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Abstract 

Recent studies on S. cerevisiae have shown that modifications in the dosage of 

essential genes, genes coding for protein complexes and network hubs are deleterious. 

These genes are intrinsically fragile toward perturbations, since dosage modifications of 

essential and highly connected proteins yield to alterations in protein function, causing 

phenotypic aberrations that may affect the whole cell function. Similar analyses on the 

mammalian protein interaction network have instead revealed a probable increased 

robustness toward dosage modifications owing to gene duplication. Unlike yeast, in 

mammals highly connected proteins are mostly encoded by duplicated genes, while 

essentiality is not correlated with duplicability. This difference suggests that dosage-

sensitive genes could duplicate at a certain point in evolution, likely favoring the 

progressive increase in genomic complexity. In order to understand whether this 

hypothesis was correct, we investigated the relationships between gene properties (origin, 

conservation and duplicability) and network properties (connectivity and centrality) in 

several species from bacteria to primates. We found that all protein interaction networks 

maintain a core of hubs (i.e. highly connected proteins), which are encoded by ancient 

singleton genes that are involved in basic cellular functions. During vertebrate evolution, a 

new group of hubs emerged. These novel hubs are encoded by duplicated genes that 

originated with metazoans, duplicated with vertebrates, are involved in regulatory 

processes and in the organization of multicellular organisms. They duplicated through the 

two rounds of whole duplication that occurred in the early vertebrate genome and the 

retention of the duplication was favored by the presence of alternative mechanisms of 

dosage regulation. 

In addition to offering novel insights into the evolution of protein interaction 

networks, this analysis also helped in better understanding the network properties of cancer 
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genes (i.e. gene whose mutations are causally implicated in cancer). In particular, they are 

representatives of the two classes of ancient singleton and recent duplicated hubs. These 

two groups of cancer-related hubs may reflect two ways of promoting tumorigenesis: one 

that interferes with basic and ancestral functions, and the other that perturbs more complex 

processes, such as regulation and development.  

Determining the evolutionary characteristics of cancer genes and their position 

inside the human protein interaction network will help to understand the importance of 

these properties in tumorigenesis. Furthermore, we will be able to identify new putative 

cancer genes, given the assumption that mutations in genes that have properties similar to 

known cancer genes may promote tumorigenesis in a similar way. 
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Introduction 

1. Aim of the Thesis 

The control of gene dosage is crucial to regulate the expression and the function of 

particular categories of genes (Veitia, 2004; Veitia et al., 2008). In S. cerevisiae, 

modifications of the dosage of essential genes, genes encoding highly connected proteins 

and members of protein complexes are harmful (Papp et al., 2003; Prachumwat and Li, 

2006; Yang et al., 2003). These genes are fragile towards dosage perturbations and 

modifications in their dosage may induce phenotypic aberrations (Papp et al., 2003; Veitia, 

2002). Highly connected proteins and proteins that occupy central positions in the protein 

interaction network are essential also in multicellular eukaryotes, such as D. melanogaster 

and C. elegans (Hahn and Kern, 2005). Surprisingly, mammalian protein interaction 

networks show an increased robustness towards dosage modifications as a consequence of 

gene duplication. In particular, human hubs are preferentially encoded by duplicated genes 

(Liang and Li, 2007; Rambaldi et al., 2008), and mouse essential genes may be both 

singleton and duplicated (Makino et al., 2009).  

The scope of this work is to determine how protein interaction networks evolved 

from unicellular species to mammals in order to identify the causes of the variation in the 

relationships between duplicability and network properties.  

Understanding the evolution of the human protein interaction network is relevant 

also in the context of cancer. Indeed, cancer is a genetically complex disease, which may 

be caused by mutations in hundreds of genes (Vogelstein and Kinzler, 2004). In the past 

five years, several mutational studies of cancer tissues have allowed the identification of 

almost 1,500 genes that are actively involved in tumorigenesis. Notwithstanding the 

significant increase in the number of cancer genes since the first collections (Futreal et al., 
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2004), they maintain the same systems-level properties. In particular, cancer genes are 

mostly singleton and encode highly connected proteins inside the human protein 

interaction network (Rambaldi et al., 2008). Therefore, their properties resemble those of 

yeast hubs. This may be an indirect proof of the fact that portions of the human protein 

interaction network that involve cancer genes have maintained their fragility towards gene 

duplication, despite a general increase in the robustness of the network. Perturbations of 

these nodes due to mutations or dosage modifications cause tumorigenesis. Understanding 

why cancer genes have conserved these characteristics in evolution may help in the 

identification of new putative candidate cancer genes, on the basis of the concept that 

genes that have systems-level properties similar to known cancer genes may be involved in 

tumorigenesis when mutated. 

 

2. Biological networks 

In the last two decades we have witnessed the exponential development of studies 

concerning networks as a consequence of the increase in the amount of data that have 

become available. Several systems, such as the World Wide Web, the Internet and the 

relationships between individuals, are now best described in a network-like fashion 

(Albert, 2005; Albert and Barabasi, 2002). The Internet reached two billion users in 2010 

(Lynn, 2010), while more than one trillion distinct URLs (Alpert and Hajaj, 2008) are 

available in more than one hundred million web sites (DomainTools, 2011). A quick 

development of these networks has corresponded to an increase in the studies of network 

topology and network properties. The boost of these studies has favored a similar 

development also in the treatment of biological networks. The cell is a system of 

interactions between genes and gene products, which may act at different levels. 

Regulatory networks describe the transcriptional regulation by transcription factors, while 

the formation of protein complexes and physical interactions between proteins are 
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described by protein interaction networks and biochemical reactions are integrated into 

metabolic networks (Albert, 2005). Each network is not independent from the others, 

having each external signal that triggers reactions involving protein-protein interactions, 

regulatory networks and metabolic networks (Albert, 2005).  

Several high-throughput techniques have been established in the last few years, 

which have been exploited to gather large amounts of data from a small number of 

experiments in a limited time. In ten years, protein-protein network data have increased 

from few hundreds in a single species (S. cerevisiae) (Uetz et al., 2000) to more than 

200,000 in more than twenty species (Stark et al., 2011). In a similar way, also genetic 

interaction networks have been studied extensively, having the S. cerevisiae network that 

includes now more than 150,000 interactions (Stark et al., 2011). Protein and genetic 

interaction networks are now studied in several species in different taxonomic groups, such 

as bacteria (in particular E. coli and M. pneumoniae), plants (A. thaliana), fungi (S. 

cerevisiae and S. pombe), insects (D. melanogaster), nematodes (C. elegans), rodents (M. 

musculus and R. norvegicus) and primates (H. sapiens) (Kerrien et al., 2007; Stark et al., 

2011). Several other representations of networks are used to study biological phenomena, 

such as metabolic networks (Jeong et al., 2000; Lemke et al., 2004), transcriptional 

regulation networks (Lee et al., 2002; Luscombe et al., 2004) and signal transduction 

pathways (Ma'ayan et al., 2005). 

 

2.1. Protein-protein interactions 

Protein interaction networks describe physical interactions between proteins. 

Several methods have been developed in the last years to identify this type of interactions. 

The first technique that was established to detect protein-protein interactions is yeast-two-

hybrid (Cusick et al., 2005). It was first developed by Fields and Song more than 20 years 

ago (Fields and Song, 1989) and has been widely used to detect protein-protein 
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interactions in several species, from bacteria (Rain et al., 2001), to yeast (Uetz et al., 2000; 

Yu et al., 2008a) and higher eukaryotes (Giot et al., 2003; Li et al., 2004; Rual et al., 2005; 

Uetz and Pankratz, 2004). This technique exploits the properties of the S. cerevisiae 

protein GAL4, which is a potent transcriptional activator when yeast is grown on 

galactose-rich media (Johnston, 1987). Its two separable domains are bound to two 

proteins (the “bait” and the “prey”, Figure 1A). If these proteins interact, GAL4 is 

reconstituted and activates transcription of a designated reporter gene (Figure 1B). High-

throughput screenings are made using pools of hundreds of open reading frames (ORFs) 

fused to one of the two domains of GAL4 that are injected into the yeast cells. After 

incubating the cells, colonies positive for the phenotype of the reporter gene are selected 

(Fields and Song, 1989). The interacting proteins are amplified using primers that are 

specific for one of the two domains, then two PCRs are run for each positive colony, and 

Sanger sequencing is used to identify the two interacting proteins (Cusick et al., 2005).  

A second method to detect protein-protein interactions is based on tandem affinity 

purification (TAP) followed by mass-spectrometry (Puig et al., 2001). A protein of interest 

is recognized by a TAP tag, which is fused to its N- or C- terminus. Tagged complexes 

containing the protein of interest can be quickly and easily purified, then the members of 

the complexes are identified by mass-spectrometry (Puig et al., 2001) (Figure 2).  
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Figure 1: Detection of protein-protein interactions with in a yeast-two-hybrid system 

Adapted from (Chien et al., 1991). The upstream activation sequence (UASG) is the promoter region that 

GAL4 binds. Two separable domains constitute this protein: the N-terminal domain has DNA-binding 

activity but cannot activate transcription, while the C-terminal domain activates transcription but does not 

recognize the DNA-binding site. The expression levels of this reporter gene, the interaction can be 

confirmed. The protein X (referred to as “bait”) is translated with the GAL4 DNA-binding domain B, while 

the protein Y (“prey”) is translated with the GAL4 activation domain A. (A) In case of no interaction 

between X and Y, the reporter gene will not be activated. (B) If X interacts with Y, GAL4 is reconstituted 

and is able to activate the transcription of a reporter gene. (C) False positives may arise if the reporter gene 

may be activated by only the binding between the GAL4 B-domain to UASG. (D) Another type of false 

positives may arise when X and Y are able to physically interact with each other, but they have different 

cellular localizations (X is nuclear, while Y is cytoplasmatic), therefore they will never interact in vivo.  

 



  19 

 

Figure 2: Detection of protein-protein interactions with TAP  

Adapted from (Puig et al., 2001). The target protein is bound to a TAP tag, composed by a calmodulin-

binding peptide, tobacco etch virus protease (TEV protease) cleavage site and protein A, which binds tightly 

to IgG. In the first affinity column, the complex to purify binds to the IgG beads. TEV protease cleaves the 

complex from protein A, which is then ready for the second affinity column, where the complex binds to 

calmodulin beads. The members of the newly purified complex are then identified by mass-spectrometry. 

 

A last method was developed on the basis of the Förster resonance energy transfer 

(FRET), which exploits the ability to transfer electrons between near chromophores (<10 

nm) (Truong and Ikura, 2001). The concept is similar to the yeast-two-hybrid technique: 

instead of utilizing the two domains of GAL4, two different mutant GFPs (the donor and 

the acceptor chromophores) are bound to two proteins. When the two proteins interact, the 

acceptor GFP becomes luminescent and the interaction may be detected directly in vivo 

(Truong and Ikura, 2001) (Figure 3). The difference with yeast-two-hybrid is that, in 

addition to the in vivo detection, the interaction is directly visible and must not be inferred 

from the expression of the reporter gene. 
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Figure 3: Detection of protein-protein interactions with FRET  

Adapted from (Truong and Ikura, 2001). A chromophore is bound to protein X (cyan) and to protein Y (red). 

By stimulating with energy at the wavelength of the first chromophore, electrons are transferred to the second 

chromophore if they are less than 10 nm distant. In case X and Y interact, the second chromophore will 

become luminescent and will be detected. In case the two proteins do not interact, the second chromophore 

will not be visible. 

 

In addition to the three methods described previously, interactions may be detected 

in small-scale experiments using different techniques, such as co-localization, co-

purification, co-fractionation and co-crystal structure (Breitkreutz et al., 2008; Keshava 

Prasad et al., 2009).  

 

2.2. False positives in the detection of protein-protein interactions 

High-throughput detection of protein-protein interactions may present several false 

positives. The results may be misleading if the fraction of false positives is sufficiently 

high.  

In yeast-two-hybrid experiments, false positives may arise in the detection of 

protein-protein interactions because of auto-activation of the reporter gene, which may 
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occur when the bait is able to directly activate transcription, without binding to the prey 

(Cusick et al., 2005) (Figure 1C). These auto-activators appear to have many interaction 

partners that do not share any functional similarity. They may be recognized and 

eliminated from the analyses by eliminating all yeast colonies that have evidence of 

activation of the reporter gene before the binding with the prey (Walhout and Vidal, 1999). 

Another type of false positives that is harder to detect is represented by proteins that are 

able to interact in the two-hybrid system but are never expressed at the same time or in the 

same cells (Figure 1D). These are nearly impossible to identify using only interaction 

essays, but may be detected by studying their expression levels in vivo (Cusick et al., 

2005).  

In principle, TAP should not have problems with false positives. However, the 

comparison of different studies of this type showed a limited overlap in the identification 

of the same complexes (Krause et al., 2004). This is probably due to the fact that protein 

complexes may involve transient interactions and a significant fraction of the members of 

these complexes may be hard to characterize because of their low expression levels 

(Cusick et al., 2005).  

Intuitively, small-scale experiments have less false-positives than high-throughput 

screenings (Bader et al., 2004; von Mering et al., 2002). However, Yu et al. (Yu et al., 

2008a) demonstrated that also the first yeast-two-hybrid experiments on two yeast protein 

interaction networks (Ito et al., 2001; Uetz et al., 2000) were of high quality in terms of 

false-positives rate. A problem related with small-scale experiments is that they are often 

based on literature curation (i.e. interactions are identified from text mining), which 

includes errors due to the difficulty to detect real interactions from a text document 

(Cusick et al., 2009). 

These observations show that determining the reliability of a high-throughput 

experiment is not trivial. The best method to estimate it is based on the comparison with a 

reference set of high-quality interactions that were used as gold standard (Cusick et al., 
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2009). This gold standard should be unbiased toward particular cell processes (i.e. they 

must include proteins from all cellular processes) and must be highly reliable and 

reproducible (Cusick et al., 2009).  

 

2.3. Databases of protein interaction networks 

Several databases of protein-protein interactions have been collected. Among the 

most complete and commonly used to analyze network data are BioGRID (Breitkreutz et 

al., 2008), IntAct (Kerrien et al., 2007), The Molecular Interactions Database (MINT) 

(Cesareni et al., 2008), the Database of Interacting Proteins (DIP) (Salwinski et al., 2004), 

DroID (Yu et al., 2008b) and the Human Protein Reference Database (HPRD) (Keshava 

Prasad et al., 2009). BioGRID, IntAct, MINT and DIP include data from several species, 

while HPRD focuses on human and DroID on D. melanogaster. However, these are all 

largely incomplete and the overlap between interactions derived from different databases is 

very low. Furthermore, until recently, there has never been a standard format to represent 

interactions. Therefore the integration of data from the different sources has always been 

challenging. To overcome these problems, the International Molecular Exchange 

Consortium (IMEx, http://www.imexconsortium.org/) was founded as a collaboration 

between several interaction data providers, with the aim of standardizing the curation rules 

to identify protein-protein interactions from experimental data and to determine a standard 

format for interaction data. However, although now a standard format of protein-protein 

interaction data exists, a single repository for this kind of data has not been created yet.  

2.4. Genetic interactions 

A genetic interaction is an unexpected phenotype that cannot be explained by 

combining the effects of individual genetic variants (Avery and Wasserman, 1992; Dixon 
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et al., 2009). Genetic interactions are detected by constructing cells with two mutated 

genes and analyzing their phenotype: if it deviates from the expected value, then a genetic 

interaction exists between the two mutated genes (Figure 4). The expected phenotype is 

defined as the product of the fitness of the two single mutants, although this definition is 

still matter of controversy (Mani et al., 2008).  

A negative genetic interaction is present between two genes if the double mutant 

has lower fitness than expected (Figure 4). This reflects the function of two genes that are 

involved in parallel pathways. The deletion of one gene does not impair the cell viability 

because the other pathway is able to compensate its loss. Only when genes from both 

pathways are deleted, the function is impaired and the fitness is reduced (Dixon et al., 

2009). The extreme negative genetic interaction is represented by a synthetic lethal 

interaction: cells with single mutants are viable, but the double mutant results in cell death.  
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Figure 4: Detection of genetic interactions  

Adapted from (Dixon et al., 2009). Genetic interactions are detected on the basis of the comparison of the 

fitness of the double mutant with the single mutants. Setting the wild-type fitness at 1, single mutants have 

lower fitness. The expected fitness of the double mutant is the product of the fitness of the single mutants. If 

the observed value is lower than the expected, a negative genetic interaction is established between the two 

mutated genes (synthetic sick interaction). The extreme fitness is present if the interaction is synthetic lethal. 

If the observed fitness is higher than expected, the genetic interaction is positive. In case the single mutants 

have the same fitness, the interaction may be symmetric positive, i.e. the double mutant has the same fitness 

as the single mutants. This may be explained by the fact that the two mutants are part of the same non-

essential complex: the deletion of a single member of this complex disrupts its structure and the deletion of a 

second member does not reduce the fitness any further. In case of different fitness of the two mutants, the 

asymmetric interaction may be masking or suppression, depending on whether the fitness of the double 

mutant is equal to the fitness of the single mutant with lower or higher fitness. 

 

Positive genetic interactions refer to cases where the double mutant has less severe 

effects than the single mutants alone. Two types of positive genetic interactions have been 

defined, which correspond to different biological contexts. Symmetric interactions involve 

genes that encode proteins from the same complex. The two single mutants have 

comparable fitness, because the effect is always the disruption of the protein complex. 

Therefore, also the double mutant will have the same fitness of the single mutants (Figure 

4). Asymmetric interactions involve genes that, when mutated, give different phenotypes 

to the cell. The effect of the double mutant may be masking if the double mutant 

phenotype correspond to the sickest single mutant (i.e. the second mutant phenotype is 

masked by the first) or genetic suppression if the double mutant has better fitness than the 

sickest single mutant (Figure 4).  

To date, S. cerevisiae has been the most widely used model species to study genetic 

interactions, because mutant strains for every gene are available and, therefore, it is not 

complicated to detect interactions. More than 150,000 genetic interactions have been 

identified among more than 5,400 yeast genes (Stark et al., 2011). In metazoans, instead, it 

is more complicated to detect genetic interactions. It is possible to make large-scale 

screenings using RNA interference (RNAi) libraries to mimic the deletion of particular 
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genes. C. elegans is particularly suited for this, because it can absorb exogenous genetic 

material if it is soaked in a solution (Maeda et al., 2001), or it can be fed by bacteria 

expressing the RNA of interest (Timmons et al., 2001). In mammals the situation is more 

complicated and the only approach that has given significant results consists in infecting 

cell lines using libraries of RNAi. This has been applied systematically to cancer cell lines 

in order to determine what genes are essential for the survival of tumor cells (Baldwin et 

al., 2010; Baldwin et al., 2008; Barbie et al., 2009; Bommi-Reddy et al., 2008; Grueneberg 

et al., 2008a; Grueneberg et al., 2008b). Cell line-specific essential genes likely have 

negative or synthetic lethal genetic interactions with the mutated genes. However, the 

genetic landscape of cancer cells is highly complex and these screenings are performed ex 

vivo. Therefore the identification of genetic interactions in mammals is still hard to 

perform.  

Screenings to detect genetic interactions in metazoans may have high rates of false 

positives, which are caused by off target effects due to the imperfect base-pair 

complementarity of the small interfering RNA (siRNA) used for RNAi screenings, which 

results in a non-specific targeting (Echeverri et al., 2006). Finally, the introduction of alien 

genetic material into certain mammalian cells may induce interferone response, which 

interferes with the normal response to RNAi (Bridge et al., 2003). 

2.5. Network classification and characteristics 

In mathematics, a graph (which is used as synonym of “network”) is a 

representation of a set of nodes connected by links (edges). Three properties are studied to 

determine the characteristics of each node: degree, betweenness and clustering coefficient. 

Degree represents the connectivity of a node, i.e. the number of connections that it has 

with other nodes in the network. Betweenness is a measure of the centrality and is 

calculated as the number of shortest paths that pass through a node of interest (Goh et al., 

2001). Given a network V, the betweenness for a node v is calculated as: 
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Where  is the number of shortest paths between s and, and  is the number 

of shortest paths between s and t that pass through v. Clustering coefficient represents how 

the first-level neighbors (i.e. the nodes that interact directly with the node of interest) of a 

node are interconnected. It is calculated as the ratio between the number of interactions 

between the first neighbors of a protein and the number of all possible interactions among 

them: 

 

Where  is the degree of the protein i and  is the number of interactions 

between its neighbors (Watts and Strogatz, 1998). The analysis of the distributions of these 

local properties (i.e. that are associated with each node) allows determining the global 

topology of the network. In particular, four types of network topologies have been 

identified: (1) random networks, as defined by Erdős and Rényi (Albert and Barabasi, 

2002; Barabasi and Albert, 1999), (2) small-world networks, (Watts and Strogatz, 1998), 

(3) hierarchical networks (Ravasz et al., 2002), and (4) scale-free networks (Barabasi and 

Albert, 1999). 

Random networks have a fixed number of nodes that are connected randomly to 

each other. The probability that two nodes are connected is p, which is constant for every 

pair of nodes. Following this rule, all nodes have in principle the same number of 

interactions and the degree follows a binomial distribution (Figure 5A) (Albert and 

Barabasi, 2002; Barabasi and Oltvai, 2004).  

Small-world networks are random networks built by rewiring an existing ring 

lattice (Figure 5B) in which every node is connected with its first k neighbors. Each edge is 

rewired with probability p. A value of p = 1 represents the random network model by 

Erdős and Rényi (Albert and Barabasi, 2002; Watts and Strogatz, 1998).  
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For both these models, the probability of having highly connected nodes decreases 

exponentially for high degree values (Albert and Barabasi, 2002; Barabasi and Oltvai, 

2004; Watts and Strogatz, 1998). A difference between these two random networks is the 

distance (or shortest path) between each pair of nodes, which represents the smallest 

number of interactions that are crossed to travel between the two nodes (Barabasi and 

Oltvai, 2004). While in the Erdős-Rényi model the mean distance is proportional to logN, 

where N is the number of nodes in the network, in the small-world model the mean 

distance is a function of p: for small values of p, it increases linearly with the number of 

nodes, while for higher values it behaves like the Erdős-Rényi model because a sufficient 

number of shortcuts is introduced in the network. 

 

 

Figure 5: Network models  

Adapted from (Barabasi and Oltvai, 2004; Watts and Strogatz, 1998). Four types of networks are widely 

studied: random, small-world, hierarchical and scale-free. (A) In a random network with  nodes, a node is 

connected to another with probability . This allows the creation of a network with  interactions. 

The degree follows a Poisson distribution, therefore all nodes have approximately the same number of 
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interactions. The clustering coefficient is constant for all levels of degree. (B) To build a small-world 

network, the starting point is a regular ring with  vertices, each connected to its  nearest neighbors (here, 

 and ). Each edge is reconnected with probability . For , no interactions are rewired, 

while randomness increases with increasing . The maximum value of  represents a random network. 

(C) Hierarchical networks are highly modular: they are built starting from a small cluster of highly connected 

nodes (the four blue nodes in the center), which are then replicated and connected to the central node, 

producing a 16-node module (green nodes). Then this structure is repeated, producing a large 64-node 

network (yellow nodes). The clustering coefficient is inversely proportional to the degree, because highly 

interconnected nodes have low degree, while highly connected nodes link different modules, therefore their 

neighbors are not highly interconnected. (D) In a scale-free network, each node has a probability of having  

interactions that is proportional to . This allows for the presence of a small fraction of highly connected 

nodes, which are called hubs (nodes depicted in red). Biological networks usually have . As in 

random networks, the clustering coefficient is independent from the degree.  

 

Hierarchical networks are built starting from a small cluster of highly 

interconnected nodes, which is replicated a fixed number of times. The central node from 

the resulting clusters is then connected with the central cluster and with the central node of 

the other resulting clusters (Figure 5C) (Albert and Barabasi, 2002; Ravasz et al., 2002).  

Scale-free networks represent the fourth type of network topology. The 

distinguishing feature from random networks is that scale-free networks have a 

connectivity distribution that follows a power-law (Barabasi and Albert, 1999) (Figure 

5D). The probability of having a node with k interactions is , with 2< <3. As 

consequence, the probability of having nodes with high degree is significantly higher than 

random networks. This type of networks has a large number of nodes that have a small 

number of connections and a small number of nodes that are highly connected (hubs) and 

occupy central positions inside the network. Scale-free networks evolve following the 

preferential attachment theory, which states that, at each time point, a new node with M 

interactions is added to the network and connects to an already existing node i with 

probability: 
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where  is the connectivity of node i and the denominator is the sum of the 

connectivity of all nodes inside the network. (Barabasi and Albert, 1999). Scale-free 

networks have also a shorter mean distance, compared with the random models: it is 

proportional to loglogN. This implies that scale-free networks are more compact than 

random networks. 

