network. Finally, in Section 2.7 we describe the experimental validation

18

of COSNet in a genome-wide ontology-wide context for a model organisms

in a classical unbalanced semi-supervised classification.

19

2.2 Gene Function Prediction as a semi-supervised

learning problem

The gene function prediction problem (GFP) can be formalized as a semi-

supervised learning problem in graphs [38]. The input of the problem con-

sists of a set of genes V and their pairwise similarities wij deduced by specific

biomolecular analysis. Moreover, for a given functional class c, each gene

may belong or not to c: this provides a labeling of genes with + (positive

example) and - (negative example). Nevertheless, this labeling is known

just for a subset S of genes (annotated genes), and the problem is finding a

labeling for the remaining genes U = V \ S (unannotated genes).

More formally, the input to GFP problem consists in a quadruple 〈V ,

W , S, Σc〉 where:

1. V = {1, 2, . . . , n} set of genes

2. W : V × V −→ R symmetric matrix of gene similarities

3. S ⊂ V set of annotated genes

4. Σc : S −→ {+,−} labeling function according to class c

The GFP problem consists in extending the function Σc to V , i.e. finding

a labeling function Ψc : V −→ {+,−} such that Ψc(i) = Σc(i) for each i ∈ S.

For what concerns the underlying model, we suppose that the function

Ψc is fixed but is unknown, that the subset S of fixed size is uniformly

drawn from V and that the restriction Ψc|S of Ψc to S is known. The aim

is reconstructing the function Ψc relying on the prior knowledge 〈W,Σc〉.

Observe that knowing the restriction Ψc|S means having a bipartition

of S in positive S+ and negative S− examples. Moreover, extending the

function Σc to V means finding a bipartition (U+, U−) of genes in U = V \S.

Genes in U+ are then considered candidates for the class c.

From this standpoint, GFP is set as a semi-supervised learning problem

on graphs, since gene functions can be predicted by exploiting both labeled

(annotated) and unlabeled (unannotated) nodes/genes and the weighted

connections between them.

Finally, we point out that we assume that the prior knowledge is not

affected by noise. This assumption simplify the model, nevertheless it is

worth observe that in both GO and FunCat ontologies negative examples for

a class c are simply genes that are not annotated for c, and may correspond

20

to true negatives or to false negatives due to lack of knowledge about their

biological function.

21

2.3 Hopfield Networks

A discrete Hopfield network (DHN) [87, 88] is a dynamic system made up

by units named neurons. Each neuron i has an activation threshold γi and

each pair of neurons i and j is connected by an edge whose strength is wij,

with wij = wji. Figure 2.1 shows a DHN with five neurons. The activation

Figure 2.1: An example of DHN with five neurons and activation values 1, -1.

values of neurons are 1 (firing) and -1 (not firing) (or 1 and 0); during the

network dynamics, at each discrete time t ∈ {0, 1, · · · } each neuron i has an

activation value xi(t) ∈ {1,−1} (or xi(t) ∈ {1, 0}). When the dynamics is

asynchronous, the update rule at time t+ 1 for neuron i is

xi(t+ 1) =

1 if
i−1
∑

j=1
wijxj(t+ 1) +

n
∑

k=i+1

wikxk(t)− γi > 0

−1 if
i−1
∑

j=1
wijxj(t+ 1) +

n
∑

k=i+1

wikxk(t)− γi ≤ 0

(2.1)

where n is the number of neurons and the update order is chosen randomly.

The state of the network at time t is x = (x1(t), x2(t), · · · , xn(t)). The

main feature of a Hopfield network is the existence of a quadratic state

22

function named energy function:

E(x) = −
1

2
xTWx+ xTγ (2.2)

whereW = (wij) and γ = (γ1, γ2, · · · , γn). This is a non increasing function

w.r.t. the evolution of the network according to the activation rule (2.1),

i.e.

E(x(0)) ≥ E(x(1)) ≥ . . . ≥ E(x(t)) ≥ . . .

It is easy to show that every dynamics of the network converges to an

equilibrium state x̂ = (x̂1, x̂2, . . . , x̂n), where, by updating each neuron i,

the value x̂i does not change for any i ∈ {1, 2, . . . , n} [87]. In this sense a

DHN is a local minimizer of the energy function, and x̂ is also called “at-

tractor” of the dynamics.

It is worth noting that the state of a Hopfield network (x1, x2, · · · , xn)

denotes the subset (pattern) of neurons {i | xi = 1}. This notion is indepen-

dent of the activation values: for example the network states (1, -1, -1, 1)

and (1, 0, 0, 1) denote the same pattern {1, 4}. Nevertheless, fixed the con-

nections weights and the neuron thresholds, the dynamics with activation

values {1,−1} and {1, 0} are generally different. Accordingly, it is possible

to conceptually separate patterns and activation values of neurons.

We consider a new model of Hopfield network in which the activation val-

ues and thresholds are parameters. In particular we adopt {sinα,− cosα}

as neuron activation values, where α ∈]0, π[. Observe that for α = π
2 we

obtain the activation values {1, 0}, whereas for α = π
4 , up to a constant, we

obtain the activation values {1,−1}. Below we give a formal definition of

this network.

A parametrized Hopfield network H with neurons V = {1, 2, . . . , n} is a

triple H = 〈W ,γ, α〉, where :

W is a n×n symmetric matrix in which wij ∈ R is the connection strength

between neurons i and j, with wij = wji for each i and j;

γ = (γ1, γ2, . . . , γn) is variable in R
n whose assignment is a vector of acti-

vation thresholds

α is a variable in]0, π[whose assignment determines the two different

neuron activation values {sinα, − cosα}.

In the following we will refer to neuron activation values also as neuron

states or neuron values.

23

Fixed an assignment of α and γ, the dynamics of the network is described

as follows:

1. At time 0 an initial value xi(0) = ai is given for each neuron i

2. At time t+1 each neuron is updated asynchronously (up to a permu-

tation) by the following activation rule

xi(t+1) =

sinα if
i−1
∑

j=1
wijxj(t+ 1) +

n
∑

k=i+1

wikxk(t)− γi > 0

− cosα if
i−1
∑

j=1
wijxj(t+ 1) +

n
∑

k=i+1

wikxk(t)− γi ≤ 0

(2.3)

This dynamics is guaranteed reaching an equilibrium state x̂ which corre-

sponds to a minimum of the energy function and which identifies the final

pattern [87].

In this thesis, we simplify the model of parametrized Hopfield network

by requiring that all the neurons have the same activation threshold, i.e.

γ1 = γ2 = · · · = γn = γ. As a consequence, we obtain a model with 2 real

parameters α and γ.

The algorithm we propose for solving the GFP problem consists of two

main steps. In the first step we learn the values of the parameters α, γ by

exploiting the prior knowledge (Section 2.2); in the second step we simulate

the network dynamics in order to obtain the solution of the problem as

equilibrium state pattern.

24

2.4 Learning Issues in Hopfield Networks for GFP

Hopfield networks have been used in many different contexts including bi-

nary classification, and in particular Karaoz et al. proposed a method based

on DHNs named GAIN (Gene Annotation using Integrated Networks) for

GFP problem [31]. Considered the semi-supervised set-up described in sec-

tion 2.2, with the set of genes V bi-partitioned into the sets S and U of

annotated and unannotated genes, the authors consider a different DHN for

each functional term c, by setting the thresholds to 0 and the neuron values

to 1 and -1. The initial state of the network x = (u, s), where we emphasize

the state u of neurons in U and s of neurons in S, is:

xi =

0 if i ∈ U

+1 if i ∈ S+

−1 if i ∈ S−

(2.4)

for each i ∈ {1, 2, . . . , n}, and at each discrete time t + 1 each neuron is

updated asynchronously in a random order by the following update rule

xi(t+ 1) = Sgn

i−1
∑

j=1

wijxj(t+ 1) +

n
∑

k=i+1

wikxk(t)

 . (2.5)

The initial value 0 corresponds to an uncertain condition, and the aim is to

change it to -1 or 1 during the network dynamics. The equilibrium state

x̂ = (û, ŝ) determines the bipartition of U as follows: the gene i ∈ U belongs

to U+ if x̂i = 1 and to U− if x̂i = −1. In other words, a final value x̂i = 1

is a clue that the gene i may be annotated with c.

From a biological standpoint, this approach is motivated by the fact

that minimizing the overall energy (2.2) means maximizing the weighted

sum of edges connecting neuron with the same activation value, since each

pair neurons with the same value gives a negative contribution to the energy.

This approach leads to three main drawbacks:

1. Preservation of the prior knowledge. The network dynamics updates

also neurons which are already labeled, that is the network evolution

can change the initial states of neurons in S, and the available prior

information coded in the bipartition (S+, S−) of S may not be pre-

served. In other words the original known labeling is not maintained

by the algorithm. This happens when the reached state x̂ = (û, ŝ)

is such that ŝ 6= s. Clearly this point is important because we have

assumed that the prior information does not contain noise.

25

2. Unbalance problem in functional classes. By assigning the value 1 to

positive labels, -1 to those negative and by setting to 0 the threshold

of each neuron, when |S+| ≪ |S−| the network is likely to converge

to a trivial state (−1,−1, . . . ,−1). This is exactly the situation regis-

tered in both GO and FunCat ontologies, since only a small number of

positive annotations is available for most of the functional categories

and terms. As a consequence, the unbalance between positive and

negative examples requires the adoption of cost-sensitive techniques

to avoid predictions biased towards negative examples [36, 89].

3. Incoherence of the prior knowledge coding. Since the inference criterion

is based on the minimization of the overall objective function, we ex-

pect that the initial state s of labeled neurons is a subvector of a state

(s, û) “close” to a minimum of the energy function. Unfortunately, in

many cases this is not true.

To address these problems, we exploit a simple property which holds for

sub-networks of a DHN, and that we discuss in the next section.

26

2.5 Sub-network Property

According to the semi-supervised setting of Section 2.2, let beH = 〈W ,γ, α〉

a network with neurons V = U ⊔ S = {1, 2, . . . , n}, where up to a permu-

tation, U = {1, 2, . . . , h} and S = {h + 1, h + 2, . . . , n}; each network state

x can be decomposed in x = (u, s), where u and s are respectively the

states of neurons in U and in S. The energy function of H can be written

by separating the contributions due to U and S:

E(u, s) = −
1

2

(

uTW uuu+ sTW sss+ uTW uss+ sTW T
usu
)

+uTγu+sTγs,

(2.6)

where W =

(

W uu W us

W T
us W ss

)

is the weight matrix W decomposed in its

submatrices W uu connecting nodes in U , W ss connecting nodes in S, W us

connecting each node in U with each node in S, and W T
us its transpose,

while γ = (γu, γs) represents the vector of the thresholds for respectively

unlabeled (γu) and labeled (γs) nodes.

Suppose now that a state s̃ of neurons in S is given. We are interested

in the dynamics obtained by allowing the update just of neurons in U ,

without updating neurons in S. We denote with HU |s̃ the DHN which is

characterized by this dynamics.

Proposition 1. . HU |s̃ = 〈W uu,γ
u −W uss̃, α〉.

Proof. The overall energy of network H is:

E(u, s̃) = −
1

2
uTW uuu+ uT (γu −W uss̃)−

1

2
s̃TW sss̃+ s̃Tγs (2.7)

Since we imposed that s̃ is constant, the last two terms of equation (2.7)

do not change during the subnetwork dynamics. Accordingly, we obtain the

energy E(u) due to the nodes that can change their states (i.e. the nodes

in U):

E(u) = −
1

2
uTW uuu+ uT (γu −W uss̃) (2.8)

This energy by definition corresponds to the network 〈W uu,γ
u−W uss̃, α〉.

We observe that the network HU |s̃ has the same weights and activation

values of H and the influence of the labeled nodes (nodes is S) on nodes in

U is now embedded in the thresholds.

27

Finally, observe that by setting θu = γu −W uss̃, we obtain the energy

of the subnetwork HU |s̃ in the usual form:

E(u) = −
1

2
uTW uuu+ uTθu (2.9)

It holds the following:

Proposition 2. (Sub-network property). If s̃ is part of a energy global

minimum of H, and ũ is a energy global minimum of HU |s̃, then (ũ, s̃)

corresponds to a energy global minimum of H.

Proof. From the equations (2.6) and (2.8), it follows that

E(u, s) = −
1

2
sTW sss+ sTγs + E(u),

from which, by assuming x = (ũ, s̃) is not a global minimum of E, there

exists another state û for neurons in U such that E(û, s̃) < E(ũ, s̃). This

means that E(û) < E(ũ), which contradicts the hypothesis that ũ is a

global minimum of E(u).

In our setting, we associate the state s̃ = x(S+, S−) with the given

bipartition (S+, S−) of S:

xi(S
+, S−) =

{

sinα if i ∈ S+

− cosα if i ∈ S−

for each i ∈ S. By the sub-network property, if x(S+, S−) is part of a energy

global minimum of H, we can predict the hidden part relative to neurons U

by minimizing the energy of HU |x(S+,S−).

28

2.6 COSNet

In this Section we introduce the algorithm COSNet (COst-Sensitive neu-

ral Network) for dealing with the GFP problem presented in Section 2.2.

In particular, our aim is to cope with the learning issues described in Sec-

tion 2.4: preservation of the prior knowledge, data imbalance management,

incoherence of the prior knowledge coding.

The input of the problem, as described in Section 2.2, is represented by

〈V,W , S+, S−〉 and the aim is to extend to V the bipartition of S in positive

S+ and negative S− examples, i.e. finding a bipartition of U = V \ S.

We consider the parametrized family H = 〈W ,γ, α〉 of Hopfield net-

works on neurons V and parameters α and γ. Our assumption is that do

exist the couple (α̂, γ̂) such that the solution of the problem is denoted by

the energy global minimum x̂ of the Hopfield network H = 〈W , γ̂, α̂〉 and

the state x(S+, S−) is part of x̂. Then, for the sub-network property, we

can discover the hidden part û of x̂ by minimizing the energy of the network

HU |x(S+,S−).

Since it is not guaranteed that x(S+, S−) is part of a energy minimum

of H, our aim is finding the parameters α,γ such that x(S+, S−) is as close

as possible to an equilibrium state of the network HS|x(U+,U−). Observe

that the bipartition (U+, U−) necessary for building this sub-network is not

known, for this reason we first generate a temporary bipartition of U which

resembles the proportion of positive examples in S.

The main steps of COSNet can be summarized as follows:

INPUT : a symmetric connection matrix W : V × V −→ [0, 1], bipartition

(U,S) of V and bipartition (S+, S−) of S.

OUTPUT : a bipartition (U+, U−) of U = V \ S.

Step 1. Randomly generate an initial temporary bipartition (U+, U−) of

U such that |U+|
|U | ≃

|S+|
|S| .

Step 2. Find the optimal parameters (α̂, γ̂) of the Hopfield sub-network

HS|x(U+,U−) such that the state x(S+, S−) is “as close as possible” to

an equilibrium state.

Step 3. Extend the parameters (α̂, γ̂) to the whole network and run the

sub-network HU |x(S+,S−) until an equilibrium state û is reached. The

29

final solution (U+, U−) is:

U+ = {i ∈ U | ûi = sin α̂}

U− = {i ∈ U | ûi = − cos α̂}.

Below, each step of the algorithm is described in detail.

2.6.1 Generating a Temporary Solution

An initial bipartition of U is needed to build the sub-network HS|x(U+,U−).

We adopt a procedure that approximately maintains in U the same propor-

tion of positive elements observed in S:

- generate a random number m according to the binomial distribution

B(|U |, |S
+|

|S|)

- assign to U+ m elements uniformly chosen in U

- assign to U− the set U \ U+.

This criterion comes from the probabilistic model described below.

Suppose that V is biparted in positive and negative elements. We ran-

domly draw a subset S ⊂ V , with |S| = n − h, and |U | = h. Moreover, we

denote with S+ the set of positive elements in S. Our aim is to infer the

most likely cardinality of positive elements in U = V \ S.

By setting P (z) = Prob {|U+| = z | S contains |S+| positives}, the

following equality holds:

|S+|

|S|
· h = argmax

z
P (z). (2.10)

In fact, by setting n1 = |S+|, n2 = n − h − n1, and ps = n1
n−h , the

probability P (z) can be written as follows:

P (z) =

(n1+z
z

)(n2+y
y

)

(n
h

) ,

where y = h− z. The value of z which maximize P (z) is such that P (z) ≃

P (z + 1), that is

(

n1 + z

z

)(

n2 + y

y

)

=

(

n1 + z + 1

z + 1

)(

n2 + y − 1

y − 1

)

,

from which it follows that n2+y
y = n1+z+1

z+1 . By approximating z + 1 with z

we obtain n2
y = n1

z ; since n1 = ps(n−h) and n2 = (1− ps)(n−h), it follows

30

that z = ps · h.

