
Future Internet 2012, 4, 92-109; doi:10.3390/fi4010092
OPEN ACCESS

future internet
ISSN 1999-5903

www.mdpi.com/journal/futureinternet

Article

Web Service Assurance: The Notion and the Issues
Marco Anisetti 1, Claudio A. Ardagna 1, Ernesto Damiani 1, Fulvio Frati 1,?, Hausi A. Müller 2

and Atousa Pahlevan 2

1 Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano, via Bramante
65–26013 Crema (CR), Italy; E-Mails: marco.anisetti@unimi.it (M.A.);
claudio.ardagna@unimi.it (C.A.A.); ernesto.damiani@unimi.it (E.D.)

2 Department of Computer Science, University of Victoria, STN CSC, Victoria, BC V8W 3P6, Canada;
E-Mails: hausi@cs.uvic.ca (H.A.M.); atousa.p@gmail.com (A.P.)

? Author to whom correspondence should be addressed; E-Mail: fulvio.frati@unimi.it;
Tel.: +39-0373-898064; Fax: +39-0373-898010.

Received: 21 December 2011; in revised form: 16 January 2012 / Accepted: 3 February 2012 /
Published: 14 February 2012

Abstract: Web service technology provides basic infrastructure for deploying collaborative
business processes. Web Service security standards and protocols aim to provide secure
communication and conversation between service providers and consumers. Still, for a client
calling a Web service it is difficult to ascertain that a particular service instance satisfies—at
execution time—specific non-functional properties. In this paper we introduce the notion
of certified Web service assurance, characterizing how service consumers can specify the
set of security properties that a service should satisfy. Also, we illustrate a mechanism to
re-check non-functional properties when the execution context changes. To this end, we
introduce the concept of context-aware certificate, and describe a dynamic, context-aware
service discovery environment.

Keywords: assurance; context-aware service certification; service discovery; service
security; web service certification

Future Internet 2012, 4 93

1. Introduction

The goal of software assurance is to provide to software purchasers and users the justifiable
confidence that the software will consistently exhibit some desired non-functional properties, including
security-related ones. The expanding portfolio of Web services available over the global network has
the welcome effect of enabling on-the-fly service selection, but at the cost of increased security and
reliability risks with respect to ordinary components—off-the-shelf or developed in-house. For this
reason, a number of assurance tools have been proposed, aimed at monitoring the delivery of Web
Services and remotely diagnosing and resolving Web Service issues. Generally speaking, assurance
tools consolidate and correlate the measurements of some aspects of the Quality of Experience (QoE)
perceived by a Web service user. Such measurements are then stored into a database for further
processing, including data analysis and visualization. Today, most commercial Web service engines,
a.k.a. containers, such as WSO2 (http://wso2.com), IBM WebSphere (http://www.ibm.com/software/
websphere), OpenESB (http://java.net/projects/openesb), Apache AXIS2 (http://axis.apache.org/axis2),
Glassfish Metro (http://metro.java.net) support Web service assurance in some way.

Security assurance, that is, assurance aimed at monitoring security and dependability properties, is
a less established subject. Well-known Web security standards, such as the WS-* stack [1], implement
secure transactions, conversation, and access control systems. However, these standards do not include
any provisions for Web service assurance; rather, they are aimed at satisfying pre-defined security
requirements that service designers identify at development time. Some well-known packages for
service security, such as Apache Rampart (http://axis.apache.org/axis2/java/rampart/) and Java WSIT
(http://wsit.java.net), provide basic facilities for monitoring Web service security mechanisms; however,
few if any assurance techniques based on such facilities have been proposed in the literature.

This paper explores the idea that machine-readable certificates of security and privacy properties of
Web services can provide a way to bound, transfer, and alleviate security risks at run time. In 2008,
the Software Engineering Institute (SEI) published a requirements document on the service certification
process for the U.S. Army’s Chief Information Office/G-6 (CIO/G-6) organization that takes charge
of the information management function of the Army to address security and provisioning concerns
the Army foresees in its development of Service-Oriented Architecture (SOA) environments [2]. This
document presents a methodology for certifying Web services to assure their compliance with stated
non-functional requirements. This work represents a first step in defining methods and techniques
to certify that the service satisfies specific security requirements, producing security assertions and
documents that could be accepted as a proof of service assurance. It is important to note that certification
of Web service security properties involves both the container and the code implementing the service
itself. Even if a Web service container is certified to support, say, the confidentiality of data flowing
through a service interface, no inference can be done on the internal implementation of the service,
where information leaks could happen.

Damiani et al. introduced container- and service-level security properties [3]. Their work aims to
support the definition and run-time handling of certificates stating that a set of security properties are
satisfied by Web services deployed in a given container. However, handling context changes involving
the container, the underlying hardware, or the service itself remains an open issue.

http://wso2.com
http://www.ibm.com/software/websphere
http://www.ibm.com/software/websphere
http://java.net/projects/openesb
http://axis.apache.org/axis2
http://metro.java.net
http://axis.apache.org/axis2/java/rampart/
http://wsit.java.net

Future Internet 2012, 4 94

This paper is organized as follows: Section 2 gives an introduction on how to express security
requirements. Section 3 discusses our approach to security certification of services and presents different
types of certificates. Section 4 describes the concept of Adaptable Security Certification using a practical
example and introducing a conceptual architecture for adaptable assurance-based service discovery.
Section 5 presents related work and Section 6 concludes the paper.