Jeong et al. (Jeong et al., 2000) gave the first proof of the scale-free behavior of 

biological networks. They demonstrated that the metabolic networks of 43 different 

species are scale-free, having the vast majority of substrates involved in a small number of 

reactions (i.e. they have low connectivity), while few substrates are required for many 

interactions (i.e. they are hubs). The scale-free topology of protein-protein interaction 

networks has also been demonstrated in several species, such as S. cerevisiae (Jeong et al., 

2001; Uetz et al., 2000), D. melanogaster (Giot et al., 2003) and H. sapiens (Rual et al., 

2005). 

The fact that real networks (both biological, social and technological, such as the 

World Wide Web) are scale-free is due to two processes that have an important role in the 

evolution of these networks (Albert and Barabasi, 2002). First, networks evolve and are the 

result of a growth process, with constant addition of new nodes and new interactions and 

rewiring of existing interactions. Random networks instead evolve randomly, with every 

node and interaction having the same importance compared with all the others. Second, 

following the preferential attachment theory, new nodes preferentially attach to hubs 

(Barabasi and Albert, 1999), therefore the evolution of the network maintains hubs as 

important nodes inside the network.  

3. Orthology and paralogy 

The availability of complete genomes of several different species has allowed the 

identification of evolutionary relationships between genes. In principle, the comparison of 

all gene sequences within the genome and between genomes of different species permits 
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the reconstruction of the history of each gene (Koonin, 2005). Five distinct events 

contribute to gene evolution:  

1. Speciation; 

2. Gene duplication, followed by divergence of duplicates; 

3. Gene loss; 

4. Horizontal gene transfer; 

5. Gene rearrangements, such as gene fusions (Koonin, 2005). 

The evolutionary relationships between genes are identified by comparing genes 

within the same genome and among different genomes. Orthologs are genes that evolved 

from a common ancestor by speciation (Koonin, 2005) (Figure 6). Paralogs are genes 

related via duplication (Koonin, 2005) (Figure 6). 

 

Figure 6: orthologs and paralogs 

During evolution, speciation and duplication events occur, which create orthologs and paralogs. The 

ancestral species has 3 genes (A, B, C). A speciation event creates two species, which evolve separately. The 

left one undergoes gene loss and retains only A1 and C1 from the ancestor, while the right one undergoes 

duplication, followed by a second speciation, with the loss of the gene C in the left species. These events 

allow the birth of orthologous and paralogous genes. Genes from different species that share the same 

ancestor are orthologs: C1 and C2 are orthologs, as well as B3 and B4. Genes from the same species that 

share the same ancestor are orthologs: A2’ and A2’’ are paralogs. 
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3.1. Methods to detect orthology 

The original method to detect orthology relationships between genes relied on 

phylogenetic analysis (Mirkin et al., 1995). In particular, the comparison between the 

topology of a gene tree and the corresponding species tree allowed the identification of 

paralogous genes by tree reconciliation, on the basis of the parsimony principle (i.e. the 

trees are reconciled by permitting the minimum number of gene duplications and losses) 

(Koonin, 2005; Mirkin et al., 1995). Several caveats do not allow the genome-wide 

application of this method. First, in prokaryotes and in lower eukaryotes, horizontal gene 

transfers undermine this method because they invalidate the relationships between the gene 

tree and the species tree (Koonin, 2005). Second, the reconstruction of species trees and 

many gene trees may not be accurate, due to the presence of artifacts and uncertainties in 

the tree definition (Koonin, 2005). Third, the genome-wide application of this method is 

computationally expensive. Several methods overcome these issues. TreeFam reconstructs 

orthology relationships by building phylogenetic trees of distantly related metazoans, thus 

eliminating the horizontal gene transfer caveat and reducing the uncertainties in the species 

tree definition (Ruan et al., 2008). InParanoid was developed to detect orthologs by 

pairwise comparisons between genomes, thus eliminating the reconciliation process 

(Ostlund et al., 2010). The COG database and eggNOG define orthologs as genes that are 

more similar to each other than to any other gene in the compared genomes (Jensen et al., 

2008; Tatusov et al., 2003).  

The pipeline to detect orthologs in eggNOG is as follows (Jensen et al., 2008). 

First, all-against-all Smith-Waterman similarities are computed for all proteins from 

species that are representative of different taxonomic groups (from bacteria to higher 

eukaryotes). Second, proteins from the same species or from tightly related species (all 

strains of a particular species or closely related species, such as human and chimpanzee), 

which are more similar to each other than to proteins from other species, are joined and 

considered as single entities. Orthology is assigned by joining triangles of reciprocal best 
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hits that involve three different species. In order to include the unassigned proteins, simple 

bidirectional best hits are also considered. The innovative feature of eggNOG, compared 

with the original KOG/COG procedure (Tatusov et al., 2003; Tatusov et al., 1997), is the 

construction of a hierarchy of orthologous groups to define high-resolution orthology 

relationships. Several lineage-specific groups are created: mammals (maNOGs), 

vertebrates (veNOGs), metazoans (meNOGs), fungi (fuNOGs) and insects (inNOGs) are 

added to the eukaryotic-specific group (KOGs) and to the COGs, which include both 

eukaryotes and prokaryotes.  

 

3.2. Methods to identify paralogs 

Although the relationships between genes related via duplication have been 

extensively studied in the last ten years, a consensus definition has not been determined 

and several different methods are commonly used to detect paralogous genes.  

A common definition is based on a BLAST search of one gene sequence against all 

the other genes from the same species. Using more or less stringent cutoffs of the BLAST 

score, ancient and recent duplications are determined and putative paralogs are identified 

(Papp et al., 2003). However, this method allows identifying genes that have similar 

sequences, rather than paralogs (i.e. genes that diverged from a common ancestor).  

A different method recently developed by our group (Rambaldi et al., 2008) relies 

on the sequence conservation on the genome. Briefly, the protein sequence of a gene is 

aligned to its translated genome using BLAT (Kent, 2002). A gene is duplicated if it has at 

least one additional hit on the genome that spans at least 60% of its length (Rambaldi et al., 

2008). This definition allows identifying not only functional paralogs (i.e. real genes), as in 

the case of a BLAST search, but also pseudogenes and degenerated duplications.  
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A third method to detect paralogous genes relies on the reconstruction of clusters of 

orthologs (Jensen et al., 2008). Two genes from the same species that are included in the 

same cluster of orthologs are paralogs. 

 

3.3. Evolution of paralogs 

The newly duplicated genes may encounter two potential fates to become fixed in 

the genome: neofunctionalization or subfunctionalization (Figure 7A-C).  

After duplication, one of the two paralogs may acquire a mutation that confers a 

new function, which can be positively selected and become fixed by genetic drift if 

beneficial, or be lost if detrimental. This is the classical model of neofunctionalization, 

which is termed mutation during non-functionality (Figure 7A) (Hughes, 1994).  
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Figure 7: duplication-divergence model  

Adapted from (Conant and Wolfe, 2008). Each panel shows the population frequency of both the original 

gene (Gene 1) and its paralog (Gene 2). Before duplication, the locus of Gene 1 is fixed in the population. 

(A) The mutation during non-functionality (MDN) neofunctionalization model shows that a mutation 

conferring a new function appears after the duplication. The paralog may become fixed in the population 

either because the mutation is beneficial or simply by genetic drift. (B) The duplication, degeneration, 

complementation model corresponds to subfunctionalization by neutral degenerative mutations. The 

duplication becomes fixed by genetic drift. After fixation, both copies acquire mutations that make them lose 

part of the original function, which is kept by the other copy. (C) In the subfunctionalization through escape 

from adaptive conflict (EAC) model, a mutation that optimizes the duplication occurs before fixation, which 

than happens by directional selection. (D) The duplication fixation through dosage selection occurs when 

environmental changes make an increased gene dosage beneficial.  

 

The second model of paralog divergence implies that both paralogs evolve after 

duplication and tend to retain the ancestor’s function only partially. Therefore they both 

become necessary to preserve the original function (Conant and Wolfe, 2008). Two types 

of subfunctionalization have been hypothesized. The first, termed duplication, 

degeneration, complementation (DDC) involves neutral mutations that disrupt one function 

of a multifunctional gene. These mutations are neutral because the original function is 

rescued by the paralog (Figure 7B) (Taylor and Raes, 2004). The second type, called 

escape from adaptive conflict (EAC), involves non-neutral mutations. After the first 

neutral mutation that disrupts the function of one paralog, complementary mutations are 

positively selected in the other paralog (Figure 7C) (Des Marais and Rausher, 2008).  

Neofunctionalization and subfunctionalization do not necessarily imply the 

development of new functions or the disruption of existing function, but they can also refer 

to expression in different tissues or different expression levels (Conant and Wolfe, 2008). 

An example is the glutamate dehydrogenase 1 (GLUD1) and its paralog GLUD2. The latter 

originated by retroposition of GLUD1 23 million years ago (Burki and Kaessmann, 2004). 

While GLUD1 is ubiquitously expressed, GLUD2 acquired mutations after the duplication 

event that restricted its expression to the central nervous system and made it insensitive to 

inhibition by GTP (Burki and Kaessmann, 2004; Plaitakis et al., 2003). The higher 
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expression of glutamate dehydrogenase in the brain, due to its increased dosage, probably 

contributed to enhance the brain function in primates by allowing a high flux of 

neurotransmitter (Burki and Kaessmann, 2004). 

One final mechanism of duplication fixation does not involve any mutations. An 

environmental change occurs and the duplication of a particular gene gives a selective 

advantage because of its increased dosage (Kondrashov and Kondrashov, 2006) (Figure 

7D). 

 

4. Gene duplication and genome evolution 

In 1970 Susumu Ohno proposed that gene duplication is the easiest way to produce 

new genes, rather than creating them de novo (Ohno, 1970; Wolfe, 2001). His theory was 

based only on few known protein sequences. Recent studies demonstrated that new genes 

that evolved from non-coding DNA sequences are a negligible fraction of the genome (Cai 

et al., 2008; Knowles and McLysaght, 2009; Toll-Riera et al., 2009; Zhou et al., 2008). For 

example Knowles and McLysaght estimated that less than 0.1% of human genes originated 

in this way (Knowles and McLysaght, 2009). As Ohno hypothesized, gene duplication 

accounts for the vast majority of the development of new genes.  

Gene duplications may arise through several mechanisms, such as chromosomal 

duplication or whole genome duplication (Maere et al., 2005), retroposition (Marques et 

al., 2005) or segmental duplication (Han et al., 2009) (Figure 8).  
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Figure 8: mechanisms of duplication 

Several mechanisms allow gene duplication. (A) Whole genome duplication results in the presence of a 

second copy of all chromosomes. After whole genome duplication, several chromosomal rearrangements 

may occur (Nakatani et al., 2007). (B) After transcription, the spliced mRNA of a particular gene may be 

reverse transcribed into the genomic DNA sequence. This forms an intronless copy of the original gene 

(Marques et al., 2005). (C) Segmental duplication may arise when a genomic sequence is flanked by two 

highly identical sequences (LCR). Misalignment of the two LCR regions results in the duplication of the 

entire genomic sequence that is included between the two LCRs (Stankiewicz and Lupski, 2002).  

 

Whole genome duplications are rare events that occurred in many eukaryotic taxa, 

such as plants (Proost et al.), fungi (Kellis et al., 2004) and vertebrates (Dehal and Boore, 

2005). These polyploydizations are followed by major chromosomal rearrangements, 

which result in the retention of a fraction of duplicates (Dehal and Boore, 2005; Nakatani 

et al., 2007). The duplication of the entire genome allows the relaxation of the constraints 

that prevent or reduce gene evolution. The rate of sequence change is accelerated in both 

copies of the gene, independently from the long-term retention of the duplication (Dehal 

and Boore, 2005) (Figure 8A).  

Retroposition generates intronless duplications by reverse transcription of mRNAs 

derived from a parental gene and integration of the resulting cDNA into the genome (Long 

et al., 2003). The regulatory elements of the parental copy are not duplicated and the 
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retroposed copy may become functional only if a new regulatory region is recruited (Long 

et al., 2003) (Figure 8B).  

Segmental duplications are genomic regions ranging from 1 to 200 kb that are 

present in two or more genomic loci and share high sequence identity (90-100%) (Bailey et 

al., 2002; Bailey et al., 2001). This type of duplication derives from an incorrect alignment 

of two chromosomes before crossover, as a consequence of the presence of low-copy 

repeats (LCR) (Stankiewicz and Lupski, 2002). This results in the duplication of all the 

genomic sequence included between the two LCRs (Stankiewicz and Lupski, 2002) 

(Figure 8C). 

 

4.1. Duplicability and essentiality 

The stoichiometric balance between genes is strictly regulated in order to maintain 

the cell fitness (Veitia, 2004). The excess of one member of a protein complex may be 

deleterious, because it induces an imbalance with the other members (Papp et al., 2003; 

Veitia, 2002; Veitia, 2004; Veitia et al., 2008) (Figure 9). In case of trimeric complex A-B-

A, formed by two subunits of protein A and one of protein B, overexpression of of one 

subunit causes an excess of the intermediate dimer A-B, because the stoichiometric 

balance between the two subunits is impaired (Veitia et al., 2008) (Figure 9B). Another 

case is represented by the heterotrimeric G-proteins complex (composed by α, β and γ 

subunits) that is involved in the response to pheromones. The α subunit is involved in the 

recognition of the pheromone signal, while β and γ activate the response (Figure 9C). 

Excess of β subunit induces an abnormal abundance of β-γ dimers, which activate the 

signal transduction even in absence of pheromone signal (Cole et al., 1990; Veitia et al., 

2008) (Figure 9D).  
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Figure 9: Dosage balance of protein complexes  

Adapted from (Veitia et al., 2008). Overexpression of dosage-sensitive subunits of macromolecular 

complexes may be detrimental. (A) In the normal case, trimer ABA is stable and does not dissociate. (B) 

Overexpression of B leads to a significant decrease of ABA. (C) In the normal case of a heterotrimeric G 

protein complex, trimer ABC is stable and does not dissociate. The binding of pheromones to A lead to the 

activation of signal transduction. (D) Overexpression of B leads to abnormal excess of dimers that contain B, 

which trigger different signaling cascades without regulation by pheromone.  

 

In S. cerevisiae and C. elegans singleton genes (i.e. genes that do not retain 

duplications) are essential (Conant and Wagner, 2004; Gu et al., 2003). When a duplicated 

gene is deleted, its paralog is able to recover, at least in part, its function, thus paralogs are 

able to compensate for each other’s function. Only in case the second paralog is deleted, 

the function is lost and the fitness is significantly decreased. Paralogous genes are 

therefore depleted in essential genes in yeast (Papp et al., 2003; Yang et al., 2003). 

Deletion of singleton genes, instead, has a deleterious effect, because there cannot be any 

functional compensation: the function of the deleted gene is lost and the cell’s fitness is 

impaired. In S. cerevisiae singleton genes also tend to encode members of protein 

complexes (Papp et al., 2003).  

Unlike S. cerevisiae and C. elegans, mouse essential genes involved in 

development are preferentially duplicated (Liang and Li, 2007; Liao and Zhang, 2007; 
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Makino et al., 2009) and, in general, the relationships between essentiality and 

duplicability depend on the gene function (Makino et al., 2009). An explanation of this 

result about mouse developmental genes may be related with the mechanism of their 

duplication: these genes duplicated through whole genome duplication (Makino et al., 

2009). Whole genome duplication does not modify relative dosages between genes and is 

the only mechanism that allows the retention of the duplication of dosage-sensitive genes 

(Makino et al., 2009). 

5. Duplicability and protein interaction networks 

Gene duplicability is tightly correlated with the number of interactions of the 

corresponding protein. In particular, in S. cerevisiae, connectivity is negatively correlated 

with gene duplicability and, when highly connected proteins duplicate, one copy is quickly 

deleted (Hughes and Friedman, 2005; Prachumwat and Li, 2006). Furthermore, highly 

connected and central proteins are also essential and slow-evolving (Hahn and Kern, 2005; 

Jeong et al., 2001). Highly connected and singleton proteins are predominantly involved in 

transcription, RNA metabolism, catabolism, protein synthesis and are mostly located at the 

ribosome or inside the nucleus, while lowly connected and duplicated proteins are located 

at the cell periphery (Prachumwat and Li, 2006).  

The relationships between connectivity and duplicability that have been described 

for S. cerevisiae are also conserved in the D. melanogaster and C. elegans protein 

interaction networks (Hahn and Kern, 2005), although their incompleteness does not allow 

the comprehensive analyses that were performed in S. cerevisiae. Mammals, instead, 

display a peculiar behavior that cannot be associated to lower eukaryotes. Recent studies in 

H. sapiens and M. musculus showed that duplicability of mammalian genes positively 

correlates with connectivity (Liang and Li, 2007; Rambaldi et al., 2008). Furthermore, the 

gene family size, which is defined as the number of paralogs per gene, positively correlates 

with connectivity (Liang and Li, 2007). In vertebrates, gene families involved in 
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regulation, signal transduction, protein transport and protein modification have undergone 

expansion through gene duplication (Vogel and Chothia, 2006).  

Although protein interaction networks of species with different levels of 

complexity (such as human, fly, worm and yeast) have a similar topology (Beltrao and 

Serrano, 2007; Hahn and Kern, 2005), these findings demonstrate that the vertebrate 

network developed peculiarities that might be related with the extensive expansion of the 

vertebrate genetic material. In particular, the observation that human hubs are 

preferentially duplicated (Rambaldi et al., 2008) may allow for the speculation that the 

evolution of the human network tolerated the retention of the duplications of hubs. This, in 

addition to the fact that vertebrates have a high number of tissues and cell types, may be 

explained by the hypothesis that a high connectivity favors the functional diversification of 

paralogs, in particular through tissue specialization and expression divergence (Liang and 

Li, 2007; Makova and Li, 2003; Vogel and Chothia, 2006).  

The fact that the human genome is able to retain duplications that are deleterious in 

yeast may be due to several reasons, in addition to the high number of cell types. H. 

sapiens has more efficient systems to adjust the expression levels, so that duplication does 

not necessarily translate into doubling the expression level, and to eliminate excess of 

subunits of protein complexes (such as ubiquitin, chaperones, proteases) (Liang and Li, 

2007). Finally, the human genome may have a higher probability for a duplication to be 

advantageous, if a high dosage is required for a certain function, such as the immune 

response (Liang and Li, 2007).  

6. Cancer as a genetic disease 

The fact that cancer is a genetic disease has been known for more than a century, 

since when, between the late nineteenth and the early twentieth century, David von 

Hansemann (von Hansemann, 1890) and Theodor Boveri (Boveri, 1914) identified 

chromosomal aberrations in dividing cancer cells. Indeed, cancer arises from genetic and 
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epigenetic alterations that confer selective growth advantages to the cell (Hanahan and 

Weinberg, 2000; Merlo et al., 2006; Vogelstein and Kinzler, 2004). All cancers are thought 

to develop in similar ways (Stratton et al., 2009). Tumor is the result of an evolutionary 

process that occurs among cell populations in a close environment delimited by the 

multicellular organism (Merlo et al., 2006; Stratton et al., 2009). The evolution of the 

cancer tissue relies on two distinct processes: the continuous acquisition of genetic 

alterations of single cells and the Darwinian selection acting on the genetically different 

cell populations (Merlo et al., 2006; Stratton et al., 2009). As a consequence of these two 

processes, the cancer tissue is constituted by a genetically heterogeneous population of 

cells that is continuously evolving (Merlo et al., 2006; Yachida et al., 2010). 

Not all genomic alterations have the same effects on the cell. Indeed, some are 

neutral and do not affect the cell at all. These are termed passenger mutations (Stratton et 

al., 2009). A small fraction of mutations instead confers the growth advantage to the cell 

and is positively selected because they grant a selective advantage to the cell, compared 

with the rest of the tumor cells and the surrounding normal tissue (Merlo et al., 2006; 

Stratton et al., 2009). These mutations are termed “driver” and may alter the protein 

sequence in several different ways (Figure 10). They may be single base substitutions that 

impact the protein structure in different ways, by altering the protein sequence through a 

single residue substitution (missense mutations) or by introducing premature stop codons 

(nonsense mutations). Insertions and deletions of nucleotides into a coding sequence 

always induce non-synonymous mutations. When the insertions or deletions involve three 

(or its multiples) nucleotides, the effect is the insertion or the deletion of one or more 

aminoacid residues or a premature stop codon. If, instead, the insertion or deletion involves 

a different number of nucleotides (frameshift mutation), it will totally disrupt the 

aminoacid sequence, by changing the codon code. Other mutations may affect the splice 

site, inducing aberrant isoforms, or non-coding regions, the UTRs in particular, thus 

changing the regulation by miRNAs, or intergenic regions, with a possible impact on 
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promoters. However, it is harder to determine the effect of mutations that do not change 

the protein sequence because there is not a direct effect on the protein structure. The result 

is rather a change in gene expression in case of mutations in the promoter region or in the 

miRNA binding site.  

 

Figure 10: non-synonymous mutations  

Different types of mutations change the aminoacid sequence. Single-base substitutions may change the 

corresponding aminoacid residue (missense mutation) or introduce a premature STOP codon (nonsense 

mutation). Insertion of one nucleotide changes the downstream aminoacid sequence (frameshift mutation). 

Deletion of three nucleotides induces the elimination of one aminoacid residue. 

 

Cancer may arise from the alterations of three types of genes: oncogenes, tumor 

suppressors and stability genes (Vogelstein and Kinzler, 2004). However, a single 

alteration is not sufficient to start tumorigenesis and several genes must be altered in order 

for the cell to develop cancer (Vogelstein and Kinzler, 2004).  

The discovery of the first cancer-specific somatic mutation dates back to almost 

thirty years ago, when the first oncogene (HRAS) was found mutated in bladder carcinoma 

(Reddy et al., 1982). Mutated oncogenes become constitutively active when, under normal 

conditions, they would not be expressed. Three mechanisms may cause oncogene 

activation: chromosomal translocations, gene amplification or point mutations that affect 

residues involved in the regulation of gene activity (Vogelstein and Kinzler, 2004). One 
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mutated allele is sufficient to contribute to tumorigenesis (Vogelstein and Kinzler, 2004). 

An example of oncogenic activation is represented by the substitution of the valine at 

codon 599 into a glutamate in the BRAF gene (Davies et al., 2002). This residue is part of 

the activation loop of the kinase domain, which is regulated by the phosphorylation of the 

residues at codon 598 and 600. The presence of a glutamate at codon 599 mimics a 

phosphate group, thus constitutively activating the kinase (Davies et al., 2002). The 

constitutive activation of BRAF leads to aberrant cell growth by phosphoryilation of 

downstream targets, such as the extracellular signal-regulated kinase (ERK) (Wan et al., 

2004).  

Tumor suppressors need both alleles to be inactivated, in order to promote 

tumorigenesis (Vogelstein and Kinzler, 2004). They require mutations that impair their 

functions, reducing their activity (Vogelstein and Kinzler, 2004). Different types of genetic 

alterations impair the function of tumor suppressors genes, such as missense mutations in 

particular residues that are essential for their activity, nonsense mutations, insertions or 

deletions that result in a truncated protein or disrupt the whole protein structure, and 

epigenetic silencing (Vogelstein and Kinzler, 2004). 

Stability genes are normally involved in activities related with DNA, such as DNA 

repair or mitotic recombination and chromosomal segregation. They maintain genetic 

alterations to a minimum level (Kinzler and Vogelstein, 1997). When inactivated, genetic 

alterations in all the genome increase significantly and, if these alterations involve 

oncogenes or tumor suppressors, the tumor will develop (Friedberg, 2003; Kinzler and 

Vogelstein, 1997). As in the case of tumor suppressors, stability genes require inactivation 

of both alleles in order to decrease the genome stability and indirectly induce cancer 

(Vogelstein and Kinzler, 2004). Stability genes are referred to as the “caretakers” of the 

genome because they are involved in the maintenance of the genome, in contrast with 

“gatekeepers”, which are genes that directly regulate the tumor progression (Kinzler and 

Vogelstein, 1997).  
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7. The hallmarks of cancer 

Notwithstanding the type and number of mutations, all cancers need eight types of 

alterations in the cell physiology in order to develop (Hanahan and Weinberg, 2000; 

Hanahan and Weinberg, 2010) (Figure 11).  

 

Figure 11: Hallmarks of cancer  

Adapted from (Hanahan and Weinberg, 2000; Hanahan and Weinberg, 2010). All tumors arise because a cell 

population has acquired eight types of functional capabilities: self-sufficiency in growth signals, insensitivity 

to antigrowth signals, evasion from apoptosis, limitless replicative potential, sustained angiogenesis, tissue 

invasion and metastasis, reprogramming the energy metabolism and evading immune suppression. 

Furthermore, genome instability and chronic inflammation (depicted in red squares) are enabling 

characteristics that promote the tumor progression. 

 

Most importantly, cancer cells must gain the ability to sustain chronic proliferation. 

Tumor cells are able to generate their own growth signals or their receptor signaling may 

be impaired: high levels of surface receptor induce hypersensitivity to their ligand or 

mutations in the receptor sequence may render them always active. The same result may be 

obtained by activating components of signaling pathways downstream of the receptor, thus 

separating the activation mechanisms from the receptor activation.  
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Cancer cells become insensible to the mechanisms that negatively regulate cell 

proliferation. These signals usually inhibit transcription factors that are able to activate the 

progression from G1 to S phase and enter mitosis. An example of this is the retinoblastoma 

protein (RB), which, under normal conditions, blocks proliferation by altering the function 

of E2F transcription factors that control the expression of genes involved in the G1 to S 

transition. Therefore, inactivation of the RB pathway renders E2F constitutively active. 