This simple property shows that the probability P (z) is maximized when

U has the same proportion of positives in S; accordingly, we generate

the number of positive elements in U according the binomial distribution

B(|U |, |S
+|

|S|). The initial labeling of U contributes to the assessment of the

parameters α and γ of the network, as explained in the next section.

2.6.2 Finding the Optimal Parameters

The main goal of this step is to find the values of the parameters α and γ of

H, such that the state x(S+, S−) is “as close as possible” to an equilibrium

state. As a first simple approach, we compute a unique activation threshold

γ for all the neuron, relying on future studies the analysis of more complex

systems with different activation thresholds.

We consider the parametrized sub-network HS|x(U+,U−) = 〈W ss,γ
s −

W T
usx(U

+, U−), α〉, where γsi = γ for each i ∈ {h + 1, h + 2, . . . , n}, and

(U+, U−) is the temporary bipartition found in the previous step.

We associate each node k of the network with a labeled point ∆(k) in

the plane, whose coordinates depend on the topology of the network and on

the weights of the edges connecting k to its neighbours. More precisely, for

each node k in S we define ∆(k) ≡ (∆+(k),∆−(k)), where

∆+(k) =
∑

j∈S+∪ U+

wkj, ∆−(k) =
∑

j∈S−∪ U−

wkj

From a computational complexity standpoint, note that the sums extended

to S+∪ U+ and to S−∪ U− can be realized just considering the positive and

negative neighbours of k respectively, since when a node j is not neighbour

of k we have wkj = 0.

The bipartition (S+, S−) of S induces in a natural way a bipartition

(I+, I−) of the points I = {∆(k), k ∈ S}, where:

I+ = {∆(k), k ∈ S+} I− = {∆(k), k ∈ S−}

In an analogous way, an arbitrary straight line in the plane of equation

fα,γ(z, y) = cosα · y − sinα · z + γ = 0 separates the points of I in I+α,γ and

I−α,γ , where:

I+α,γ = {∆(k) | fα,γ(∆(k)) < 0} I−α,γ = {∆(k) | fα,γ(∆(k)) ≥ 0}.

Figure 2.2 provides a graphical view of the described scenario.

Fixed the parameters (α, γ), we set:

31

Figure 2.2: Example which shows the sets I+, I−, I+α,γ and I−α,γ .

- TP (α, γ) = |I+α,γ∩I
+|, i.e. the number of positive examples correctly

classified by the line fα,γ

- FN(α, γ) = |I−α,γ∩I
+|, i.e. the number of positive examples classified

as negative

- FP (α, γ) = |I+α,γ ∩ I−|, i.e. is the number of negative examples

classified as positive

Fscore(α, γ) is the harmonic mean of precision(α, γ) = TP (α,γ)
TP (α,γ)+FP (α,γ) and

recall(α, γ) = TP (α,γ)
TP (α,γ)+FN(α,γ) . It holds 0 ≤ Fscore(α, γ) ≤ 1 and Fscore(α, γ) =

1 iff there are no classification errors.

Observe that we define the positive halfplane below the line, since this

choice is strictly related to the following proposition, which expresses the

condition of equilibrium state of the network in terms of relation between

the bipartitions (I+, I−) and (I+α,γ , I
−
α,γ) of I.

Proposition 3. : The state x(S+, S−) is an equilibrium state for the net-

work HS|x(U+,U−) if and only if I+ = I+α,γ and I− = I−α,γ.

32

Proof. (⇒). Suppose (α, γ) is a couple such that x(S+, S−) is an equilibrium

state for the network HS|x(U+,U−). It means from eq.(2.3) that

sinα ·
∑

j∈S,sj=sinα
wij − cosα ·

∑

j∈S,sj=− cosα
wij − θi

s > 0 if i ∈ S+ (∗)

sinα ·
∑

j∈S,sj=sinα

wij − cosα ·
∑

j∈S,sj=− cosα

wij − θi
s ≤ 0 if i ∈ S− (∗∗)

where θsi = γi−
∑

k∈U wikxk(U
+, U−). By setting γi = −q cosα, the condi-

tion (*) is equivalent to −fα,γ(∆(i)) > 0 when i ∈ S+, that is fα,γ(∆(i)) <

0. This means that I+ ⊆ I+α,γ . Analogously the condition (**) leads to

I− ⊆ I−α,γ . Since the number of points in I+ ∪ I− is equal to the number of

neurons in the network HS|x(U+,U−), it follows that I
+ = I+α,γ and I− = I−α,γ .

(⇐) Suppose there is a couple (α, γ) such that I+ = I+α,γ and I− = I−α,γ .

This means that for each node k ∈ S+ it holds fα,γ(∆(k)) < 0 (i), and for

each node k ∈ S− it holds fα,γ(∆(k)) ≥ 0 (ii). The condition (i) implies

condition (*) for each k ∈ S+ and the condition (ii) implies condition (**)

for each k ∈ S−. Hence, x(S+, S−) is an equilibrium state for the network

HS|x(U+,U−).

From Proposition 3, if we can find a linear classifier able to correctly

classify points of I+ ∪ I− we can obtain the optimal parameters (α, γ) of

the network. Of course, it is not guaranteed that the points in I are linearly

separable, but in any case we can try to find the “best performing” linear

classifier, thus obtaining “near-optimal” parameters for the network.

To optimize the parameters (α, γ) we adopt the F-score maximization

criterion:

(α̂, γ̂) = argmax
α,γ

Fscore(α, γ), (2.11)

which gives to the misclassications of elements in S+ (false negative) an

higher cost than misclassications of elements in S− (false positive). As

mentioned in Section 1.1.2, in GFP most classes are seriously unbalanced,

it means that simply adopting the accuracy as objective function can lead

to meaningless “all negative” predictions. Moreover, this choice is also sup-

ported by the following corollary of the Proposition 3:

Corollary 1. Fscore(α, γ) = 1 iff x(S+, S−) is an equilibrium state of

HS|x(U+,U−).

Proof. (⇒). If Fscore(α, γ) = 1 there are no misclassification errors, i.e

I+ = I+α,γ and I− = I−α,γ . According to the Proposition 3 this means that

x(S+, S−) is an equilibrium state of HS|x(U+,U−).

33

(⇐). Suppose x(S+, S−) is an equilibrium state of HS|x(U+,U−). The Propo-

sition 3 states that I+ = I+α,γ and I− = I−α,γ . So there are no misclassification

errors during the F-score optimization, which means Fscore(α, γ) = 1.

Although there is an exact algorithm for linearly separating points in I+

from those in I− working in time O(|S|2 · log |S|), we adopt a more efficient

two-step approximation algorithm FindOptimalLine, that at first computes

the optimum line (in terms of the Fscore criterion) among the ones crossing

the origin of the axes, and then computes the optimal intercept:

1. Compute α̂. The algorithm computes the slopes of the lines crossing the

origin and each point ∆(k) ∈ I+ ∪ I−. Then it searches the line which

maximizes the Fscore criterion by sorting the computed lines according

to their slopes in an increasing order. Since all the points lie in the

first quadrant, this assures that the angle α̂ relative to the optimum

line is in the interval [0, π2 [. Figure 2.3 graphically shows this step.

2. Compute γ̂. Compute the intercepts of the lines whose slope is tan α̂

and crossing each point belonging to I+ ∪ I−. The optimum line is

identified by scanning the computed lines according to their intercept

in an increasing order. Let q̂ be the intercept of the optimum line

y = tanα · z + q, then we set γ̂ = −q̂ cos α̂. In Figure 2.4 a graphical

description of this step.

Both step 1 and step 2 can be computed in O(n log n) computational time

(due to the sorting), where n is the number of points.

Fig. 2.5 and 2.6 respectively shows the pseudocode of the procedures

ComputePoints to compute the points ∆(k) and FindOptimalLine to com-

pute the near-optimal line.

Lines 1 − 3 of the procedure FindOptimalLine compute for each point

in I+ ∪ I− the slope of the lines crossing that point and the origin of the

axes.

Line 4 sorts the computed slopes in an increasing order and initialize

the number of true positives (TP), false positives (FP) and false negative

(FN). In the lines 6− 12 the optimum Fscore and the relative slope (mOpt)

are computed by scanning all the lines by increasing slope and updating the

values TP, TN, FP according to the label of the current point. The notation

xi represents the i
th element of the vector x, i.e. ordInds represents the s

th

elements of the vector ordInd.

34

Figure 2.3: Step 1 of the optimization algorithm FindOptimalLine which com-

putes the best angle α̂.

Figure 2.4: Step 2 of the optimization algorithm FindOptimalLine which com-

putes the best intercept q̂ given the best angle α̂.

In the lines 13 − 15 the intercept for each line with slope mOpt and

crossing each point of I+∪ I− is computed and the computed intercepts are

sorted in an increasing order (line 16).

35

�

�

�

�

Figure 2.5: Pseudocode procedure ComputePoints

Input:

1) neuron set V ; 2) bipartition (U , S) of V

3) connection matrix W

4) bipartition (U+, U−) of U ; 5) bipartition (S+, S−) of S

- ComputePoints:begin algorithm

01: for each k ∈ S do ∆+
k ← 0; ∆−

k ← 0;

02: for each j ∈ Neighbourhoodk do

03: if j ∈ U+ ∪ S+ then ∆+
k ← ∆+

k + wkj

04: else ∆−
k ← ∆−

k + wkj

05: end for

06: end for

end algorithm

Output: the vectors ∆+ and ∆−

Finally, lines 18−23 compute the optimum Fscore and the relative inter-

cept (cOpt) by scanning all the lines by increasing intercept and updating

the values TP, TN, FP according to the label of the current point.

To improve the effectiveness of the algorithm, we also distinguish the case

in which the positive halfplane is above the separation line. This can be done

by the procedure FindOptimalLine by adding few simple instructions that

have not been specified in order not to make more complicated the relative

pseudocode. When this case is characterized by a higher Fscore, we have

empirically verified that in almost all the cases there is at least one positive

point which lies on the Y -axis. This is the case of extremely unbalanced data,

and the procedure FindOptimalLine cannot correctly classify these points.

We call the alternative procedure that manages this case FindOptimalLine2

and it is made up by three steps:

1. Choose a positive point ∆(k̂) which lies on the Y -axis. The algorithm

at first selects all the points which lie on the Y -axis. The aim is to

choose a positive point which will be the center of the line bundle we

consider in the next step. We sort the selected points by ordinate and

for each positive point we compute the Fscore of the almost vertical

line (but with negative slope) crossing this point considering solely the

selected points. Then we choose the point ∆(k̂) which correspond to

the highest Fscore.

36

�

�

�

�

Figure 2.6: Pseudocode procedure FindOptimalLine

Input:

1) neuron set V ; 2) bipartition (U , S) of V

3) connection matrix W

4) bipartition (U+, U−) of U ; 5) bipartition (S+, S−) of S

- FindOptimalLine:begin algorithm

01: for each k ∈ S do

02: mk ←
∆−

k

∆+
k

03: end for

04: ordInd← order(m); sort(m); TP ← 0; FP ← 0; FN ←| S+ |

05: mOpt← 0; Fmax← ComputeFscore(TP,FP, FN)

06: for s from 1 to | S | do

07: if ordInds ∈ S+ then TP ← TP + 1; FN ← FN − 1

09: else FP ← FP + 1

10: F ← ComputeFscore(TP,FP, FN)

11: if F > Fmax then mOpt← mordInds ; Fmax← F

12: end for

13: for each k ∈ S do

14: ck ← ∆−
k −mOpt ·∆+

k

15: end for

16: ordInd← order(c); sort(c); TP ← 0; FP ← 0; FN ←| S+ |;

17: cOpt← 0; Fmax← ComputeFscore(TP,FP, FN)

18: for s from 1 to | S | do

19: if ordInds ∈ S+ then TP ← TP + 1; FN ← FN − 1

20: else FP ← FP + 1

21: F ← ComputeFscore(TP,FP, FN)

22: if F > Fmax then cOpt← cordInds ; Fmax← F

23: end for

end algorithm

Output: [α̂← arctan(mOpt), γ̂ ← −cOpt · cos α̂]

2. Compute α̂. The algorithm computes the slopes of the lines crossing the

point ∆(k̂) and each point not lying on the Y -axis. Then it searches

the line, among those with negative slope, which maximizes the Fscore

criterion by sorting the computed lines according to their slopes in an

increasing order. Consequently, the angle α̂ relative to the optimum

line is in the interval]π2 , π[.

37

3. Compute γ̂. Compute the intercepts of the lines whose slope is tan α̂

and crossing each point belonging to I+ ∪ I−. The optimum line is

identified by scanning the computed lines according to their intercept

in an increasing order. Let q̂ be the intercept of the optimum line

y = tanα · z + q, then we set γ̂ = −q̂ cos α̂.

All the three steps can be computed in O(n log n) computational time

(due to the sorting), where n is the number of points.

Fig. 2.7 shows the pseudocode of the procedure FindOptimalLine2.

Lines 1 − 2 find the points of I+ ∪ I− with abscissa 0 which are sorted

by ordinate in line 3.

In the lines 4 − 11 the optimum line (considering solely the selected

points) among those crossing a positive point is computed; this line is de-

tected by the index k̂ of the chosen positive point.

Lines 12− 14 compute the slopes of the lines crossing the point ∆k̂ and

each point not lying on Y -axis, whereas the best line is computed in lines

15− 24 by scanning these lines in increasing order of slopes and considering

just those with negative slope. This ends the second step.

The third step of this procedure is exactly the step 2 of the procedure

FindOptimalLine.

Note that in the rare cases in which there are no positive points on the

Y -axis we adopt as optimal parameters those computed by the procedure

FindOptimalLine, as this procedure in this case can correctly classify the

positive nodes.

2.6.3 Finding the unknown labels by Network Dynamics

In the last step of COSNet, we run the sub-network HU |x(S+,S−) to learn

the unknown labels of neurons U , preserving the prior information coded in

the labels of neurons in S.

The sub-network HU |x(S+,S−) = 〈W uu, γ̂
u −W T

sux(S
+, S−), α̂〉, where

γ̂ui = γ̂ for each i ∈ {1, 2, . . . , h}, adopts the optimum parameters (α̂, γ̂)

computed in the previous step (Section 2.6.2) to better fit the topology and

achieve near-optimal “low-energy” states of the network (Section 2.6).

The initial state of the network is set to ui = 0 for each i ∈ {1, 2, . . . , h} and

the update rule for node i at time t+ 1 is

ui(t+ 1) =

sin α̂ if
i−1
∑

j=1
wijuj(t+ 1) +

h
∑

k=i+1

wikuk(t)− θi > 0

− cos α̂ if
i−1
∑

j=1
wijuj(t+ 1) +

h
∑

k=i+1

wikuk(t)− θi ≤ 0

(2.12)

38

�

�

�

�

Figure 2.7: Pseudocode of the procedure FindOptimalLine2

Input:

1) neuron set V ; 2) bipartition (U , S) of V ;

3) bipartition (U+, U−) of U ; 4) bipartition (S+, S−) of S

5) vectors ∆+ and ∆−

begin algorithm

01: Assign to S+
0 elements k ∈ S+ such that ∆+

k == 0

02: Assign to S−

0 elements k ∈ S− such that ∆+
k == 0

03: ∆−

0 ← ∆−

S
+

0
∪S

−

0

; ordInd← order(∆−

0); sort(∆
−

0);

04: TP ← 0; FP ←| ∆+
0 |; FN ← 0;

05: k̂ ← −1; Fmax← ComputeFscore(TP, FP, FN)

06: for each k ∈ S+
0 do

07: TP ← TP + 1; FP ← ordIndk − TP ; FN ← FN − 1

08: F ← ComputeFscore(TP, FP, FN)

09: if F > Fmax then

10: k̂ ← k; Fmax← F ; TP1 ← TP ; FP1 ← FP

11: end for

12: for each i = S \ {S+
0 ∪ S−

0 } do

13: mi ←
∆−

i
−∆−

k̂

∆+

i
−∆+

k̂

14: end for

15: ordInd← order(m); sort(m);

16: TP ← TP1; FP ← FP1; FN ←| S+ | −TP

17: mOpt← tan(π2 + ǫ); Fmax← ComputeFscore(TP, FP, FN)

18: for s from 1 to | S \ {S+
0 ∪ S−

0 } | do

19: if mordInds
< 0 then

20: if ordInds ∈ S+ then TP ← TP + 1; FN ← FN − 1

21: else FP ← FP + 1

22: F ← ComputeFscore(TP, FP, FN)

23: if F > Fmax then mOpt← mordInds
; Fmax← F

24: end for

25-35: Step 3. lines 13-23 of ‘‘FindOptimalLine" computes cOpt

end algorithm

Output: [α̂← arctan(mOpt), γ̂ ← −cOpt · cos α̂]

where θi = γ̂ −
∑

j∈S
wijxj(S

+, S−). The thresholds θi embeds the influence

of the labeled nodes S, whose fixed states are sin α̂ for positive and − cos α̂

for negative nodes, on the subnetwork HU |x(S+,S−).