2. Expressing Service Security Requirements

Any assurance process consists of a set of activities aimed at increasing the users’ confidence that a
given service will satisfy their functional and non-functional requirements. Functional requirements are
already considered in the context of dynamic Web service search and discovery, while performance
assurance can be addressed via suitable Service Level Agreements (SLAs). Other non-functional
properties, such as security and reliability, are usually not addressed. Therefore, there is a need for
a solution that (i) permits to specify security requirements that a given service must satisfy [4,5], and
(ii) uses these security requirements in the context of Web service search and discovery.

There are two key aspects to the notion of service security requirements: (1) security requirements
describe a set of security properties whose semantics are shared between the service supplier and the
service user; and (2) security requirements specify the process and techniques (evidence) used to verify
that these security properties hold for this service.

The first building block to support an assurance process for service security is the definition of the set
of security properties that are of interest. The literature defines several classes of security properties
including authenticity, integrity, and confidentiality [5]. In a Service-Oriented Architecture (SOA),
security properties may concern message-level security (i.e., security of data in transit) and service-level
security evaluating the service implementation (i.e., security of data at rest). In other words, we
distinguish between security properties that can be proven to hold for a given service at container-level
and those that need to be certified on the real service implementation. The process of evaluating
a service at container-level considers the compliance of the container with Web service security
standards (e.g., WS-Security [6] and WS-SecureConversation [7]) and the correct enforcement of
security policies (e.g., WS-Policy [8]) defined by the service provider, to prove that the security
properties are supported by the service deployed in the container. In contrast, service-level security
considers security properties that need be proven by analyzing and evaluating the real service
implementation. Service-level properties complement the container-level ones by providing an overview
of the service that goes beyond the service interface, and considers its implementation and the
developed operations.

Here, we distinguish between abstract properties, as for instance confidentiality and integrity, and
concrete properties that enhance abstract ones by adding class attributes [9]. Indeed, no security property
is entirely specified without an adversarial model, that is, a description of what an attacker can do to
compromise the property. Therefore our class attributes represent (1) the threats against the property to
hold (e.g., eavesdropping or replay attack), and (2) the security functions that ensure that the property
holds (e.g., the access control system) [9].

Security properties are organized in an abstraction hierarchy (cf. Section 3.2). Each node in the
hierarchy is a security property of the form p = (p̂,A), where p̂ is an abstract property and A is the set of

Future Internet 2012, 4 95

class attributes in the form a = v, with a the attribute name and v its value. The first-level nodes of the
hierarchy are represented by all security properties p = (p̂,−), namely abstract security properties with
no class attributes specified. An ordering relation� between properties pi and pj (pi � pj) indicates that
pj is a specification of pi, if and only if pi · p̂ = pj · p̂ and for each class attribute a ∈ A, pj · a dominates
pi · a.

Upon the specification of security properties, an important aspect of the assurance process is the
definition of requirements over the mechanisms used to provide evidence for those properties. We can
verify the service support for a given property using two different approaches: a test-based approach
providing evidence that a test carried out on the software has given a certain result, and a formal approach
providing evidence based on an abstract model of the service. In this paper, we focus on test-based
evidence: each security property can be associated with one or more classes of tests, which in turn
contain a set of test types (e.g., equivalence partitioning, fuzzy/mutation) used to generate the test cases
providing the evidence that the property is supported by the service. As for security properties, test-based
evidence (including the results of test execution) is stored in a certificate awarded to a service and can be
compared with users’ requirements, to search and discover services on the basis of their non-functional
characteristics.

Section 3.1 presents our approach to service security certification using a test-based mechanism for
certifying that a service possesses a concrete security property that can be integrated into the lightweight
Web service discovery technique presented in Section 4.

3. Security Certification of Services

Our approach relies on a model-based testing certification solution for services that produces security
assurance metadata (i.e., test-based evidence) supporting a given security property for the service. The
test-based solution used in this paper requires the generation and execution of suitable test cases on the
service, starting from a formal model of the service itself. The test-based mechanisms used to certify a
service and the related results compose the certificate evidence.

3.1. Model-Based Testing

Model-based testing targets the representation and certification of complex Web Services. Services
can be modeled as finite state automata and transition systems for the automatic generation of test cases,
and the evaluation of correctness of tested services [10,11]. Keum et al. [10], authors proposed Symbolic
Transition System (STS) [12] as a suitable solution for the certification of complex Web services that
involves communications, allowing the specification of typed variables, guards (i.e., constraints on state
transitions), and actions (i.e., function calls).

Anisetti et al. [9] proposed an extended version of STS suitable for generating tests based on container
and service behavior. Specifically, Web Service Description Language (WSDL) specification is used
for the creation of STS models. The definition of service interface, describing operations and input
and output data models can be exploited to build a specific model describing three states for each
described operation:

Future Internet 2012, 4 96

• initial state, no inputs have been received;

• intermediate state, the inputs have been received but the outputs have not been produced yet;

• final state, the outputs have been generated and returned to the counterpart.

The modeling can also be extended to the Web Services Conversation Language (WSCL)
specification, where WS-Conversation policies and constraints are defined and applied. In particular,
WSCL regulates the communications between users and services, which could be modeled in STS to
take into consideration data exchanges [9]. Also, the WSCL specification can be extended to integrate
implementation details describing the internal functioning of the services.

Finally, the model can handle container certifications; STS service models can be extended to include
interactions between the customer and the service, which are outside the service implementation but part
of the security specification flow (e.g., key exchange for data integrity).