A third alteration regards the resistance to cell death. This can be achieved by 

inhibiting the response to receptors that monitor the cell environment and should activate 

apoptosis in case of abnormalities, or by altering caspases and other genes that execute the 

cell death program.  

The three alterations described so far are not sufficient for the tumor to establish, 

because normal cells have a limited replicative potential that is controlled by telomeres and 

telomerase. Telomeres protect the chromosomes from end-to-end fusions, which may 

cause uneven chromosomal segregation during mitosis. They shorten progressively at each 

replication and dictate the number of divisions that a cell is able to make. In immortalized 

cells, telomerase is able to add telomeres to each chromosome, increasing the replicative 

potential of the cell.  

In order to survive, the tumor requires nutrients and oxygen and needs to eliminate 

wastes. Therefore it requires neovascularization. Whereas in normal tissues the 

endothelium and all the angiogenic material are quiescent, in the tumor tissue it is always 

activated because angiogenesis inducers are upregulated. However, the blood vessels 

generated inside the tumor tissue are aberrant and the endothelium presents abnormal 

levels of cell proliferation and apoptosis, which may also lead to microhemorrhaging.  

Another acquired capability of the tumor is the ability of cancer cells to leave the 

tumor tissue, invade the surrounding tissues and establish metastases. These cells enter into 

blood or lymphatic vessels and reach distant tissues where they are able to exit the vessels 

and establish a new tumor colony.  
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Cancer cells develop a deregulated cellular metabolism. In particular, even in 

presence of oxygen, the glucose metabolism is reprogrammed to only glycolysis, which 

brings to a decreased efficiency of ATP production. This is balanced by the upregulation of 

glucose transporters, which increase the glucose import into the cytoplasm. Since the low 

oxygen intake may be a problem for cancer cells because the vascularization is aberrant, 

glycolysis and increased glucose intake may be positively selected, also as a response to 

the hypoxia due to the aberrant vascularization of the tumor.  

The last hallmark of cancer is the escape of cancer cells from the immune system 

control. It is demonstrated that cancer cells are not targeted and destroyed by the immune 

system. However, it is still matter of debate why and how cancer cells are not targeted and 

eliminated by the patient’s immune system. 

7.1. Enabling characteristics of cancer 

In addition to these eight hallmarks of cancer, two enabling characteristics emerge 

in all tumors and facilitate the acquisition of the hallmark (Figure 11).  

First, genomic instability increases the genomic alterations of a cell. This is caused 

by impairments in the systems that detect and repair DNA defects and normally keep a low 

rate of mutations during each cell generation. Cancer cells often increase their mutation 

rate (Negrini et al., 2010). The causes of this may be numerous. The sensitivity to 

mutagenic agents may be increased because of mutations in genes that target these agents 

before their interaction with DNA. Increased mutability may be also caused by the 

impairment of the caretaker genes, which directly repair DNA damage or detect DNA 

damage and activate the repair mechanisms or force the damaged cell to enter apoptosis or 

senescence (Hanahan and Weinberg; Negrini et al.).  

Tumor progression is favored also by inflammation. Every tumor contains immune 

cells that can contribute to many of the hallmarks described so far by supplying growth 
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factors, survival factors and inductive signals to the tumor environment during the immune 

response (Hanahan and Weinberg).  

 

8. Known and candidate cancer genes 

Cancer is a genetic disease that is caused by one or more mutations in oncogenes, 

tumor suppressors or stability genes. The patophysiological diversity and complexity of 

this disease are a consequence of the high heterogeneity at the genetic level. Indeed, in the 

last few years a massive effort has been made to identify the cancer genes, i.e. the mutated 

genes that are causally implicated in tumorigenesis (Futreal et al., 2004). In particular, two 

ways have been travelled:  

1. The identification of cancer genes from a literature search, in order to 

collect genes that are already known to be involved in tumorigenesis. This 

strategy has allowed the publication of the Cancer Gene Census (Futreal et 

al., 2004) and the census of amplified genes (Santarius et al., 2010); 

2. The mutational screenings of cancer tissues in order to identify novel 

candidate cancer genes. To date, more than 25 experiments of this type have 

been performed on several different cancer types. 

 

8.1. Cancer Gene Census 

The Cancer Gene Census at the Wellcome Trust Sanger Institute 

(http://www.sanger.ac.uk/genetics/CGP/Census/) represents the biggest effort to catalogue 

cancer genes. A gene is included in the census if driver mutations in primary patient 

material have been reported independently by at least two studies (Futreal et al., 2004). 
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The number of known cancer genes has been continuously increasing, from 291 

identified in 2004 (Futreal et al., 2004) to 457 genes in the latest release (March 22nd 

2011). Mutations are nucleotide substitutions that lead to aminoacid changes, premature 

stop codons or alterations at the splice site, insertions and deletions in coding sequences, 

chromosomal rearrangements that lead to chimerical transcripts or gene deregulation due 

to alterations in the promoter regions, or copy-number modifications. Most of the genes in 

the census (313, 68.5% of all cancer genes) undergo genomic translocations (Figure 12). 

This corresponds to a bias in the census towards genes that are mutated in leukemia or 

lymphomas (229, 50.1%) (Figure 13). Almost 80% of all cancer genes are dominant and 

mutations in one allele are sufficient to contribute to tumorigenesis (oncogenes), while 

recessive genes (tumor suppressors) are one fifth of all cancer genes (Figure 14). They 

need mutations in both alleles in order to promote cancer formation.  

The Cancer Gene Census identifies cancer genes by analyzing their mutations 

(Futreal et al., 2004). However, oncogenes may be activated and contribute to 

tumorigenesis also if their dosage is significantly increased by overexpression or genomic 

amplification. In order to identify genes that are activated with these mechanisms, a census 

of amplified genes in cancer was recently published (Santarius et al., 2010). It includes 77 

genes that present evidence of being both amplified at the genomic level and 

overexpressed at the RNA level (Santarius et al., 2010).  
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Figure 12: translocations in the Cancer Gene Census  

Adapted from (Futreal et al., 2004). The majority of cancer genes in the Cancer Gene census is represented 

by translocation, while less than a third involves other mutation types.  

 

Figure 13: tumor types in the Cancer Gene Census  

Adapted from (Futreal et al., 2004). Almost half of the cancer genes from the Cancer Gene Census harbor 

mutations that drive leukemia. Less than 15% of the genes are involved in more than one cancer type. 

“multiple” refers to genes that are involved in at least two cancer types. 

 

Figure 14: dominant and recessive genes from the Cancer Gene Census  

Adapted from (Futreal et al., 2004). Dominant genes represent almost 80% of all cancer genes. “both” 

represents three genes (CREBBP, CBL, PRKAR1A) that may have both dominant and recessive behavior. 
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8.2. Novel candidate cancer genes 

A further level of the mutational complexity of cancer has been added by the 

several high-throughput screenings of the cancer genome that were performed in the last 

five years. Starting from the early work by Sjoblom et al. (Sjoblom et al., 2006) on breast 

and colorectal cancers, more than twenty experiments have been published, which 

identified more than 1,000 candidate cancer genes. These experiments may be of two 

types: high-throughput mutational screenings that sequence part or all human genes in 

order to detect genes that are frequently mutated in cancer, and whole genome sequencing 

experiments that identify the complete mutational landscape of a single cancer patient. 

In the last four years, eighteen high-throughput mutational screenings were 

published, which identified almost 20,000 mutations in more than 7,000 genes. The 

identification of candidate cancer genes was performed on the basis of the mutation type 

(i.e. synonymous or non-synonymous) and the mutation frequency (i.e. how often a gene 

was found mutated among the analyzed samples). The high-throughput mutational 

screenings of cancer tissues may be divided into two categories, depending on the number 

of sequenced genes: whole exome sequencing studies and sequencing of a smaller subset 

of genes. Twelve screens were performed on the whole exome of one or more patients: the 

number of screened genes varied between studies, but it ranged between 18,000 and more 

than 20,000 genes. Five experiments were performed on a selected set of genes, which 

were chosen because either they were already known to be involved in cancer or mutations 

in their sequence might be related to cancer because of their function. This latter category 

of experiments is biased towards already known mutated genes or genes whose mutations 

are likely to be involved in tumorigenesis because they are functionally related to known 

cancer genes. A single experiment (Greif et al.) represents an intermediate situation, 

having 10,000 screened genes. 

The experiments of whole genome sequencing do not present any biases towards 

already studied genes and allow the identification of mutations in intergenic regions. 
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Different sequencing techniques were used to detect mutations in 39 patients from nine 

distinct experiments and in two cancer cell lines (Clark et al.; Pleasance et al.). From these 

eleven screenings, candidate cancer genes were identified as the genes that presented non-

synonymous mutations, which were validated further with orthogonal methods, such as 

Sanger sequencing.  

8.3. Methods to identify driver mutations 

Since the vast majority of the mutations identified in the high-throughput 

mutational screenings are passenger, statistical methods must be used to identify possible 

candidate cancer genes on the basis of their mutation frequency. The pipeline to detect 

driver mutations in whole exome sequencing experiments is usually supported by two 

screenings: discovery and validation (Sjoblom et al., 2006) (Figure 15). The discovery 

screening is used to identify mutations in the cancer patients in an unbiased way. First, the 

initial dataset of all human genes to screen for mutations is defined. Second, the 

corresponding genomic regions are amplified and sequenced. The analysis of the 

sequencing results identifies putative nucleotide changes, which must be filtered to 

eliminate synonymous mutations and known polymorphisms. In order to remove artifacts 

due to the amplification or the sequencing steps, the regions containing mutations are re-

sequenced and only mutations that are found also in this second run are considered as true. 

Finally the comparison with the matched normal sample allows the filtering of all germline 

variants and the retention of the real mutations (Figure 15). This pipeline was originally 

published in 2006 (Sjoblom et al., 2006) and more recent works used a modified version, 

which normally does not involve re-sequencing of the mutated regions for confirmation.  
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Figure 15: Pipeline to detect candidate cancer genes in whole-exome mutational 

screenings  

Adapted from (Sjoblom et al., 2006). The scheme describes the steps to detect and validate candidate cancer 

genes on the basis of their mutations. In the discovery screen, all the human genes are identified and 

sequenced. The putative mutations are detected and filtered to eliminated synonymous mutations and known 

polymorphisms. A step that is eliminated from later experiments consists in the resequencing of all the 

mutations that have passed the two filters. The bona fide real mutations are then compared with the 

corresponding normal sample in order to exclude germline mutations. A second screening is then performed 

for all the mutated genes on a larger set of samples from the same tumor, in order to validate the mutations 

identified in the first screening. All the mutations that are present also in this validation screen are considered 

as “driver”. 
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In order to discriminate between driver and passenger mutations, all mutated 

regions are sequenced in a larger set of patients with the same cancer (Figure 15). 

Candidate cancer genes are mutated in both the discovery screen and this second screen, 

which is referred to as the validation screen, while mutations that occur only in the 

discovery screen are expected to be passenger (Sjoblom et al., 2006). 

The five experiments that were performed on selected genes use an alternative 

method. Instead of screening all human genes for mutations, a subset of human genes is 

selected for mutation detection (Barretina et al., 2010; Dalgliesh et al., 2010; Ding et al., 

2008; Kan et al., 2010; McLendon et al., 2008). These genes are usually known cancer 

genes or genes that, because of their function, are likely to be involved in cancer, such as 

kinases, genes involved in protein degradation or associated with receptor signaling. These 

genes are screened for mutations in a high number of cancer samples and the distinction 

between candidate cancer genes and genes with passenger mutations is made upon the 

mutation frequency among the cancer samples. 

High-throughput mutational screenings that focus on the entire human exome are 

the first unbiased studies to identify candidate cancer genes. This approach is completely 

different from the Cancer Gene Census, which instead collects data from several small-

scale experiments. These experiments are normally hypothesis-driven, therefore only genes 

that are likely to be involved in cancer are studied. This likelihood is related with their 

function or with previous reports of the same genes or pathways to be modified in cancer. 

Whole exome mutational screenings are not the only high-throughput screenings to 

identify putative cancer genes. First Davies et al. (Davies et al., 2005), then Greenman et 

al. (Greenman et al., 2007) investigated the presence of mutations among 518 kinases in 

several different cancer samples. Driver mutations were discriminated from passenger on 

the basis of the ratio between non-synonymous and synonymous substitutions (Davies et 

al., 2005; Greenman et al., 2007). Kinases were selected for these screenings because 



 54 

previous reports had detected the kinase domain as the most frequently mutated in cancer 

(Futreal et al., 2004). Therefore these experiments were biased towards genes that were 

already known to be enriched in driver mutations.  

Another unbiased approach to identify mutated genes is whole genome sequencing, 

although this method allows the identification of mutations in only one or few patients. 

The pipeline to identify mutations was first proposed by Ley et al. (Ley et al., 2008) 

(Figure 16) and envisages several filters. First, single nucleotide variants (SNVs) are 

identified inside the tumoral DNA. All the variants that are present also in the respective 

normal DNA are eliminated because they are bona fide SNPs. This filter eliminates the 

vast majority of variants, reducing their number from hundreds of thousands or millions to 

tens of thousands. From all the tumor-specific variants, those that are known SNPs are 

excluded from further analyses. In order to analyze only mutations in the coding sequence, 

all those that fall inside intergenic regions or introns are eliminated. One last filter 

eliminates synonymous substitutions and what remains must be validated with orthogonal 

methods, usually with Sanger sequencing, in order to eliminate false positives (Ley et al., 

2008) (Figure 16).  

Whole genome sequencing of the cancer genome does not allow the identification 

of driver and passenger mutations. However, a detailed study of the mutations that are 

identified allows the confirmation of already known cancer genes or the discovery of 

putative cancer genes, because of their function or because they interact with already 

known cancer genes. 
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Figure 16: Pipeline to detect true mutations in whole genome sequencing studies  

Adapted from (Ley et al., 2008). Of all the SNVs detected by whole genome sequencing, all known SNPs 

and germline variants are eliminated. All SNVs are validated with orthogonal methods, such as Sanger 

sequencing, in order to identify real mutations.  
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9. Systems-level properties of cancer genes 

High-throughput mutational screenings and whole genome sequencing experiments 

of the cancer genome, together with the Cancer Gene Census, identified in the last few 

years ~1,500 genes that are actively involved in cancer, which account for at least 7% of 

all human genes. Cancer is a highly heterogeneous disease, which may be caused by an 

enormous amount of genomic alterations, considering also the fact that only few genes are 

mutated in many cancer types (Figure 17) (Ciccarelli, 2010). A means to reduce this 

complexity is to focus on mutated pathways, rather than single genes (Vogelstein and 

Kinzler, 2004). Two examples were extensively studied in the past few years: RB and p53 

pathways (Figure 18). The RB pathway controls the cell’s transition from a resting stage 

(G0 or G1) to replication (S phase). Several oncogenes (CDK, cyclin D1, TAL1 and TFE3) 

and tumor suppressors (RB, p16, CDKN2A) are involved in this pathway (Figure 18A). 

p53 is a transcription factor that inhibits cell growth and promotes apoptosis. It is a tumor 

suppressor that is found mutated frequently in most tumor types (Vogelstein et al., 2000). 

However, also mutations in many upstream and downstream genes were found to be 

involved in tumorigenesis. In particular, amplification of MDM2 induces a faster 

degradation of p53 and, consequently, blocks apoptosis (Figure 18B) (Vogelstein and 

Kinzler, 2004). In addition to these, genes involved in several other pathways were found 

mutated in multiple tumors, such as hypoxia-inducible factor (HIF), WNT, 

phosphoinositide 3-kinae (PI3K), small mother against decapentaplegic (SMADs) and 

receptor tyrosine kinases (RTKs) (Vogelstein and Kinzler, 2004). The large number of 

genes that are mutated in each pathway implies that impairments in these pathways are 

associated with tumorigenesis. However, mutations are mutually exclusive: mutations in 

only one gene involved in a single pathway are sufficient to promote tumorigenesis, since 

the functional effect of all mutation is similar (Vogelstein and Kinzler, 2004). 

Even considering mutated pathways instead of mutated genes does not significantly 

reduce the complexity and the heterogeneity of cancer. The only common feature shared 
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by all cancers seems to be the uncontrolled proliferation of tumor cells. Nevertheless, 

several groups in the last few years have investigated whether cancer genes have common 

properties, in order to understand whether the complexity of cancer may be reduced. These 

systems-level features may help identifying new putative cancer genes or discriminating 

between driver and passenger mutations.  

 

Figure 17: Heterogeneity of cancer genes identified in different cancer types  

Adapted from (Ciccarelli, 2010). Of all candidate cancer genes identified in several different studies, only 85 

were found mutated in at least two cancer types. The gene names are colored in red if they are recessive 

genes from the Cancer Gene Census, orange if they are dominant, black if they are not included in the Cancer 

Gene Census. 

 

A large-scale approach to infer the effects of mutations is the analysis of protein-

protein interactions: this allows identifying whether the position of a gene inside the 
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human network is indicative of its role in cancer (Ciccarelli, 2010). Indeed it was 

demonstrated that cancer genes are highly connected inside the human protein interaction 

network (Jonsson and Bates, 2006; Rambaldi et al., 2008).  

This is indicative of an intrinsic fragility of the network: modifications of genes 

that encode proteins with few connections are less detrimental than highly connected 

proteins.  

 

Figure 18: Cancer genes in Rb and p53 pathways  

Adapted from (Vogelstein and Kinzler, 2004). Two examples of pathways that are frequently altered in 

cancer are displayed: (A) Rb and (B) p53. Green boxes indicate genes that are frequently somatically mutated 

in cancer, while red boxes show genes that harbor also germline mutations. Diamonds indicate protein-

protein interactions. Red arrows and T-bars indicate transcriptional induction and repression.  
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Methods 

1. Identification of unique gene sets 

In order to determine how protein interaction networks evolve, we analyzed the 

genomic and network properties of four species: E. coli, S. cerevisiae, D. melanogaster 

and H. sapiens. As explained later, these species are the only whose protein interaction 

network includes at least 50% of their proteins.  

 

Figure 19: definition of gene 

Adapted from (Gerstein et al., 2007). The difficulty to define a gene on the basis of overlapping transcripts is 

exemplified in the figure. A genomic region produces three primary transcripts (ABC, DE, XY). After 

alternative splicing ABC results in three different spliced transcript, DE in two, while XY in one, which does 

not translate into proteins. The three transcripts from ABC are overlapping, while D and E share only UTRs. 

Considering both coding and non-coding sequences to identify genes, this region includes three genes: ABC, 

DE and XY.  
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The identification how many unique genes are present are present in a eukaryotic 

species is not a trivial issue, given the complexity of the genome (Gerstein et al., 2007). 

Even trying to determine the definition of a gene is tricky, since many features must be 

taken into account, such as alternative splicing, non-coding RNAs, pseudogenes, overlaps 

between different transcripts (Gerstein et al., 2007) (Figure 19). When analyzing genes and 

gene properties, this fact is not taken into consideration, and the number of genes from the 

species of interest is retrieved from one of the available databases, such as Ensembl (Flicek 

et al.) or Entrez (Maglott et al.). We instead developed our method to determine the total 

number of human genes. Given that the central point of our analyses was protein-protein 

interaction networks, we did not consider non-coding genes. In order to identify a set of 

unique human genes, we aligned all protein sequences to the human genome, in order to 

identify the corresponding transcripts. We defined a gene as the union of all overlapping 

transcripts and we took the longest isoform as representative transcript.  

Table 1: Identification of unique genes 

Genes H. sapiens D. 
melanogaster S. cerevisiae E. coli 

Initial protein sequences 38,015 14,134    
Initial genes 25,635 14,134 6.752 4.497 
Proteins with BLAT hit on the 
genome 

37,752 
(99.3%) 

14,111 
(99.8%)    

Removed isoforms 15.506 266    

Non-overlapping Genes 22,160 
(86.4%) 

13,819 
(97.7%)    

Spurious hits 139 36    
Unique genes with best hit 
>60% 

22,020 
(99.4%) 

13,783 
(99.7%)     

For S. cerevisiae and E. coli, the unique genes are directly derived from SGD and EcoCyc. For H. sapiens 

and D. melanogaster, the initial dataset of genes must be filtered in order to eliminate overlapping genes and 

retain only one isoform per gene locus. The initial protein sequences are BLATted to the corresponding 

genomes and only the longest isoform is retained for each locus. A second filter is then applied to eliminate 

all spurious hits, i.e. all hits below 60% of their protein length. 

 

As starting datasets of genes, we used RefSeq v. 37 for human (Pruitt et al., 2007), 

FlyBase FB2009_01 for D. melanogaster (Drysdale, 2008), the Saccharomyces Genome 
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Database (SGD) for S. cerevisiae (frozen at January 5th 2010) (Engel et al., 2010) and 

EcoCyc v.14.0 for E. coli (Keseler et al., 2009) (Table 1). S. cerevisiae has 6,752 genes 

and E. coli has 4,497. For the two metazoans we applied a pipeline to retain one only 

isoform per gene and to identify the unique genes, since many isoforms may be present in 

the same locus. In order to verify the presence of a single gene per locus, we mapped the 

protein sequence to the corresponding genomic sequence as reported in Rambaldi et al. 

(Rambaldi et al., 2008) (Figure 20). First, we retrieved all protein sequences from the 

respective database (Table 1). Second, we aligned all these protein sequences to their 

genome reference assembly using the BLAST-like Alignment Tool (BLAT) (Kent, 2002) 

(Table 1). All the hits on alternate haplotype regions (chr22_h2_hap1, chr5_h2_hap1, 

chr6_cox_hap1 and chr6_qbl_hap2 on the human genome), heterochromatic sequences 

(chr2LHet, chr2RHet, chr3LHet, chr3RHet, chrXHet, and chrYHet on the fly genome) or 

on random chromosomes and plasmids were eliminated. 37,752 human sequences and 

14,111 fly sequences passed this first filter (Table 1). Then we applied a second filter in 

order to retain only one isoform for each gene. All the proteins with overlapping best hits 

were clustered together and only the longest protein was retained as representative for the 

cluster. This allowed us to remove 15,506 human and 266 fly redundant isoforms (Table 

1). Afterward, a third filter was applied. All the genes with their best hit shorter than 60% 

of the original protein length were removed. This was done to eliminate spurious hits, 

which do not correspond to the original locus of the gene. Following the results of the 

application of these three filters, we concluded that H. sapiens has 22,020 unique non-

overlapping genes, while D. melanogaster has 13,783 (Table 1).  

In addition to these four species, we analyzed the genomic properties of seven other 

species, in order to have a more comprehensive view of the evolution of these properties. 

We added M. musculus, G. gallus, D. rerio, A. millifera, C. elegans, S. pombe and B. 

subtilis. In order to determine the number of unique genes, we used RefSeq v. 37 for the 
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three vertebrates (Pruitt et al., 2007) and Ensembl v. 46 for the other species (Flicek et al., 

2011). 

 

Figure 20: Pipeline to identify unique human genes  

In order to identify a unique set of non-overlapping human genes, 38,015 RefSeq protein sequences were 

aligned to the human genome using BLAT. Once eliminated all the sequences that did not map to real 

chromosomes, all the sequences with overlapping hits were clustered together and only the longest was 

retained. A last filter eliminated all best hits shorter than 60% of the original protein length.  

 

2. Identification of cancer genes 

Cancer genes are genes whose mutations are causally implicated in oncogenesis 

(Futreal et al., 2004). On the basis of this definition and the available data, we identified 

three subsets of cancer genes, which differ for the methods of identification: known cancer 

genes from the Cancer Gene Census and from the census of amplified genes in cancer 

(Futreal et al., 2004; Santarius et al., 2010), candidate cancer genes from high-throughput 
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mutational screenings and genes with non-synonymous mutations in whole genome 

sequencing experiments of cancer tissues. 

We used the 427 genes included in the Cancer Gene Census version of March 30th 

2010 (Futreal et al., 2004). A first comparison with the 22,020 unique human genes 

allowed us to eliminate 20 cancer genes, because they were not included in the set of 

unique genes, since they were either discontinued or not associated with RefSeq proteins. 

In addition to these genes, we retrieved the 77 genes amplified in cancer from Santarius et 

al. (Santarius et al., 2010), which were all included in the 22,020 unique human genes. In 

total, we were able to retrieve 480 known cancer genes, of which 460 (96%) were also 

included in the dataset of unique human genes. For the latest analyses, we retrieved a more 

recent version of the Cancer Gene Census (March 22nd 2011), which included 447 genes, 

thus bringing the total known cancer genes to 501 (Table 2). 