39

The stable state û reached by this dynamics is used to classify unlabeled

data. If the known state x(S+, S−), with the parameters found according to

the procedure described in Section 2.6.2, is part of a global minimum of the

energy of H, and û is an energy global minimum of HU |x(S+,S−), the sub-

network property (Section 2.5) guarantees that (û,x(S+, S−)) is an energy

global minimum of H.

Furthermore, our aim is to provide a score for each neuron associated

with the “strength” of predictions. In this regard, a consistent way to define

these scores is considering the energy contribution E(ui) of a single node

i ∈ U to the overall energy E(u) (2.9):

E(ui) = −ui
∑

j 6=i

(wijuj − θi) (2.13)

Indeed, low values of E(ui) correspond to stable states ui for the node i, and

can be interpreted as more reliable predictions. From (2.13) we can derive

a score φ(i) associated to each node i:

φ(i) =
∑

j 6=i

(wijuj − θi) (2.14)

It is easy to see that for positive predictions (corresponding to ui = sin α̂),

large values of the score φ(i) correspond to low values of the energy E(ui).

Note that this is true when we have a large number of strongly connected

positive nodes in the neighbour of node i, that is when we have positively

annotated genes strongly linked to the gene i. The opposite is true for

negative predictions: low values of φ(i) correspond to low energy states for

the node i. In our experiments we obtained the scores φ(i) from the energy

E(ui) reached by each node at the convergence of the COSNet algorithm:

large values of φ(i) correspond to stable positive states interpreted as reliable

positive predictions. In other words, φ values provide scores associated to

the “strength” of the prediction.

Fig. 2.8 provides the pseudocode of the network dynamics. Lines 2− 10

realize the dynamics until convergence.

Line 5 checks if node i is not stable and in such case the lines 6 − 7

update the value of the node.

Finally in the lines 9− 10 the new energy values is computed and com-

pared with the previous one.

Fig. 2.9 shows the pseudocode of the overall COSNet algorithm.

The described COSNet procedures assumes that no isolated nodes are

present in the network, i.e. each node has at least one neighbour. If the net-

work contains isolated nodes, we discard these nodes from the network and

40

�

�

�

�

Figure 2.8: Pseudocode of the procedure RunSubNet that implements the third

step of the COSNet algorithm.

Input:

- neuron set V ;

- bipartition (U , S) of V ;

- connection matrix W

- optimal parameters α̂ and γ̂

- threshold vector θu = γ̂u −W T
sux(S

+, S−)

begin algorithm

01: E(u)← −1
2

∑

i∈U

∑

j∈U uiwijuj +
∑

i∈U uiθi
02: repeat

03: Eold ← E(u)

04: for each i ∈ Udo

05: if ui

(

∑

j∈U wijuj − θi

)

≤ 0 then

06: if
∑

j∈U wijuj − θi > 0 then ui ← sin α̂

07: else ui ← − cos α̂

08: end for

09: E(u)← −1
2

∑

i∈U

∑

j∈U uiwijuj +
∑

i∈U uiθi
10: until Eold = E(u)

11: for each i ∈ U do

12: φi ←
∑

j∈U wijuj − θi
13: end for

end algorithm

Output: the vectors u and φ

u vector of predictions

φ vector of scores

adopt a different procedure for these nodes. Specifically, let ps be the rate

of positive nodes in S and niso the number of isolated nodes. We generate

a random number miso according to the binomial distribution B(niso, ps),

and then miso isolated nodes randomly chosen are predicted as positive, the

remaining as negative. To define a score for these nodes, we consider the

scores predicted by the algorithm on the non-isolated nodes.

Let nneg be the number of negative predictions and npos the number of

positive predictions inferred by the algorithm for not isolated nodes. The

score for isolated nodes predicted as negative is the set as the (⌈nneg · ps⌉)
th

order statistic of the negative score sample, i.e. the (⌈nneg · ps⌉)
th element

of the vector of nneg negative scores increasingly ordered, and the score for

41

�

�

�

�

Figure 2.9: Pseudocode of the overall COSNet algorithm.

Input:

- neuron set V ;

- bipartition (U , S) of V ;

- bipartition (S+, S−) of S

- connection matrix W

begin algorithm

02: Generate random number m ∈ B(| U |, |S
+|

|S|)

03: Assign to U+ m elements of U randomly chosen

04: [∆+,∆−]← ComputePoints
(

(U,S), W, (U+, U−), (S+, S−)
)

05: [α̂, γ̂]← FindOptimalLine
(

(U,S), W, (U+, U−), (S+, S−), ∆+, ∆−
)

06: if positive halfplane ‘‘above" the line then

07: [α̂, γ̂]← FindOptimalLine2
(

(U,S), W, (U+, U−), (S+, S−), ∆+, ∆−
)

08: θu = γ̂u −W T
sux(S

+, S−)

09: [û, φ̂]← RunSubNet
(

(U,S), W, (S+, S−), α̂, γ̂, θu
)

end algorithm

Output: the vectors û and φ̂

û vector of predictions

φ̂ vector of scores

isolated nodes predicted as positive is the (⌈npos ·ps⌉)
th order statistic of the

positive score sample.

2.6.4 Time complexity

In this section we analyze the time complexity of COSNet in order to show

that it nicely scales when large-scale data are used. COSNet is made up

by three steps (see Section 2.6) and we analyze the complexity of each step

separately.

The first step generates a temporary bipartition of U (Section 2.6.1) and

it easy to show that it takes time O(|U |).

The second step is described by the procedures in Fig. 2.5 and 2.6. The

procedure ComputePoints for each node in S computes the weighted sum of

its positive and negative neighbours, taking time O(|W |), where with |W |

we mean the number of non-null components of the matrix W . The lines

1−3, 6−12, 13−15 and 18−23 of the procedure FindOptimalLine take time

O(|S|), whereas O(|S| log |S|) is the complexity of lines 4 and 16 due to the

sorting. Lines 5 and 17 takes constant time. A similar analysis can be done

for the procedure FindOptimalLine2. Accordingly the step 2 of COSNet has

42

complexity O(|S| log |S|+ |W |).

The third step run the dynamics of the network restricted to nodes in

U . It’s clear that the complexity of this step depends on the number of

iterations needed for convergence. We empirically observed the network

needs two or three iterations for reaching a stable state, as also observed

in [31]. Each iteration takes time O(|Wuu|). Moreover this steps needs also

time O(|Wus|) for computing neuron thresholds.

Overall, the COSNet algorithm takes time O(|S| log |S|+ |W |) which is

almost linear in the input size (number of neurons) when the connection

matrix is sparse, constraint that can be easily satisfied by adopting suitable

thresholds for connection weights during the preprocessing of input data.

2.6.5 Model regularization

When the distribution of the points ∆(k) (Section 2.6.2) is such that α̂

is very close to π
2 (that is, when points ∆(k), k ∈ S can be separated by

an almost vertical line), since lim
α̂ → (π

2
)−

tan α̂ =∞, the network dynamics is

characterized by a huge influence of positive neurons, leading to a degenerate

state where almost all neurons are positive. This is true also in the opposite

case, i.e. when tan α̂ = 0, leading to the “all negatives” degenerate state.

To prevent this behavior, we add to the energy function of the network

H|U,x(S+,S−) a regularization term that is minimized when the number of

positive neurons in U is close to νu = ps · h, that is when the probability

(2.10) is maximized (Section 2.6.1). Here ps = |S+|
|S| . This component can

be considered as a penalty for the current state of the network depending

on how much different is the actual number of positives from νu. By adding

a regularization term to (2.9), we obtain:

E(u) = −
1

2

∑

i 6=j

wijuiuj +
h
∑

i=1

uiθi + η

(

h
∑

i=1

(aui + b)− νu

)2

, (2.15)

where η is a regularization parameter, a = 1
sin α̂+cos α̂ and b = cos α̂

sin α̂+cos α̂ . It

is easy to see that
∑h

i=1(aui+b) is the number of positive neurons in U , and

hence the penalty term is the quadratic difference between the number of

positive neurons in U predicted by the algorithm and the number of expected

positive labeled neurons in U (Section 2.6.1). Focusing just on the added

43

function, up to constants terms, we have:

(

h
∑

i=1

(aui + b)− νu

)2

−→

(

h
∑

i=1

(aui + b)

)2

− 2νu

h
∑

i=1

(aui + b)

=
∑

i 6=j

(aui + b)(auj + b) +
h
∑

i=1

(aui + b)2

− 2νu

h
∑

i=1

(aui + b)

As (aui + b) ∈ {0, 1}, (aui + b) = (aui + b)2, it follows

(

h
∑

i=1

(aui + b)− νu

)2

≃ a2
∑

i 6=j

uiuj + ab
∑

i 6=j

(ui + uj) + (1− 2νu)

h
∑

i=1

(aui + b)

≃ a2
∑

i 6=j

uiuj + 2ab(h− 1)

h
∑

i=1

ui + a(1− 2νu)

h
∑

i=1

ui

= a2
∑

i 6=j

uiuj + a(2b(h − 1) + (1− 2νu))
h
∑

i=1

ui

Considering the whole energy, we have

E(u) = −
1

2

h
∑

i=1

h
∑

j=1
j 6=i

(wij − 2ηa2)uiuj +

h
∑

i=1

ui [θi + ηa(2b(h − 1) + (1− 2νu))]

= −
1

2

h
∑

i=1

h
∑

j=1
j 6=i

w̃ijuiuj +

h
∑

i=1

uiθ̃i

(2.16)

where θ̃i = θi + ηa [2b(h− 1) + (1− 2psh)] and w̃ij = (wij − 2ηa2).

The parameter η regulates the influence of the new energy component on

the dynamics of the network; a large value of η generates a dynamics mainly

controlled by the regularization term. In principle, we need a value of η such

that the influence on the dynamics of the added term is low when data are

quite balanced, and increases when the value of α̂ is close to limit cases (e.g.

when α̂ is close to π
2 or 0). An empirical choice of η which provides this

behavior is:

η = β| tan((α̂ − π
4) ∗ 2)| (2.17)

where β is a non negative real constant. This choice guarantees an increasing

penalty when a too large influence is given to positive (α̂ ≃ π
2) or to negative

44

0
5

10
15

20

α

η

pi/4 pi/2

Beta = 0.001
Beta = 0.01
Beta = 0.1
Beta = 1
Beta = 2

Figure 2.10: η graph with different values of β.

(α̂ ≃ 0) neurons, while no penalty is added when positive and negative

states are identical (α̂ = π
4). Figure 2.10 shows the values of the parameter

η corresponding to different choices of β. Low values of β compress the

curve close to the x axis. By choosing the suitable value of β we can finely

control the influence of the new energy term on the network dynamics, and,

by fixing β after a tuning procedure on sample data sets, we can obtain a

regularization that automatically fits the data by augmenting its influence

coming close to the limit cases.

2.6.6 COSNet covers GFP learning issues

In this section we analyze the effectiveness of the proposed algorithm w.r.t

the learning issues described in Section 2.4.

1. Preservation of the prior knowledge. The restriction of the dynam-

ics to the unlabeled data assures the preservation of the prior knowledge

coded in the connection matrix and in the bipartition of the labeled data.

Note that a similar approach has been proposed in [33], even if in that case

the known labels are simply restored at each iteration of the algorithm,

without an actual restriction of the dynamics.

2. Unbalance problem in functional classes. This problem naturally

45

(a)

(b)

Figure 2.11: Placement of points in the set I when |S+| ≪ |S−| (a), and when

|S+| ≫ |S−| (b).

arises in GFP, since often GO terms have a small number of annotated genes.

This is true especially for the most specific terms (i.e. “deep” nodes in the

ontology w.r.t. the root) that are the most interesting from a biological

standpoint [76], since they better characterize the functions of genes and

gene products.

When |S+| ≪ |S−|, the points ∆(k) ≡ (∆+(k),∆−(k)) (Section 2.6.2)

46

are such that ∆−(k) ≫ ∆+(k). Figure 2.11 (a) shows the placement of

points ∆(k) in this case. Accordingly, a separation angle π
4 ≤ α̂ ≤ π

2 is

computed by the algorithm FindOptimalLine described in Section 2.6.2. In

our setting, such an angle determines a value of the positive states greater

than the negative ones, yielding the network dynamics to converge towards

non trivial attractors.

On the other hand, when |S+| ≫ |S−|, the points are located as in

Figure 2.11 (b) and the computed separation angle 0 ≤ α̂ ≤ π
4 is such that

negative points have a higher activation value than those positive.

In this way annotated genes can actually propagate their positive state

across the biological network, without surrendering to the prevalence of neg-

ative nodes leading to trivial states. Indeed for several GO terms (and es-

pecially for those characterized by a small number of positive annotations)

Hopfield networks [31], or more in general non cost-sensitive label propa-

gation algorithms [38, 33, 36], may incur trivial “all negative” predictions,

while COSNet is able to correctly predict (at least in part) positive anno-

tated genes.

3. Incoherence of the prior knowledge coding. We would like to show

that the parameters (α, γ) automatically selected by COSNet can yield to

a “more coherent” state w.r.t. the prior knowledge, in the sense that this

state corresponds to a lower energy of the underlying network.

To this end, we consider a data set of binary protein-protein interactions

of 2338 yeast proteins (PPI-VM) [86] in which a labeling x ∈ {1,−1}|V | of

V is known. By applying COSNet we approximate the optimal parameters

(α̂, γ̂) and we define the state x(α̂) by setting xk(α̂) = sin α̂ if xk = 1 and

xk(α̂) = − cos α̂ if xk = −1, for each k ∈ {1 . . . |V |}. We show that the

state x(α̂) is “more coherent” with the prior knowledge than x, by studying

whether x(α̂) is “closer” than x to a global minimum of the energy function

E(x).

As measure of “closeness” of a given state z to a global minimum

of E(x), we consider the probability Pz that E(x) < E(z), where x =

(x1, x2, . . . , x|V |) is a random state generated according to the binomial dis-

tribution B(|V |, ρz), and ρz is the rate of positive components in z.

Estimation of Pz. To estimate Pz, we independently generate t random

states x(1), x(2), ..., x(t) and we set Y =
∑t

i=1 β(E(z) − E(x(i)), where

β(x) = 1 if x ≥ 0, 0 otherwise. The variable Y
t is an estimator of pz, and in

our setting Y << t. For determining the confidence interval of Pz at a 1− δ

confidence level, we need to consider three cases:

47

1. Y = 0. We can directly compute the confidence interval [0, 1− δ
1
t].

2. 1 ≤ Y ≤ 5. Y is approximately distributed according to the Poisson

distribution with expected value λ = Y . Accordingly, the confidence

interval is

[

1
2nχ

2
2Y,1− δ

2

, 1
2nχ

2
2(Y +1), δ

2

]

, where χ2
k is a chi squared random

variable with k degrees of freedom.

3. Y > 5. The random variable Y is approximately distributed ac-

cording to a normal distribution with expected value Y and variance
Y (1−Y)

t . We adopt the Agresti-Coull interval estimator [77], which is

more stable for values of Y closer to the outliers [78]. The resulting

confidence interval is Y+2
t+4 ±

1
t+4

√

(Y + 2)(t− Y − 2)z1− δ
2
, where z1−α

is the 1− α percentile of the standard normal distribution.

By setting δ = 0.05 and t = 1000, we estimated the confidence interval

for both P
x(α̂) and Px. In Table 2.1 we report the comparison of the confi-

dence intervals of P
x(α̂) and Px in the PPI-VM data set and for the some

of the considered FunCat classes. Since the results were similar for all the

functional classes, we report just the first classes in a lexicographic order.

Moreover, in Table 2.2 we report a description of these classes. We point

out that similar results are obtained also with other data sets.