A more lightweight approach was introduced by Pahlevan et al. [13]. They model the behavior
of the Web services and their communications employing constraints to automate and evaluate the
correctness of the architecture and ultimately the reliability of the designed system (e.g., data validity
and correctness). This approach can be extended to support a wide class of non-functional properties
including security properties.

3.2. Security Assurance Certificates

When test-based certification is used, test cases and related evidence can be attached to Web service
interfaces in order to evaluate the assurance level. According to Damiani et al., three different certificate
types can be identified, each one characterized by specific metadata and a certification process [14].

Self-certificate (SC): SCs are characterized by a four-way interaction between service provider (SP)
and consumer (C). First of all, C sends a request to SP specifying the list of security properties
to be certified on the service. SP already mapped to each service consistent test suites, including
functional and QoS-based test cases; those tests are then used to build the reply, sending to C the
test cases related to the specified set of properties. If the reply is satisfactory, C can directly execute
the test cases on the service and analyze the results. It is important to note that this mechanism
does not require a trust relationship between C and SP ; however, it reduces the number of actors
involved in the certification process and, therefore, the certification time.

Lightweight Certificate (LC): This type of certificate introduces a new actor in the certification
process, namely a Third-Party Certifier (3PC). In this case, all tests are executed by the 3PC.
A consumer C can send a request to 3PC specifying the requested security properties, and a list
of candidate providers. Then, 3PC can contact each specific provider, supply the test cases, and
apply them to services. 3PC can also play the role of certificate repository, storing available
certificates for future usage.

Collaborative Certificate (CCert): Certificates are generated and stored independently from C

requests. An extension of the UDDI protocol could support CCert, as well as the storing and
managing of test suites. Test suites are signed by SP during the service registration phase; then

Future Internet 2012, 4 97

3PC can access them periodically to verify the test results, to generate missing certifications, and
to invoke one or more tests as needed to reconfirm or strengthen service quality.

In the remainder of this paper, we further develop the CCert scenario to enable classifying services
based on their level of assurance. We adopt this well-established approach [14] to provide users with
a subset of certified services. Then, we show how the CCert scenario can be implemented, using our
approach so that real, practical implementations can properly meet user needs.

4. Selection of Services

We now focus on the practical challenges arising when implementing a Web Service Discovery
(WSD) system that considers certificates for security assurance. When security properties of individual
Web services are certified, changes in the context may require re-certifying them at run-time in a
context-agnostic manner. In this section, we illustrate the challenges arising in our context with a simple
example and propose a first conceptual architecture for adaptable assurance-based service discovery.

4.1. An Example of Service Discovery and Dynamic Certification

Let us assume that a web farm is supplying a secure storage service based on an ad hoc security
framework. The service is tested in a given context (i.e., on a physical machine), and CCerts are issued
(i.e., static certification), containing evidence that all the tests have passed successfully (cf. Section 3).
For the sake of simplicity, we consider a simple service implementing the concatenation of two strings,
whose sequence diagram is presented in Figure 1.

Figure 1. String concatenation service sequence diagram.

The service first receives as input the two RSA encrypted strings (String a’ and String b’), then
decrypts the strings (String a and String b) concatenating them (String ab), and finally encrypts the
concatenated response using the RSA algorithm (String ab’). Such encryption is performed by the
service itself and not by the container. The example can be easily reformulated in the case where the

Future Internet 2012, 4 98

container performs SOAP encryption according to WS-Security. In this scenario, it is the container that,
using an ad-hoc component (e.g., Apache Rampart), is responsible for encrypting and decrypting the
input strings and their concatenated version. In the following we consider the first scenario in which
encryption and decryption are managed by the service implementation.

Test cases in the service certificate assert the confidentiality of the response data by providing the
encrypted response string, the key, and the input parameters used to compute the response. Suppose that
the test suite includes some critical input parameters that may generate a service response too big for the
local RSA implementation to encrypt. In fact, in the case of very long strings, their concatenation could
exceed the number of characters accepted by the RSA implementation; furthermore, different systems
could manage very long strings differently, having unpredictable results at client-side. In particular,
those tests are to guarantee that no data leakage happens during the execution on the server, and that
the information is secure at the application level during the entire exchange of messages between
the clients and the service. Each time a user searches for a secure storage server certified for the
“Confidentiality” property having the class attribute MsgEncryption set to “RSA”, the repository will
return the certificate along with the property and the evidence of the tests applied to the service interface
(i.e., triples <encryptedtext, key, plaintext>).

The above discussion assumes static certification. However, there are cases in which changes in
the service context and environment invalidate the certificates awarded to the service. As an example,
consider a service provider rationalizing its software infrastructure, moving its storage service to the
cloud. The service is instanced in a dedicated virtual machine and, from that moment on, the certification
is no longer valid. In fact, moving the architecture to a virtualized system has added a new virtualization
layer to it, and the encryption/decryption takes place on the same physical server hosting other containers
and services. In this situation when a user asks for a string concatenation service with the confidentiality
property on parameters, the original certificate can no longer be considered since the context has
changed. The provider can dynamically re-create the certificate re-running the test suite enclosed in
the certificate evidence, and obtain a certificate for the new context. Alternatively, re-certification can
be carried out by the service user, executing the test suite in the old certificate in the new context. In
principle, server-side re-certification may be preferable for two main reasons: (i) the re-certification
process could be too heavy for common client infrastructures; (ii) online re-certification can represent a
security threat for the service.