To identify the candidate cancer genes from high-throughput mutational 

screenings, we gathered the mutational information from 18 experiments, which included 

12 whole-exome sequencing studies, 5 experiments on selected gene lists and one that 

sequenced 10,000 genes (Table 2). More than one third of all human genes were found 

mutated in at least one patient. In order to detect candidate cancer genes in this vast 

mutational landscape, only genes that were mutated at high frequency or that were also 

found mutated in validation screenings were considered. This allowed us to identify 699 

candidate cancer genes, of which 686 (98%) were included in the list of unique human 

genes. The number of cancer genes from each experiment is highly heterogeneous, ranging 

from 5 to 140. Also when considering the same tumor type, differences are significant. For 

example, two experiments on pancreatic cancer identified 7 and 82 candidate cancer genes, 

respectively (Jiao et al., 2011; Jones et al., 2008). 
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Table 2: experiments to identify cancer genes 

Type Screen Candidates Candidates in 
NCG 3.0 

Mutated 
genes Mutations Screening type Cancer type 

Futreal, Nature 2004 
(March 30th 2010) 427 NA 0 0 literature-based 

leukemia, mesenchimal, 
epithelial, dominant, 
recessive 

Futreal, Nature 2004 
(March 22nd 2011) 447 444 0 0 literature-based 

leukemia, mesenchimal, 
epithelial, dominant, 
recessive 

Santarius, Nature 2010 77 77 0 0 literature-based amplified 

CGC 

All 501 498 0 0     

Agrawal, Science 2011 6 6 725 911 
whole-exome 
sequencing (18,000 
genes) 

head and neck squamous 
cell carcinoma 

Barretina, Nature 
Genetics 2010 21 21 21 46 722 genes sequenced sarcoma 

Cancer Genome Atlas, 
Nature 2008 8 8 223 453 601 genes sequenced glioblastoma 

Chapman, Nature 2011 10 10 498 560 
whole-exome 
sequencing (164,687 
exons) 

myeloma 

Dalgliesh, Nature 2010 5 5 398 722 3,544 genes 
sequenced kidney 

Ding, Nature 2008 26 26 357 1,013 623 genes sequenced lung 

Greif, Leukemia 2011 5 5 5 5 10,000 genese 
sequenced acute myeloid leukemia 

Gui, Nature Genetics 
2011 21 21 328 465 

whole-exome 
sequencing (18,000 
genes) 

bladder 

Jiao, Science 2011 7 7 150 231 
whole-exome 
sequencing (18,000 
genes) 

pancreas 

Jones, Science 2008 82 81 1,253 1,823 
whole-exome 
sequencing (20,661 
genes) 

pancreas 

Kan, Nature 2010 112 112 967 2,576 1,507 genes 
sequenced 

breast, lung, ovarian, 
pancreas, prostate 

Li, Nature Genetics 
2011 5 5 411 429 

whole-exome 
sequencing (18,000 
genes) 

liver 

Parsons, Science 2008 42 42 1,940 2,449 
whole-exome 
sequencing (20,661 
genes) 

glioblastoma 

Parsons, Science 2010 9 9 218 225 
whole-exome 
sequencing (225,752 
exons) 

medulloblastoma 

Pasqualucci, Nature 
Genetics 2011 54 54 93 96 

whole-exome 
sequencing (180,000 
exons) 

large B-cell lymphoma 

Stransky, Science 2011 76 76 NA NA 
whole-exome 
sequencing (188,260 
exons) 

head and neck squamous 
cell carcinoma 

Wei, Nature Genetics 
2011 68 68 3,026 4,226 

whole-exome 
sequencing (20,000 
genes) 

melanoma 

Wood, Science 2007 272 272 1,881 2,693 
whole-exome 
sequencing (18,191 
genes) 

breast, colorectal 

HTMS 

All 699 698 7,439 16,797     
Berger, Nature 2011 88 88 156 162 WGS for 7 patients prostate 
Chapman, Nature 2011 10 10 1,036 1,418 WGS for 23 patients myeloma 
Clark, PLOS Genetics 
2010 60 60 61 62 WGS for U87MG 

cell line glioblastoma 

Ding, Nature 2010 49 49 49 49 WGS for one patient breast 
Lee, Nature 2010 16 16 344 373 WGS for one patient lung 
Ley, Nature 2008 10 10 10 10 WGS for one patient acute myeloid leukemia 
Mardis, NEJM 2009 12 12 12 12 WGS for one patient acute myeloid leukemia 

Pleasance, Nature 2010 60 59 133 137 WGS for NCI-H209 
cell line lung 

Pleasance, Nature 2010 62 61 276 299 WGS for one patient melanoma 
Shah, Nature 2009 31 30 563 776 WGS for one patient breast 
Totoki, Nature Genetics 
2011 71 71 71 72 WGS for one patient liver 

WGS 

All 457 454 2,439 3,370     
All All 1,499 1,494 8,531 20,167     
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Experiments to detect cancer genes are grouped into three categories, depending on the method of 

identification: Cancer Gene Census (CGC), High-Throughput (HTMS) and Whole Genome Sequencing 

(WGS). For HTMS and WGS, the screening type is derived from the Methods section of each experiment. 

For HTMS the number of genes or, as an alternative, exons that are screened for mutations is reported, while 

for WGS the number of screened patients or the number name of the screened cell line is reported. The 

columns “Mutated genes” and “Mutations” are derived from the Supplementary Information from each 

experiments. For Stransky et al. (Stransky et al., 2011) it was not possible to derive this type of information. 

The comumn “Candidates in NCG 3.0” represents the number of candidates that could be successfully 

mapped to up-to-date Entrez IDs and were included in NCG 3.0 (http://bio.ifom-ieo-campus.it/ncg). 

 

We identified 456 cancer genes from nine different experiments of whole genome 

sequencing of 41 cancer genomes (Table 2). Of these, 453 (99%) were included in the list 

of unique human genes. In opposition to the high-throughput mutational screenings, the 

heterogeneity in the number of detected genes is lower, having 10 and 12 genes mutated in 

acute myeloid leukemia (Ley et al., 2008; Mardis et al., 2009) and 31 and 49 in breast 

cancer (Ding et al., 2010; Shah et al., 2009).  

The total number of cancer genes detected with the three different methods is 

1,499, of which 1,464 (98%) were included in the list of unique human genes. This is the 

most complete collection of cancer genes to date, and includes 6.6% of all human genes.  

 

3. Reconstruction of protein interaction networks 

We integrated protein-protein interaction data from several sources, in order to 

build the most complete, to our knowledge, protein interaction networks of model species 

(Table 3).  
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Table 3: sources of protein-protein interactions 

Species Network Database Version Proteins Interactions Experiments 

IntAct Jan 23rd 2009 2,819 13,663 186 
DIP Jan 26th 2009 1,456 5,646 418 All  

Total 2,884 15,888 445 
IntAct Jan 23rd 2009 481 590 186 
DIP Jan 26th 2009 529 675 418 

E. coli 

Gold Set 
Total 703 1,004 445 

BioGRID 2.0.49 (Feb 1st 
2009) 5,005 41,401 4,230 

IntAct Jan 23rd 2009 5,563 45,580 476 
MINT Feb 5th 2009 5,219 30,904 174 
DIP Jan 26th 2009 4,898 17,222 1,278 
Yu Oct 2008 1,228 1,636 1 

All  

Total 5,937 91,652 4523 

BioGRID 2.0.49 (Feb 1st 
2009) 3,671 16,425 4,228 

IntAct Jan 23rd 2009 3,138 9,357 476 
MINT Feb 5th 2009 2,880 7,920 174 
DIP Jan 26th 2009 3,032 7,671 1,278 
Yu Oct 2008 700 545 1 

S. cerevisiae 

Gold Set 

Total 3,930 21,731 4,521 

BioGRID 2.0.49 (Feb 1st 
2009) 6,925 21,775 145 

IntAct Jan 23rd 2009 7,729 23,671 148 
MINT Feb 5th 2009 7,129 21,540 45 
DIP Jan 26th 2009 7,015 21,630 35 
DroID 4.0 (Jul 2008) 7,139 22,872 282 

All  

Total 10,563 61,014 363 

BioGRID 2.0.49 (Feb 1st 
2009) 445 418 145 

IntAct Jan 23rd 2009 831 1,083 148 
MINT Feb 5th 2009 305 242 45 
DIP Jan 26th 2009 229 183 35 
DroID 4.0 (Jul 2008) 940 1,186 282 

D. 
melanogaster 

Gold Set 

Total 1,392 2,236 363 

BioGRID 2.0.49 (Feb 1st 
2009) 7,163 23,588 8,815 

IntAct Jan 23rd 2009 7,066 22,119 1,374 
MINT Feb 5th 2009 5,151 12,653 1,210 
DIP Jan 26th 2009 1,108 1,326 739 
HPRD Sep 1st 2007 8,697 34,938 17,770 

All  

Total 11,988 68,498 19,886 

BioGRID 2.0.49 (Feb 1st 
2009) 5,550 16,153 8,815 

IntAct Jan 23rd 2009 2,936 4,887 1,374 
MINT Feb 5th 2009 2,278 3,591 1,209 
DIP Jan 26th 2009 1,058 1,207 739 
HPRD Sep 1st 2007 7,296 26,910 17,770 

H. sapiens 

Gold Set 

Total 9,127 39,868 19,885 
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For each database and each species, the number of proteins, interactions and Pubmed IDs supporting the 

interactions (“Experiments”) are reported. The gold set includes all the interactions that are supported by 

single-gene experiments or by more more than one high-throughput experiment.  

 

The first filter that we applied to the raw data gathered from each single database 

consists in the retention of only primary physical interactions: only direct evidence for the 

presence of interactions was considered, while all interactions inferred from orthology 

were discarded. Second, in order to integrate the data from the different sources, we chose 

a unique protein identifier and converted all protein identifiers to this. For human we used 

Entrez IDs, for D. melanogaster FlyBase IDs, for S. cerevisiae SGD IDs and for E. coli 

EcoCyc IDs. The mappings to these identifiers were done by querying BioMart (Haider et 

al., 2009) and the Protein Identifier Cross-Reference (PICR) Service (Cote et al., 2007) 

with the lists of protein IDs that were not in the chosen format yet. Although some genes 

were lost because they could not be mapped to the chosen identifiers, this allowed us to 

eliminate redundancies between the different databases and to have a unique type of 

protein identifiers that may be easily converted into other types in order to integrate 

network data with other sources, such as orthology.  

The integration of data from different sources allowed us to have a significantly 

more complete view of the interactions that each protein undertakes, compared to using 

single databases. For example, the human protein TP53 has between 27 (DIP) and 239 

(HPRD) interactions, while the integration of all databases allowed us to detect interactions 

with 409 distinct proteins. Of these, 209 (51%) were detected in more than one database. 

After building the protein interaction networks, we divided all the 25,217 

publications into two categories: high-throughput and single-gene. Since a manual 

characterization of the experimental type could not be made, we set an arbitrary cutoff to 

100 interactions. Each experiment associated with at least 100 interactions was labeled as 

“high-throughput”, single-gene otherwise. This division allowed us to distinguish between 

four categories of interactions: 
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1. Supported by single-gene experiments; 

2. Supported by high-throughput and single-gene experiments; 

3. Supported by more than one high-throughput experiment; 

4. Supported by only one high-throughput experiment. 

From this division, we identified a gold set of high-confidence interactions, which 

included all the interactions associated with one of the former three categories. We 

eliminated the interactions supported by only one high-throughput experiment from the 

gold set, because this category is the most enriched in false-positives (Bader et al., 2004; 

von Mering et al., 2002). 

In order to determine how networks evolve, for each protein in each network we 

measured three properties: degree, clustering coefficient and betweenness. Degree is a 

measure of the connectivity of a protein, i.e. the number of interactions that a protein has in 

the protein interaction network. Clustering coefficient is a measure of the local 

interconnectivity and is calculated as the ration between the number of interactions among 

the first-level neighbors of the protein of interest and the total possible interactions 

between them (Watts and Strogatz, 1998).  Betweenness is a measure of the centrality of a 

protein and is calculated as the number of shortest paths that pass trough that protein. 

 

4. Orthology and paralogy assignment 

We derived the orthology relationships from eggNOG 1.0 (Jensen et al., 2008).  

On the basis of the lineage-specific orthologous groups defined in eggNOG, we 

derived a simplified version of the tree of life, with seven internal nodes that correspond to 

major transitions in evolution (last universal common ancestor, eukaryotes, opisthokonts, 

metazoans, vertebrates, mammals, and group-specific transition) (Figure 21).  
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Figure 21: Tree of life  

In order to detect origin and conservation of genes, we built a simplified version of the tree of life, with six 

internal nodes. LUCA represents Last Universal Common Ancestor, i.e. the last ancestor before the split 

between prokaryotes and eukaryotes. 

 

We identified the 373 species present in eggNOG and assigned each to the most 

specific internal node. In particular, we identified 338 prokaryotes, 4 plants, 8 fungi, one 

nematode, 3 insects, 6 other invertebrates, 3 fish, 2 rodents, 3 primates, 3 other mammals 

and 2 other vertebrates. For example, H. sapiens is representative of primates, D. 

melanogaster of insects, S. cerevisiae of fungi and E. coli of bacteria. These group-specific 

nodes do not reflect comparable evolutionary transitions. Indeed, for human we were able 

to obtain a better resolution than for the other species. In particular, the presence of three 

primate species (H. sapiens, P. troglodytes and M. mulatta) in addition to five other 

mammals (M. domestica, B. taurus, C. familiaris, M. musculus and R. norvegicus) allowed 

us to discriminate between human genes that originated with primates and those that 

originated with mammals. The presence of only three distantly related insects (D. 

melanogaster, Apis mellifera and Anopheles gambiae), instead, allowed a maximum 

resolution of insect-specific genes. For S. cerevisiae and E. coli the resolution was even 

lower, and we were able to detect fungi-specific and prokaryote-specific genes. 
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The presence of different levels of resolution did not introduce biases to the 

analyses, given a very low fraction of group-specific genes in all species. Other than 

identifying the group-specific genes, we performed the analysis of the orthology 

relationships to identify a common evolutionary trend among species from different taxa. 

Since the number of group-specific genes is very low, it does not affect the overall trend in 

a significant way. 

 

Figure 22: resolution of the clusters of orthologs  

eggNOG builds clusters of orthologs with different levels of resolution. The algorithm to assign the 

orthology starts to allocate orthology relationships between highly similar genes, and creates the first clusters 

of orthologs maNOG1 and maNOG2. By relaxing its parameters, more distantly related orthologs are 

assigned to the genes inside these clusters, and the vertebrate-specific clusters (veNOG1 and veNOG2) are 

built. With the same parameters, also the insect-specific clusters (inNOG1 and inNOG2) are built. A further 

relaxation allows the identification of metazoan-specific orthologs in meNOG1 and meNOG2. These two 

clusters have a significant similarity and they are included in the same KOG (KOG1), together with plant-

specific genes and the two fungi-specific clusters (fuNOG1 and fuNOG2). The relaxation of the parameters 

to assign orthology allows also the insertion into the most inclusive clusters (KOGs and COGs) of other 

genes that could not be assigned to any specific cluster (for example Hs3 and Hs4). COG1 includes KOG1 
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and six bacterial genes. In addition to the original clusters of orthologs defined by eggNOG, we identified 

further clusters: fish-specific (fiNOG, depicted in cyan), worm-specific (woNOG, brown) and bacteria-

specific (baNOG, light green).  

Abbreviations: 

Primates: Hs: H. sapiens; Pt: P. troglodytes; Mm: M. mulatta. 

Rodents: Mm: M. musculus; Rn: R. norvegicus. 

Other mammals: Md: M. domestica; Cf: C. familiaris; Bt: B. Taurus. 

Fishes: Dr: D. rerio; Tf: T. rubripes. 

Other vertebrates: Xt: X. tropicalis; Gg: G. gallus. 

Insects: Dm: D. melanogaster; Am: A. millifera; Ag: A. gambiae;  

Nematodes: Ce: C. elegans. 

Other metazoans: Pf: P. falciparum; Dd: D. discoideum; Ci: C. intestinalis. 

Fungi: Sc: S. cerevisiae; Sp: S. pombe; Af: A. fumigatus; Yl: Y. lipolytica; Cn: C. neoformans.  

Plants: At: A. thaliana; Tp: T. pseudonana; Cm: C. merolae. 

Bacteria: Ec: E. coli; Bs: B. subtilis; Mp: M. pneumoniae. 

 

We exploited the different levels of resolution of the orthologous clusters in order 

to check for the presence of orthologs of each gene in every internal node of the tree of life 

(Figure 22). For example, for human genes, we investigated the presence of non-primate 

mammalian orthologs in maNOGs, non-mammalian vertebrate orthologs in veNOGs and 

so on. For species that do not have a group-specific cluster of orthologs, we extrapolated it 

from the most specific group to which their genes could be assigned. For example, D. rerio 

does not have e fish-specific cluster of orthologs, therefore we extracted all fish-specific 

genes from each vertebrate-specific cluster containing D. rerio genes, and created the 

corresponding fish-specific orthologous groups (fiNOGs). We repeated the same procedure 

for worms and bacteria, starting from metazoan-specific clusters of orthologs and from 

COGs, respectively (Figure 22). 

5. Evolutionary origin, conservation and duplicability 

Given the presence/absence of each gene in clusters of orthologs with different 

resolution and the presence/absence of their orthologs in all internal nodes of the tree of 
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life, we derived three evolutionary properties for each gene: origin, conservation and 

duplicability (Figure 23).  

 

Figure 23: Origin and conservation assignment  

Origin and conservation are calculated depending on the presence or absence of orthologs at the each branch 

of the tree of life. The origin of a gene is calculated as the farthest branch where an ortholog of the gene of 

interest can be found. Hs1 and Sc2 originated with LUCA because they have orthologs in prokaryotes. Hs2 

originated with metazoans because it has orthologs in metazoans but not in other eukaryotes or prokaryotes. 

Sc1 originated with fungi because it is not present in any other clusters of orthologs. Conservation reflects the 

number of lineages where orthologs of the gene of interest cannot be found. Hs2 and Sc1 have conservation 

0, because no lineages have lost orthologs since its origin. Hs1 has conservation 1 because it is lost in plants, 

while Sc2 has conservation 3 because it is lost in primates, mammals and plants.  

Light green shows where, instead of using the specific cluster shown in the last column (dark green), KOG is 

used to detect orthologs of the gene of interest. 

 

The origin of a gene corresponds to the most ancient internal node of the tree of life 

where an ortholog is found (Figure 23). We could not assign the origin to a small number 

of genes (120 in H. sapiens, 270 in D. melanogaster and 5 in S. cerevisiae) because they 

were included in clusters that did not include representative orthologs  (Table 4). For 

example, there are human genes that are only included in a KOG, but this cluster contains 

only metazoan-specific genes. We could not assign the origin of these genes to metazoans, 
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because they are not associated to any metazoan-specific cluster. Therefore, these genes 

were eliminated from further analyses.  

Table 4: genes with evolutionary properties 

Genes H. sapiens 
D. 

melanogaster S. cerevisiae E. coli 
Unique genes in EggNOG 1.0 
(Jensen et al., 2008) 18,205 10,543 5,411 4,196 
Genes with traceable origin 
and conservation 18,085 10,273 5,406 4,196 
Genes with duplicability 
information 18,074 10,227 5,400 4,196 
Duplicated genes (%) 11,826 (65.4) 6,020 (58.9) 2,260 (41.9) 2,153 (51.3) 

From all the unique genes present in eggNOG v. 1.0 (Jensen et al., 2008), all genes included only in clusters 

without representative orthologs are eliminated, because the origin cannot be assigned. All eukaryotic genes 

that are not included in KOG are filtered out because duplicability cannot be assigned.  

 

We defined conservation as the number of internal nodes between the origin of a 

gene and the group-specific cluster where no orthologs could be associated to the gene of 

interest. The maximum conservation corresponds to presence of orthologs in all nodes, and 

its value is 0. If orthologs are lost in one lineage, then the conservation is 1, and so on 

(Figure 23). This method to calculate conservation, together with the fact that we 

considered the same number of internal nodes (seven) for all the species, makes the 

measure of conservation independent from the origin of the genes. Our definition of 

conservation is different from the typical definitions of conservation in evolution, which 

usually measures the sequence divergence among orthologs. We defined it in this way 

because we were interested in the rate retention and loss of genes through evolution, rather 

than simple sequence conservation. Our definition measures the importance of a gene for 

an organism: the more it is important, the more it is conserved in evolution and cannot be 

lost in any lineages. The standard definition, instead, is used in order to determine how fast 

a gene family evolves. 
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Duplicability was defined upon the presence or absence of more than one gene 

from the same species in a cluster of orthologs. A gene is duplicated if at least one other 

gene from the same species is included in its cluster of orthologs, otherwise it is singleton. 

Since the resolution of the most specific orthologous groups is different for every species, 

we defined a gene as duplicated if an ortholog was present in the same KOG (Table 4). 

This definition allowed us to have comparable measures of duplicability between distantly 

related species. The only exceptions were prokaryotes: since they were not included in 

KOGs, their duplicability was based on COGs, which could not be used for all the other 

species, because a small number of eukaryotic genes are included in these clusters (on 

average, less than 50%). This method did not allow us to date the time of duplication, but 

rather the rate of duplication. Duplication is a random event and, if it is not deleterious for 

the fitness of the organism, it can be retained. The use of this definition of duplicability 

shows whether this duplication was selected in evolution. However, using the same data, in 

principle it is possible to calculate when the duplication occurred on the basis of the 

presence or absence of paralogs in other species. For a small fraction of the eukaryotic 

genes (63 in total), we were not able to assign duplicability, because they were not 

included in KOG. Therefore these genes were excluded from further analysis.  

With the previously described methods, we were able to assign origin, conservation 

and duplicability to a high number of genes: 18,074 in H. sapiens (82% of all human 

genes), 10,227 in D. melanogaster (74%), 5,400 in S. cerevisiae (80%) and 4,196 in E. coli 

(93%) (Table 4). 

6. Comparison of gene and network properties 

In order to determine how protein interaction networks evolve, we compared the 

network properties of H. sapiens, D. melanogaster, S. cerevisiae and E. coli proteins with 

the evolutionary properties of the corresponding genes. We first grouped all the genes on 

the basis of their origin and compared the degree and betweenness distributions of proteins 
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with the same origin with the corresponding distributions of older and younger proteins. 

Similarly, we compared the distributions of network properties of proteins with a given 

conservation with more and less conserved proteins. To analyze duplicability, we 

proceeded in an analogous way. Among all genes with the same origin, we analyzed the 

differences in the network properties between singleton and duplicated proteins. To make 

all these comparisons, we used Wilcoxon test. This non-parametric statistical test is used in 

presence of continuous non-normal distributions in order to determine whether two 

independent samples derive from a single homogeneous population.  

Since the dimensions of the samples are highly variable (more than two orders of 

magnitude of difference between the biggest and the smallest dataset), we made a second 

analysis in order to exclude a possible bias related to this fact. Therefore we developed a 

randomization test. For each level of evolutionary origin, we extracted 500 random 

proteins and derived their median degree. We then extracted 500 proteins that originated 

later in evolution, calculated their median degree and the difference compared to the 

proteins with the selected origin. We repeated this operation 100,000 times and derived the 

distributions of the median degree differences. Finally, we computed a z-score as the ratio 

between the number of comparisons with a difference <0 and the total number of 

iterations. If this value is next to zero, then it is reasonable to conclude that the two 

distributions are different and, in particular, that younger proteins are less connected. We 

repeated the same procedure for the comparisons with older proteins. The only difference 

here is that the numerator of the z-score was calculated as the number of differences >0. 

We repeated the computation of these iterations at all levels of origin and conservation for 

both degree and betweenness. In case a group included less than 500 genes, we selected the 

lowest number of genes and computed the 100,000 iterations picking this number of genes. 

For example, only 84 primate-specific human genes have network information, therefore 

they were compared with random sets of 84 older genes. 
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We developed a method to visualize the results of both the analyses with Wilcoxon 

tests and the randomization tests, which is derived from the visualization of microarray 

data: we created heatmaps whose colors represent the level of significance of p-values and 

z-values. First, we log-transformed these values. Then we assigned different color-scales 

on the basis of whether the considered category was enriched or depleted. Red boxes were 

associated with significantly higher values of degree and betweenness, while green boxes 

were associated with lower values. Black represented not significant values.  

7. Functional analysis 

We used the Biological Process branch of the Gene Ontology (GO) to perform the 

faunctional analyses (Ashburner et al., 2000). We exploited the tree-like structure of GO in 

order to analyze the enrichment in particular functional categories of each class of genes. A 

GO level refers to the number of branching points that separate a GO term from the root, 

which is set as level 1 by default. Depending on the type of analysis, three separate trees 

may be used, which correspond to three different roots: Biological Process (GO: 0008150), 

Molecular Function (GO:0003674) and Cellular Component (GO:0005575). We focused 

only on Biological Process, in order to determine the functional differences between the 

different classes of human hubs.  