We distinguish two main cases: a) both the confidence intervals coin-

cide with the minimum interval [0, 0.0030], case coherent with the prior

information; b) both lower and upper bounds of P
x(α̂) are less than the cor-

responding bounds of Px. It is worth noting that, in almost all cases, the

probability P
x(α̂) has an upper bound smaller than the lower bound of Px.

This is particularly evident for classes “01.03.16.01”, “02.13” and “11.02.01”;

in the latter the lower bound of Px is 0.7761, while the corresponding upper

bound of P
x(α̂) is ⋍ 0.

These results, reproduced with similar trends in other data sets (data

not shown), point out the effectiveness of our method in approaching the

problem of the incoherence of the prior knowledge coding.

2.6.7 Software Implementation

We have developed all the software which implements the COSNet algo-

rithm. The software is written in R, a language and environment for statis-

tical computing and graphics largely used in bioinformatics. Even if its im-

48

Table 2.1: Confidence interval estimation for the probabilities P
x(α̂) and Px at a

confidence level 0.95 (data set PPI-VM).

Data set PPI-VM

Class Confidence interval Class Confidence interval

Px(α̂) Px Px(α̂) Px

min max min max min max min max

“01” 0 0.0030 0 0.0030 “02” 0 0.0030 0 0.0030

“01.01” 0 0.0030 0 0.0030 “02.01” 0 0.0030 0.0638 0.0975

“01.01.03” 0.0001 0.0056 0.0433 0.0722 “02.07” 0 0.0030 0.0011 0.0102

“01.01.06” 0.0001 0.0056 0.0442 0.0733 “02.10” 0 0.0030 0.0522 0.0833

“01.01.06.05” 0.0210 0.0427 0.0702 0.1051 “02.11” 0.0002 0.0072 0.0939 0.1332

“01.01.09” 0 0.0030 0.0045 0.0174 “02.13” 0.0312 0.0565 0.3622 0.4226

“01.02” 0.0001 0.0056 0.0067 0.0212 “02.13.03” 0.7139 0.7681 0.7740 0.8236

“01.03” 0 0.0030 0.0620 0.0953 “02.19” 0.0001 0.0056 0.0006 0.0088

“01.03.01” 0.1452 0.1915 0.2232 0.2768 “02.45” 0.1022 0.1428 0.1815 0.2312

“01.03.01.03” 0 0.0030 0.0145 0.0333 “11” 0 0.0030 0 0.0030

“01.03.04” 0.5020 0.5637 0.6280 0.6867 “11.02” 0 0.0030 0 0.0030

“01.03.16” 0.0025 0.0135 0.1189 0.1619 “11.02.01” 0 0.0030 0.7761 0.8255

“01.03.16.01” 0 0.0030 0.3025 0.3608 “11.02.02” 0.2184 0.2716 0.8519 0.8931

plementation is efficient, R is an interpreted language, and especially when

iterative-intensive constructs are needed, runs more slowly than compiled

code. For this reason, we have written the computationally more expensive

parts of the algorithms in C language, and loaded the compiled C code as

a shared object in the R environment. The code is available on demand at

frasca@dsi.unimi.it.

49

Table 2.2: Description of functional terms of FunCat ontology reported in Ta-

ble 2.1.

Classes Description

“01” Metabolism

“01.01” Amino acid metabolism

“01.01.03” Assimilation of ammonia, metabolism of the glutamate group

“01.01.06” Metabolism of the aspartate family

“01.01.06.05” Metabolism of methionine

“01.01.09” Metabolism of the cysteine - aromatic group

“01.02” Nitrogen, sulfur and selenium metabolism

“01.03” Nucleotide/nucleoside/nucleobase metabolism

“01.03.01” Purin nucleotide/nucleoside/nucleobase metabolism

“01.03.01.03” Purine nucleotide/nucleoside/nucleobase anabolism

“01.03.04” Pyrimidine nucleotide/nucleoside/nucleobase metabolism

“01.03.16” Polynucleotide degradation

“01.03.16.01” RNA degradation

“02” Energy

“02.01” Glycolysis and gluconeogenesis

“02.07” Pentose-phosphate pathway

“02.10” Tricarboxylic-acid pathway (citrate cycle, Krebs cycle, TCA cycle)

“02.11” Electron transport and membrane-associated energy conservation

“02.13” Respiration

“02.13.03” Aerobic respiration

“02.19” Metabolism of energy reserves (e.g. glycogen, trehalose)

“02.45” Energy conversion and regeneration

“11” Transcription

“11.02” RNA synthesis

“11.02.01” rRNA synthesis

“11.02.02” tRNA synthesis

50

2.7 Experimental setting

In this section we describe the experimental procedure used for validating

the COSNet algorithm.

2.7.1 GFP in Yeast

We performed predictions of gene functions at genome-wide level in the

S.cerevisiae organism, using the whole FunCat ontology [6] 1. In order

to compare our algorithm also with some hierarchical methods described in

Section 3.4.1, we follow the same experimental setting proposed in the corre-

sponding paper by selecting classes with at least 20 positive examples [104].

Nevertheless, our algorithm can be used for predicting classes with less than

20 positives, as done in Section 3.4.2.

We used five different biomolecular data sources, previously analyzed

in [75]. The main characteristics of the data can be summarized as follows:

- Pfam-1 data are represented as binary vectors: each feature registers

the presence or absence of 4,950 protein domains obtained from the

Pfam (Protein families) data base. This dataset contains 3529 genes.

- Pfam-2 is an enriched representation of Pfam domains by replac-

ing the binary scoring with log E-values obtained with the HMMER

software toolkit [79].

- Expr data contains gene expression measures of 4523 genes relative

to two experiments described in [80] and [81].

- PPI-BG data set contains protein-protein interaction data down-

loaded from the BioGRID database [82]. Data are binary: they rep-

resent the presence or absence of protein-protein interactions for 4531

proteins.

- PPI-VM is another data set of protein-protein interactions that col-

lects binary protein-protein interaction data for 2338 proteins from

yeast two-hybrid assay, mass-spectrometry of purified complexes, cor-

related mRNA expression and genetic interactions [86].

For PPI data we adopt the scoring function used by Chua et al [64], which

assigns to genes i and j the similarity score

wij =
2|Ni ∩Nj |

|Ni \Nj |+ 2|Ni ∩Nj|+ 1
×

2|Ni ∩Nj|

|Nj \Ni|+ 2|Ni ∩Nj |+ 1

1We used the FunCat-2.1 scheme with the annotation data FunCat-2.1 data 20070316,

available from: ftp://ftpmips.gsf.de/yeast/catalogues/funcat/funcat-2.1 data 20070316.

51

where Nk is the set of the neighbors of gene k (k is included).

In the remaining data sets, each gene is associated with a feature vector.

Accordingly, the score for each gene pair is set to the Pearson’s correlation

coefficient of the corresponding feature vectors. For Expr data we computed

the squared correlation coefficient in order to take in account the down reg-

ulation of a gene by another one, i.e. a gene over expressed inhibits the

expression of another gene, resulting in a close relationship even though the

corresponding correlation coefficient is negative.

To reduce the noise introduced by too small edge weights, we eliminated

edges below a given threshold. We tune the edge threshold for each data

set separately, by ensuring that each gene has at least one neighbour (no

isolated nodes). Finally, each obtained networks W has been normalized by

dividing each entry Wij by the square root of the product of the the sum of

the elements of row i and the sum of elements in column j. In other words,

if D is a n×n diagonal matrix such that Dii =
∑

j Wij then the normalized

matrix Ŵ is:

Ŵ = D−1/2WD−1/2 (2.18)

2.7.2 Results and Discussion

We compared COSNet with other semi-supervised label propagation algo-

rithms and supervised machine learning methods proposed in the litera-

ture for the gene function prediction problem. We considered the classi-

cal GAIN algorithm [31], based on Hopfield networks; LP-Zhu, a semi-

supervised learning method based on label propagation [33]; SVM-l and

SVM-g, i.e. respectively linear and Gaussian kernel SVMs with probabilis-

tic output [84]. SVMs had previously been shown to be among the best

algorithms for predicting gene functions in a “FLAT” setting (that is with-

out considering the hierarchical relationships between classes) [61, 85].

We tested two values of β for defining η (see Section 2.6.5): β = 0 which

corresponds to the unregularized version of COSNet and β = 0.0001. This

value is the result of a tuning procedure we used on several sample data sets

and that we now extend to all the used data sets for the regularized version.

To estimate the generalization capabilities of the compared methods we

adopted a stratified 10-fold cross validation procedure, by ensuring that each

fold includes at least one positive example for each classification task. Con-

sidering the severe unbalance between positive and negative classes, beyond

the classical accuracy, we computed F-score, precision and recall for each

functional class and for each considered data set. Indeed in this context the

52

Table 2.3: Accuracy - F-score comparison between GAIN, LP-Zhu, COSNet , COS-

Net(β = 0.0001), SVM-l, SVM-g.

Data set Methods Performance

GAIN LP-Zhu COSNet COSNet(β = 0.0001) SVM-l SVM-g measures

Pfam-1
0.9615 0.9613 0.9560 0.9570 0.7528 0.7435 Accuracy

0.0277 0.0120 0.3937 0.3944 0.2722 0.2355 F-score

Pfam-2
0.9613 0.9656 0.9054 0.9330 0.7048 0.7515 Accuracy

0.0296 0.2117 0.3299 0.3372 0.1054 0.0270 F-score

Expr
0.9655 0.9655 0.5022 0.8791 0.7496 0.7704 Accuracy

0 0.0008 0.1007 0.1224 0.0531 0.0192 F-score

PPI-BG
0.9666 0.9704 0.9495 0.9580 0.7679 0.7597 Accuracy

0.0362 0.1758 0.3528 0.3536 0.1546 0.1178 F-score

PPI-VM
0.9554 0.9560 0.9337 0.9440 0.7237 0.7222 Accuracy

0.1009 0.2106 0.3911 0.3921 0.1888 0.2351 F-score

accuracy is only partially informative, since a classifier predicting always

“negative” could obtain a very high accuracy. Table 2.3 shows the average

F-score and accuracy across all the classes and for each data set.

The results show that COSNet achieves the best performances (in terms

of the F-score) w.r.t. all the other methods with or without regularization.

Moreover, the regularization lead to better performances either in terms of

accuracy or in terms of F-score and the effect of the regularization is more

evident for the Expr dataset, in which the optimization phase often produce

a value of α close to π/2.

The LP-Zhu method is the second best method in Pfam-2 and PPI-BG

data sets, but obtains very low F-scores with Pfam-1 and Expr data, despite

high accuracies. This is an example of the low informativeness of the accu-

racy in an unbalanced contexts as GFP. These overall results are confirmed

by the Wilcoxon signed-ranks test [83], which is a non-parametric statistical

hypothesis test used when comparing two related samples or repeated mea-

surements on a single sample to assess whether their population means differ

or which sample mean is greater than the other one. We applied this test

to the F-score performance vectors: we registered a significant improvement

in favour of COSNet with respect to all the other methods and for each

considered data set at α = 10−15 significance level.

In order to understand the reasons for which our method works better,

we compared also the overall precision and recall of the methods separately

for each data set: we did not consider GAIN, since this methods achieved

the worst results in almost all the data sets. Table 2.4 summarizes this

53

comparison. Moreover, to provide a visual clue of the performance of the

adopted methods, in Figure 2.12 we graphically show the results contained

in Table 2.4. It is more clear that while COSNet does not always achieve

the best precision or recall, it obtains the best F-score as a result of a good

balancing between them.

Finally, we want also to compare the adopted methods also in terms of

the time needed for the computation of all the prediction tasks. We per-

formed these algorithms on a machine with Intel processor 2.80 GHz and 16

GB of RAM memory. In Table 2.5 we report the time in seconds needed by

COSNet , Zhu-LP and GAIN algorithms for computing 10-folds cross vali-

Precision Recall F−score

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

COSNet
SVM−l
SVM−g
LB−Zhu

Precision Recall F−score

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

COSNet
SVM−l
SVM−g
LB−Zhu

(a) (b)

Precision Recall F−score

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

COSNet
SVM−l
SVM−g
LB−Zhu

Precision Recall F−score

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

COSNet
SVM−l
SVM−g
LB−Zhu

(c) (d)

Precision Recall F−score

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

COSNet
SVM−l
SVM−g
LB−Zhu

e)

Figure 2.12: Average precision, recall and F-score for each compared method

(excluding GAIN) with data set Pfam-1 (a), Pfam-2 (b), Expr (c), PPI-BG (d) and

PPI-VM (e).

54

Table 2.4: Average precision, recall, F-score and Accuracy for COSNet (β =

0.0001), SVM-l, SVM-g and LP-Zhu on single data sets.

Pfam-1

Methods Prec Rec F Accuracy

COSNet 0.4270 0.3864 0.3951 0.9591

SVM-l 0.2979 0.4969 0.2722 0.7528

SVM-g 0.2465 0.4912 0.2355 0.7435

LP-Zhu 0.0729 0.0069 0.0120 0.9613

Pfam-2

Methods Prec Rec F Accuracy

COSNet 0.3835 0.3327 0.3360 0.9224

SVM-l 0.0794 0.4501 0.1054 0.7048

SVM-g 0.1035 0.2294 0.0270 0.7515

LP-Zhu 0.6147 0.1383 0.2117 0.9656

Expr

Methods Prec Rec F Accuracy

COSNet 0.1069 0.2206 0.1247 0.8775

SVM-l 0.0699 0.2874 0.0531 0.7496

SVM-g 0.0232 0.2101 0.0192 0.7704

LP-Zhu 0.0202 0.0004 0.0008 0.9655

PPI-BG

Methods Prec Rec F Accuracy

COSNet 0.3803 0.3409 0.3532 0.9617

SVM-l 0.1732 0.4365 0.1546 0.7679

SVM-g 0.1572 0.3423 0.1178 0.7597

LP-Zhu 0.5343 0.1147 0.1758 0.9704

PPI-VM

Methods Prec Rec F Accuracy

COSNet 0.4155 0.3915 0.3929 0.9442

SVM-l 0.1965 0.4771 0.1888 0.7237

SVM-g 0.2431 0.5181 0.2351 0.7222

LP-Zhu 0.4322 0.1477 0.2106 0.9560

55

Table 2.5: Overall time in seconds needed by each algorithm for computing 10-

folds cross validation on each functional class on single data.

Method Dataset

PPI-BG Expr Pfam-1 Pfam-2 PPI-VM

COSNet 894.634 1280.011 402.589 602.676 175.117

Zhu-LP 499.534 483.943 261.960 293.298 99.549

GAIN 1957.209 1314.215 780.184 824.335 548.871

dation on each functional class for each integrated network. We do not show

the time needed by SVMs because these methods need several hours for this

tasks. COSNet is faster GAIN on each dataset, in two cases needs less than

the half of the time needed by GAIN (PPI-BG and PPI-VM). Zhu-LP is the

fastest algorithm, because it reduces the dynamics to the unlabeled nodes

like COSNet , but without the learning phase which characterizes COSNet .

Overall, we think that obtained performance improvements come from

the COSNet cost-sensitive approach that allows to automatically find the

“near-optimal” parameters of the network with respect to the distribution of

positive and negative nodes (Section 2.6). It is worth noting that using only

single sources of data COSNet can obtain a relatively high precision, with-

out suffering a too high decay of the recall. This is of paramount importance

in the gene function prediction problem, where “in silico” positive predic-

tions of unknown genes need to be confirmed by expensive “wet” biological

experimental validation procedures. From this standpoint the experimental

results show that our method could be applied to predict the “unknown”

functions of genes, considering also that data fusion techniques could in prin-

ciple further improve the reliability and the precision of the results [37, 89],

as we discuss in Chapter 3.

56

Chapter 3

LSI: an efficient

cost-sensitive algorithm for

network data integration

When different data sources are available in the same context it may happen

that some of them are more informative than other ones. This fact is quite

usual in the GFP context, since a particular type of biomolecular data can

be informative or not depending on the functional class to be predicted.

In other words, the predictive capabilities of a learning algorithm might

significantly change when different sources of data are used to predict func-

tions of genes. In order to make more clear this basic concept, the heat

map in Figure 3.1 represents the F-scores per class obtained by COSNet on

yeast data set (results described in Section 2.7). Lighter colors means higher

F-scores. It is clear that the informativeness of each data set depends on the

considered functional class, and there are some classes for which the data set

in average less informative (Expr, see Table 2.3) obtains the highest F-score.

In Table 3.1 we also show the F-score obtained by COSNet for some specific

classes where Expr (e.g. 01.01.06.05) or Pfam-2 (e.g. 01.05.02) data sets

are the most informative.