The same idea can be applied in cases where services are dynamically moved from a server to another,
or aggregated on the same virtual machine to optimize resources. Notably, not only changes in the
hosting infrastructure require service re-certification. In fact, users can change their infrastructure thus
introducing the need of a new selection process or at least of service re-certification. For instance, doing
online banking in a different workspace such as mobile, owned, or shared computers may change the
required authentication method and encryption algorithm.

In summary, to improve service certification and selection at run time, it is important to consider the
context and environment in which the services are deployed and to handle context-aware re-certification
for WSD. This idea is complementary to the approach by Anisetti et al. which mainly deals with static
certification [9].

Future Internet 2012, 4 99

4.2. Adaptable WSD Security Certification

The above example is a good starting point towards dynamic and adaptable WSD based on security
certification. Adaptable service discovery aims to recognize which security properties need to be certified
to support the dynamic selection of services in a context-agnostic manner. Moreover, it provides a
mechanism that enables service consumers to define their preferences in terms of certified properties,
evidence, and tests, and automatically matches them against the certificates awarded to a service at
discovery time.

The service security properties that are used for an adaptable WSD security certification can be further
broken down into the following groups.

• Abstract Security Property (ASP): An abstract security property represents a generic security
requirement for the service, such as, confidentiality, integrity, and authentication. It can also be
referred as a concrete security property with no class attributes.

• Concrete Security Property (CSP): An ASP enhanced with class attributes. Given two instances
of CSP, pi and pj , based on the same abstract property p̂, pj is a specialization of pi, if a
certificate proving pj always proves pi. For instance, given the abstract property integrity,
and two concrete properties p1 = (integrity,{algorithm = RSA, |key | = 1024bits}) and
p2 = (integrity,{algorithm = RSA, |key | = 2048bits}), a certificate proving p2 always proves
p1. The relation between p1 and p2 is called intra-property relation, because it involves properties
with the same ASP and only considers the class attributes.

• Semantic Security Property (SSP): An SSP is a concrete security property. The only difference
between CSPs and SSPs is that the latter refers to order and equivalence relations, called
inter-property relation, involving different abstract properties. Inter-property relations are defined
based on expert knowledge. As an example, given the two properties p1 = (authenticity ,{}) and
p2 = (non-repudiation,{}), p2 implies p1 meaning that each certificate for property p2 also applies
to property p1. ASP, CSP, and SSP form a hierarchy of security properties.

• Domain Security Property (DSP): A domain-aware security property specification. Since a
hierarchy characterization of a security property could be different in different domains (both
intra- and inter-property relations), a DSP enables an accurate evaluation of the security properties
relevant for a given domain. This alleviates the problem of having a complex hierarchy of security
properties that is suitable for all domains. Fragments of the hierarchies for Domain X and Y are
depicted in Figures 2 and 3, respectively.

After defining different categories of security properties, we need to integrate the certification process
into the WSD process. To realize this, we first introduce the concept of Assurance-Level Agreement
(ALA), as the part of the Service Level Agreement (SLA) that exposes the security properties supported
by a given service in the form of machine-readable certificates. The user has then to define its
requirements in a policy, that is, a machine-readable format of its security requirements. Finally,
WSD matches them against certificates to provide a list of compatible services. Each certificate is an
XML-based document that stores and manages security properties and test evidence. Certificates can

Future Internet 2012, 4 100

be attached to Web service interfaces in order to provide the assurance information (i.e., artifacts and
evidence) to be matched during the discovery process.

Figure 2. An example of a hierarchy of security properties for Domain X.

Figure 3. An example of a hierarchy of security properties for Domain Y.

Authenticity Confidentiality Integrity

Authentication

SF = Token-based

Confidentiality

alg = Des

Integrity

Integrity

alg = RSA
key=1024

alg = RSA
key=2048

Inter-relation:
Intra-relation:

Dominance:
Description:

Domain Y

The format of the service certificate can be specified using the XML-based schema shown in Figure 4.
The service certificate includes the following main sections.

• TestProperty: Information about the certified security properties. Each property includes the
PropertyName and a set of ClassAttribute fields.

Future Internet 2012, 4 101

• ServiceModel: A reference (i.e., URI), named (ModelLink), to the location where the model
of the service is stored, and the type of the service model (i.e., WSDL-based, WSCL-based,
implementation-based) is declared in the Type element.

• TestEvidence: All artifacts related to the test cases executed on the service for its certification.
It includes test class (TestClass), type (TestType), attributes (TestAttribute), specifications
(TestSpecification), and the result of test case execution (TestResult). TestSpecification is the
specification about the real test case that is declared through test id, description, and a link to
the test model that is used to generate the test case. TestResult is a set of pairs holding a reference
to the test case and a pass-fail result.

• TestMetrics: A set of metrics representing the quality of the test cases executed on the service.
These measurements are used in WSD matching to compare the services by representing the result
of different tests on various services.

Figure 4. Certificate Schema.

+

Service
Certificate

TestProperty

Service
Model

TestEvidence

TestMetric

+

+

+

(a)

ServiceModel

ModelLink

Type +

TestProperty

PropertyName

ClassAttribute
1..*

1..*

(b) (c)

TestClass

TestTypeTestEvidence

TestAttribute +

TestSpecification +

TestResult +

1..*

1..*

Operation

ConditionTestMetrics

Attack

Others

(d) (e)

Future Internet 2012, 4 102

The above-mentioned information is used by WSD to find the certified Web services that comply with
the user policies.