We developed a R pipeline that relies on the GO.db and org.Hs.eg.db packages in 

order to compute the functional enrichment analysis between two classes of genes (Figure 

24). The input is represented by two lists of Entrez IDs that correspond to the two classes 

to compare. All the GO terms that are associated to Biological Process are extracted using 

the GO.db function GOBPCHILDREN and are subsequently divided into their level. Since 

each node may have several parents, and therefore it may appear at different levels, it is 

assigned to its most inclusive level. Then all genes that are associated to each GO term are 

extracted using the org.Hs.eg.db function org.Hs.egGO2ALLEGS. The statistical analyses 

are made level by level. First, all the genes from the two lists that are associated at each 
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level are counted. Then a Fisher’s exact test is computed for all the GO terms that include 

at least one gene from one or both lists, in order to determine the enrichment of one gene 

list in that particular term. Given the high number of statistical tests that are computed, a 

correction for the false-discovery rate must be made. This is done for each level separately 

using the Benjamini-Hochberg method.  

 

Figure 24: Pipeline to assess enrichment in GO terms  

The tree-like structure of GO is exploited to extract all terms at level 5 and 6, which are then divided into 12 

different functional categories. Having two lists of genes as input, the enrichment is assessed separately for 

all the terms with Fisher’s exact test followed by adjustment for the false discovery rate (GO analysis). The 

terms with p-value >0.05 are eliminated, while the others are divided in two categories, on the basis of 

whether list 1 or list 2 is enriched. 

 

Since the levels go from highly inclusive, with thousands of genes that are 

associated to a single term (e.g. the term GO:0009987, “cellular process”, has 210,383 

associated gene products from several species), to highly specific, with only few genes 

associated to the terms at a specific level (e.g. GO:0007092, “activation of mitotic 

anaphase-promoting complex activity”, has 14 associated gene products), we decided to 

focus only on GO terms at level 5 and 6 (Figure 24). This is a good compromise between 

analyzing specific terms and handling a fair number of genes. We further grouped the 

1,213 terms at these levels into twelve functional categories:  
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• Cell cycle, 

• Cell motility and interactions, 

• Cell response to stimuli, 

• Cellular metabolism, 

• Cellular processes, 

• Development, 

• DNA/RNA metabolism and transcription, 

• Immune system response, 

• Multicellular activities, 

• Regulation of intracellular processes and metabolism, 

• Regulation of transcription, 

• Signal transduction. 

We then performed four comparisons:  

1. Ancient singleton hubs and recent duplicated hubs;  

2. Genes that originated with the last universal common ancestor and 

eukaryotes (ancient) and genes that originated with metazoans and 

vertebrates (recent);  

3. Singletons and duplicated genes 

4. Dominant and recessive cancer genes. 

All the terms were grouped by their functional category and the involvement of a 

class of genes in a particular category was highlighted not only by the p-value, but also by 

the number of significantly enriched terms, compared with the other class (Figure 24). 

 

8. Identification of ohnologs 

Ohnologs are genes that duplicated via whole genome duplication (Wolfe, 2000). 

This term was first coined by Ken Wolfe in 2000, in honor of the late Susumu Ohno who, 
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thirty years before with only a handful of known protein sequences, first proposed that the 

easiest way to produce new genes is through duplication, rather than creating them de 

novo, and that whole genome duplications may allow the duplication of entire pathways. 

He also proposed that two or three rounds of whole genome duplications occurred in the 

early evolution of the vertebrate genome (Ohno, 1970; Wolfe, 2001).  The final evidence 

that the early vertebrate genome underwent two rounds of whole duplications was given 

first by Dehal and Boore in 2005 (Dehal and Boore, 2005) and by Nakatani et al. 

(Nakatani et al., 2007), who were able to reconstruct the ancestral vertebrate 

chromosomes. From this experiment, we derived the definition of the 4,174 ohnologs in 

the human genome (Nakatani et al., 2007). We intersected these genes with the 22,020 

unique human genes in our dataset and 307 ohnologs were discarded because they could 

not be mapped to any of these genes. We then eliminated all singleton genes from this list 

and retain 3,618, which were both ohnologs and with evidence of duplication from our 

pipeline. The 249 singletons were likely false positives and therefore they were discarded 

from further analyses. 62 other genes were eliminated because they were in the ohnologs 

dataset but they originated in mammals or primates. Therefore, these were also likely false 

positives. Finally we were able to detect 3,556 ohnologs.  

9. miRNA targets  

miRNAs are post-transcriptional regulators of gene expression (Bartel, 2004).  

They are short sequences of RNA that promote the degradation of mature RNAs through 

an imperfect pairing with the 3’ UTR. miRNAs emerged in evolution with higher 

eukaryotes, indeed they are present in the genome of plants and metazoans, but not in yeast 

(Wheeler et al., 2009). They are continuously acquired in evolution, but they are rarely lost 

(Sempere et al., 2006).  

With the help of Vera Pendino, we derived the interactions between miRNAs and 

their targets from two sources: Tarbase v.5 (June 2008), which includes 1,051 interactions 
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between 101 miRNAs and their 808 target genes (Papadopoulos et al., 2009), and 

miRecords v.1 (August 15th 2008), which include 1,311 interactions that involve 112 

miRNAs and 613 human genes (Xiao et al., 2009). We chose these two databases because 

they collect only experimentally validated interactions. Each miRNA-target gene 

interaction may be validated by three types of experiment: microarrays, mass-spectrometry 

or single-gene. In total 986 genes are target of miRNAs. 

 

10. Tissue-selectivity of human genes 

In order to determine the value of gene expression in different human tissues, we 

used the data from two experiments that analyzed microarray data in 36 (Ge et al., 2005) 

and 79 (Su et al., 2004) human tissues. From the latter study, we eliminated the data about 

six cancer tissues, in order to avoid the influence of the disease conditions on our analysis.  

We downloaded the expression data for these two experiments from the Gene 

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2011). They 

both are based on the Affymetrix Human Genome U133A Array (GPL96), which include 

22,283 distinct probes that target 13,789 distinct genes. The Su experiment (Su et al., 

2004) used also the GNF1H platform (GPL1074), which was discarded from the analysis 

in order to have only compatible gene sets for the tissue-selectivity analysis. We were able 

to assign the origin to 10,060 genes (73% of all human genes) (Table 5).  

We defined a gene as tissue-specific if it is expressed in less than 25% of the 

analyzed tissues in at least one of the two studies. Therefore a gene is tissue-specific if it is 

expressed in less than 8 or 17 tissues, respectively. Housekeeping genes are expressed in 

more than 97% of the tissues (i.e. 35 and 71, respectively) (Table 5). 
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Table 5: tissue selectivity of genes  

Experiment N 
tissues 

N 
samples Type N 

probes 
N 

genes 
genes in 

our dataset 
Total 22,283 13,787 10,060 
tissue-
selective 6,308 4,241 3,622 Su et al. 

2004 73 146 

housekeeping 4,493 3,750 3,319 

Total 22,283 13,787 10,060 
tissue-
selective 2,876 2,514 2,192 Ge et al. 

2005 36 36 

housekeeping 1,759 1,532 1,321 

Total 22,283 13,787 10,060 
tissue-
selective NA 4,988 4,616 Total 109 182 

housekeeping NA 3,765 3,500 
Tissue selectivity of genes is derived from two experiments, which determined the expression levels of 

13,787 genes in 182 samples from 109 non-cancer tissues. The last column represents the intersection with 

the 18,074 that have origin and duplicability information. Tissue-selective genes are expressed in less than 

25% of tissues, while housekeeping genes are expressed in more than 97% of tissues. 

 

The definition of whether a gene is expressed in a tissue was different for the two 

experiments. The Ge experiment (Ge et al., 2005) defined a gene as expressed in a 

particular tissue if it had a significant detection p-value (<0.05). The definition of tissue-

specificity given by the authors differed from ours, since they considered as tissue-specific 

all gene expressed only in one tissue. In particular, a gene must have a detection p-value 

lower than 0.02 and the second highest expression score must be less than half of the 

highest. The Su experiment (Su et al., 2004) defined a gene as expressed if its expression 

level is higher than 200. 

The results from the two experiments were similar, in terms of consensus tissue-

specific and housekeeping genes: 1,717 genes were labeled as tissue-specific and 1,517 as 

housekeeping in both experiments. However, we considered the union between the two 

experiments and we were able to assign the origin to 4,616 tissue-specific and 3,500 

housekeeping genes (Table 5).  
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11. Analysis of the mechanisms that control duplicated hubs 

The retention of duplication after whole genome duplication, the regulation by 

miRNAs and the tissue selectivity of a gene are three mechanisms that made it possible to 

retain the duplication of hubs. We intersected singleton and duplicated hubs with the lists 

of genes that are involved in these three mechanisms, and repeated this at all levels of gene 

origin. We then compared, using Fisher’s exact test, the fraction of singleton and 

duplicated hubs that are associated to at least one of these mechanisms, in order to 

determine whether duplicated genes that originated with metazoans and vertebrates are 

enriched in ohnologs, miRNA targets and tissue-selective genes. We made the same 

analysis also for housekeeping genes. 

 

12. Identification of recent paralogs of cancer genes 

We used the results of the alignment of RefSeq proteins to the human genome 

(Figure 20) not only to determine a non-redundant set of unique human genes, but also to 

detect duplications. The BLAT algorithm is preferred for this kind of analysis because it is 

fast and it is able to align short sequences with high levels of identity. In order to 

determine what the unique genes in the human genome are, we focused only on the best hit 

for each sequence. We instead used all the other hits in order to determine duplicability. 

Previous works in our lab (Rambaldi et al., 2008; Syed et al., 2010) defined as duplicated 

all genes that have additional hits on the genome above 60% of their length. Here, instead, 

we focused on all additional hits, in order to analyze in detail the differences between 

cancer genes and the rest of human genes. We set different thresholds of duplicability 

(from 0 to 100%): at 0% we defined as singletons all those genes that have no additional 

hits on the genome, at 100% we identified genes that had a perfect copy of their coding 

sequence on the genome. For each level of duplicability, we compared the fraction of 
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duplicated genes between cancer genes (i.e. genes included in the Cancer Gene Census) 

and the rest of human genes, using chi-squared test. We repeated the same analysis for 

dominant and recessive cancer genes. 

In order to determine whether the additional hits for each gene overlapped already 

known genes or intergenic regions, we controlled whether each hit intersected exons from 

one of the other 22,019 genes or from mRNA sequences extracted from the UCSC 

Genome Browser (all_mrna table from “mRNA and EST tracks”) (Kent et al., 2002). If the 

results were negative, the hit was labeled as “genomic”. We repeated the analyses for both 

types of hits separately. 

The normalization by the gene length was performed by counting the number of 

duplicated bases, instead of the number of duplicated genes. At each level of conservation 

the normalized duplicability was calculated in the following way: 

��=�=1�����=1��� 

Where �� is the length of a gene, ��is the number of duplicated genes, N is the 

total number of genes and x is the conservation level (between 0 and 100%).  

13. Tools 

We used scripts written in Perl version 5.8.8 (http://www.perl.org/) to integrate all 

data from the different sources and to prepare them for all the statistical analyses. 

All statistical analyses were performed using R version 2.10.1 (http://www.r-

project.org/). For the network analyses, we used the R package igraph v. 0.5.2 

(http://igraph.sourceforge.net/), while gplots version 2.8.0 (http://cran.r-

project.org/web/packages/gplots/index.html) was used to create all the heatmaps, using the 

command heatmap.2. To make the functional analyses we used two additional packages: 

GO.db version 2.5.0 

(http://www.bioconductor.org/packages/2.8/data/annotation/html/GO.db.html) and 

org.Hs.eg.db version 2.5.0 
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(http://www.bioconductor.org/packages/2.8/data/annotation/html/org.Hs.eg.db.html). 

These packages are included in R Bioconductor version 2.8 

(http://www.bioconductor.org/). 

In order to store all the data that we produced and to easily access and query it, we 

built a database, formed by 20 tables. In order to access to it, we created a website, called 

the Network of Cancer Genes (NCG), which is publicly available at http://bio.ifom-ieo-

campus.it/ncg (Appendix 1). The website is cancer-gene centered and may be used to 

analyze genomic and network properties of cancer genes (see Results). The database may 

be queried using MySQL version 14.12. inside the Network of Cancer Genes, we built a 

network visualization, in order to visually inspect the interactions of each cancer gene, 

using Cytoscape Web version 0.7.3 (Lopes et al., 2010). 
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Results 

1. Gene and network properties undergo modifications during evolution 

1.1. Origin distribution, conservation and duplicability change in 

evolution  

For the analysis of gene properties, we considered seven species (M. musculus, G. 

gallus, D. rerio, A. millifera, C. elegans, S. pombe and B. subtilis), in addition to the four 

species that have comprehensive network information (H. sapiens, D. melanogaster, S. 

cerevisiae and E. coli), in order to have representatives of all nodes of the tree of life, and 

to have a limited evolutionary distance between species (Figure 25). 

 

Figure 25: Representative species used in the analysis  

The species that are used for the analysis of origin, conservation and duplicability are highlighted on the tree 

of life.  

 

Overall, we noticed a high variability for these gene properties across the different 

species. Around 60% of mammalian genes originated early in evolution (i.e. they share 

orthologs with prokaryotes or early eukaryotes) (Figure 26, Table 6), as it was previously 
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reported for human (Domazet-Loso and Tautz, 2008). The fraction of ancient genes is 

tightly correlated with the complexity of the organisms, since unicellular eukaryotes have 

more than 90% of their genes that originated early in evolution, while three quarters of 

insect genes are ancient. The high fraction of vertebrate-specific genes (between 14.6% 

and 20.8%) is likely related with the two rounds of whole genome duplications that 

occurred in the early vertebrate genome (Dehal and Boore, 2005; Nakatani et al., 2007). 

The absence of group-specific genes for M. musculus and G. gallus is due to the low 

number of species in eggNOG that are associated with the corresponding group-specific 

nodes. Hence, since no orthologs could be associated with these genes, they were not 

included in any cluster of orthologs.  

 

Figure 26: gene origin in evolution  

The percentage of genes that originated in every internal node of the tree of life is shown for eleven species: 

a primate (H. sapiens), a rodent (M. musculus), a bird (G. gallus), a fish (D. rerio), two insects (D. 

melanogaster  and A. mellifera), a nematode (C. elegans), two fungi (S. cerevisiae and S. pombe), and two 

bacteria (E. coli and B. subtilis). The color code refers to the tree of life in Figure 25. 
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Table 6: gene origin in evolution 

H. sapiens M.musculus G. gallus D. rerio Vertebrates 
Genes % Genes % Genes % Genes % 

LUCA 5,466 30.2 5,473 30.5 4,237 30.3 3,160 34.1 
Eukaryotes 5,321 29.4 5,282 29.4 4,635 33.2 3,134 33.9 
Opisthokonts 234 1.3 260 1.4 226 1.6 128 1.4 
Metazoans 2,217 12.3 2,180 12.2 1,955 14.0 1,283 13.9 
Vertebrates 3,062 16.9 3,042 17.0 2,909 20.8 1,350 14.6 
Mammals 1,377 7.6 1,699 9.5 NA NA NA NA 
Group-specific 397 2.2 0 0.0 0 0.0 199 2.2 
TOTAL 18,074 100 17,936 100 13,962 100 9,254 100 
         

D. melanogaster A. mellifera C. elegans   Invertebrates 
Genes % Genes % Genes %   

LUCA 3,918 38.3 3,003 38.1 3,593 37.4   
Eukaryotes 3,626 35.5 3,035 38.5 4,691 48.9   
Opisthokonts 112 1.1 127 1.6 124 1.3   
Metazoans 1,523 14.9 1,302 16.5 1,185 12.3   
Group-specific 1,048 10.2 407 5.2 5 0.1   
TOTAL 10,227 100 7,874 100 9,598 100   
         

S. cerevisiae S. pombe E. coli B. subtilis Unicellular 
species Genes % Genes % Genes % Genes % 

LUCA 2,505 46.4 2,321 54.2 2,926 69.7 2,462 66.9 
Eukaryotes 2,773 51.4 1,762 41.2 NA NA NA NA 
Opisthokonts 7 0.1 55 1.3 NA NA NA NA 
Group-specific 115 2.1 142 3.3 1,270 30.3 1,219 33.1 
TOTAL 5,400 100 4,280 100 4,196 100 3,681 100 

Origin is defined as the most ancient internal node of the tree of life where an ortholog of the gene of interest 

is found. For all the 11 species, the number of genes and the percentage of all the genes with an assigned 

origin is shown. “NA” represents lineages where the origin could no be calculated, such as mammalian-

specific genes for G. gallus or D. rerio. The total number of genes refers to all the genes that have both origin 

and duplicability information. 

 

The analysis of conservation also showed substantial differences between 

vertebrates and the other species (Figure 27, Table 7). Vertebrates have more than 90% of 

the genes that are highly conserved  (conservation between 0 and 2), while invertebrates, S. 

cerevisiae and bacteria have only between 63 and 75%. These findings are related with the 

origin of the genes: vertebrates have a high fraction of young genes, therefore a smaller 

number of internal nodes may show a loss of orthologs, compared with ancient genes. An 

additional explanation of the differences between vertebrates and invertebrates may be the 
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fact that invertebrates retain a high fraction of ancient genes, which are lost in other 

lineages. 

 

Figure 27: gene conservation in evolution  

The percentage of genes that have the same level of conservation is shown for the eleven species. Zero 

represents the maximum level of conservation, i.e. at least one ortholog of the gene of interest is found in all 

nodes of the tree of life. Higher values represent the number of internal nodes of the tree of life where no 

orthologs could be associated with the gene of interest. The color code refers to the tree of life in Figure 25. 

Table 7: gene conservation in evolution 

H. sapiens M.musculus G. gallus D. rerio 
Vertebrates 

Genes % Genes % Genes % Genes % 
0 12,071 66.8 11,850 66.1 9,027 64.7 5,808 62.8 
1 3,178 17.6 3,084 17.2 2,896 20.7 1,630 17.6 
2 1,697 9.4 1,593 8.9 1,620 11.6 816 8.8 
3 1,012 5.6 1,222 6.8 364 2.6 783 8.5 

4 and 5 116 0.6 187 1.0 55 0.4 217 2.3 
TOTAL 18,074 100 17,936 100 13,962 100 9,254 100 
         

D. melanogaster A. mellifera C. elegans   Invertebrates 
Genes % Genes % Genes %   

0 5,725 56.0 4,315 54.8 4,335 45.2   
1 1,311 12.8 1,048 13.3 1,079 11.2   
2 661 6.5 536 6.8 605 6.3    

3 1,879 18.4 1,422 18.1 2,712 28.3    

4 and 5 651 6.4 553 7.0 867 9.0    

TOTAL 10,227 100 7,874 100 9,598 100  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S. cerevisiae S. pombe E. coli B. subtilis 

Unicellular species 
Genes % Genes % Genes % Genes % 

0 3,816 70.7 3,616 84.5 2,436 58.1 2,346 63.7 
1 90 1.7 104 2.4 209 5.0 175 4.8 
2 253 4.7 217 5.1 177 4.2 179 4.9 
3 1,209 22.4 302 7.1 530 12.6 431 11.7 

4 and 5 32 0.6 41 1.0 844 20.1 550 14.9 

TOTAL 5,400 100 4,280 100 4,196 100 3,681 100 
Conservation is defined as the number of branches of the tree of life where no orthologs of the gene of 

interest are found, since its origin. Zero represents the most conserved genes, since its orthologs are present 

in all branches of the tree of life, while 4 and 5 represent the least conserved genes, which are lost in a high 

number of nodes. The total number of genes is as in Table 6. 

 

Duplicability adds a new level of complexity to this scenario. Among eukaryotes, 

duplicability is tightly related to organism complexity (Figure 28, Table 8) and fungi are 

less duplicated than metazoans, as expected (Yang et al., 2003). The higher fraction of 

duplicated genes in bacteria compared to fungi is due to the higher level of inclusiveness of 

the clusters of orthologs used to define duplicated genes among prokaryotes (COGs intead 

of KOGs). Among metazoans, two thirds of the genes are duplicated, with two exceptions: 

D. rerio and insects. D. rerio has 77% of duplicated genes: this fact is explained by the 

recent duplication that occurred in the fish ancestral genome (Christoffels et al., 2004; 

Jaillon et al., 2004; Meyer and Van de Peer, 2005; Taylor et al., 2001). The other exception 

is represented by insects, which are less duplicated than other metazoans. This is a proof of 

the compactness of their genome (Petrov and Hartl, 1998), as was previously demonstrated 

in two independent ways: insects have a high rate of DNA loss (Petrov, 2002) and a low 

rate of fixed transposable elements (Gonzalez et al., 2008). 
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Figure 28: gene duplicability in evolution  

The percentage of duplicated genes is shown for the eleven species. For eukaryotes, a gene is duplicated if it 

has a paralog in its eukaryotic-specific cluster of orthologs (KOG), for bacteria duplicability is based on the 

presence of orthologs in the corresponding COG. The color code refers to the tree of life in Figure 25. 

Table 8: gene duplicability in evolution 

H. sapiens M.musculus G. gallus D. rerio 
Vertebrates 

Genes % Genes % Genes % Genes % 
Duplicated genes 11,826 65.4 12,331 68.7 9,338 66.4 7,130 77.0 

Singletons 6,248 34.6 5,609 31.3 4,728 33.6 2,130 23.0 

TOTAL 18,074 100 17,940 100 14,066 100 9,260 100 

         
D. melanogaster A. mellifera C. elegans   Invertebrates 
Genes % Genes % Genes %   

Duplicated genes 6,020 58.9 4,461 56.3 6,463 67.3   

Singletons 4,207 41.1 3,466 43.7 3,135 32.7   

TOTAL 10,227 100 7,927 100 9,598 100   

         
S. cerevisiae S. pombe E. coli B. subtilis 

Unicellular species 
Genes % Genes % Genes % Genes % 

Duplicated genes 2,260 41.9 1,690 39.4 2,153 51.3 1,942 52.8 

Singletons 3,140 58.1 2,602 60.6 2,043 48.7 1,739 47.2 

TOTAL 5,400 100 4,292 100 4,196 100 3,681 100 
A gene is duplicated if another gene of the same species is present in its KOG (for eukaryotes) or COG (for 

prokaryotes). The total number of genes is as in Table 6. 
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1.2. Networks have different levels of completeness 

We chose four species that are representative of different levels of complexity and 

have a defined protein interaction network: a prokaryote (E. coli), a unicellular eukaryote 

(S. cerevisiae) and two multicellular eukaryotes (D. melanogaster and H. sapiens). 

Publicly available databases of protein-protein interactions include data from several other 

species. However, only four of these include more than 1,000 interactions: M. pneumoniae, 

A. thaliana, C. elegans and M. musculus. These networks were discarded from our 

analyses because they are highly incomplete. The network of C. elegans has only 4,040 

proteins (20% of the total proteins), M. musculus has 2,587 proteins (12%) and A. thaliana 

has 2,586 proteins (10%). The network of M. pneumoniae was discarded because it 

includes 1,054 interactions among 409 proteins (60%) that were derived from only one 

single high-throughput experiment (Kuhner et al., 2009). 

We rebuilt the protein interaction networks for E. coli, S. cerevisiae, D. 

melanogaster and H. sapiens. Since several resources that store protein-protein interactions 

data were publicly available and the overlap between them is rather low (Table 3), their 

integration resulted in the most complete network that is currently possible (Table 9), 

based only on primary data (i.e. no orthology-inferred interactions). The advantage of 

using the integration of all resources was noteworthy for all the four chosen species. For E. 

coli we gathered network data from two sources, which have 13,663 and 5,646 

interactions, while the total protein interaction network includes 15,888 interactions. The 

improvement was even more relevant for the other species. The biggest network for 

S.cerevisiae includes 45,580 interactions, while the total network that we were able to 

reconstruct has 91,652 interactions. Also for H. sapiens the biggest network that was 

available covers only half of the total interactions that we could define, while the D. 

melanogaster biggest network has only 22,872 interactions, while we reconstructed 

61,014.  
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Table 9: properties of the protein interaction networks  

Network properties H. sapiens D. 
melanogaster S. cerevisiae E. coli 

Nodes (% total proteins) 11,988 
(54%) 10,563 (77%) 5,937 (88%) 2,884 (64%) 

Interactions 68,498 61,014 91,541 15,888 

High-Throughput (%) 29,023 
(42%) 58,921 (97%) 77,615 

(85%) 
15,078 
(95%) 

Single-Gene Experiments 
(%) 

39,475 
(58%) 2,093 (3%) 13,926 

(15%) 810 (5%) 

Median 5 5 15 5 
Degree 

Mean 11.4 11.5 30.9 11.0 
Median 898 1.011 930 287 

Total 
Network 

Betweeness 
Mean 16,885 16,888 6,014 3,222 

Nodes  (% total nodes) 9,127 (41%) 1,392 (10%) 3,921 (58%) 703 (16%) 
Interactions  (% total 

interactions) 
39,868 
(58%) 2,236 (4%) 21,721 

(24%) 1,004 (6%) 

Median 4 2 5:05 2 
Degree 

Mean 8.7 3.2 11.1 2.8 
Median 682 0 932 0 

Gold 
Set 

Betweeness 
Mean 14,208 2,633 6,107 618 

 

Network properties are described for the four species. High-throughput studies include at least 100 

interactions. The gold set includes all interactions that are supported by single experiments or more than one 

high-throughput experiment.  