It should be interesting and of paramount importance knowing a pri-

ori which data sets are more informative in order to appropriately integrate

them in a unique composite network. In this chapter we investigate a new ap-

proach for integrating different data sources/networks for obtaining a unique

high-reliability/high-coverage network.

The proposed method exploits the linear separation of the nodes pro-

jected into a two dimensional space performed in the second step of COS-

Net , and for this reason we name it Linear Separability Integration (LSI).

57

Pfam1

Pfam2

Expr

PPI−BG

PPI−VM

D
ata set

Funcat Classes

Figure 3.1: Heat map representing the F-scores obtained by COSNet on the yeast

data sets (Section 2.7). The lighter the color the higher the corresponding value

of F-score. The columns represent the 232 considered FunCat functional classes.

Table 3.1: F-score per class reached by COSNet on some functional classes in the

experimental validation described in Section 2.7.

Class Pfam-1 Pfam-2 Expr PPI-BG PPI-VM

Metabolism of Methionine (01.01.06.05) 0.227 0.346 0.350 0.074 0.193

Electron transport (02.11) 0.252 0.185 0.500 0.480 0.278

Sugar, glucoside metabolism (01.05.02) 0.412 0.453 0.039 0.313 0.388

Metabolism of glutamate (01.01.03.02) 0.320 0.454 0.008 0.046 0.000

This approach can be summarized as follows:

• Each network is associated with a classification problem in R
2

• Each classification problem is solved through an efficient approximated

algorithm, obtaining a measure of “linear separability” related to the

58

“predictiveness” of each network

• These measures are used to properly integrate the various networks by

following a specific weighted integration schema

We do not focus on the development of new integration schemes, but just

verify the effectiveness of LSI weighting by using those described in Sec-

tion 3.2.

3.1 Estimating network weights

The main idea of the proposed approach consists in projecting the nodes

of the network into a plane, in performing an efficient linear classification

of positive and negative nodes in the projected bidimensional space, and

in generating weights associated to the network according to the measured

performances of the linear classifier.

More precisely, each network is represented by a weighted graph Gd =

〈Vd,W
(d)〉 for d ∈ {1, 2, . . . ,m}, where m is the number of networks, Vd set

of genes and w
(d)
sk a similarity measure between genes s and k in the network

Gd.

The set Vd is halved in (S(d), U (d)), where S(d) is the set of labeled

nodes and U (d) is the set of unlabeled nodes. For each functional class

c, a bipartition (S
(d)
+ , S

(d)
−) of S(d) is known, where S

(d)
+ contains positive

examples and S
(d)
− contains those negative.

The algorithm can be set out in four main steps:

1. For each network Gd, each labeled node k ∈ S(d) is associated with a

labeled point ∆(d)(k) ≡
(

∆
(d)
+ (k),∆

(d)
− (k)

)

∈ R
2, where

∆
(d)
+ (k) =

∑

j∈S
(d)
+

w
(d)
kj , ∆

(d)
− (k) =

∑

j∈S
(d)
−

w
(d)
kj .

The label of ∆(d)(k) is the label of k and we can define I
(d)
+ and I

(d)
−

as the set of positive and negative points respectively.

2. Positive and negative points are linearly separated by an efficient ap-

proximated algorithm which maximizes the F-score criterion.

3. The computed F-score Fd(c) is then used to compute the weight h(d)

for the network Gd when considering class c: h(d) = Fd(c)∑
d Fd(c)

.

4. The network weights found in the previous step are used for combining

networks according to a specific integration schema.

59

First observe that the computation of points ∆(d)(k) does not include nodes

U and their connections with labeled nodes because we do not need in this

case the restriction to subnetwork of labeled nodes.

Second, the algorithm at point 2 is slightly different than the second step

of COSNet because we apply just the procedure FindOptimalParameter for

computing the best F-score by considering both cases of positive half-plane

above and below the separation line. Consequently, the linear separation

algorithm at step 2 (see above) can be summarized as follows:

- The algorithm computes the slopes of the lines crossing the origin and

each point ∆(d)(k) ∈ I
(d)
+ ∪ I

(d)
− . Then it searches the straight line

which maximizes the F-score criterion by sorting the computed lines

according to their slopes in an increasing order and by considering

both positive halfplane cases (above and below the line).

- Let m̂ be the computed best slope, then the algorithm computes the

intercepts of the lines whose slope is m̂ and crossing each point be-

longing to I
(d)
+ ∪ I

(d)
− .

- Finally the optimum line, and so the corresponding F-score Fd(c), is

identified by scanning the computed lines according to their intercept

in an increasing order.

- Return the best computed F-score Fd(c).

Now we experimentally show that this approach is effective in defining re-

liability weights for networked data sources. Table 3.2 reports the F-scores

obtained in the second step of COSNet in the FunCat gene function predic-

tion in yeast for each source by averaging the F-scores of nodes belonging

to the subtrees rooted at the first level of the FunCat hierarchy 2.7.1. Note

that this F-score is different from the F-score computed by running the net-

work, and to avoid misunderstandings we name it F-score2. Moreover, since

the five considered data sets have a different number of genes, the number of

considered functional classes can change from a data set to another. Conse-

quently, the empty positions in the table means that for the corresponding

data set there are no classes in the functional tree with at least 20 annotated

genes.

Some data sources are characterized by higher F-score2, meaning that

the corresponding classification in step 2 is “less difficult” than the other

ones. Moreover, we can observe that the F-score2 rank among data sources

changes according to the considered functional tree.

60

Table 3.2: Average F-score2 separated by data set and by functional tree.

FunCat Tree Data Set

Pfam-1 Pfam-2 Expr PPI-BG PPI-VM

Metabolism 0.4553 0.4009 0.1702 0.2838 0.4493

Energy 0.4864 0.4255 0.2153 0.4080 0.4111

Cell Cycle and DNA Processing 0.3423 0.2774 0.1775 0.4795 0.4289

Transcription 0.3630 0.2985 0.1632 0.5346 0.5410

Protein Synthesis 0.5311 0.5264 0.2401 0.5059 0.5818

Protein Fate 0.5969 0.5379 0.1748 0.4268 0.4942

Protein with Binding Function or Cofactor Requirement 0.5040 0.4541 0.1803 0.3420 0.4079

Regulation of Metabolism and Protein Function 0.4822 0.4092 0.0834 0.1936 0.2396

Cellular Transport, Transport Facilitation and Routes 0.5130 0.4286 0.1472 0.4305 0.4945

Cellular Communication/Signal Transduction Mechanism 0.5342 0.4568 0.0749 0.4148 0.2933

Cell Rescue, Defense and Virulence 0.3804 0.3045 0.1359 0.2758 0.2560

Interaction with the Environment 0.3780 0.3162 0.1324 0.4058 0.4660

Transposable Elements, Viral and Plasmid Proteins 0.6087 0.5000

Cell Fate 0.3548 0.2646 0.0969 0.4060 0.3962

Development 0.3636 0.2727 0.2174 0.2020 0.3077

Biogenesis of Cellular Components 0.3558 0.2510 0.1509 0.5049 0.4170

Cell Type Differentiation 0.4121 0.3155 0.1955 0.4251 0.4290

In Table 3.3 we show the average F-score computed by running the COS-

Net algorithm, corresponding to the average F-score2 computed in Table 3.2.

In this table too we can observe that a source can be much informative for a

tree but less predictive for another one. We found that there is a strict cor-

relation between the F-score and the F-score2, i.e. the higher the F-score2
the higher the predictive ability of the algorithm on that source. This is also

confirmed by the Pearson correlation coefficients of the two vectors F-score

and F-score2: Pfam-1 0.99, Pfam-2 0.98, Expr 0.98, PPI-BG 0.996, PPI-VM

0.99. In Figure 3.2 we graphically report the results of this comparison for

some functional trees.

These results show that we can know in advance which dataset is more

informative for a functional class by evaluating the corresponding F-score2,

and we can also justify from an experimental standpoint the feasibility of

our approach to compute weights that represent the effectiveness of each

source of data for the prediction of a given functional class.

61

Table 3.3: Average F-score separated by data set and by functional tree.

FunCat Tree Data set

Pfam-1 Pfam-2 Expr PPI-BG PPI-VM

Metabolism 0.3992 0.3684 0.1294 0.2251 0.3917

Energy 0.4587 0.3712 0.1774 0.3469 0.3471

Cell Cycle and DNA Processing 0.2901 0.2214 0.1574 0.4336 0.3751

Transcription 0.3207 0.2700 0.1278 0.4988 0.4966

Protein Synthesis 0.4762 0.4977 0.1207 0.4641 0.5090

Protein Fate 0.5441 0.4972 0.1429 0.3699 0.4562

Protein with Binding Function or Cofactor Requirement 0.4631 0.4155 0.1324 0.3086 0.3648

Regulation of Metabolism and Protein Function 0.4351 0.3564 0.0485 0.1395 0.2043

Cellular Transport, Transport Facilitation and Routes 0.4580 0.3882 0.1195 0.3834 0.4596

Cellular Communication/Signal Transduction Mechanism 0.4579 0.4113 0.0313 0.3602 0.2528

Cell Rescue, Defense and Virulence 0.3160 0.2569 0.0951 0.2264 0.2090

Interaction with the Environment 0.3458 0.2871 0.0830 0.3360 0.4001

Transposable Elements, Viral and Plasmid Proteins 0.6087 0.4489

Cell Fate 0.3375 0.2274 0.0749 0.3671 0.3717

Development 0.2820 0.1739 0.1463 0.1417 0.2258

Biogenesis of Cellular Components 0.3031 0.1796 0.1265 0.4653 0.3773

Cell Type Differentiation 0.3806 0.2989 0.1405 0.4034 0.4135

62

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

tree ’01’

Data set

pfam−1 pfam−2 Expr PPI−BG PPI−VM

F−score2
Fscore

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

tree ’11’

Data set

pfam−1 pfam−2 Expr PPI−BG PPI−VM

F−score2
Fscore

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

tree ’18’

Data set

pfam−1 pfam−2 Expr PPI−BG PPI−VM

F−score2
Fscore

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

tree ’41’

Data set

pfam−1 pfam−2 Expr PPI−BG PPI−VM

F−score2
Fscore

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

tree ’42’

Data set

pfam−1 pfam−2 Expr PPI−BG PPI−VM

F−score2
Fscore

Figure 3.2: Relationship between F-score2 and F-score averaged on the functional

trees 01, 11, 18, 41 and 42.

63

3.2 Data Integration Schemes

The computed weights h(d) can be used in different weighted integration

schemes to construct composite networks and to improve the predictive ca-

pability and the reliability of the predictions. In this section we briefly

describe some weighted and unweighted schemes used in our experiments.

Weighted sum (WS). This scheme assumes that each network W (d) is

associated with a reliability weight h(d), previously computed. Each entry

of the consensus matrix is obtained simply by the weighted sum, according

to the h(d) values, of each entry of the m matrices:

W ∗ =

m
∑

d=1

h(d)W (d) (3.1)

Max fusion (MF). Each entry of the consensus matrix is chosen by se-

lecting the corresponding entry of the data for which we have the maximum

value of the coefficient h(d). Of course, only entries wd
ij for which do exist

data of the source d for both i and j are considered for the selection. That

is for each edge (i, j) we compute:

w∗
ij = w

d̄(i,j)
ij (3.2)

where d̄(i, j) = argmaxd

(

h(d)|wd
ij 6= 0

)

Unweighted sum (US). This is the simple sum of the single networks

divided by the number of available networks:

W ∗ =
1

m

m
∑

d=1

W (d) (3.3)

Max unweighted fusion (MUF). The consensus matrixW ∗ is obtained

element by element by taking the maximum edge weight

w∗
ij = max

d
wd
ij (3.4)

3.3 Experimental setting

COSNet with LSI -weight integration has been applied to genome wide pre-

diction of gene functions using GO and FunCat ontologies with S.cerevisiae

64

(yeast) and M. musculus (mouse) model organisms. In this Section we de-

scribe the experimental setting for mouse organism, since for yeast we adopt

the same set-up described in Section 2.7.

Mouse data has been collected from theMouseFunc benchmark data [76].

We used the same data and the same annotations (GO annotations 17 Febru-

ary 2006; version 1.612) available from the MouseFunc website 1, as well as

the same experimental set-up, in order to perform a fair comparison with

other state-of-the-art supervised and semi-supervised gene function predic-

tion methods that participated to the MouseFunc challenge.

According to the protocol proposed for the MouseFunc challenge, differ-

ent sources of data, including protein sequence pattern annotations, protein-

protein interactions, phenotype annotations, phylogenetic profiles, gene ex-

pression across multiple tissues, disease associations have been applied to

predict the functions of a set of genes belonging to 2815 GO terms with a

number of annotations ranging form 3 to 300, to avoid classes with a too

low number of positive examples, or too generic classes characterized by

a too large number of annotations. Mouse Genomics Informatics (MGI)

annotations for 21603 mouse genes have been considered, excluding GO an-

notations based solely on the “inferred from electronic annotation” (IEA)

evidence code.

Prediction tasks. Following the MouseFunc protocol we performed the

held-out genes task: a randomly selected set of 1718 genes, listed in the

file TestSet.txt available from the MouseFunc website, is held-out and their

annotations have to be predicted using the data and the annotations of the

remaining genes.

We used as positives for a given GO term all the genes annotated to

that functional class. As negatives, at first we simply selected all the genes

not annotated for that class (Base strategy). Regarding the training set for

each GO term we selected only genes labeled for that class.

Data sets. To perform our validation tests, we use different data sources

from [76], which we briefly describe below:

- Expression data. Expression data from oligonucleotide arrays for

13,566 genes across 55 mouse tissues [91]; expression data from Affymetrix

arrays for 18,208 genes across 61 mouse tissues [90]; tag counts at qual-

ity 0.99 cut-off from 139 SAGE libraries for 16,726 genes [92].

1http : //hugheslab.med.utoronto.ca/supplementary − data/mouseFunc I/

65

- Sequence patterns. Protein sequence pattern annotations from Pfam-

A (release 19) for 15,569 genes with 3,133 protein families [93]; protein

sequence pattern annotations from InterPro (release 12.1) for 16,965

genes with 5,404 sequence patterns [94]

- Protein interactions. Protein-protein interactions from OPHID for

7,125 genes [95] (downloaded on 20 April 2006)

- Phenotypes. Phenotype annotations from MGI for 3,439 genes with

33 phenotypes [96] (downloaded on 21 February 2006 from [97])

- Conservation profile. Conservation pattern from Ensembl (v38) for

15,939 genes across 18 species [98]; conservation pattern from Inpara-

noid (v4.0) for 15,703 genes across 21 species [99]

- Disease associations. Disease associations from OMIM for 1,938

genes to 2,488 diseases/phenotypes [100, 101] (downloaded on 6 June

2006 from [102])

Pre-processing. When constructing functional association networks we

distinguish three types of data: binary and continuous valued and PPI in-

teraction data.

For binary data, if β is the proportion of genes for which a given feature

has value equal to 1, then all ones were replaced with − log(β) and zeros

with log(1 − β). In this way the “weight” of very uncommon features is

emphasized [36]. Then the score for each gene pair is set to the Pearson’s

correlation coefficient of the corresponding feature vectors.

For continuous data we adopt directly the pairwise Pearson’s correlation

coefficient, and the squared correlation for gene expression data in order to

take in account the down regulation of a gene by the other one.

Finally for PPI interaction data we construct the pairwise interaction

scores using the approach proposed in [64], where the similarity score for

genes i and j is

Sij =
2|Ni ∩Nj |

|Ni \Nj |+ 2|Ni ∩Nj |+ 1
×

2|Ni ∩Nj|

|Nj \Ni|+ 2|Ni ∩Nj|+ 1

where Nk is the set of the neighbors of gene k (k is included).

To maintain sparse the resulting association networks, we set for each

network an edge threshold such that each node has at least one neighbour.

Hence, having n genes we obtained n×n sparse matrices W (d), 1 ≤ d ≤ m,

where m is the number of the different data sources considered.

66

Each network W (d) has been normalized by dividing each entry W
(d)
ij by

the square root of the product of the the sum of the elements of row i and

the sum of elements in column j. In other words, if D is a n × n diagonal

matrix such that Dii =
∑

j W
(d)
ij then the normalized matrix Ŵ

(d)
is the

normalized Laplacian of the graph:

Ŵ
(d)

= D−1/2W (d)D−1/2 (3.5)

67

3.4 Results and Discussion

3.4.1 GFP in Yeast

Disjunctive approach. With regard to the experimental setting described

in Section 2.7, we integrate the yeast networks, Pfam-1, Pfam-2, Expr, PPI-

BG, PPI-VM with a disjunctive approach, i.e. by considering all the genes

in at least one of the single networks, obtaining a set of 4665 genes and 232

functional classes with at least 20 annotated genes.