4.3. A Conceptual Architecture for an Adaptable Assurance-Based WSD

Our approach to dynamic certification of service security properties consists of two phases: Static
Certification (SC) and Dynamic Certification (DC).

Whereas the SC process involves certification of services at development time, independently from
the context in which the services are deployed, the DC process supports run-time certification of services.
Based on the generated service security certificates (ServiceCertificate), depicted in Figure 4(a), WSD
provides an assurance-based selection process. Upon receiving a consumers’ request with security
preferences, it matches them against the ServiceCertificate. According to the matching results, WSD
returns a set of services compatible with the users’ preferences.

Figure 5 depicts the overall architecture of the adaptable assurance-based service selection, which is
composed of the following components and processes.

Figure 5. Overall Architecture of Adaptable Assurance-based WSD.

Dynamic
Repository

Security
Evaluation

Dynamic
Discovery

Adaptable
Security

Management

Service
Provider

Service
Consumer

Consumer
Security

Management

Certificate
Authorization

Certificate
Authorization

Security
Evaluation

Service Consumer: The party requesting access to, or integrating a remote service, according to
users’ preferences.

Service Provider: The party providing remote Web services that are accessed by service consumers.

Dynamic Repository: The component storing the Web services together with the security certificates
awarded to them. Here, the certified services are registered and published, and periodically
re-certified to assess their security properties.

Future Internet 2012, 4 103

Consumer Security Management: The component dealing with the consumer’s security requirements
and preferences. It allows service consumers to define their preferences in terms of certified
properties, evidence, and tests.

Adaptable Security Management: The component enabling automated run-time service certification,
beyond the security implementation and pre-deployment certification of the Web service. It
monitors the properties that could hold at run-time and identifies new and old security properties
that need (re-)certification. The module continuously evaluates the propriety of the security
properties claimed by the service.

The run-time Web service assurance process is executed in three distinct phases as follows.

Security Evaluation: An accredited process that executes test cases for service evaluation. It generates
new test cases, if needed, according to the security requirements given by the “Adaptable Security
Management” component and the service security specification. If the required test evidence is not
available in the service certificate, a new set of test cases is generated and executed on the service
(run-time evaluation). As a result, new evidence is generated and used in the assurance process.

Certificate Authorization: Services are certified using the evidence provided by the Security
Evaluation phase. It generates an evidence-based certificate guaranteeing that a set of test cases is
executed on the service, or on an entire business process in a service container.

Dynamic Discovery: The conformance of the selected services with the consumer’s security
preferences is evaluated by means of a matching process. The latter measures the degree of
compliance between users’ preferences and service certificates.

In summary, run-time certificate matching allows a service consumer to ascertain that the assurance
level provided by the service certificate complies with its own preferences. This solution increases
consumer confidence because their assurance requirements have been met at service execution time and
in the context of certification.

5. Related Work

Previously researchers have approached the problem of service verification and certification by
applying two families of techniques to prove that a service possesses a given property: test-based
techniques, which require the application of suitable tests to the service, and formal-based techniques,
where an abstract model of the service (e.g., a set of logic formulas, or a formal computational model
such as a finite state automaton) is generated and used for validation [15].

Test-based certification of software components is a time-honored software engineering problem; for
instance, assurance levels from 1 to 4 of the well-known Common Criteria standard [16] are themselves
test-based [15]. Collecting evidence supporting security properties differs greatly from standard
software testing procedures, making existing security certification schemes not applicable in the service
ecosystem. The loosely coupled nature of Web Services (as compared to traditional component-based
software systems) poses strict limits on the way testers can interact with the services, making the usual
stub-based testing techniques hardly applicable to Web service security testing. A major problem is that

Future Internet 2012, 4 104

Web service source code is usually inaccessible, and remote execution may involve a cost. In addition,
existing certification techniques have been provided for static and monolithic software [16,17], where
certificates are usually human-readable statements signed by a trusted certification authority, and do not
suit the service requirements in terms of run-time evaluation of certificates during the discovery process.

There are two major approaches to testing a Web service [18,19]: (i) consider Web Services as
independent software components to which traditional interface testing methods can be adapted, by
considering the released interfaces and protocol bindings; (ii) consider Web Services as composite
elements, where integration testing methodologies should be adapted. Web Services can be tested
from the perspective of the different stakeholders (i.e., developer, provider, integrator, certifier, and
user) and there is the need to specify who can perform a test, which types of tests are needed, and
what are the challenges in carrying out the tests and documenting their results. Others focused on the
automatic generation of test cases starting from WSDL released by the service provider or general service
specification [20–25]. For example, Noikajana and Suwannasart present a new methodology in which
the Web service specification is used to generate test cases based on a decision table [23]. Moreover,
an approach to testing Web services using fault-coverage to check the conformance of the Web services
to their WSDL specification has been proposed by Wen-Li Dong et al. with the goal of automating
testing [25].

Model-based certification of Web services has also been used for service representation and
certification [14]. Certificates based on formal proofs deal with verifying the properties of the models of
Web services [26]. A milestone is the definition of Web Services Business Process Execution Language
(WSBPEL) [27], an industry standard for specifying workflows. Other industry driven modeling
approaches [28,29] are based on the Unified Modeling Language (UML) [30]. A UML extension also
exists and enables, with some limitations, the modeling of security properties to be provided by the
system [31,32].