 

The available data did not allow the reconstruction of a fully connected network for 

each species. However, a very small number of nodes could not be linked to the biggest 

subnetwork (315 in total, 137 in H. sapiens, 151 in D. melanogaster, 3 in S. cerevisiae and 

24 in E. coli). This corresponds to 1% of all the nodes, with a minimum of 0.05% in S. 

cerevisiae and a maximum of 1.43% in D. melanogaster. In the eliminated species, 

instead, this fraction is significantly higher. For example the M. musculus protein 

interaction network has 2,586 proteins but 313 form 121 additional small networks (2.6 

proteins/network), which account for 12.1% of the entire mouse protein interaction 

network. 

The four networks are different in terms of number of nodes and interactions, 

coverage of all genes and type of interactions (Table 9). Nevertheless, they are all scale-

free and their power-laws all have similar γ values, between 2.09 and 2.21 (Figure 29, 
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Figure 30, Figure 31, Figure 32). The most complete network in terms of nodes is S. 

cerevisiae, with 88% of the proteins that have at least one interaction, while the least 

complete is human, with only 54% of the proteins (Table 9). S. cerevisiae has also the most 

complete network in terms of interactions, since the average degree is three times higher 

than that of the other species. D. melanogaster and E. coli have more than 95% of the 

interactions derived from high-throughput experiments (Table 3). This might imply the 

presence of a substantial fraction of false-positives, although the matter is still 

controversial (Bader et al., 2004; von Mering et al., 2002; Yu et al., 2008a). In H. sapiens 

instead most of the interactions are derived from single-gene experiments.  

 

Figure 29: degree distribution of the E. coli network 

The degree is the count of the interactions that each node has, while P represents the probability of a node to 

have a certain value of degree. The blue line represents the interpolation of the nodes with degree > 10. The 

power law is 2.17, which corresponds to a scale-free network. The p-value from Kolmogorov-Smirnov test is 

calculated to determine whether the line fits the data. Since it is not significant, the null hypothesis cannot be 

rejected and the calculated power-law describes adequately the degree distribution of the network.  
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Figure 30: degree distribution of the S. cerevisiae network  

The blue line is interpolated as in the previous figure. The power-law is 2.09, which corresponds to a scale-

free network. 

 

Figure 31: degree distribution of the D. melanogaster network  

The blue line is interpolated as in the previous figures. Network is scale-free, because the power-law is 2.21. 

 

Figure 32: degree distribution of the H. sapiens network  

The blue line is interpolated as in the previous figure. The power-law is 2.14, which corresponds to a scale-

free network. 

 

Given the different incidence of false positives in the four networks due to different 

fractions of interactions derived from high-throughput experiments, we defined a “gold 

set” of interactions, supported by single-gene experiments or by more than one high-

throughput screening. This latter condition was chosen in order to minimize the effects of 

false positives derived from high-throughput experiments. Since almost all interactions of 
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D. melanogaster and E. coli were derived from large-scale screenings, the gold set for 

these two species is too small and cannot be used for any statistical analysis, because it 

includes less than 20% of all proteins. Instead the gold set networks of H. sapiens and S. 

cerevisiae are rather similar: they include 42% and 58% of total proteins, with an average 

degree of 9 and 11, respectively (Table 3, Table 9).  

1.3. Human duplicated genes encode highly connected and central 

proteins 

We measured connectivity as the degree of a protein, i.e. the number of interactions 

that it makes inside the network. To measure centrality, we used betweenness, which 

counts the number of shortest paths that pass through a protein. In this case, the higher the 

number of shortest paths, the more central is the protein.  

It was previously shown that gene duplicability affects the protein network 

properties of human and yeast genes in different ways (Hughes and Friedman, 2005; Liang 

and Li, 2007; Prachumwat and Li, 2006; Rambaldi et al., 2008). In particular, it was found 

that yeast singleton genes encode highly connected proteins, while duplicated proteins are 

less connected than singletons (Hughes and Friedman, 2005; Prachumwat and Li, 2006). In 

human, instead, duplicated genes encode more connected proteins than singletons (Liang 

and Li, 2007; Rambaldi et al., 2008). These results were found with smaller networks than 

the ones we reconstructed and were performed only on two distant species. We therefore 

repeated this analysis for all the four networks and we found the same relationships in the 

H. sapiens and S. cerevisiae network, both considering the whole network and the gold set 

(Figure 33, Table 10). The trend of centrality is very similar to connectivity: in H. sapiens, 

duplicated proteins are more central than singletons, while in S. cerevisiae singletons are 

more central than duplicated proteins. Furthermore, we also found that also E. coli and D. 

melanogaster have properties similar to S. cerevisiae. The only exception is represented by 
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the centrality of yeast proteins, which does not present any differences between singleton 

and duplicated proteins.  

These findings seem to support the hypothesis that the modification of the 

relationships between network properties and duplicability must have occurred in the 

ancestral vertebrate genome or later in evolution. 

 

Figure 33: network properties of singleton and duplicated genes  

Wilcoxon test is used to compare degree and betweenness of singleton and duplicated genes in all four 

species. The resulting p-values are transformed into heatmaps in order to visually detect differences between 

duplicated and singleton genes. Red indicates that duplicated genes encode significantly more connected or 

more central proteins than singletons, green indicates that singleton proteins are significantly more connected 

or central, black indicates no enrichment, while analyses that are not performed (such as connectivity and 

centrality in the gold set for D. melanogaster and E. coli) are depicted in white. 

 



Table 10: network properties of singleton and duplicated genes 

Duplicated Genes Singleton Genes 
Degree Betweenness Degree Betweenness Network Species N genes 

N genes 
Mean Median Mean Median 

N genes 
Mean Median Mean Median 

p-value 
degree 

p-value 
betweenness 

H. sapiens 10,373 6,963 12.5 5.0 19,620 1,098 3,410 10.2 5.0 13,299 817 3.50E-04 4.08E-04 
D. melanogaster 6,298 3,429 12.9 5.0 19,762 1,213 2,869 13.2 6.0 20,922 1734 9.20E-03 3.33E-02 
S. cerevisiae 5,232 2,162 35.3 17.0 7,841 1,121 3,070 33.2 19.0 5,892 1318 3.44E-02 1.51E-01 

Total 
network 

E. coli 2,839 1,448 8.4 4.0 2,141 198 1,391 13.9 5.0 4,427 423 1.52E-09 2.63E-05 
H. sapiens 8,051 5,573 9.4 4.0 16,270 787 2,478 7.1 4.0 9,605 405 3.06E-07 1.48E-06 

Gold set 
S. cerevisiae 3,758 1,449 9.5 5.0 6,748 846 2,309 12.6 7.0 6,079 1183 2.62E-14 4.50E-01 

 

The degree and betweenness distributions of duplicated proteins are compared with singletons using Wilcoxon test. Significant p-values (<0.05) are colored in red if duplicated proteins 

are more connected or more central, in green if singletons are more connected or more central.  
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2. An ancient network core is conserved in all species 

The preferential attachment theory of network evolution (Barabasi and Albert, 

1999) describes the laws that regulate the expansion of a network in time. In particular, 

new nodes attach preferentially to already highly connected nodes. In order to verify 

whether this theory of network evolution is applicable to protein interaction networks and 

to understand how protein interaction network evolve, we analyzed connectivity and 

centrality of each protein in respect to the origin of the corresponding gene.  

2.1. Old proteins are highly connected and central 

In all species, we discovered that older proteins are more connected and more 

central than younger proteins (Figure 34, Figure 35, Table 11). The signal is evident in all 

four species and in both the gold sets, with some exceptions, which may be due to the 

incompleteness of the protein interaction network data. D. melanogaster proteins that 

originated with the last universal common ancestor are less connected and central than 

those that appeared with eukaryotes. This tendency is explained by the fact that the 

network is far from being complete and that more than 95% of the D. melanogaster 

interactions are supported by only one high-throughput experiment. Therefore, there may 

be a significant fraction of false positives that confound the signal. A similar trend is 

present also in the gold set of S. cerevisiae, which includes less than 60% of all proteins, 

hence the incompleteness of the network may explain this peculiar trend. One last 

exception is represented by human proteins that originated with metazoans, which, in the 

gold set, are more connected than older proteins. Although this may be an artifact due to 

the incompleteness of the human network (only 42% of the total proteins), with the 

analysis of duplicability it will become evident how this is a real biological signal.  
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Figure 34: degree of proteins with different origins 

The visual analysis of proteins that are representative of a certain level of origin is shown. For all species, old 

genes encode highly connected and central proteins. The only exception is D. melanogaster, for which 

proteins that originated with the last universal common ancestor (LCA) have lower degree than those that 

originated with eukaryotes and metazoans. The degree always refers to the red central node. 

 

 

Figure 35: relationships between origin and network properties  

Degree (left) and betweenness (right) are compared between proteins that originated at a certain node and 

older or younger proteins. The analysis is performed using Wilcoxon test and the resulting p-values are 

transformed into heatmaps. Red represents the fact that proteins that originated at a certain node have 

significantly higher degree or betweenness, while green represents lower degree or betweenness. Black 
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indicates no significant differences, while white represents analysis that cannot be performed, such as the 

analysis of D. melanogaster proteins that originated with vertebrates or mammals. 

 

The gene origin does not influence the clustering coefficient of the corresponding 

protein (Table 11). This is somewhat expected, given the network topology. Indeed, in a 

scale-free network that has a degree distribution that follows a power-law with 

2<gamma<3, the clustering coefficient does not depend on the value of the degree 

(Barabasi and Oltvai, 2004). 
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Table 11: relationships between origin and network properties 

Considered Category Comparison with genes that originated later 

Degree Clustering 
coefficient Betweenness Degree Clustering 

coefficient Betweenness Wilcoxon Test Randomization 

Network Species 
Origin N 

genes 
Mean Median Mean Median Mean Median 

N 
genes 

Mean Median Mean Median Mean Median p-value 
degree 

p-value 
clustering 
coefficient 

p-value 
betweenness 

z-score 
degree 

z-score 
betweenness 

LUCA 3,248 12,22 5 0,1392 0,0543 17,898 1,163 3,878 10,62 4 0,1486 0,0552 15,357 780 1,84E-04 1,72E-01 8,20E-05 1,29E-01 2,87E-01 
Eukaryotes 3,247 12,58 5 0,1393 0,0514 19,795 1,206 3,878 10,62 4 0,1566 0,0585 15,357 780 4,74E-07 8,83E-02 9,44E-04 9,85E-02 2,37E-01 
Opisthokonts 178 9,44 5 0,1111 0,0460 9,352 1,189 3,700 10,68 4 0,1591 0,0606 15,646 758 9,11E-02 4,80E-02 8,00E-01 7,33E-01 8,68E-01 
Metazoans 1,399 13,26 5 0,1541 0,0636 21,443 1,027 2,301 9,11 4 0,1623 0,0581 12,121 605 1,53E-10 9,08E-01 5,59E-03 1,94E-03 3,07E-02 
Vertebrates 1,683 10,03 4 0,1547 0,0606 14,037 786 618 6,60 3 0,1843 0,0513 6,903 296 4,21E-05 9,53E-01 1,33E-03 5,00E-05 2,85E-03 
Mammals 534 6,52 3 0,1790 0,0529 7,035 270 84 7,07 4 0,2160 0,0474 6,064 462 3,10E-01 6,76E-01 6,78E-01 6,59E-01 4,03E-01 

H. sapiens 

Primates 84 7,07 4 0,2160 0,0474 6,064 462 NA NA NA NA NA NA NA NA NA NA NA NA 
LUCA 2,425 11,93 5 0,0259 0,0000 18,324 1,259 1,618 13,62 5,5 0,0257 0,0000 23,075 1,418 1,53E-01 3,60E-02 5,80E-02 8,99E-01 8,53E-01 
Eukaryotes 2,255 13,68 6 0,0255 0,0000 20,408 1,809 1,618 13,62 5,5 0,0259 0,0000 23,075 1,418 1,21E-01 7,61E-01 8,00E-01 4,80E-01 7,12E-01 
Opisthokonts 84 17,00 6,5 0,0234 0,0000 39,329 3,221 1,534 13,44 5 0,0260 0,0000 22,185 1,370 1,38E-01 9,62E-02 1,97E-02 1,85E-01 1,54E-01 
Metazoans 1,001 14,43 6 0,0302 0,0000 24,752 1,833 533 11,59 5 0,0172 0,0000 17,365 810 5,19E-06 9,28E-02 3,03E-03 2,12E-02 5,65E-02 

D. melanogaster 

Insects 533 11,59 5 0,0172 0,0000 17,365 810 NA NA NA NA NA NA NA NA NA NA NA NA 
LUCA 2,433 38,52 20 0,1962 0,1429 7,759 1,333 111 17,32 8 0,2177 0,1662 2,584 441 3,06E-09 4,49E-05 2,69E-04 0,00E+00 4,61E-03 
Eukaryotes 2,688 30,69 18 0,2193 0,1667 5,906 1,188 111 17,32 8 0,1790 0,1039 2,584 441 9,69E-08 2,19E-03 9,45E-04 6,60E-04 3,51E-02 
Opisthokonts 6 8,00 5 0,0867 0,0000 538 92 105 17,85 8 0,1837 0,1071 2,701 464 2,61E-01 2,05E-01 2,29E-01 8,47E-01 8,84E-01 

S. cerevisiae 

Fungi 105 17,85 8 0,1837 0,1071 2,701 464 NA NA NA NA NA NA NA NA NA NA NA NA 
LUCA 2,136 12,70 5 0,1275 0,0714 3,955 385 703 6,28 4 0,1298 0,0545 1154 116 9,40E-12 2,23E-01 1,82E-08 0,00E+00 0,00E+00 

To
ta

l N
et

w
or

k 

E. coli 
Bacteria 703 6,28 4 0,1298 0,0545 1,154 116 NA NA NA NA NA NA NA NA NA NA NA NA 
LUCA 2,482 8,87 4 0,1392 0,0543 15,948 710 3,099 8,41 4 0,1486 0,0552 13,015 708 1,59E-01 1,72E-01 1,46E-01 3,31E-01 2,40E-01 
Eukaryotes 2,470 8,87 4 0,1393 0,0514 13,992 592 3,099 8,41 4 0,1566 0,0585 13,015 708 5,62E-01 8,83E-02 6,86E-01 3,20E-01 3,80E-01 
Opisthokonts 146 7,45 4 0,1111 0,0460 9,561 567 2,953 8,45 4 0,1591 0,0606 13,186 713 8,00E-01 4,80E-02 5,54E-01 7,22E-01 7,19E-01 
Metazoans 1,115 10,19 5 0,1541 0,0636 15,940 896 1,838 7,40 4 0,1623 0,0581 11,515 576 1,21E-06 9,08E-01 8,00E-02 4,37E-03 1,30E-01 
Vertebrates 1,355 8,10 4 0,1547 0,0606 13,331 782 483 5,42 3 0,1843 0,0513 6,420 182 6,91E-05 9,53E-01 9,80E-04 9,00E-05 3,80E-03 
Mammals 414 5,46 3 0,1790 0,0529 6,604 182 69 5,17 3 0,2160 0,0474 5,319 190 5,45E-01 6,76E-01 9,72E-01 4,04E-01 3,54E-01 

H. sapiens 

Primates 69 5,17 3 0,2160 0,0474 5,319 190 NA NA NA NA NA NA NA NA NA NA NA NA 
LUCA 1,690 11,09 5 0,1962 0,1429 6,708 1,016 70 6,80 3 0,2177 0,1662 3,225 81 2,08E-02 4,49E-05 3,13E-03 1,27E-02 4,22E-02 
Eukaryotes 1,998 11,83 7 0,2193 0,1667 6,131 1,124 70 6,80 3 0,1790 0,1039 3,225 81 1,09E-04 2,19E-03 1,49E-02 3,97E-03 8,12E-02 
Opisthokonts 4 1,75 1 0,0867 0,0000 431 0 66 7,11 3 0,1837 0,1071 3,395 133 5,64E-02 2,05E-01 6,99E-01 9,40E-01 8,30E-01 

G
ol

de
n 

se
t 

S. cerevisiae 

Fungi 66 7,11 3 0,1837 0,1071 3,395 133 NA NA NA NA NA NA NA NA NA NA NA NA 
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Considered Category Comparison with genes that originated earlier 

Degree Clustering 
coefficient Betweenness Degree Clustering 

coefficient Betweenness Wilcoxon Test Randomization 

Network Species 
Origin N 

genes 
Mean Median Mean Median Mean Median 

N 
genes 

Mean Median Mean Median Mean Median p-value 
degree 

p-value 
clustering 
coefficient 

p-value 
betweenness 

z-score 
degree 

z-score 
betweenness 

LUCA 3,248 12,22 5 0,1392 0,0543 17,898 1,163 NA NA NA NA NA NA NA NA NA NA NA NA 
Eukaryotes 3,247 12,58 5 0,1393 0,0514 19,795 1,206 3,248 12,22 5 0,1392 0,0543 17,898 1,163 2,25E-01 7,87E-01 5,52E-01 5,85E-01 5,89E-01 
Opisthokonts 178 9,44 5 0,1111 0,0460 9,352 1,189 6,495 12,40 5 0,1393 0,0524 18,846 1,180 8,00E-01 2,05E-01 2,31E-01 6,56E-02 4,99E-02 
Metazoans 1,399 13,26 5 0,1541 0,0636 21,443 1,027 6,673 12,32 5 0,1385 0,0523 18,593 1,180 4,03E-01 4,72E-02 3,79E-01 7,22E-01 7,03E-01 
Vertebrates 1,683 10,03 4 0,1547 0,0606 14,037 786 8,072 12,48 5 0,1412 0,0545 19,087 1,154 5,62E-08 1,14E-01 4,59E-03 4,70E-02 1,66E-01 
Mammals 534 6,52 3 0,1790 0,0529 7,035 270 9,755 12,06 5 0,1434 0,0549 18,216 1,066 2,10E-13 5,22E-01 1,11E-06 1,00E-02 5,98E-02 

H. sapiens 

Primates 84 7,07 4 0,2160 0,0474 6,064 462 10,289 11,77 5 0,1451 0,0549 17,635 1,000 7,16E-02 5,70E-01 1,41E-01 1,99E-02 1,96E-02 
LUCA 2,425 11,93 5 0,0259 0,0000 18,324 1,259 NA NA NA NA NA NA NA NA NA NA NA NA 
Eukaryotes 2,255 13,68 6 0,0255 0,0000 20,408 1,809 2,425 11,93 5 0,0259 0,0000 18,324 1,259 8,72E-04 4,52E-02 4,70E-02 9,22E-01 7,33E-01 
Opisthokonts 84 17,00 6,5 0,0234 0,0000 39,329 3,221 4,680 12,77 6 0,0257 0,0000 19,328 1,470 1,54E-01 6,80E-02 1,28E-02 8,74E-01 9,13E-01 
Metazoans 1,001 14,43 6 0,0302 0,0000 24,752 1,833 4,764 12,85 6 0,0257 0,0000 19,681 1,479 3,18E-02 2,90E-01 5,26E-02 8,68E-01 8,50E-01 

D. melanogaster 

Insects 533 11,59 5 0,0172 0,0000 17,365 810 5,765 13,12 6 0,0265 0,0000 20,561 1,529 3,68E-05 1,84E-01 2,69E-02 1,14E-01 1,96E-01 
LUCA 2,433 38,52 20 0,1962 0,1429 7,759 1,333 NA NA NA NA NA NA NA NA NA NA NA NA 
Eukaryotes 2,688 30,69 18 0,2193 0,1667 5,906 1,188 2,433 38,52 20 0,1962 0,1429 7,759 1,333 1,89E-03 7,26E-06 1,03E-01 1,11E-01 3,00E-01 
Opisthokonts 6 8,00 5 0,0867 0,0000 538 92 5,121 34,41 19 0,2082 0,1556 6,786 1,250 2,05E-02 7,27E-02 6,16E-02 1,86E-02 2,88E-02 

S. cerevisiae 

Fungi 105 17,85 8 0,1837 0,1071 2,701 464 5,127 34,38 19 0,2081 0,1556 6,779 1,248 1,30E-07 2,65E-02 1,57E-03 3,20E-04 2,07E-02 
LUCA 2,136 12,70 5 0,1275 0,0714 3,955 385 NA NA NA NA NA NA NA NA NA NA NA NA 

To
ta

l N
et

w
or

k 

E. coli 
Bacteria 703 6,28 4 0,1298 0,0545 1,154 116 2,136 12,70 5 0,1275 0,0714 3,955 385 9,40E-12 2,23E-01 1,82E-08 0,00E+00 0,00E+00 

LUCA 2,482 8,87 4 0,1392 0,0543 15,948 710 NA NA NA 0,1486 0,0552 NA NA NA NA NA NA NA 
Eukaryotes 2,470 8,87 4 0,1393 0,0514 13,992 592 2,482 8,87 4 0,1566 0,0585 15,948 710 6,03E-02 7,87E-01 7,08E-02 5,02E-01 3,21E-01 
Opisthokonts 146 7,45 4 0,1111 0,0460 9,561 567 4,952 8,87 4 0,1591 0,0606 14,972 647 8,00E-01 2,05E-01 4,65E-01 2,04E-01 1,91E-01 
Metazoans 1,115 10,19 5 0,1541 0,0636 15,940 896 5,098 8,83 4 0,1623 0,0581 14,817 645 1,91E-04 4,72E-02 3,58E-01 9,00E-01 6,28E-01 
Vertebrates 1,355 8,10 4 0,1547 0,0606 13,331 782 6,213 9,07 4 0,1843 0,0513 15,019 685 3,89E-01 1,14E-01 9,20E-01 1,83E-01 3,34E-01 
Mammals 414 5,46 3 0,1790 0,0529 6,604 182 7,568 8,90 4 0,2160 0,0474 14,717 702 1,67E-05 5,22E-01 7,64E-04 3,69E-02 1,06E-01 

H. sapiens 

Primates 69 5,17 3 0,2160 0,0474 5,319 190 7,982 8,72 4 NA NA 14,296 664 2,36E-02 5,70E-01 2,20E-01 2,36E-02 3,97E-02 
LUCA 1,690 11,09 5 0,1962 0,1429 6,708 1,016 NA NA NA 0,2177 0,1662 NA NA NA NA NA NA NA 
Eukaryotes 1,998 11,83 7 0,2193 0,1667 6,131 1,124 1,690 11,09 5 0,1790 0,1039 6,708 1,016 3,11E-06 7,26E-06 2,06E-02 6,17E-01 4,08E-01 
Opisthokonts 4 1,75 1 0,0867 0,0000 431 0 3,688 11,49 6 0,1837 0,1071 6,396 1,071 1,97E-02 7,27E-02 8,00E-01 1,23E-02 6,94E-02 

G
ol

de
n 

se
t 

S. cerevisiae 

Fungi 66 7,11 3 0,1837 0,1071 3,395 133 3,692 11,48 6 NA NA 6,389 1,068 6,93E-03 2,65E-02 7,16E-03 1,36E-02 8,15E-02 

The network properties of genes born at each level of evolution are compared with those of genes that originated later and earlier. The comparisons are made using the Wilcoxon test 

and a randomization test (only for degree and betweenness), which is made to determine whether the significance is due only to the different numbers of genes for each category. 

100,000 randomizations of 500 proteins are made in order to determine whether the significant differences determined using the Wilcoxon test are due to eventual biases in the number 

of genes for each age category. Significant p-values and Z-scores are depicted in red for enrichment and in green for depletion. NA: not available. 



2.2. Conserved proteins are highly connected and central 

The analysis of conservation showed that highly conserved proteins are more 

connected and more central than less conserved proteins (Figure 36, Table 12). This 

demonstrates that the tendency of gene loss in particular lineages is influenced by the 

number of interactions and the position inside the protein interaction network of the 

corresponding protein. Central proteins with many interactions tend to be conserved 

throughout evolution, because their loss would disrupt the network in a more detrimental 

way, compared to lowly connected and peripheral proteins.  

The signal for conservation is strong and consistent, with only two exceptions in E. 

coli and in the golden set of S. cerevisiae, which may be due to the incompleteness of the 

networks, rather than a real biological signal, given their apparent randomness. 

 

Figure 36: Relationships between conservation and network properties  

Degree (left) and betweenness (right) are compared between proteins with a certain level of conservation and 

more and less conserved proteins. Conservation is calculated as the number of internal nodes of the tree of 

life where no orthologs can be found. 0 represents the maximum. The analysis is performed as explained in 

Figure 33. Red is associated with higher connectivity and centrality, green with lower. Black represents no 

difference.  