At first, each single network is extended to this size by adding rows and

columns made up by zeros, and then the extended networks are integrated by

adopting both weighted and unweighted techniques described in Section 3.2:

weighted sum (WS), max fusion (MF), unweighted sum (US) and max

unweighted fusion (MUF).

To define the network reliability weights needed by the weighted schemes

we use both LSI and the integration algorithm Simultaneous Weights (SW)

recently proposed by Mostafavi and coworkers [37], based on a previous al-

gorithm for gene function prediction, GeneMANIA [36], and whose code

can be downloaded at http://morrislab.med.utoronto.ca/ sara/SW/. The

GeneMANIA-SW method is made up by two steps: 1) integration of multi-

ple sources in a composite network by using a ridge regression approach; 2)

gene function prediction based on a label propagation algorithm based on

Gaussian Random Fields [34].

The input of the GeneMANIA-SW software is given by the networks to

be integrated and by the corresponding label matrix, the output consists of

either the vector of reliability weights or the precision at 20% recall and the

area under the ROC curve (AUC) relative to the prediction step.

Note that this algorithm can provide a unique weight vector v relative

to all the functional classes included in the label matrix or a specific weight

vector vc for each functional class c. We tested GeneMANIA-SW algorithm

either by building a single composite network (using v) for all the functional

classes (in the following strategy a), or by building a composite network for

each class c separately using vc vector (in the following strategy b). Clearly

the latter approach is more expensive from a computational standpoint but

in general may lead to better results.

In order to compare COSNet with GeneMANIA-SW, we also compute

precision at 20% recall level and AUC in addition to accuracy, F-score, pre-

cision and recall. These performance measures are computed by using the

scores defined by equation (2.14) in Section 2.6.3. Finally we adopt a strat-

ified 10-fold cross validation procedure for validating COSNet , by ensuring

68

Table 3.4: Comparison of COSNet performance on different weighted and un-

weighted integration strategies and the GeneMANIA-SW algorithm.

Method Performance measures

Prec Rec F AUC P20R

COSNet - US
0.501 0.508 0.490 0.854 0.709 β = 0

0.514 0.498 0.497 0.854 0.722 β = 0.0001

COSNet - MUF
0.494 0.505 0.484 0.855 0.712 β = 0

0.508 0.496 0.494 0.858 0.719 β = 0.0001

COSNet - WS SW
0.163 0.626 0.197 0.753 0.304 β = 0

0.304 0.375 0.330 0.820 0.420 β = 0.0001

COSNet - LSI WS a)
0.510 0.514 0.497 0.861 0.738 β = 0

0.517 0.498 0.499 0.864 0.742 β = 0.0001

COSNet - LSI WS b)
0.519 0.509 0.499 0.846 0.743 β = 0

0.529 0.499 0.505 0.850 0.744 β = 0.0001

COSNet - LSI MF a)
0.394 0.352 0.343 0.732 0.519 β = 0

0.413 0.322 0.350 0.732 0.534 β = 0.0001

COSNet - LSI MF b)
0.462 0.451 0.438 0.800 0.611 β = 0

0.495 0.446 0.456 0.802 0.677 β = 0.0001

GeneMANIA-SW a) 0.835 0.571

GeneMANIA-SW b) 0.891 0.602

that each fold includes at least one positive example for each classification

task.

For LSI method we compute the network reliability weights by consider-

ing each functional class separately. It means that for each class ci we obtain

a weight vector vi. We adopt two strategies for integrating yeast networks

using vectors vi:

a) generating a unique composite network using as network weights

the vectors vi averaged across the functional classes

b) generating one integrated network for each class ci by using vi as

network weights

Table 3.4 shows the performance of GeneMANIA-SW and of COSNet ap-

plied to all the different integrated networks. The results are averaged

across all the functional classes. Note that precision, recall and F-score

for GeneMANIA-SW are not reported since the original algorithm provides

in output only AUC, P20R and network weights.

First, for unweighted schemes, we observe that the US and MUF obtain

similar performances, with a slightly better precision and F-score for US

and a slightly better AUC for MUF. It is worth noting that in the GFP

69

context AUC is less important than F-score because AUC does not properly

take into account the unbalance between positive and negative examples.

Second, the performance improvements of regularized version of COSNet

w.r.t the unregularized one are confirmed, with better results in all the

considered performance measures up to the recall one. In particular, having

a higher precision and P20R is a valuable result in the GFP context as

explained in Section 2.7.

The best performances are obtained with weighted schemes which use

LSI weights. In particular, the integration strategy b), which considers an

integrated matrix for each functional class, obtains the highest precision, F-

score and P20R. Moreover, the performance improvement of the strategies

LSI WS b) and LSI MF b) w.r.t. the strategies LSI WS a) and LSI WS

a) respectively shows the effectiveness of LSI weights.

What seems really unexpected is the behaviour of COSNet on the weighted

sum integration using SW weights (WS SW), where the method obtains

the worst results.

To understand the reasons of this behaviour, we observe that the reli-

ability weights associated by SW (strategy a) with the five data sets are:

1.91, 17.91, 0, 0.55, 0.48 respectively for PPI-BG, Expr, pfam-1, pfam-2,

PPI-VM data sets. In particular the data set pfam-1 has weight 0 which

means that it is discarded during the integration phase, whereas COSNet

obtain the highest F-score just on this data set.

The performance decay for label propagation methods on pfam-1 data is

also confirmed by the LP-Zhu method which has F-score 0.012, as though

this methodology of semi-supervised learning was not able to exploit the

information embedded in protein domain similarities.

We can also observe that COSNet markedly outperforms GeneMANIA-

SW in P20R with both integration strategies a) and b), whereas it has

a slightly lower AUC than GeneMANIA-SW when strategy b) is used.

Figure 3.3 graphically show the AUC and P20R results contained in Ta-

ble 3.4. It is immediate to recognize that, despite of similar AUC values for

COSNet and GeneMANIA-SW, our method highly overcomes GeneMANIA-

SW in precision at 20% of recall level. It means that COSNet , by exploiting

its inherently cost-sensitive nature, is able to discover real positive annota-

tions (high recall) by preserving a high precision.

Finally, we want to compare COSNet and GeneMANIA-SW also in

terms of the time needed for the computation of all the prediction tasks.

In Table 3.5 we report the time in seconds needed by the two algorithms

for computing 10-folds cross validation on each functional class (for COS-

Net we report only the network integrated with LSI WS scheme, since the

70

time needed by the other composite networks is very similar). We point

out that, for having a fair comparison, we excluded from the counting for

GeneMANIA-SW the time needed by the first step (integration of the mul-

tiple sources). COSNet is faster than GeneMANIA-SW in both integration

approaches, with the integration strategy b) slower than the strategy a) for

both the methods.

Conjunctive approach. We have also analyzed the performance of our

algorithm on common genes, i.e. the genes belonging to each of the con-

sidered data sets, in order to compare COSNet with hierarchical methods

that have been applied to the same prediction task. With this approach we

obtain 1901 genes and 168 functional classes with at least 20 annotations

for selected genes.

We compared COSNet with a hierarchical multi-label cost-sensitive algo-

rithm based on kernel fusion techniques (HB-CS) [89] and with a hierarchical

AUC P20R

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

COSNet−MUF
COSNet−US
COSNet−LSI_WS(a)
COSNet−LSI_WS(b)
COSNet−LSI_MF(a)
COSNet−LSI_MF(b)
COSNet−WS(SW)
GeneMANIA−SW−a)
GeneMANIA−SW−b)

Figure 3.3: Average AUC and P20R of COSNet (regularized version) on each

integrated network and GeneMANIA-SW methods.

71

Table 3.5: Overall time in seconds needed by COSNet and GeneMANIA-SW algo-

rithm for computing 10-folds cross validation on each functional class on integrated

data.

Method Dataset

LSI WS a) LSI WS b)

COSNet 1010.3 2321.3

GeneMANIA-SW a) GeneMANIA-SW b)

2326.1 3758.3

ensemble method based on the “true path rule” (TPR) [103], which have

been proven being among the best methods for this task [104].

The results are summarized in Table 3.6. For HB-CS and TPR we

report only the averaged precision, recall and F-score because the remaining

measures have not been provided by the authors of the corresponding paper.

COSNet has a higher F-score than both HB-CS and TPR and this is

quite surprising if we observe that these are hierarchical methods, i.e. they

use the information embedded in the hierarchical structure (forest of trees)

of the functional classes and their constraints (true path rule). Moreover,

COSNet obtains very balanced precision and recall values, while HB-CS has

the lowest recall and TPR has the lowest precision.

The weighted sum strategies which use LSI weights (LSI WS) work

better that the other integration approaches, and the MF schema seems to

be not appropriate for data integration, since it has performances worse that

the unweighted approaches.

In conclusion, we tested LSI weights with two different weighted inte-

gration schemes with both conjunctive and disjunctive approach and the

obtained performance improvement w.r.t the unweighted integration shows

the effectiveness of LSI algorithm in finding for each network the correspond-

ing level of “predictiveness”. Clearly the potential of LSI algorithm can be

exploited better by analyzing other appropriate integration schemes.

Moreover, we adopted just one optimization criterion (F-score) when

finding the optimal line (see Section 3), but other criterions may be adopted

and may be more effective in defining network reliability weights.

3.4.2 GFP in Mouse

In this section we report the results on mouse organism relative to the ex-

perimental set-up described in Section 3.3.

72

Table 3.6: Performance comparison of COSNet , HB-CS and TPR considering

solely genes common to each data set.

Method Performance measures

Prec Rec F AUC P20R

COSNet - US
0.581 0.610 0.585 0.899 0.816 β = 0

0.595 0.605 0.591 0.899 0.826 β = 0.0001

COSNet - MUF
0.583 0.602 0.579 0.899 0.817 β = 0

0.596 0.589 0.583 0.898 0.817 β = 0.0001

COSNet - WS SW
0.224 0.674 0.267 0.798 0.461 β = 0

0.426 0.466 0.436 0.863 0.574 β = 0.0001

COSNet - LSI WS (a)
0.603 0.613 0.596 0.907 0.847 β = 0

0.605 0.606 0.597 0.908 0.851 β = 0.0001

COSNet - LSI WS (b)
0.613 0.601 0.595 0.894 0.848 β = 0

0.617 0.598 0.597 0.898 0.851 β = 0.0001

COSNet - LSI MF (a)
0.459 0.375 0.388 0.745 0.617 β = 0

0.479 0.361 0.392 0.745 0.629 β = 0.0001

COSNet - LSI MF (b)
0.553 0.536 0.524 0.840 0.757 β = 0

0.568 0.536 0.535 0.846 0.791 β = 0.0001

HB-CS 0.648 0.504 0.550

TPR 0.480 0.634 0.503

We integrate the mouse single networks by using a disjunctive approach,

i.e. by considering all the genes in at least one of the single networks, ob-

taining a set of 21603 genes. Since the single networks have a size smaller

than 21603, each single network is extended to this size by adding rows and

columns made up by zeros; then the extended networks are integrated by

adopting the weighted sum (WS), max fusion (MF) and unweighted sum

(US) integration schemes described in Section 3.2. Moreover, among the

2815 GO classes with 3-300 annotations, we choose those with at least one

annotation in the test set, obtaining 1174 BP, 442 MF and 231 CC terms.

To define the network reliability weights needed by the weighted schemes

we compute the LSI network weights by considering each functional class

separately. It means that for each class ci we obtain a weight vector vi. We

applied two strategies for integrating mouse networks using vectors vi:

a) generating a unique composite network for each GO ontology by

using as network weights the vectors vi averaged across the corre-

sponding ontology classes

b) generating a integrated network for each class ci by using vi as

network weights

We compared COSNet with the MouseFunc I challenge participant methods,

73

Table 3.7: MouseFunc I participants.

Group Authors Algorithm

Group A G. Obozinski, C. Grant, J. Qiu, Calibrated ensembles of SVMs [8]

G. Lanckriet, M. I. Jordan and W. S. Noble

Group B H. Lee, M. Deng, T. Chen, F. Sun An Integrated Kernel-Logistic Regression

Method for Protein Function Prediction [105]

Group C S. Mostafavi, D. W. Farley, GeneMANIA [36]

C. Grouios, D. Ray and Q. Morris

Group D Y. Guan, C. L. Myers, O. G. Troyanskaya Multi-label hierarchical classification [55] and

Bayesian integration of diverse data sources [106]

Group E W. K. Kim, C. Krumpelman, E. Marcotte Combination of classifier ensemble and

gene network [107]

Group F T. Joshi, C. Zhang, G. N. Lin, D. Xu GeneFAS [108, 109]

Group G W. Tian, M. Tasan, Funckenstein [110]

F. D. Gibbons, F. P. Roth

Group H Y. Qi, J. K. Seetharaman and Z. B. Joseph Protein Function Prediction

Using ’Query Retrieval’ Methods [111]

Group I M. Leone, A. Pagnani Function prediction with

message passing algorithms [112]

whose prediction scores are available on the MouseFunc website 2. Table 3.7

contains the description of the nine groups which participated to the Mouse-

Func I challenge. Note that for group I the available scores do not include

all the functional classes needed for the comparison.

For each GO term we computed the area under the receiver operating

characteristics (ROC) curve (AUC), the precision at different level of recall

(e.g. the precision at 20% recall (P20R)) and the F-score measure. We

point out that AUC and P20R are measures suitable for ranking methods,

that is methods which provide real prediction scores, while F-score needs

binary predictions for being computed. Accordingly, since COSNet is a

binary classifier, we have adapted it for providing also prediction scores (see

Section 2.6.3), but it is clear that COSNet results in P20R and AUC are

suboptimal, and more fine strategies for computing scores can be studied.

On the other hand, the MouseFunc I participant algorithms are not

binary classifiers, therefore for computing the F-scores these methods, since

they provide for each gene i just a score si ∈ [0, 1], we first scale these scores

in the interval [0,1] by using the following equation:

s∗i =
si −min(s)

max(s)−min(s)

where min(s) = mini si and max(s) = maxi si. In this way the lowest

2http : //hugheslab.med.utoronto.ca/supplementary − data/mouseFunc I/

74

Table 3.8: Performance comparison of MouseFunc I methods and regularized

COSNet (β = 0.0001). The values are averaged across the three GO ontologies.

Group Performance

BP MF CC

AUC P20R F AUC P20R F AUC P20R F

Group A 0.672 0.204 0.113 0.796 0.470 0.340 0.766 0.284 0.163

Group B 0.709 0.204 0.113 0.790 0.469 0.328 0.737 0.334 0.197

Group C 0.858 0.314 0.175 0.929 0.607 0.406 0.890 0.479 0.281

Group D 0.825 0.320 0.140 0.894 0.591 0.346 0.872 0.423 0.229

Group E 0.809 0.209 0.028 0.870 0.492 0.170 0.845 0.366 0.208

Group F 0.742 0.203 0.104 0.848 0.529 0.340 0.795 0.343 0.198

Group G 0.810 0.351 0.188 0.890 0.653 0.434 0.846 0.467 0.231

Group H 0.759 0.194 0.091 0.859 0.462 0.322 0.805 0.297 0.143

COSNet -US 0.726 0.265 0.158 0.842 0.466 0.316 0.810 0.384 0.260

COSNet -LSI MF (a) 0.696 0.235 0.126 0.876 0.572 0.376 0.737 0.327 0.210

COSNet -LSI WS (a) 0.716 0.272 0.164 0.867 0.547 0.387 0.803 0.413 0.280

score in s corresponds to 0 and the maximum score in s corresponds to

1. Then we set a threshold for scores at 0.5, i.e. genes corresponding to

scores greater than 0.5 are predicted as positive and the remaining genes

are predicted in the negative class. We outline that this is a naive technique

for computing binary labels which might be suboptimal for some of the

compared algorithms; method-specific techniques to set the thresholds may

lead to significantly better results.

For each GO ontology, i.e. Biological Process (BP), Molecular Func-

tion (MF), Cellular Component (CC), according to the MouseFunc evalu-

ation protocol, we considered four ranges of specificity, that is the number

of genes in the training set with which each term is annotated: {3..10},

{11..30}, {31..100}, {101..300}, for a total of 12 evaluation categories. We

also considered the average performances across the classes in the three on-

tologies.