The problem of service verification has been extensively studied and is the topic of several research
projects, highlighting its intrinsic importance in the context of the future Internet. An interesting
approach is the one taken by the AVISPA (Automated Validation of Internet Security Protocols and
Applications) research project [33], which defines a High Level Protocol Specification Language
(HLPSL) for modeling communication and security protocols [34]. AVANTSSAR (Automated
VAlidatioN of Trust and Security of Service-oriented ARchitectures) introduces a platform supporting
the validation of trust and security aspects of service-oriented architectures and automated techniques
to reason about services composition security [35]. One of the proposed tools, the SAT-based Model
Checker [36,37], was recently used to identify a security flaw in the SAML-based Single-Sign-On
protocol for Google Applications [38]. The SPaCIoS (Secure Provision and Consumption in the
Internet of Services) project concentrates on the problem of providing security in a complex service
ecosystem [39]. It aims to provide a solution and new generation analyzers for automated security
validation of services not only at production time, but also at deployment and consumption times.
SPaCIoS tries to combine technologies for penetration testing, security testing, model checking, and
automatic learning. Moreover, the project ANIKETOS (Ensuring Trustworthiness and Security in
Service Composition) provides service developers and providers with a secure service development
framework [40]. Such a framework includes methods, tools, and security services that support the

Future Internet 2012, 4 105

design-time creation and runtime composition of secure services in environments where both services
and threats are evolving. Finally, the project ASSERT4SOA (Advanced Security Service cERTificate
for SOA) aims to define and develop a certification infrastructure dealing with both test-based and
model-based certification to provide a certificate-aware SOA [41]. Gürgens and Rudolph proposed
another interesting approach to find security flaws in a number of key exchange, authentication,
and non-repudiation protocols [42–44]. Their approach is supported by the Simple Homomorphism
Verification Tool [45].

Another important area of research analyzes the computation of test results at service invocation time
and the definition of enhanced UDDI supporting QoS. Tsai et al. propose an enhanced UDDI server
specification to manage check-in and check-out testing for services [46]. In particular, the check-in test
is performed when the service is first registered in the system, while the check-out test is done when the
service receives a request from a user. Ran presented a new service discovery model taking into account
both functional and non-functional requirements and proposes a QoS certifier responsible to check the
claims made by the service provider [47]. Serhani et al. illustrate an architecture based on a QoS broker
for efficient Web services selection [48]. After the verification of the service by the broker, the client can
select services on the basis of its QoS requirements. In this paper, we focused on security certification
and on the definition of a discovery process that considers the certified properties and the way in which
these properties are proven to hold.

6. Conclusions

The rapid worldwide deployment of Web services on enterprise IT infrastructure is the enabler of a
new generation of applications. Web service security standards are now firmly in place, but the provision
of a security architecture that can ensure that key security and privacy properties actually hold at service
execution time is still an open question.

Current solutions to this problem are based on compliance to standards in a static execution context
and do not address security requirements of service-oriented applications when execution contexts can
change and evolve rapidly.

We posit that our context-aware certificates will enable administrators to specify their requirements
in terms of security properties to be re-checked when the execution context changes. In this paper,
we discussed the notion of context-aware certificates and gave a preliminary description of a dynamic,
context-aware Web service discovery architecture aiming to fulfill the security requirements of enterprise
applications. We believe that this dynamic certification approach can be easily adapted to the needs
of specific domains such as telecommunications and healthcare. Future works will include practical
experimentation of our approach and a generalization of the whole framework able to certificate Web
services with respect to generic properties.

Acknowledgments

This work was funded in part by the European Commission under the project ASSERT4SOA
(contract n. FP7-257351), and by the National Sciences and Engineering Research Council (NSERC) of

Future Internet 2012, 4 106

Canada (CRDPJ 320529-04 and CRDPJ 356154-07), IBM Corporation via the CSER Consortium, and
University of Victoria, British Columbia, Canada.

References

1. Galbraith, B.; Hankinson, W.; Hiotis, A.; Janakiraman, M.; Prasad, D.V.; Trivedi, R.; Whitney, D.
Professional Web Services Security; Wrox Press Ltd.: Birmingham, UK, 2002.

2. Software Engineering Institute. Securing Web Services for Army SOA. Available online:
http://www.sei.cmu.edu/solutions/softwaredev/securing-web-services.cfm (accessed on 6
February 2012).

3. Damiani, E.; Maña, A. Toward WS-Certificate. In Proceedings of the ACM Workshop on Secure
Web Services, Chicago, IL, USA, 13 November 2009; pp. 1–2.

4. Han, J.; Kowalczyk, R.; Khan, K. Security-oriented service composition and evolution. In
Proceedings of the 13th Asia Pacific Software Engineering Conference, Bangalore, India, 6–8
December 2006; pp. 71–78.

5. Kim, A.; Luo, J.; Kang, M. Security ontology for annotating resources. In On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE; Springer: Berlin, Germany,
2005; Volume 3761, pp. 1483–1499.

6. Nadalin, A.; Kaler, C.; Monzillo, R.; Hallam-Baker, P. Web Services Security: SOAP Message
Security 1.1. Available online: http://www.oasis-open.org/committees/download.php/16790/
wss-v1.1-spec-os-SOAPMessageSecurity.pdf (accessed on 6 February 2012).

7. Nadalin, A.; Goodner, M.; Gudgin, M.; Barbir, A.; Granqvist, H. WS-SecureConversation
1.3. Available online: http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/
ws-secureconversation.html (accessed on 6 February 2012).