Table 12: relationships between conservation and network properties  

Considered Category Comparison with less conserved genes 

Degree Betweenness Degree Betweenness Wilcoxon Test Randomization 
Network Species 

Conservation N genes 
Mean Median Mean Median 

N 
genes 

Mean Median Mean Median p-value 
degree 

p-value 
betweenness 

z-score 
degree 

z-score 
betweenness 

0 7,248 11,91 5 17,594 1,093 3,125 11,32 4 17,421 837 2,59E-05 1,06E-02 3,45E-01 4,91E-01 
1 1,926 10,85 5 16,348 951 1,199 12,08 4 19,144 614 1,44E-01 4,36E-01 7,73E-01 6,84E-01 
2 873 13,15 5 22,832 921 326 9,22 3 9,267 258 1,47E-03 2,60E-03 1,64E-02 6,15E-03 
3 287 9,26 3 9,395 246 39 8,95 4 8,327 349 8,23E-01 4,92E-01 4,54E-01 4,23E-01 

H. sapiens 

4 39 8,95 4 8,327 349 NA NA NA NA NA NA NA NA NA 
0 3,861 13,41 6 21,988 1,654 2,437 12,32 5 17,602 1,148 3,28E-03 3,60E-04 1,96E-01 1,28E-01 
1 843 12,46 6 17,837 1,404 1,594 12,25 5 17,478 1,011 1,63E-01 4,37E-02 4,33E-01 4,63E-01 
2 418 12,76 6 19,139 1,294 1,176 12,07 5 16,887 889 1,91E-01 6,11E-03 3,06E-01 2,69E-01 
3 923 12,35 5 16,995 1,041 253 11,04 4 16,494 476 1,00E-01 1,33E-01 2,16E-01 4,53E-01 

D. melanogaster 

4 253 11,04 4 16,494 476 NA NA NA NA NA NA NA NA NA 
0 3,702 39,17 22 7,945 1,576 1,530 21,66 12 3,677 627 1,24E-46 3,53E-31 0,00E+00 4,80E-03 
1 82 24,95 12,5 3,800 559 1,448 21,48 12 3,670 627 5,33E-01 7,12E-01 2,23E-01 3,88E-01 
2 245 25,28 11 6,874 572 1,203 20,70 12 3,018 633 5,72E-01 6,14E-01 6,38E-02 3,90E-02 
3 1,176 20,84 13 3,030 650 27 14,52 4 2,474 141 1,32E-03 7,73E-02 1,71E-01 4,23E-01 

S. cerevisiae 

4 27 14,52 4 2,474 141 NA NA NA NA NA NA NA NA NA 
0 1,584 12,48 5 4,207 314 1,255 9,38 5 2,067 260 4,97E-01 3,69E-01 2,61E-02 2,54E-02 
1 153 11,65 6 2,475 731 1,102 9,07 4 2,010 217 1,37E-03 1,12E-02 9,82E-02 1,97E-01 
2 134 11,90 5 2,800 384 968 8,68 4 1,901 183 8,81E-02 1,08E-01 6,00E-02 9,33E-02 
3 401 8,52 4 1,762 250 567 8,78 4 1,999 141 4,40E-01 6,56E-01 6,01E-01 7,69E-01 

T
ot

al
 N

et
w

or
k 

E. coli 

4 567 8,78 4 1,999 141 NA NA NA NA NA NA NA NA NA 
0 5,689 8,75 4 14,237 711 2,362 8,55 3,5 14,176 580 3,21E-03 9,88E-01 4,22E-01 4,89E-01 
1 1,473 7,97 4 12,443 695 889 9,49 3 17,047 468 8,92E-01 5,56E-01 9,08E-01 8,37E-01 
2 663 10,05 4 19,559 566 226 7,86 3 9,678 222 3,90E-02 2,45E-02 1,06E-01 6,18E-02 
3 201 8,17 3 10,405 200 25 5,40 4 3,834 531 5,68E-01 7,41E-01 2,01E-01 1,56E-01 

H. sapiens 

4 25 5,40 4 3,834 531 NA NA NA NA NA NA NA NA NA 
0 2,783 12,86 7 7,407 1,469 975 7,25 4 3,280 339 1,33E-26 2,56E-18 0,00E+00 0,00E+00 
1 48 6,75 3 4,381 434 927 7,28 4 3,223 334 2,94E-01 2,47E-01 6,09E-01 2,82E-01 
2 137 5,76 2 4,313 27 790 7,54 4 3,034 387 1,58E-04 6,72E-01 9,43E-01 1,37E-01 
3 781 7,54 4 2,973 396 9 7,78 2 8,321 0 1,10E-01 9,72E-01 4,99E-01 7,45E-01 

G
ol

d 
Se

t 

S. cerevisiae 

4 9 7,78 2 8,321 0 NA NA NA NA NA NA NA NA NA 
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Considered Category Comparison with less conserved genes 

Degree Betweenness Degree Betweenness Wilcoxon Test Randomization 
Network Species 

Conservation N genes 
Mean Median Mean Median 

N 
genes Mean Median Mean Median p-value 

degree 
p-value 

betweenness 
z-score 
degree 

z-score 
betweenness 

0 7,248 11,91 5 17,594 1,093 NA NA NA NA NA NA NA NA NA 
1 1,926 10,85 5 16,348 951 7,248 11,91 5 17,594 1,093 5,48E-03 7,82E-02 2,35E-01 4,09E-01 
2 873 13,15 5 22,832 921 9,174 11,69 5 17,332 1,062 1,69E-01 7,75E-01 7,48E-01 7,66E-01 
3 287 9,26 3 9,395 246 10,047 11,81 5 17,810 1,040 1,50E-05 3,98E-04 2,90E-01 2,62E-01 

H. sapiens 

4 39 8,95 4 8,327 349 10,334 11,74 5 17,577 998 1,63E-01 4,20E-01 2,73E-01 2,23E-01 
0 3,861 13,41 6 21,988 1,654 NA NA NA NA NA NA NA NA NA 
1 843 12,46 6 17,837 1,404 3,861 13,41 6 21,988 1,654 3,26E-01 3,27E-01 2,28E-01 1,46E-01 
2 418 12,76 6 19,139 1,294 4,704 13,24 6 21,244 1,583 4,87E-01 9,47E-01 3,68E-01 3,14E-01 
3 923 12,35 5 16,995 1,041 5,122 13,20 6 21,072 1,565 2,51E-02 2,56E-04 3,20E-01 2,16E-01 

D. melanogaster 

4 253 11,04 4 16,494 476 6,045 13,07 6 20,450 1,498 3,18E-03 6,11E-04 1,18E-01 2,21E-01 
0 3,702 39,17 22 7,945 1,576 NA NA NA NA NA NA NA NA NA 
1 82 24,95 12,5 3,800 559 3,702 39,17 22 7,945 1,576 1,22E-03 9,53E-04 1,21E-02 9,17E-02 
2 245 25,28 11 6,874 572 3,784 38,86 22 7,855 1,541 2,02E-11 7,05E-08 6,10E-04 3,94E-01 
3 1,176 20,84 13 3,030 650 4,029 38,03 21 7,796 1,476 5,27E-32 4,19E-21 3,77E-02 1,50E-01 

S. cerevisiae 

4 27 14,52 4 2,474 141 5,205 34,15 19 6,719 1,239 1,74E-05 6,46E-03 1,69E-02 1,46E-01 
0 1,584 12,48 5 4,207 314 NA NA NA NA NA NA NA NA NA 
1 153 11,65 6 2,475 731 1,584 12,48 5 4,207 314 1,02E-02 5,86E-02 4,26E-01 3,01E-01 
2 134 11,90 5 2,800 384 1,737 12,40 5 4,055 344 5,11E-01 5,91E-01 4,73E-01 4,36E-01 
3 401 8,52 4 1,762 250 1,871 12,37 5 3,965 358 1,67E-01 1,17E-01 8,20E-03 7,20E-03 

T
ot

al
 N

et
w

or
k 

E. coli 

4 567 8,78 4 1,999 141 2,272 11,69 5 3,576 334 2,18E-02 4,92E-02 1,86E-02 4,84E-02 
0 5,689 8,75 4 14,237 711 NA NA NA NA NA NA NA NA NA 
1 1,473 7,97 4 12,443 695 5,689 8,75 4 14,237 711 1,52E-02 7,62E-01 2,15E-01 3,10E-01 
2 663 10,05 4 19,559 566 7,162 8,59 4 13,868 709 6,56E-01 4,94E-01 7,87E-01 7,58E-01 
3 201 8,17 3 10,405 200 7,825 8,71 4 14,350 685 7,32E-03 5,12E-02 4,53E-01 4,18E-01 

H. sapiens 

4 25 5,40 4 3,834 531 8,026 8,70 4 14,251 659 6,58E-01 2,19E-01 1,33E-01 7,89E-02 
0 2,783 12,86 7 7,407 1,469 NA NA NA NA NA NA NA NA NA 
1 48 6,75 3 4,381 434 2,783 12,86 7 7,407 1,469 4,68E-04 2,60E-01 6,57E-03 1,69E-01 
2 137 5,76 2 4,313 27 2,831 12,75 7 7,356 1,452 5,94E-13 4,97E-03 0,00E+00 5,11E-02 
3 781 7,54 4 2,973 396 2,968 12,43 6 7,216 1,327 5,00E-14 1,38E-16 2,01E-01 2,25E-01 

G
ol

d 
Se

t 

S. cerevisiae 

4 9 7,78 2 8,321 0 3,749 11,41 6 6,332 1,050 4,65E-02 7,21E-01 2,84E-01 5,97E-01 

The network properties of genes with a certain level of conservation are compared with those of genes that have higher or lower conservation. Conservation is calculated as the number 

of internal nodes where no orthologs for the gene of interest are found. The comparisons are made using the Wilcoxon test and a randomization test, which is made as explained in Table 

11. Significant p-values and Z-scores are depicted in red for enrichment and in green for depletion. NA: not available. 



2.3. A randomization test confirms the relationships between 

evolutionary and network properties 

We observed a high variability in terms of the number of genes that were included 

in each category of origin and conservation: it spans three orders of magnitude, from less 

than ten to more than 7,000 proteins (Table 11, Table 12). This may introduce a bias in the 

results: in particular, when comparing categories that include a high number of proteins, 

even small differences may appear as significant, that are not significant if at least one 

category contains a small number of genes. To overcome this potential bias, we performed 

a randomization test for each category of origin and conservation. We executed 100,000 

iterations and at each iteration we measured the difference in the average degree and 

betweenness between 500 randomly selected proteins that originated at a given 

evolutionary time point and 500 younger or older proteins. The randomization was 

repeated for each evolutionary time point and in each species separately. If one group 

contained less than 500 proteins, we selected an equal number also from the older/younger 

groups (for example, since there are only 84 human genes originated with primates, these 

were compared with 84 randomly picked older genes). At the end of all randomizations, 

we obtained two distributions of differences between the average degree of proteins 

originated at a given evolutionary time point and younger and older proteins. From these 

distributions a Z-score was measured as the fraction of randomizations with a difference <0 

when comparing with younger proteins, and >0 when comparing with older proteins. A 

similar analysis was made also for centrality and both connectivity and centrality with 

respect to conservation. 

The randomization analysis confirmed that ancestral and highly conserved genes 

encode more connected and more central proteins, compared with younger and less 

conserved genes (Table 11, Table 12, Figure 37, Figure 38).  
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Figure 37: Relationships between origin and network properties using a 

randomization test  

Degree (left) and betweenness (right) are compared between proteins that originated at a certain node and 

older or younger proteins. The analysis is performed using a randomization test and the resulting z-scores are 

transformed into heatmaps. The test is performed by randomly selecting 500 proteins with the same origin, 

determining the mean degree and betweenness and comparing these values with those of 500 randomly 

selected proteins that originated before and later in evolution. The procedure is repeated 100,000 times and z-

score is calculated as the fraction of randomizations with a negative difference when comparing with younger 

proteins and with a positive difference when comparing with older proteins. The color code is as described in 

Figure 33. 

 

 

Figure 38: Relationships between conservation and network properties using a 

randomization test  

The connectivity (left) and centrality (right) of proteins with a certain level of conservation are compared 

with more and less conserved proteins using a randomization test as described in Figure 37. 
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2.4. A core of singleton hubs is conserved in evolution 

The results described so far show that protein interaction networks in different 

species seem to evolve in similar ways, following the preferential attachment theory. 

Ancestral proteins are highly connected and central, while young proteins are at the 

network periphery. Furthermore, highly connected and central proteins are retained in all 

lineages, since they have higher conservation compared to lowly connected and peripheral 

proteins. These properties are similar in all four species, although the networks are highly 

heterogeneous in terms of completeness and type of interactions. The conservation of the 

relationships between evolutionary and network properties is the consequence of the 

conservation of ancestral genes in evolution. In order to demonstrate this, we examined 

whether the network properties are conserved among orthologs and, in particular, whether 

the most connected proteins in one species have orthologs that are also highly connected. 

In absence of a consensus definition of hubs (i.e. the most highly connected nodes inside a 

network) (Vallabhajosyula et al., 2009), we identified them as the top 25% most connected 

nodes in each protein interaction network (degree ≥ 12). Half of the singleton hubs that 

originated early in evolution have orthologs that are also hubs in at least one of the other 

species (Table 13). Therefore protein interaction networks have a core of ancestral 

proteins, which are highly connected and central. These proteins are highly conserved in 

evolution and preserve their properties in all species. 
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Table 13: Hub conservation throughout evolution 

Origin Hub type Hs Dm Sc Ec 
Singleton Hubs 226 258 386 348 
Hubs with Orthologs in Networks 169 194 287 188 LUCA 
Orthologous Hubs (%) 76 (45) 99 (51) 113 

(39) 
93 

(49) 
Singleton Hubs 235 305 500 NA 
Hubs with Orthologs in Networks 212 227 277 NA Eukaryotes 
Orthologous Hubs (%) 117 

(55) 
113 
(50) 

137 
(49) NA 

Singleton Hubs 461 563 886 348 
Hubs with Orthologs in 
Networks 381 427 564 188 Total 

Orthologous Hubs (%) 193 
(51) 

212 
(50) 

250 
(44) 

93 
(49) 

For each species, the number of singleton hubs that originated in the last universal common ancestor (LUCA) 

and in eukaryotes is extracted. Of these proteins, only those that have orthologs in at least one of the other 

three species are considered and the percentage of ancestral singleton hubs that have orthologs that are also 

hubs is calculated. 

 

3. A novel group of duplicated hubs is acquired in the human network  

So far, we have demonstrated that the origin and the level of conservation of a gene 

influence the network properties of its encoded protein and the netework core is highly 

conserved throughout evolution. Furthermore, the relationships duplicability, connectivity 

and centrality are different between different species. In particular, while human hubs are 

mostly duplicated, in the other species singleton genes encode more connected proteins 

than duplicated genes. In order to understand the evolutionary reasons for this change, we 

studied how network properties of singleton and duplicated proteins are affected by their 

origin. We compared the network properties of singleton and duplicated proteins that have 

the same origin. In case the origin of a gene influences the relationships between network 

properties and duplicability, this analysis should show significant differences between 

human and the other species.  

The analysis of ancient genes for all four species showed the same relationships 

between origin, duplicability and network properties: among genes that originated between 
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the last universal common ancestor and eukaryotes, singletons are more connected and 

more central than duplicated proteins, supporting the presence of a core of ancestral 

proteins that are highly conserved in all networks (Figure 39, Table 14). Surprisingly, this 

was evident also in the H. sapiens protein interaction network, although the general trend 

is opposite, i.e. duplicated genes encode more connected and central proteins than 

singletons. The differences between human and the other species became evident in the 

analysis of younger genes. Indeed, while D. melanogaster, S. cerevisiae and E. coli 

showed a slight enrichment of singletons in hubs, the H. sapiens network presented a 

significant inversion of the trend. Duplicated genes that originated with metazoans and, 

with less statistical evidence, vertebrates and mammals, encode proteins that are more 

connected than singletons. This signal was evident also when analyzing the gold set. The 

difference between duplicated and singleton genes was so strong that the overall signal 

appeared different for H. sapiens, compared to the other species.  

 

Figure 39: Relationships between conservation and network properties  

Wilcoxon test is used to compare degree and betweenness of singleton and duplicated genes at different 

levels of origin in all four species. The resulting p-values are transformed into heatmaps as described in 

Figure 33. 



Table 14: relationships between duplicability and network properties  

Duplicated Genes Singleton Genes 

Degree Betweenness Degree Betweenness Network Species Origin N 
genes N 

genes Mean Median Mean Median 
N 

genes Mean Median Mean Median 

p-value 
degree 

p-value 
betweenness 

LUCA 3248 2468 12,5 5,0 18945 1088 780 11,3 5,0 14586 1340 3,08E-01 8,00E-01 

Eukaryotes 3247 2474 12,9 5,0 21615 1131 773 11,7 6,0 13970 1359 7,15E-02 5,20E-01 

Opisthokonts 178 148 9,8 5,5 9916 1221 30 7,6 3,5 6572 896 1,12E-01 8,00E-01 

Metazoans 1399 901 14,2 6,0 23900 1737 498 11,5 4,0 16996 478 1,18E-03 5,39E-07 

Vertebrates 1683 765 11,1 4,0 15110 872 918 9,2 4,0 13143 681 3,83E-02 3,88E-01 

Mammals 534 187 7,7 4,0 9236 500 347 5,9 3,0 5849 197 8,86E-02 2,01E-01 

H. sapiens 

Primates 84 20 5,8 2,5 4550 103 64 7,5 4,0 6537 981 2,73E-01 6,23E-02 

LUCA 2425 1493 11,7 5,0 17804 1012 932 12,2 6,0 19157 1648 7,05E-03 4,22E-02 

Eukaryotes 2255 1279 14,1 6,0 21247 1629 976 13,2 6,0 19308 1935 8,00E-01 8,00E-01 

Opisthokonts 84 40 14,1 5,5 23371 1014 44 19,7 9,0 53836 4433 8,00E-01 3,30E-01 

Metazoans 1001 396 14,0 6,0 23344 1586 605 14,7 7,0 25674 2199 4,15E-01 5,39E-01 

D. 
melanogaster 

Insects 533 221 11,3 4,0 17328 418 312 11,8 5,0 17391 934 1,34E-01 2,08E-01 

LUCA 2433 1284 39,1 19,0 9084 1296 1149 37,9 21,0 6278 1366 1,41E-01 3,19E-01 

Eukaryotes 2688 863 30,0 16,0 6080 970 1825 31,0 19,0 5824 1334 2,04E-03 3,52E-02 

Opisthokonts 6 1 2,0 2,0 156 156 5 9,2 7,0 614 27 6,67E-01 8,00E-01 
S. cerevisiae 

Fungi 105 14 14,7 5,0 2919 258 91 18,3 9,0 2667 493 1,42E-01 6,58E-01 

LUCA 2136 1283 8,8 4,0 2287 212 853 18,5 7,0 6464 696 2,32E-20 4,36E-10 

T
ot

al
 N

et
w

or
k 

E. coli 
Bacteria 703 165 5,5 3,0 1005 106 538 6,5 4,0 1199 124 4,80E-01 3,16E-01 

LUCA 2482 1935 9,4 4,0 17942 776 547 6,9 4,0 8894 524 1,34E-01 1,04E-01 

Eukaryotes 2470 1918 9,2 4,0 15392 600 552 7,5 4,0 9128 542 2,76E-01 2,42E-02 

Opisthokonts 146 130 8,0 4,0 10525 753 16 3,4 2,0 1735 4 5,31E-02 1,80E-02 

Metazoans 1115 775 11,0 5,0 18390 1281 340 8,3 4,0 10356 286 3,24E-03 4,92E-04 

Vertebrates 1355 650 8,9 4,0 14635 1124 705 7,3 4,0 12130 510 1,40E-02 2,59E-01 

Mammals 414 147 6,4 4,0 8388 948 267 4,9 3,0 5621 91 8,61E-03 5,79E-02 

H. sapiens 

Primates 69 18 5,2 2,0 3882 55 51 5,2 3,0 5826 225 8,00E-01 1,23E-01 

LUCA 1690 856 9,0 4,0 6782 716 834 13,2 6,0 6633 1355 4,14E-07 1,88E-02 

Eukaryotes 1998 586 10,2 5,0 6767 1001 1412 12,5 7,0 5868 1167 2,58E-06 1,04E-02 

Opisthokonts 4 0 NA NA NA NA 4 1,8 1,0 431 0 1,00E+00 1,00E+00 

G
ol

de
n 

Se
t 

S. cerevisiae 

Fungi 66 7 7,7 2,0 962 0 59 7,0 3,0 3683 193 4,12E-01 1,55E-01 

 



For each level of origin, the network properties of duplicated and singleton genes are compared. 

Duplicability is defined as the presence of paralogous genes inside the same KOG (for eukaryotes) or COG 

(fo E. coli). The comparisons are made using the Wilcoxon test. Significant p-values are depicted in red for 

enrichment in duplicated genes and in green for enrichment in singletons. NA: not available. 

 

Since D. melanogaster genes that originated with metazoans did not show the same 

properties of H. sapiens, it is likely that the genes that originated with metazoans gained 

the “hub” status after the speciation of insects.  

These findings support the hypothesis that the evolution of protein interaction 

networks has allowed the birth of two classes of hubs, one ancestral, which is conserved in 

all species, and one that has arisen later in evolution. The first constitutes the core of the 

network and is composed of proteins encoded by ancient and highly conserved singleton 

genes. The second originated with metazoans and, to a lower extent, vertebrates and 

mammals, and is composed of young duplicated genes. These hubs appeared in the 

ancestor of vertebrates and their duplication has been retained in evolution because their 

sensitivity to dosage modifications has likely been reduced by other factors.  

4. Ancient and recent human hubs are involved in different functions 

The human protein interaction network shares a core of ancestral singleton hubs 

with all other species, and acquired a class of young duplicated hubs that is instead absent 

in other species. Given the different origin and duplicability, these two classes of hubs are 

likely to have different biological functions. Of the 2,573 human hubs, 461 are ancestral 

(i.e. originated with the last universal common ancestor or eukaryotes) and singleton, while 

468 are recent (i.e. originated with metazoans or vertebrates) and duplicated.  

We designed a pipeline to analyze the functional differences between ancestral 

singleton and recent duplicated hubs that relies on the Biological Process branch of the 

Gene Ontology (GO) (Ashburner et al., 2000). Briefly, all the GO terms at level 5 and 6 

are mapped to twelve macro-categories to facilitate the understanding of the functional 
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differences between the two classes. Then all genes from the two classes are mapped to 

each GO term and the enrichment in one of the two classes is calculated using Fisher’s 

exact test. Depending on the number and the level of significance of the GO terms and the 

number of significant GO terms in each macro-category, the functional differences 

between the two classes become evident.  

This analysis showed indeed that there are significant functional differences 

between the two classes of hubs (Figure 40, Table 15). Ancient singleton hubs are involved 

in basic biological processes that are related to the cell survival. In particular, this class is 

enriched in GO terms that are associated to the categories “DNA and RNA metabolism and 

transcription” and “cellular metabolism”. Recent duplicated hubs, instead, are involved in 

the organization of the multicellular organism, in cell communication and in regulatory 

functions. Indeed, they are associated with the development of organs and tissues, cell 

motility and interactions with the environment, response to external stimuli and immune 

response. Furthermore, they are involved in the cell homeostasis and in the regulation of 

several pathways, transcription and cell cycle.  

 

Figure 40: Functional differences between the two classes of human hubs  

Functional differences are analyzed between ancient singleton hubs and recent duplicated hubs, ancestral and 

recent human genes, and singleton and duplicated human genes. “Ancestral” refers to as genes that originated 

between the last universal common ancestor and Opisthokonts, while “recent” identifies genes that originated 

with Metazoans or later. For each GO term, Fisher’s exact test is performed for all the three analyses and the 

resulting p-values are adjusted for the false discovery rate. Each vertical bar corresponds to a single GO term. 

All GO terms are grouped into 12 functional categories. Blue bars represent significant enrichment for 

duplicated and recent genes or hubs, while orange represents enrichment in singleton and recent genes or 

hubs. White represents no enrichment. 