In table 3.8 we show the overall average results of the MouseFunc I

challenge participants and of the regularized version of COSNet (β = 0.0001)

applied to the integration schemes unweighted sum, max weighted fusion

and weighted sum (LSI weighting). First we note that, even with the simple

unweighted sum integration, COSNet overcomes in P20R and F-score the

methods A, B, E, F, H over CC and BP classes, which represent the around

the 75% of the total number of classes.

Second, COSNet performance improves when usingWS weighted scheme,

whereas with MF scheme there is an improvement w.r.t. the US scheme just

75

Table 3.9: Statistically significant differences in F-score performance at α = 10−2

significance level between COSNet and the other methods. The symbol “+” means

a difference statistically significant in favour of COSNet , “=” means no statistically

significant difference, “-” means a difference statistically significant in favour of the

other method.

Group BP MF CC

Group A + + +

Group B + + +

Group C = = =

Group D = + +

Group E + + +

Group F + + +

Group G = = +

Group H + + +

in MF ontology. With regard to the WS scheme results, COSNet obtains

the third top F-score in BP and MF ontologies and the second top F-score

in CC ontology.

Moreover, in order to understand whether there is a statistically signif-

icant difference in performance, we performed the Wilcoxon signed-ranks

test [83] on the F-score results. In Table 3.9 we report which difference is

statistically significant (at α = 10−2 significance level) comparing COSNet

with the other group methods in each domain separately. COSNet improve-

ments are statistically significant w.r.t. all the methods and all the domains

up to group D in domain BP. We think these positive results are due either

to the cost-sensitive strategy or to the effective synergy between COSNet

and LSI algorithms.

Finally, COSNet has competitive performance also w.r.t the P20R mea-

sure, where it is the 4th top method over all the functional ontologies.

Overall, we point out that two out of three methods that perform better

than COSNet in terms of P20R, Group D and Group G methods, are hi-

erarchical methods: they also consider the hierarchical structure of classes,

whereas our method predict with flat approach. Observe that applying

simple hierarchical post-prediction reconciliating techniques for eliminating

inconsistencies in parent-child predictions may significantly improve the per-

formances [103]. The other method which outperforms COSNet in P20R,

GeneMANIA (Group C), has been already compared with COSNet in Sec-

tion 3.4.1, where our algorithm prominently outperformed GeneMANIA.

76

This means that on the task described in this section COSNet can less

exploit its cost sensitive nature. Furthermore, w.r.t. the F-score results,

there is no statistically significant difference between COSNet and the two

methods (group C and G) that slightly outperform it, as shown in Table 3.9.

Finally, we observe that AUC results are less important in this context,

as explained also in the previous sections.

In order to better analyze the obtained results, in figures 3.4, 3.5 and

3.6 we report the results averaged across the 12 considered GO categories

in terms of AUC, P20R and F-score respectively. We point out that the

problem of predicting gene functions has different difficulty across the con-

sidered categories, since more specific classes (i.e. classes with less positive

examples) are more difficult to predict.

By considering P20R and F-score measures, an important aspect which

arises is that COSNet tends to work better on 31..100 and 101..300 categories

and suffers a slight decay in performance on 3..10 and 11..30 categories. In

fact, our method obtains the best P20R in the BP 101..300 category and

the second top P20R in the MF 31..100, 101..300 and CC 101..300 cate-

gories. Moreover, COSNet has the best F-score in the categories BP 31..100,

101..300, MF 101..300, CC 31..100 and CC 101..300, and it is the second

top method in MF 31..100 and CC 11..30 categories. This may depend on

the fact that the excessive low number of positive examples reduces the ef-

fectiveness of the cost-sensitive strategy adopted by COSNet .

Although the performance of our method is already comparable with that

of the other methods, we observe that COSNet performance can be further

improved by adopting the strategy b) for integrating input networks. This

strategy is more expensive than strategy a) from a computational stand-

point, since it generates an integrated network for each considered GO term,

i.e. 1847 different integrated networks. Due to the large size of each net-

work, our machine is forced to use swap memory for computing the weighted

sum and the normalization of single networks, making the computation very

slow. On the contrary, the computation of LSI weights takes a short time.

Nevertheless, in order to have a clue about the potential of this approach,

we applied strategy b) integration to the CC 101..300 category, which is the

smallest category as it contains just 30 GO terms. Table 3.10 shows the ob-

tained results: there is an improvement in all the adopted performance mea-

sures when integration strategy b) is used. This result shows on one hand

the effectiveness of LSI algorithm in defining network reliability weights, on

the other hand that the averaged result in Table 3.8 relative to LSI WS a)

77

Table 3.10: Performance comparison of MouseFunc I methods and regularized

COSNet (β = 0.0001) averaged across the CC 101..300 category.

Group Performance

AUC P20R F

Group A 0.827 0.456 0.287

Group B 0.855 0.478 0.265

Group C 0.842 0.559 0.310

Group D 0.876 0.452 0.290

Group E 0.797 0.218 0.171

Group F 0.748 0.410 0.237

Group G 0.867 0.465 0.133

Group H 0.723 0.214 0.061

COSNet -US 0.837 0.476 0.352

COSNet -LSI MF (a) 0.788 0.386 0.286

COSNet -LSI WS (a) 0.816 0.498 0.371

COSNet -LSI WS (b) 0.826 0.503 0.375

can be substantially improved when considering integration strategy b).

78

3 11 31 101 3 11 31 101 3 11 31 101

BP 		 MF 		 CC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

grA grB grC grD grE grF grG grH COSNet

Figure 3.4: Comparison of the MouseFunc I challenge methods and regularized

COSNet with strategy LSI-WS a) in terms of AUC averaged across all the twelve

considered GO categories.

79

3 11 31 101 3 11 31 101 3 11 31 101

BP 		 MF 		 CC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

grA grB grC grD grE grF grG grH COSNet

Figure 3.5: Comparison of the MouseFunc I challenge methods and regularized

COSNet with strategy LSI-WS a) in terms of P20R averaged across all the twelve

considered GO categories.

80

3 11 31 101 3 11 31 101 3 11 31 101

BP 		 MF 		 CC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

grA grB grC grD grE grF grG grH COSNet

Figure 3.6: Comparison of the MouseFunc I challenge methods and regularized

COSNet with strategy LSI-WS a) in terms of F-score averaged across all the twelve

considered GO categories.

81

Conclusions

In this thesis we introduced a novel neural algorithm, COSNet, based on

Hopfield networks for semi-supervised learning in graphs with high imbal-

anced data. COSNet adopts a cost sensitive methodology to manage the

unbalance between positive and negative labels, and to preserve and coher-

ently encode the prior knowledge. Moreover, the proposed algorithm has a

low computational complexity and nicely scales on large-scale data.

We applied COSNet to the genome-wide prediction of gene function in

S.Cerevisiae model organism, showing a large improvement of the predic-

tion performances w.r.t. the compared state-of-the-art methods.

A second contribution of the thesis is an algorithm (LSI) to combine

multiple sources of networked data in a “consensus” network, whose edges

are the result of a weighted combination of multiple types of data. The algo-

rithm associates each input network with an “measure of informativeness”

for each considered biological property and source of data. These measures

are then used in the weighted combination of the single input networks. The

algorithm is fast and can be applied to the integration of a high number of

different data sources.

We validated the proposed method in the integration of multiple sources

of biomolecular data to predict the functional classes of genes in the yeast

and mouse model organisms at genome-wide level, using the GO and Fun-

Cat ontologies. The results, compared with those of the best state-of-the-art

methods, show the effectiveness of our approach.

Regarding the possible improvements on the proposed algorithms, we

observe that the design of COSNet is based on two working hypothesis:

1. The model assumes that the input data are not affected by noise, but

in both GO and FunCat ontologies genes may be not annotated for a

class c simply due to lack of knowledge about their biological functions.

2. COSNet is based on parametrized Hopfield networks in which only

82

two parameters are fixed and estimated in the learning phase

Indeed, the assumption 1) simplifies the model and more complex techniques

are needed to adapt the algorithm to noisy input data, e.g. neural networks

with constraints on the activation values of labeled neurons.

With regard to the second working hypothesis, we verified (results not

included in the thesis) that Hopfield networks with an excessive high number

of parameters are affected by overfitting. An interesting extension would be

increasing the number of parameters, e.g. by adopting different activation

thresholds for neurons, and finding the optimal number of parameters with

model selection techniques.

Moreover, COSNet considers as negative examples for a class c all the

genes not annotated with c and annotated with any other class in the func-

tional ontology. Clearly, among negative examples, there are some of them

more informative than the others, for example because they are closer to

c in the structure representing the functional hierarchy. Accordingly, a di-

rect extension of the algorithm could be adopting appropriate strategies in

selecting the negative examples for the biological property to be studied.

Finally, we have adopted in our experiments a “flat” approach in predict-

ing gene functions, i.e. we predict each functional class at a time without

considering the decisions for the other classes. Due to the true path rule,

ontology-wide predictions may produce inconsistencies in parent-child rela-

tionships, leading to worse predictive performances. An extension in this

sense is either adopting multitask approaches when predicting function of

genes or applying techniques to reconcile predictions according to the hier-

archy of the functional classes.

83

Bibliography

[1] Freshman R. D., Adams M. D., White O., Clayton R. A., Jerkiness

E. F., Ker lavage A. R., Built C. J., Tomb J. F., Daugherty B. A.,

Merrick J. M., et al.: Whole-genome random sequencing and assembly

of Haemophilus influenzae Rd. Science 1995, 269(5223): 496–512.

[2] Goff A., Barr ell BG., Buss H., Davis RE., Dijon B., Fieldsman H.,

Gilbert F., Hoarsely JD., Jack C., Johnston M., Louis EH., Mew es

HAW., Mariam Y., Philippine P., Tattling H., Oliver SIG.: Life with

6000 genes. Science 1996, 274(546): 563–7.

[3] Lander ES., Linton LEM., Barren B., Niobium C., Ody MC., Baldwin

J., Devon K., Dewar K., Doyle M., Fitz Hugh W., Funk R., Gage

D., Harris K., Heard A., How land J., Kan L., Legacy J., Levine R.,

Merwin P., Keenan K., Meld rim J.: Initial sequencing and analysis of

the human genome. Nature 2001, 409: 860–921.

[4] Vent er KC., Adams MD., Myers WE., Li PW., Mural RAJ., Sutton G.,

Smith HO., Randell M., Evans CA., Holt RA., Cocaine JD., Emanates

P., Bealle RM., Hus on DH., Wort man JR., Zhang Q., Kodiak CD.,

Zhang H., Chen L., Skips M.: The sequence of the human genome.

Science 2001, 291: 1304–51.

[5] The Gene Ontology Consortium. Gene Ontology: tool for the unifica-

tion of biology. Nature Genetics 2000, 25: 25–29, doi:10.1038/75556.

PM ID 10802651

[6] Ruepp A., Zollie A., Mai er D., Albertan K., Hanni J., Muckrakes

M., TKO I., Gulden er U., Manhunt G., Menstruate M., and Mew es

H.W.: The FunCat, a functional annotation scheme for systematic

classification of proteins from whole genomes. Nucleic Acids Research

2004, 32(18):5539–5545.

84

[7] discarding M., Karo P., Kronecker M., Lee T., and Ouzo unis C. :

Prediction of enzyme classification from protein sequence without the

use of sequence similarity. In PRC. of the 5th IS MB 1997, 92–99.

[8] Obelisk G., Lanckriet G., Grant C., Jordan M. I. and Noble, W.S. :

Consistent probabilistic output for protein function prediction. Genome

Biology 2008, 9:(S6).

[9] Clare A.: Machine learning and data mining for yeast functional ge-

nomics. PhD thesis. University of Wales Abreast. PhD thesis 2003.

University of Wales Abreast.

[10] Clare A. and King R. : Predicting gene function in saccuracies cere-

visiae. Bioinformatics 2003, 19(Supp.2): II42–II49.

[11] Quinlan J. : Induction of decision trees. Machine Learning 1986, 1:

81–106.

[12] Venus C., Strife J., Architect L., Desirous S., and Bloc keel H.: Decision

trees for hierarchical multi-label classification. Machine Learning 2008,

73(2): 185–214.

[13] Schlep B. and Smile A. J.: Learning with Kernels. MIT Press., 2002.

[14] CAI C. Z., Han L. Y., Ji Z. L. and Chen Y. Z.: Enzyme family classi-

fication by support vector machines. Proteins 2004, 55(1): 66–76.

[15] Dob son P. D. and Doug A. J. Distinguishing enzyme structures from

non-enzymes without alignments. J Mil Biol 2003, 330(4):771–783.

[16] Backward K. M., ON C. S., Schnauzer S., Washington S.V.N., Smile

A.J. and Rigel H.: Protein Function Prediction via Graph Kernels.

Bioinformatics 2005, 21 Suppl 1: i47–56.

[17] Vet J. P.: A tree kernel to analyse phylogenetic profiles. Bioinformatics

2002, 18 Suppl 1: S276–84.

[18] Ben-Hour, A. and Brut lag, D. Remote homology detection: a motif

based approach. Bioinformatics 2003, 19 Suppl 1: i26–33.

[19] Rouse J., Saunders C., Seismic S. and Sh awe-Taylor J. : Kernel-

based learning of hierarchical multilabel classification models. Journal

of Machine Learning Research 2006, 7: 1601–1626.

85

[20] Centroids I., Joachim’s T., Hoffman T. and Al tun, Y. : Large margin

methods for structured and interdependent output variables. Journal

of Machine Learning Research 2005, 6: 1453–1484.

[21] Lam pert C. and Black M. : Structured prediction by joint kernel

support estimation. Machine Learning 2009, 77: 249–269.

[22] Baker G., Hoffman T., Schoolkid B., Smile A.J., Task B. and Wash-

ington S. : Predicting structured data. MIT Press 2007, Cambridge,

MA.

[23] Skoal A. and Ben-Hour A.: Hierarchical classification of Gene Ontol-

ogy terms using the Construct method. Journal of Bioinformatics and

Computational Biology 2010, 8(2): 357–376.

[24] Astatine K., Helm L., Pitcairn E., Seismic S. and Rouse J.: Towards

structured output prediction of enzyme function. BC Proceedings 2008,

2 Suppl 4:S2.

[25] Vazquez A., Flam mini A., Mari tan A., Vespasian A.: Global protein

function prediction from protein-protein interaction networks. Nature

Biotechnology 2003, 21: 697 – 700.

[26] Marcotte E. M., Peregrine M., Thompson M.J., Ye ates T.O., Iceberg

D.: A combined algorithm for genome-wide prediction of protein func-

tion. Nature 1999, 402: 83–86.

[27] Oliver S.: Guilt-by-association goes global. Nature 2000,

403(6770):601–3.

[28] Demott J., Bumgarner R., Samudrala R. : Functional annotation from

predicted protein interaction networks. Bioinformatics 2005, 21(15):

3217–3226.

[29] Schwikowski B. et al. : A Network of protein interaction in yeast. Nat.

Biotechnol. 2000, 18: 1257–1261.

[30] Hishigaki H., Nakai K., Ono T., Tanigami A., Takagi T.: Assessment

of prediction accuracy of protein function from protein - protein inter-

action data. Yeast 2001, 18: 523–531.

[31] Karaoz U., Murali T.M., Letovsky S., Yu Zheng, Chumming Ding,

Cantor R.C. : Whole-genome annotation by using evidence integration

in functional-linkage networks. Proc Natl Acad Sci USA 2004, 101:

2888–2893.

86

[32] Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., and Singh, M.: Whole-

proteome prediction of protein function via graph-theoretic analysis of

interaction maps. Bioinformatics 2005, 21(S1): 302–310.

[33] Zhu X., Ghahramani Z., & Lafferty J.: Semi-supervised learning with

gaussian fields and harmonic functions. In Proc. of the 20th Int. Conf.

on Machine Learning 2003. Washintgton DC, USA.

[34] Zhou D., Bousquet O., Lal T.N., Weston J. and Schlkopf B.: Learning

with Local and Global Consistency. Advances in Neural Information

Processing Systems 2004, 16:321–28.

[35] Tsuda K., Shin H.J. and Scholkopf B.: Fast protein classification with

multiple networks. Bioinformatics 2005, 21(Suppl.2):ii59–ii5.

[36] Mostafavi S., Ray D., Farley D.W., Grouios C. and Morris Q.: Gene-

mania: a real-time multiple association network integration algorithm

for predicting gene function. Genome Biol. 2008, 9(Suppl. 1):S4.