8. Vedamuthu, A.; Orchard, D.; Hirsch, F.; Hondo, M.; Yendluri, P.; Boubez, T.; Yalcinalp, U. Web
Services Policy 1.5 - Framework. Available online: http://www.w3.org/TR/ws-policy/ (accessed
on 6 February 2012).

9. Anisetti, M.; Ardagna, C.; Damiani, E. Fine-grained modeling of web services for test-based
security certification. In Proceedings of the 8th IEEE International Conference on Services
Computing, Washington, DC, USA, 5–10 July 2011; pp. 456–463.

10. Frantzen, L.; Tretmans, J.; d. Vries, R. Towards model-based testing of web services. In
Proceedings of the International Workshop on Web Services—Modeling and Testing, Palermo,
Italy, 6 June, 2006; pp. 67–82.

11. Keum, C.; Kang, S.; Ko, I.Y.; Baik, J.; Choi, Y.I. Generating test cases for web services using
extended finite dtate machine. In Testing of Communicating Systems; Springer: Berlin, Germany,
2006; Volume 3964, pp.103–117.

12. Frantzen, L.; Tretmans, J.; Willemse, T. Test generation based on symbolic specifications.
In Proceedings of the 4th International Workshop on Formal Approaches to Software Testing;
Springer-Verlag: Linz, Austria, 2004; Volume 3395, pp. 1–15.

http://www.sei.cmu.edu/solutions/ softwaredev/securing-web-services.cfm
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.3/ws-secureconversation.html
http://www.w3.org/TR/ws-policy/

Future Internet 2012, 4 107

13. Pahlevan, A.; Müller, H.A.; Cheng, M. A dynamic framework for quality web service discovery.
In Proceedings of the 4th International Workshop on a Research Agenda for Maintenance and
Evolution of Service-Oriented Systems; Carnegie Mellon University: Pittsburgh, PA, USA, 2010;
pp. 73–89.

14. Damiani, E.; El Ioini, N.; Sillitti, A.; Succi, G. WS-Certificate. In Proceedings of the IEEE
Congress on Services, Part I, Los Angeles, CA, USA, 6–10 July 2009; pp. 637–644.

15. Damiani, E.; Ardagna, C.; Ioini, N.E. Open Source Systems Security Certification; Springer:
New York, NY, USA, 2009.

16. Herrmann, D. Using the common criteria for IT security evaluation; Boca Raton, FL, USA, 2002.
17. US Department of Defence. Department of Defense Trusted Computer System Evaluation

Criteria. Available online: http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt (accessed
on 6 February 2012).

18. Canfora, G.; Penta, M.D. Testing services and service-centric systems: Challenges and
opportunities. IT Prof. 2006, 8, 10–17.

19. Bloomberg, J. The Rational Edge Ezine for the Rational Community: Testing web services
today and tomorrow. Available online: http://www.p2080.co.il/go/p2080h/files/4989377677.pdf
(accessed on 6 February 2012).

20. Hanna, S.; Munro, M. An approach for specification-based test case generation for web
services. In Proceedings of the IEEE/ACS International Conference on Computer Systems and
Applications; IEEE CS: Amman, Jordan, 2007; pp. 16–23.

21. Jokhio, M.; Dobbie, G.; Sun, J. Towards specification based testing for semantic web services.
In Proceedings of the 20th Australian Software Engineering Conference; IEEE CS: Gold Coast,
Australia, 2009; pp. 54–63.

22. Mao, C. Towards a hierarchical testing and evaluation strategy for web services system.
In Proceedings of the 7th ACIS International Conference on Software Engineering Research,
Management and Applications; IEEE CS: Haikou, China, 2009; pp. 245–252.

23. Noikajana, S.; Suwannasart, T. Web service test case generation based on decision table. In
Proceedings of International Conference on Quality Software; IEEE CS: Oxford, UK, 2009;
pp. 321–326.

24. Bai, X.; Dong, W.; Tsai, W.T.; Chen, Y. WSDL-based automatic test case generation for web
services testing. In Proceedings of the IEEE International Conference on Service-Oriented
System Engineering; IEEE CS: Beijing, China, 2005; pp. 207–212.

25. Dong, W.L.; Yu, H. Web service testing method based on fault-coverage. In Proceedings of the
10th IEEE International Enterprise Distributed Object Computing Conference Workshops; IEEE
CS: Hong Kong, China, 2006; pp. 43–50.

26. Grefen, P.; Aberer, K.; Hoffner, Y.; Ludwig, H. CrossFlow: Cross-organizational workflow
management in dynamic virtual enterprises. Int. J. Comput. Syst. Sci. Eng. 2000, 15, 277–290.

27. Alves, A.; Arkin, A.; Askary, S.; Barreto, C.; Bloch, B.; Curbera, F.; Ford, M.; Goland, Y.;
Guizar, A.; Kartha, N.; et al. Web services business process execution language version
2.0. Available online: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf (accessed on 6
February 2012).

http://csrc.nist.gov/publications/secpubs/rainbow/std001.txt
http://www.p2080.co.il/go/p2080h/files/4989377677.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

Future Internet 2012, 4 108

28. Skogan, D.; Gronmo, R.; Solheim, I. Web service composition in UML. In Proceedings of the
IEEE International Enterprise Distributed Object Computing Conference; IEEE CS: Monterey,
CA, USA, 2004; pp. 47–57.

29. Kramler, G.; Kapsammer, E.; Kappel, G.; Retschitzegger, W. Towards using UML2 for modeling
web service collaboration protocols. In Interoperability of Enterprise Software and Applications;
Springer: London, UK, 2005; pp. 227–238.

30. Rumbaugh, J.; Jacobson, I.; Booch, G. The Unified Modeling Language Reference Manual;
Addison-Wesley Professional: Indianapolis, IN, USA, 2004.

31. Jürjens, J. UMLsec: Extending UML for secure systems development. In Proceedings of the
5th International Conference on The Unified Modeling Language; Springer Verlag: Dresden,
Germany, 2002; pp. 412–425.

32. Lodderstedt, T.; Basin, D.; Doser, J. SecureUML: A UML-based modeling language for
model-driven security. In Proceedings of the 5th International Conference on The Unified
Modeling Language; Springer Verlag: Dresden, Germany, 2002; pp. 426–441.

33. Automated Validation of Internet Security Protocols and Applications (AVISPA). Available
online: http://www.avispa-project.org/ (accessed on 6 February 2012).

34. Chevalier, Y.; Compagna, L.; Cuellar, J.; Drieslma, P.H.; Mantovani, J.; Mdersheim, S.;
Vigneron, L. A high level protocol specification language for industrial security-sensitive
protocols. In Proceedings of Workshop on Specification and Automated Processing of Security
Requirements; Austrian Computer Society: Linz, Austria, 2004; pp. 193–205.

35. Automated Validation of Trust and Security of Service-oriented Architectures (AVANTSSAR).
Available online: http://www.avantssar.eu/ (accessed on 6 February 2012).

36. Armando, A.; Compagna, L. SATMC: A SAT-based Model Checker for Security Protocols.
In Proceedings of the 9th European Conference on Logics in Artificial Intelligence; Springer:
London, UK, 2004; Volume 3229, pp. 730–733.

37. Compagna, L. SAT-based model-checking of security protocols. PhD thesis, Università degli
Studi di Genova, Genova, Itay; the University of Edinburgh, Edinburgh, UK, September 2005.

38. Armando, A.; Carbone, R.; Compagna, L.; Cuellar, J.; Tobarra, L. Formal analysis of SAML
2.0 web browser single sign-on: Breaking the SAML-based single sign-on for Google apps.
In Proceedings of the 6th ACM workshop on Formal methods in security engineering; ACM:
Alexandria, VA, USA, 2008; pp. 1–10.

39. Secure Provision and Consumption in the Internet of Services (SPaCIoS). Available online:
http://www.spacios.eu/ (accessed on 6 February 2012).

40. Ensuring Trustworthiness and Security in Service Composition (ANIKETOS). Available online:
http://aniketos.eu/ (accessed on 6 February 2012).

41. Advanced Security Service cERTificate for SOA (ASSERT4SOA). Available online: http://www.
assert4soa.eu/ (accessed on 6 February 2012).

42. Gürgens, S.; Ochsenschläger, P.; Rudolph, C. Role based specification and security analysis
of cryptographic protocols using asynchronous product automata. In Proceedings of IEEE
International Workshop on Trust and Privacy in Digital Business; IEEE CS: Aix-en-Provence,
France, 2002; pp. 473–482.

http://www.avispa-project.org/
http://www.avantssar.eu/
http://www.spacios.eu/
http://aniketos.eu/
http://www.assert4soa.eu/
http://www.assert4soa.eu/

Future Internet 2012, 4 109

43. Gürgens, S.; Rudolph, C. Security Analysis of (Un-)Fair Non-repudiation Protocols. Lect. Notes
Comput. Sci. 2003, 2629/2003, 229–232.

44. Gürgens, S.; Rudolph, C.; Scheuermann, D.; Atts, M.; Plaga, R. Security Evaluation of Scenarios
based on the TCG’s TPM Specification. Lect. Notes Comput. Sci. 2007, 4734/2007, 438–453.

45. Fraunhofer Institute for Secure Information Technology SIT, D. Simple Homomorphism
Verification Tool—Manual. Available online: http://publica.fraunhofer.de/starweb/servlet.
starweb?path=pub0.web&search=N-47349 (accessed on 6 February 2012).

46. Tsai, W.; Paul, R.; Cao, Z.; Yu, L.; Saimi, A.; Xiao, B. Verification of Web services using
an enhanced UDDI server. In 8th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS 2003); IEEE CS: Guadalajara, Mexico, 2003; pp. 131–138.

47. Ran, S. A model for web services discovery with QoS. In ACM SIGecom Exch. 2003, 4, 1–10.
48. Serhani, M.; Dssouli, R.; Hafid, A.; Sahraoui, H. A QoS broker based architecture for efficient

Web services selection. In Proceedings of the IEEE International Conference on Web Services;
IEEE CS: Orlando, FL, USA, 2005; pp. 113–120.

c© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/.)

http://publica.fraunhofer.de/starweb/servlet.starweb?path=pub0.web&search=N-47349
http://publica.fraunhofer.de/starweb/servlet.starweb?path=pub0.web&search=N-47349

	Introduction
	Expressing Service Security Requirements
	Security Certification of Services
	Model-Based Testing
	Security Assurance Certificates

	Selection of Services
	An Example of Service Discovery and Dynamic Certification
	Adaptable WSD Security Certification
	A Conceptual Architecture for an Adaptable Assurance-Based WSD

	Related Work
	Conclusions