[37] Mostafavi S. and Morris Q.: Fast integration of heterogeneous data

sources for predicting gene function with limited annotations. Bioin-

formatics 2010, 26:1759–1765.

[38] Bengio Y., Delalleau O., and Roux N.: Label propagation and quadratic

criterion. In Semi-Supervised Learning (Chapelle O., Schlkopf B. , and

Zien A., eds.), MIT Press 2006, pp. 193–216.

[39] Saad Y. : Iterative Methods for Sparse Linear Systems. PWS Publish-

ing Company 1996, Boston, MA.

[40] Cesa-Bianchi N., Gentile C., Vitale F. and Zappella G.: Random span-

ning trees and the prediction of weighted graphs. In Proceedings of the

27th International Conference on Machine Learning 2010, Haifa, Israel.

[41] Sharan R., Ulitsky, I. and Shamir R.: Network-based prediction of

protein function. Molecular Systems Biology 2007, 3:3–88.

[42] Bader G.D. and Hogue C.W.: An automated method for finding molec-

ular complexes in large protein interaction networks. BMC Bioinfor-

matics 2003, 4:2.

[43] Rives A.W., Galitski T.: Modular organization of cellular networks.

Proc Natl Acad Sci U S A 2003, 100:1128–33.

87

[44] Goldberg D.S. and Roth F.P.: Assessing experimentally derived inter-

actions in a small world. Proc Natl Acad Sci U S A 2003, 100:4372–6.

[45] Spirin V., Mirny L.A.: Protein complexes and functional modules in

molecular networks. Proc Natl Acad Sci U S A 2003, 100:12123–8.

[46] Przulj N., Wigle D.A., Jurisica I.: Functional topology in a network of

protein interactions. Bioinformatics 2004, 20:340–8.

[47] King A.D., Przulj N., Jurisica I.: Protein complex prediction via cost-

based clustering. Bioinformatics 2004, 20:3013–20.

[48] Bader J.S.: Greedily building protein networks with confidence. Bioin-

formatics 2003, 19:1869–74.

[49] Asthana S., King O.D., Gibbons F.D. and Roth F.P.: Predicting

protein complex membership using probabilistic network reliability.

Genome Res 2004, 14:1170–5.

[50] Wu D.D., Hu X.: An Efficient Approach to Detect a Protein Commu-

nity from a Seed. In CIBCB 2005, 135–141.

[51] Eisner R., Poulin B., Szafron D. and Lu P: Improving protein predic-

tion using the hierarchical structure of the Gene Oontology. In IEEE

Symposium on Computational Intelligence in Bioinformatics and Com-

putational Biology 2005.

[52] Blockeel H., Schietgat L. and Clare A.: Hierarchical multilabel classi-

fication trees for gene function prediction. In J. Rousu, S. Kaski, and

E. Ukkonen, editors, Probabilistic Modeling and Machine Learning in

Structural and Systems Biology 2006, Tuusula, Finland. Helsinki Uni-

versity Printing House.

[53] Shahbaba B. and Neal M.: Gene function classification using Bayesian

models with hierarchy-based priors. BMC Bioinformatics 2006, 7(448).

[54] Jiang X., Nariai N., Steffen M., Kasif S. and Kolaczyk E.: Integration

of relational and hierarchical network information for protein function

prediction. BMC Bioinformatics 2008, 9(350).

[55] Barutcuoglu Z., Schapire R. and Troyanskaya O.: Hierarchical multi-

label prediction of gene function. Bioinformatics 2006, 22(7): 830–836.

[56] Guan Y., Myers C., Hess D., Barutcuoglu Z., Caudy A. and Troyan-

skaya O.: Predicting gene function in a hierarchical context with an

ensemble of classifiers. Genome Biology 2008, 9(S2).

88

[57] Labaj P.P., Leparc G.G., Linggi B.E., Markillie L. M., Wiley H.S. and

Kreil D.P.: Characterization and improvement of RNA-Seq precision in

quantitative transcript expression profiling. Bioinformatics 2011, 13:

i383–i391.

[58] Friedberg, I.: Automated protein function prediction-the genomic chal-

lenge. Brief. Bioinformatics 2006, 7: 225–242.

[59] Noble W. and Ben-Hur A. : Integrating information for protein function

prediction. In T. Lengauer, editor, Bioinformatics - From Genomes to

Therapies 2007, 3:1297–1314. Wiley-VCH.

[60] Lanckriet G.R., Deng M., Cristianini N., Jordan M.I., Noble W.S.: Ker-

nel based data fusionand its application to protein function prediction

in yeast. Pac Symp Biocomput 2004, 300–311.

[61] Pavlidis P., Weston J., Cai J. and Noble, W.: Learning gene functional

classification from multiple data. J. Comput. Biol. 2002, 9: 401–411.

[62] M. Deng, T. Chen, F. Sun.: An integrated probabilistic model for

functional prediction of proteins. J Comput Biol 2004, 11(2-3):463–

475.

[63] Troyanskaya O. et al. : A Bayesian framework for combining hetero-

geneous data sources for gene function prediction (in saccharomices

cerevisiae). Proc. Natl Acad. Sci. USA 2003, 100: 8348–8353.

[64] Chua H., Sung W. and Wong L.: An efficient strategy for extensive

integration of diverse biological data for protein function prediction.

Bioinformatics 2007, 23(24): 3364–3373.

[65] Myers C. and Troyanskaya O.: Context-sensitive data inegration and

prediction of biological networks. Bioinformatics 2007, 23: 2322–2330.

[66] Lanckriet G., De Bie T., Cristianini N., Jordan M. and Noble, W.: A

statistical framework for genomic data fusion. Bioinformatics 2004, 20:

2626–2635.

[67] Sonnenburg S., Ratsch G., Schafer C. and Scholkopf B.: Large scale

multiple kernel learning. Journal of Machine Learning Research 2006,

7: 1531–1565.

[68] Rakotomamonjy A., Bach F., Canu S. and Grandvalet Y.: More ef-

ficiency in multiple kernel learning. In ICML : Proceedings of the

89

24th international conference on Machine learning 2007, 775–782. New

York, NY, USA. ACM.

[69] Lewis D., Jebara T. and Noble, W.: Support vector machine learning

from heterogeneous data: an empirical analysis using protein sequence

and structure. Bioinformatics 2006, 22(22): 2753–2760.

[70] Japkowicz N. and Stephen S.: The class imbalance problem: A system-

atic study. Journal Intelligent Data Analysis 2002, 6: i5.

[71] Japkowicz N.: The Class Imbalance Problem: Significance and Strate-

gies. in Proceedings of the 2000 International Conference on Artificial

Intelligence, 111–117.

[72] Elkan C.: The Foundations of Cost-Sensitive Learning. in Proceedings

of the Seventeenth International Joint Conference on Artificial Intelli-

gence 2001.

[73] Guo X., Yin Y., Dong C, Yang G. and Zhou G.: On the Class Im-

balance Problem. Proceeding ICNC ’08 Proceedings of the 2008 Fourth

International Conference on Natural Computation, 4:192–201.

[74] Ling C.X. and Sheng V.S.: Cost-sensitive Learning and the Class Im-

balanced Problem. In Encyclopedia of Machine Learning. C. Sammut

(Ed.). Springer 2007.

[75] Cesa-Bianchi N. and Valentini G.:. Hierarchical cost-sensitive algo-

rithms for genome-wide gene function prediction. Journal of Machine

Learning Research, W&C Proceedings, Machine Learning in Systems

Biology 2010, 8: 14–29.

[76] Pena-Castillo L. et al.: A critical assessment of Mus musculus gene

function prediction using integrated genomic evidence. Genome Biology

2008, 9:S1.

[77] Agresti A., Coull B.A.: Approximate is better than exact for interval

estimation of binomial proportions. Statistical Science 1998, 52(2):

119–126.

[78] Brown L.D., Cai T.T., Dasgupta A.: Interval estimation for a binomial

proportion. Statistical Science 2001 16: 101–133.

[79] Eddy S.R.: Profile hidden Markov models. Bioinformatics 1998, 14(9):

755–763.

90

[80] Spellman P.T. et al.: Comprehensive identification of cell cycle-

regulated genes of the yeast saccharomyces cerevisiae by microarray

hybridization. Molecular Biology of the Cell 1998, 9(12): 3273–3297.

[81] Gasch P. et al.: Genomic expression programs in the response of yeast

cells to environmental changes. Mol. Biol. Cell 2000, 11(12): 4241–

4257.

[82] Stark C., Breitkreutz B.J., Reguly T., Boucher L., Breitkreutz A., Tyers

M.: Biogrid: a general repository for interaction datasets. Nucleic acids

research 2006, 34: D535–D539.

[83] Wilcoxon F.: Individual comparisons by ranking methods. Journal of

Computational Biology 1945, 1(6): 80–83.

[84] Lin H.T., Lin C.J., Weng R.: A note on platt’s probabilistic outputs

for support vector machines. Machine Learning 2007, 68(3): 267–276.

[85] Brown M.P.S. et al.: Knowledge-based analysis of microarray gene

expression data by using support vector machines. Proceedings of the

National Academy of Sciences of the United States of America 2000,

97(1): 267–276.

[86] von Mering C., Krause R., Snel B., Cornell M., Oliver S., Fields S. and

Bork P.: Comparative assessment of large-scale data sets of protein-

protein interactions. Nature 2002, 417: 399–403.

[87] Hopfield J. J.: Neural networks and physical systems with emergent

collective computational abilities. Proceedings of the National Academy

of Sciences of the USA 1982, 79(8): 2554.-2558.

[88] Hertz J., Krogh A. and Palmer R.G.: Introduction to the Theory of

Neural Computation. Addison Wesley 1991.

[89] Re M. and Valentini G.: Simple ensemble methods are competitive with

state-of-the-art data integration methods for gene function prediction.

Journal of Machine Learning Research, W&C Proceedings, Machine

Learning in Systems Biology 2010, 8: 98–111.

[90] Su A.I., Wiltshire T., Batalov S., Lapp H., Ching K.A., Block D.,

Zhang J., Soden R., Hayakawa M., Kreiman G., Cooke M.P., Walker

J.R., Hogenesch J.B.: A gene atlas of the mouse and human protein-

encoding transcriptomes Proc Natl Acad Sci USA 2004, 101:6062–6067.

91

[91] Zhang W., Morris Q.D., Chang R., Shai O., Bakowski M.A., Mitsakakis

N., Mohammad N., Robinson M.D., Zirngibl R., Somogyi E., Laurin

N., Eftekharpour E., Sat E., Grigull J., Pan Q., Peng W.T., Krogan N.,

Greenblatt J., Fehlings M., Kooy D., Aubin J., Bruneau B.G., Rossant

J., Blencowe B.J., Frey B.J., Hughes T.R.: The functional landscape

of mouse gene expression J Biol 2004, 9:3–21.

[92] Siddiqui A.S., Khattra J., Delaney A.D., Zhao Y., Astell C., Asano J.,

Babakaiff R., Barber S., Beland J., Bohacec S., Brown-John M., Chand

S., Charest D., Charters A.M., Cullum R., Dhalla N., Featherstone R.,

Gerhard D.S., Hoffman B., Holt R.A., Hou J., Kuo B.Y., Lee L.L.,

Lee S., Leung D., Ma K., Matsuo C., Mayo M., McDonald H., Prabhu

A.L. et al.: A mouse atlas of gene expression: large-scale digital gene-

expression profiles from precisely defined developing C57BL/6J mouse

tissues and cells. Proc Natl Acad Sci USA 2005, 102:18485–18490.

[93] Finn R.D., Mistry J., Schuster-Bockler B., Griffiths-Jones S., Hollich

V., Lassmann T., Moxon S., Marshall M., Khanna A., Durbin R., Eddy

S.R., Sonnhammer E.L., Bateman A.: Pfam: clans, web tools and

services. Nucleic Acids Res 2006, 34:D247–251.

[94] Mulder N.J., Apweiler R., Attwood T.K., Bairoch A., Bateman A.,

Binns D., Bradley P., Bork P., Bucher P., Cerutti L., Copley R., Cour-

celle E., Das U., Durbin R., Fleischmann W., Gough J., Haft D., Harte

N., Hulo N., Kahn D., Kanapin A., Krestyaninova M., Lonsdale D.,

Lopez R., Letunic I., Madera M., Maslen J., McDowall J., Mitchell A.,

Nikolskaya A.N. et al.: InterPro. Nucleic Acids Res 2005, 33:D201–205.

[95] Brown K.R., Jurisica I.: Online Predicted Human Interaction

Database. Bioinformatics 2005, 21:2076–2082.

[96] Eppig J.T., Blake J.A., Bult C.J., Kadin J.A., Richardson J.E.: The

mouse genome database (MGD): new features facilitating a model sys-

tem. Nucleic Acids Res 2007, 35:D630–637.

[97] Phenotype Annotations from MGI

[ftp.informatics.jax.org/pub/reports].

[98] Kasprzyk A., Keefe D., Smedley D., London D., Spooner W., Melsopp

C., Hammond M., Rocca-Serra P., Cox T., Birney E.: EnsMart:a

generic system for fast and flexible access to biological data. Genome

Res 2004, 14:160–169 .

92

[99] O’Brien K.P., Remm M., Sonnhammer E.L.: Inparanoid: a com-

prehensive database of eukaryotic orthologs. Nucleic Acids Res 2005,

33:D476–D480.

[100] Wheeler D.L., Barrett T., Benson D.A., Bryant S.H., Canese K.,

Chetvernin V., Church D.M., DiCuccio M., Edgar R., Federhen S.,

Geer L.Y., Kapustin Y., Khovayko O., Landsman D., Lipman D.J.,

Madden T.L., Maglott D.R., Ostell J., Miller V., Pruitt K.D., Schuler

G.D., Sequeira E., Sherry S.T., Sirotkin K., Souvorov A., Starchenko

G., Tatusov R.L., Tatusova T.A., Wagner L., Yaschenko E.: Database

resources of the National Center for Biotechnology Information. Nucleic

Acids Res 2007, 35:5–12.

[101] Hamosh A., Scott A.F., Amberger J.S., Bocchini C.A., McKusick

V.A.: Online Mendelian Inheritance in Man (OMIM), a knowledge-

base of human genes and genetic disorders. Nucleic Acids Res 2005,

33:514–517.

[102] Disease Associations from OMIM

[ftp.ncbi.nih.gov/repository/OMIM/] .

[103] Valentini G.: True Path Rule hierarchical ensembles for genome-wide

gene function prediction. IEEE ACM Transactions on Computational

Biology and Bioinformatics 2011, 8(3):832–847.

[104] Cesa-Bianchi N., Re M., Valentini G.: Functional Inference in FunCat

through the Combination of Hierarchical Ensembles with Data Fusion

Methods. ICML Workshop on learning from Multi-Label Data MLD’10

2010, 13–20.

[105] Lee H., Tu Z., Deng M., Sun F. and Chen, T.: Diffusion Kernel-Based

Logistic Regression Models for Protein Function Prediction. OMICS:

A Journal of Integrative Biology 2006, 10(1): 40–55.

[106] Guan Y., Myers C.L., Lu R., Lemischka I.R., Bult C.J., Troyanskaya

O.G.: A genomewide functional network for the laboratory mouse.

PLoS Comput Biol 2008, 4(9):e1000165.

[107] Kim W.K., Krumpelman C., Marcotte E.M.: Inferring mouse gene

functions from genomic-scale data using a combined functional net-

work/classification strategy. Genome Biol. 2008, 9 (Suppl 1):S5.

93

[108] Chen Y., Xu D.: Global protein function annotation through mining

genome-scale data in yeast Saccharomyces cerevisiae. Nucleic Acids Res

2004, 32:6414–6424.

[109] Joshi T., Chen Y., Becker J.M., Alexandrov N., Xu D.: Genome-scale

gene function prediction using multiple sources of high-throughput data

in yeast Saccharomyces cerevisiae. OMICS 2004, 8:322–333.

[110] Tian W., Zhang L. V., Taan M., Gibbons F. D., King O. D., Park

J., Wunderlich Z., Cherry J. M. and Roth F. P.: Combining guilt-by-

association and guilt-by-profiling to predict Saccharomyces cerevisiae

gene function. Genome Biology 2008, 9(Suppl 1):S7.

[111] Qi Y., Klein-Seetharaman J., Bar-Joseph Z.: A mixture of feature ex-

perts approach for protein-protein interaction prediction. BMC Bioin-

formatics 2007, 8(S10): S6.

[112] Leone M., Pagnani A.: Predicting protein functions with message

passing algorithms. Bioinformatics 2005, 21:239–247.

94