Table 15: functional comparison between recent duplicated hubs and ancestral singleton hubs 

Process GO level GO description GO ID 
N 

genes 
(list 1) 

N 
genes 
(list 2) 

% of total 
genes (list 

1) 

% of total 
genes (list 

2) 
p-value adjusted p-

value 
Enriched 

list 

Cell cycle 5 cell cycle arrest GO:0007050 12 2 2,75 0,48 1,25E-02 3,27E-02 1 
Cell cycle 5 apoptosis GO:0006915 88 28 20,18 6,71 6,80E-09 9,42E-08 1 
Cell cycle 5 cell development GO:0048468 60 9 13,76 2,16 1,19E-10 2,69E-09 1 
Cell cycle 5 negative regulation of growth GO:0045926 16 1 3,67 0,24 2,55E-04 1,28E-03 1 
Cell cycle 5 regulation of cell proliferation GO:0042127 58 13 13,30 3,12 3,99E-08 4,22E-07 1 
Cell cycle 5 cell growth GO:0016049 21 2 4,82 0,48 5,85E-05 3,29E-04 1 
Cell cycle 6 M phase GO:0000279 8 25 1,83 6,00 2,09E-03 8,77E-03 2 
Cell cycle 6 regulation of programmed cell death GO:0043067 72 20 16,51 4,80 1,86E-08 4,43E-07 1 
Cell cycle 6 cell cycle checkpoint GO:0000075 2 12 0,46 2,88 5,94E-03 2,12E-02 2 
Cell motility and interactions 5 taxis GO:0042330 14 1 3,21 0,24 9,25E-04 3,47E-03 1 
Cell motility and interactions 5 regulation of cellular component movement GO:0051270 25 2 5,73 0,48 4,72E-06 3,40E-05 1 
Cell motility and interactions 5 regulation of cell adhesion GO:0030155 14 1 3,21 0,24 9,25E-04 3,47E-03 1 
Cell motility and interactions 6 chemotaxis GO:0006935 14 1 3,21 0,24 9,25E-04 4,71E-03 1 
Cell motility and interactions 6 cell migration GO:0016477 39 3 8,94 0,72 3,52E-09 1,08E-07 1 
Cell motility and interactions 6 positive regulation of cellular component movement GO:0051272 15 1 3,44 0,24 4,87E-04 2,82E-03 1 
Cell response to stimuli 6 sensory perception GO:0007600 20 3 4,59 0,72 4,44E-04 2,79E-03 1 
Cell response to stimuli 6 cellular response to hormone stimulus GO:0032870 15 2 3,44 0,48 2,22E-03 8,98E-03 1 
Cell response to stimuli 6 response to peptide hormone stimulus GO:0043434 14 3 3,21 0,72 1,22E-02 3,89E-02 1 
Cellular metabolism 5 cellular nitrogen compound biosynthetic process GO:0044271 1 8 0,23 1,92 1,84E-02 4,74E-02 2 
Cellular metabolism 5 macromolecule catabolic process GO:0043285 29 58 6,65 13,91 6,18E-04 2,47E-03 2 
Cellular metabolism 5 cellular macromolecule catabolic process GO:0044265 17 51 3,90 12,23 6,60E-06 4,57E-05 2 
Cellular metabolism 5 macromolecule biosynthetic process GO:0043284 136 167 31,19 40,05 8,06E-03 2,27E-02 2 
Cellular metabolism 5 cellular lipid metabolic process GO:0044255 23 8 5,28 1,92 9,88E-03 2,74E-02 1 
Cellular metabolism 6 modification-dependent macromolecule catabolic process GO:0043632 12 32 2,75 7,67 1,66E-03 7,64E-03 2 
Cellular metabolism 6 cellular protein metabolic process GO:0044267 69 129 15,83 30,94 1,80E-07 3,85E-06 2 
Cellular metabolism 6 steroid metabolic process GO:0008202 12 2 2,75 0,48 1,25E-02 3,89E-02 1 
Cellular processes (not DNA/RNA) 5 establishment of RNA localization GO:0051236 1 12 0,23 2,88 1,39E-03 4,81E-03 2 
Cellular processes (not DNA/RNA) 5 ion transport GO:0006811 29 7 6,65 1,68 2,64E-04 1,29E-03 1 
Cellular processes (not DNA/RNA) 6 endocytosis GO:0006897 29 5 6,65 1,20 3,16E-05 2,70E-04 1 
Cellular processes (not DNA/RNA) 6 cation transport GO:0006812 26 7 5,96 1,68 1,17E-03 5,80E-03 1 
Development 5 cell fate commitment GO:0045165 18 1 4,13 0,24 6,94E-05 3,67E-04 1 
Development 5 regulation of cell differentiation GO:0045595 45 6 10,32 1,44 1,04E-08 1,34E-07 1 
Development 5 embryonic morphogenesis GO:0048598 18 2 4,13 0,48 3,70E-04 1,62E-03 1 
Development 5 skeletal system development GO:0001501 31 2 7,11 0,48 9,75E-08 9,75E-07 1 
Development 5 urogenital system development GO:0001655 10 1 2,29 0,24 1,14E-02 3,07E-02 1 
Development 5 immune system development GO:0002520 26 9 5,96 2,16 5,42E-03 1,63E-02 1 
Development 5 nervous system development GO:0007399 73 15 16,74 3,60 7,91E-11 2,03E-09 1 
Development 5 organ development GO:0048513 110 21 25,23 5,04 2,84E-17 1,70E-15 1 
Development 5 cellular component morphogenesis GO:0032989 38 2 8,72 0,48 9,36E-10 1,68E-08 1 
Development 5 anatomical structure formation involved in morphogenesis GO:0048646 30 5 6,88 1,20 1,80E-05 1,16E-04 1 
Development 5 positive regulation of developmental process GO:0051094 55 13 12,61 3,12 1,99E-07 1,88E-06 1 
Development 5 positive regulation of multicellular organismal process GO:0051240 24 1 5,50 0,24 1,30E-06 1,01E-05 1 
Development 5 negative regulation of developmental process GO:0051093 55 9 12,61 2,16 2,42E-09 3,63E-08 1 
Development 5 regulation of tissue remodeling GO:0034103 13 1 2,98 0,24 1,75E-03 5,83E-03 1 
Development 6 negative regulation of cell differentiation GO:0045596 20 2 4,59 0,48 1,09E-04 8,95E-04 1 
Development 6 positive regulation of cell differentiation GO:0045597 28 3 6,42 0,72 3,75E-06 4,42E-05 1 
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Development 6 neurogenesis GO:0022008 39 6 8,94 1,44 3,66E-07 7,12E-06 1 
Development 6 central nervous system development GO:0007417 29 8 6,65 1,92 6,46E-04 3,64E-03 1 
Development 6 regulation of nervous system development GO:0051960 13 1 2,98 0,24 1,75E-03 7,64E-03 1 
Development 6 vasculature development GO:0001944 21 3 4,82 0,72 2,49E-04 1,71E-03 1 
Development 6 organ morphogenesis GO:0009887 59 6 13,53 1,44 2,72E-12 1,94E-10 1 
Development 6 tissue development GO:0009888 52 5 11,93 1,20 2,75E-11 1,47E-09 1 
Development 6 sensory organ development GO:0007423 14 1 3,21 0,24 9,25E-04 4,71E-03 1 
Development 6 heart development GO:0007507 21 6 4,82 1,44 5,49E-03 1,99E-02 1 
Development 6 muscle organ development GO:0007517 17 2 3,90 0,48 6,77E-04 3,71E-03 1 
Development 6 gland development GO:0048732 15 1 3,44 0,24 4,87E-04 2,82E-03 1 
Development 6 cell morphogenesis GO:0000902 37 2 8,49 0,48 1,83E-09 6,53E-08 1 
Development 6 cell part morphogenesis GO:0032990 21 1 4,82 0,24 9,60E-06 9,78E-05 1 
Development 6 regulation of bone remodeling GO:0046850 13 1 2,98 0,24 1,75E-03 7,64E-03 1 
DNA/RNA metabolism and transcription 5 nucleobase, nucleoside, nucleotide and nucleic acid transport GO:0015931 1 12 0,23 2,88 1,39E-03 4,81E-03 2 
DNA/RNA metabolism and transcription 6 DNA metabolic process GO:0006259 7 76 1,61 18,23 4,54E-18 4,86E-16 2 
DNA/RNA metabolism and transcription 6 ribonucleoprotein complex assembly GO:0022618 1 11 0,23 2,64 2,68E-03 1,04E-02 2 
DNA/RNA metabolism and transcription 6 nucleic acid transport GO:0050657 1 12 0,23 2,88 1,39E-03 6,75E-03 2 
Immune system response 5 inflammatory response GO:0006954 26 1 5,96 0,24 3,37E-07 2,76E-06 1 
Immune system response 5 positive regulation of immune system process GO:0002684 13 2 2,98 0,48 7,11E-03 2,06E-02 1 
Immune system response 6 T cell activation GO:0042110 12 2 2,75 0,48 1,25E-02 3,89E-02 1 
Immune system response 6 B cell activation GO:0042113 13 2 2,98 0,48 7,11E-03 2,41E-02 1 
Immune system response 6 regulation of leukocyte activation GO:0002694 11 1 2,52 0,24 6,15E-03 2,16E-02 1 
Multicellular activities 5 muscle contraction GO:0006936 15 1 3,44 0,24 4,87E-04 1,99E-03 1 
Multicellular activities 5 blood circulation GO:0008015 16 2 3,67 0,48 1,23E-03 4,43E-03 1 
Multicellular activities 5 transmission of nerve impulse GO:0019226 28 5 6,42 1,20 5,52E-05 3,20E-04 1 
Multicellular activities 5 cognition GO:0050890 25 3 5,73 0,72 2,33E-05 1,40E-04 1 
Multicellular activities 5 wound healing GO:0042060 18 2 4,13 0,48 3,70E-04 1,62E-03 1 
Multicellular activities 5 homeostasis of number of cells GO:0048872 14 2 3,21 0,48 3,99E-03 1,24E-02 1 
Multicellular activities 6 synaptic transmission GO:0007268 25 5 5,73 1,20 2,84E-04 1,84E-03 1 
Regulation of intracellular processes and metabolism 5 regulation of protein localization GO:0032880 17 2 3,90 0,48 6,77E-04 2,65E-03 1 
Regulation of intracellular processes and metabolism 5 regulation of transport GO:0051049 37 3 8,49 0,72 1,29E-08 1,45E-07 1 
Regulation of intracellular processes and metabolism 5 regulation of biosynthetic process GO:0009889 145 99 33,26 23,74 2,41E-03 7,75E-03 1 
Regulation of intracellular processes and metabolism 5 negative regulation of metabolic process GO:0009892 54 23 12,39 5,52 4,82E-04 1,99E-03 1 
Regulation of intracellular processes and metabolism 5 positive regulation of metabolic process GO:0009893 72 23 16,51 5,52 2,17E-07 1,95E-06 1 
Regulation of intracellular processes and metabolism 5 regulation of cellular metabolic process GO:0031323 176 119 40,37 28,54 3,14E-04 1,49E-03 1 
Regulation of intracellular processes and metabolism 5 regulation of nitrogen compound metabolic process GO:0051171 141 94 32,34 22,54 1,64E-03 5,58E-03 1 
Regulation of intracellular processes and metabolism 5 regulation of macromolecule metabolic process GO:0060255 164 117 37,61 28,06 3,53E-03 1,11E-02 1 
Regulation of intracellular processes and metabolism 5 positive regulation of cellular process GO:0048522 125 40 28,67 9,59 9,21E-13 3,32E-11 1 
Regulation of intracellular processes and metabolism 5 negative regulation of cellular process GO:0048523 116 36 26,61 8,63 4,26E-12 1,28E-10 1 
Regulation of intracellular processes and metabolism 5 negative regulation of cellular component organization GO:0051129 15 3 3,44 0,72 7,19E-03 2,06E-02 1 
Regulation of intracellular processes and metabolism 5 regulation of cell activation GO:0050865 11 1 2,52 0,24 6,15E-03 1,82E-02 1 
Regulation of intracellular processes and metabolism 5 cellular homeostasis GO:0019725 32 6 7,34 1,44 1,92E-05 1,19E-04 1 
Regulation of intracellular processes and metabolism 5 chemical homeostasis GO:0048878 37 5 8,49 1,20 3,07E-07 2,64E-06 1 
Regulation of intracellular processes and metabolism 5 negative regulation of catalytic activity GO:0043086 11 26 2,52 6,24 1,08E-02 2,94E-02 2 
Regulation of intracellular processes and metabolism 5 regulation of ligase activity GO:0051340 1 22 0,23 5,28 1,51E-06 1,13E-05 2 
Regulation of intracellular processes and metabolism 6 positive regulation of transport GO:0051050 16 1 3,67 0,24 2,55E-04 1,71E-03 1 
Regulation of intracellular processes and metabolism 6 negative regulation of transport GO:0051051 17 1 3,90 0,24 1,33E-04 1,02E-03 1 
Regulation of intracellular processes and metabolism 6 negative regulation of biosynthetic process GO:0009890 38 18 8,72 4,32 1,22E-02 3,89E-02 1 
Regulation of intracellular processes and metabolism 6 positive regulation of biosynthetic process GO:0009891 58 17 13,30 4,08 1,52E-06 2,04E-05 1 
Regulation of intracellular processes and metabolism 6 regulation of cellular biosynthetic process GO:0031326 143 99 32,80 23,74 3,86E-03 1,47E-02 1 
Regulation of intracellular processes and metabolism 6 negative regulation of macromolecule metabolic process GO:0010605 53 23 12,16 5,52 7,02E-04 3,75E-03 1 
Regulation of intracellular processes and metabolism 6 negative regulation of cellular metabolic process GO:0031324 48 23 11,01 5,52 4,16E-03 1,54E-02 1 
Regulation of intracellular processes and metabolism 6 positive regulation of macromolecule metabolic process GO:0010604 68 22 15,60 5,28 6,62E-07 1,18E-05 1 
Regulation of intracellular processes and metabolism 6 positive regulation of cellular metabolic process GO:0031325 69 23 15,83 5,52 8,76E-07 1,44E-05 1 
Regulation of intracellular processes and metabolism 6 positive regulation of nitrogen compound metabolic process GO:0051173 55 18 12,61 4,32 1,34E-05 1,25E-04 1 
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Regulation of intracellular processes and metabolism 6 positive regulation of cell proliferation GO:0008284 26 6 5,96 1,44 4,67E-04 2,82E-03 1 
Regulation of intracellular processes and metabolism 6 negative regulation of cell proliferation GO:0008285 33 6 7,57 1,44 1,11E-05 1,08E-04 1 
Regulation of intracellular processes and metabolism 6 cellular chemical homeostasis GO:0055082 29 4 6,65 0,96 8,80E-06 9,42E-05 1 
Regulation of intracellular processes and metabolism 6 ion homeostasis GO:0050801 29 5 6,65 1,20 3,16E-05 2,70E-04 1 
Regulation of intracellular processes and metabolism 6 negative regulation of ligase activity GO:0051352 1 21 0,23 5,04 3,04E-06 3,82E-05 2 
Regulation of intracellular processes and metabolism 6 positive regulation of transferase activity GO:0051347 16 3 3,67 0,72 4,19E-03 1,54E-02 1 
Regulation of intracellular processes and metabolism 6 regulation of ubiquitin-protein ligase activity GO:0051438 1 22 0,23 5,28 1,51E-06 2,04E-05 2 
Regulation of transcription 6 regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process GO:0019219 139 94 31,88 22,54 2,68E-03 1,04E-02 1 
Regulation of transcription 6 regulation of gene expression GO:0010468 143 96 32,80 23,02 1,74E-03 7,64E-03 1 
Signal transduction 5 signal transduction GO:0007165 205 54 47,02 12,95 2,64E-28 4,75E-26 1 
Signal transduction 6 cell surface receptor linked signaling pathway GO:0007166 128 13 29,36 3,12 8,50E-28 1,82E-25 1 
Signal transduction 6 intracellular signaling pathway GO:0007242 92 31 21,10 7,43 9,46E-09 2,53E-07 1 
Signal transduction 6 regulation of signal transduction GO:0009966 56 9 12,84 2,16 1,34E-09 5,72E-08 1 

 

The pipeline to determine the functional enrichment between two lists of genes is described in Figure 24. Fisher’s exact test is calculated for each GO term and all GO terms at level 5 

and 6 are grouped into 12 functional categories. List 1 represents recent (i.e. originated with metazoans and vertebrates) duplicated hubs, while list 2 represents ancestral (i.e. originated 

with the last universal common ancestor) singleton hubs. 



 

In order to understand the causes of the functional differences between the two 

classes of human hubs, we conducted the same analysis on duplicated and singleton genes 

(Figure 40, Table 16) and on ancestral and recent genes (Figure 40, Table 17). The 

investigation of the significant GO terms and categories demonstrated that the biological 

processes that involve recent duplicated hubs are the same that are associated to young 

genes, while ancient singleton hubs are representative of the old genes, in terms of 

function. Similar functional differences between old and young genes had already been 

found also in yeast, where basic cellular processes, such as transcription and replication, 

are typical of old genes, while young genes are involved in genetic, transcriptional and 

posttranslational regulation (Kunin et al., 2004).  

The signal between duplicated and singleton genes showed less statistical support 

and presented some interesting exceptions. The most evident was represented by the genes 

involved in the immune system response. Recent duplicated hubs are enriched in this 

category, and so are recent genes. However, the comparison of singleton and duplicated 

genes showed that singletons are enriched in the same terms. Cellular metabolism instead 

showed the opposite behavior, although with less statistical support: both ancient singleton 

hubs and ancient genes are involved in this process, but duplicated genes are enriched 

when compared with singletons.  

These results demonstrate that the two classes of human hubs are involved in the 

biological processes that are typical of genes with their same origin and, at least in part 

with the same duplicability.  



Table 16: functional comparison between duplicated genes and singleton genes  

Process GO 
level GO description GO ID 

N 
genes 
(list 1) 

N 
genes 
(list 2) 

% of 
total 
genes 
(list 1) 

% of 
total 
genes 
(list 2) 

p-value adjusted 
p-value 

Enriched 
list 

Cell cycle 5 sister chromatid segregation GO:0000819 12 16 0,13 0,43 
2,90E-

03 1,92E-02 2 

Cell cycle 5 cell cycle phase GO:0022403 251 162 2,82 4,31 
2,96E-

05 3,41E-04 2 

Cell cycle 5 apoptosis GO:0006915 553 305 6,21 8,11 
1,26E-

04 1,23E-03 2 

Cell cycle 5 cell development GO:0048468 473 122 5,31 3,25 
2,41E-

07 3,94E-06 1 

Cell cycle 5 regulation of cell cycle GO:0051726 153 107 1,72 2,85 
8,49E-

05 8,83E-04 2 

Cell cycle 6 M phase GO:0000279 192 141 2,16 3,75 
7,29E-

07 2,23E-05 2 

Cell cycle 6 cell cycle checkpoint GO:0000075 37 38 0,42 1,01 
1,82E-

04 2,45E-03 2 

Cell cycle 6 regulation of mitotic cell cycle GO:0007346 71 62 0,80 1,65 
3,52E-

05 7,19E-04 2 

Cell cycle 6 regulation of cell cycle process GO:0010564 47 39 0,53 1,04 
2,00E-

03 1,72E-02 2 

Cell motility and interactions 5 homophilic cell adhesion GO:0007156 94 4 1,06 0,11 
2,00E-

10 5,61E-09 1 

Cell motility and interactions 5 calcium-dependent cell-cell adhesion GO:0016339 21 1 0,24 0,03 
8,30E-

03 4,34E-02 1 

Cell motility and interactions 5 calcium-independent cell-cell adhesion GO:0016338 1 21 0,01 0,56 
1,28E-

10 3,85E-09 2 

Cell motility and interactions 5 cell-matrix adhesion GO:0007160 81 16 0,91 0,43 
3,55E-

03 2,21E-02 1 

Cell motility and interactions 5 cell-substrate junction assembly GO:0007044 21 1 0,24 0,03 
8,30E-

03 4,34E-02 1 

Cell response to stimuli 5 response to virus GO:0009615 49 51 0,55 1,36 
7,95E-

06 1,01E-04 2 

Cell response to stimuli 5 response to bacterium GO:0009617 58 52 0,65 1,38 
9,32E-

05 9,37E-04 2 

Cell response to stimuli 5 response to fungus GO:0009620 5 11 0,06 0,29 
1,41E-

03 1,01E-02 2 

Cell response to stimuli 6 sensory perception GO:0007600 362 296 4,07 7,87 
1,97E-

17 1,82E-15 2 

Cell response to stimuli 6 defense response to bacterium GO:0042742 34 44 0,38 1,17 
1,13E-

06 3,27E-05 2 

Cell response to stimuli 6 defense response to fungus GO:0050832 2 8 0,02 0,21 
1,47E-

03 1,42E-02 2 

Cell response to stimuli 6 response to gamma radiation GO:0010332 3 9 0,03 0,24 
1,55E-

03 1,45E-02 2 

Cellular metabolism 5 cellular nitrogen compound biosynthetic process GO:0044271 77 79 0,86 2,10 
4,33E-

08 8,93E-07 2 

Cellular metabolism 5 macromolecule catabolic process GO:0043285 818 291 9,19 7,74 
8,90E-

03 4,59E-02 1 

Cellular metabolism 5 aromatic compound catabolic process GO:0019439 6 14 0,07 0,37 
2,28E-

04 2,08E-03 2 

Cellular metabolism 5 macromolecule biosynthetic process GO:0043284 2180 758 24,49 20,16 
1,15E-

07 2,04E-06 1 

Cellular metabolism 5 heterocycle biosynthetic process GO:0018130 16 28 0,18 0,74 3,33E- 4,51E-05 2 
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06 

Cellular metabolism 5 aromatic compound biosynthetic process GO:0019438 6 11 0,07 0,29 
2,93E-

03 1,92E-02 2 

Cellular metabolism 5 cofactor biosynthetic process GO:0051188 33 52 0,37 1,38 
2,33E-

09 5,71E-08 2 

Cellular metabolism 5 macromolecule modification GO:0043412 1151 348 12,93 9,26 
2,84E-

09 6,54E-08 1 

Cellular metabolism 5 collagen metabolic process GO:0032963 32 3 0,36 0,08 
4,70E-

03 2,71E-02 1 

Cellular metabolism 5 cytokine metabolic process GO:0042107 43 35 0,48 0,93 
5,79E-

03 3,20E-02 2 

Cellular metabolism 5 lipoprotein metabolic process GO:0042157 23 54 0,26 1,44 
2,47E-

13 9,68E-12 2 

Cellular metabolism 5 energy derivation by oxidation of organic compounds GO:0015980 77 68 0,86 1,81 
1,37E-

05 1,68E-04 2 

Cellular metabolism 5 phosphate metabolic process GO:0006796 886 234 9,95 6,23 
3,91E-

12 1,40E-10 1 

Cellular metabolism 5 tetrapyrrole metabolic process GO:0033013 10 15 0,11 0,40 
1,71E-

03 1,18E-02 2 

Cellular metabolism 5 coenzyme metabolic process GO:0006732 64 68 0,72 1,81 
1,42E-

07 2,42E-06 2 

Cellular metabolism 6 tetrapyrrole biosynthetic process GO:0033014 5 14 0,06 0,37 
9,44E-

05 1,41E-03 2 

Cellular metabolism 6 pteridine and derivative biosynthetic process GO:0042559 4 9 0,04 0,24 
3,71E-

03 2,81E-02 2 

Cellular metabolism 6 protein catabolic process GO:0030163 756 218 8,49 5,80 
1,14E-

07 4,19E-06 1 

Cellular metabolism 6 lipoprotein biosynthetic process GO:0042158 14 42 0,16 1,12 
3,04E-

12 1,86E-10 2 

Cellular metabolism 6 coenzyme biosynthetic process GO:0009108 26 34 0,29 0,90 
1,37E-

05 3,02E-04 2 

Cellular metabolism 6 aminoglycan metabolic process GO:0006022 36 31 0,40 0,82 
4,49E-

03 3,22E-02 2 

Cellular metabolism 6 cellular protein metabolic process GO:0044267 1732 654 19,46 17,40 
6,71E-

03 4,41E-02 1 

Cellular metabolism 6 carboxylic acid metabolic process GO:0019752 334 180 3,75 4,79 
7,75E-

03 4,86E-02 2 

Cellular metabolism 6 phosphorylation GO:0016310 744 216 8,36 5,75 
2,53E-

07 8,21E-06 1 

Cellular metabolism 6 dephosphorylation GO:0016311 140 17 1,57 0,45 
1,82E-

08 8,36E-07 1 

Cellular metabolism 6 porphyrin metabolic process GO:0006778 10 15 0,11 0,40 
1,71E-

03 1,56E-02 2 

Cellular metabolism 6 oxidoreduction coenzyme metabolic process GO:0006733 21 22 0,24 0,59 
3,82E-

03 2,85E-02 2 

Cellular metabolism 6 glycerolipid metabolic process GO:0046486 77 59 0,86 1,57 
6,48E-

04 7,30E-03 2 

Cellular metabolism 6 immunoglobulin production GO:0002377 14 20 0,16 0,53 
4,78E-

04 5,69E-03 2 

Cellular processes (not DNA/RNA) 5 electron transport chain GO:0022900 43 62 0,48 1,65 
4,62E-

10 1,21E-08 2 

Cellular processes (not DNA/RNA) 5 cellular protein localization GO:0034613 271 154 3,04 4,10 
3,49E-

03 2,21E-02 2 

Cellular processes (not DNA/RNA) 5 vesicle-mediated transport GO:0016192 402 122 4,52 3,25 
8,89E-

04 7,11E-03 1 

Cellular processes (not DNA/RNA) 5 ion transport GO:0006811 624 114 7,01 3,03 
2,93E-

20 1,91E-18 1 

Cellular processes (not DNA/RNA) 5 neurotransmitter transport GO:0006836 67 10 0,75 0,27 
9,83E-

04 7,56E-03 1 

Cellular processes (not DNA/RNA) 5 hormone transport GO:0009914 33 30 0,37 0,80 
3,28E-

03 2,11E-02 2 
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Cellular processes (not DNA/RNA) 5 organic acid transport GO:0015849 108 19 1,21 0,51 
1,79E-

04 1,67E-03 1 

Cellular processes (not DNA/RNA) 6 peroxisomal transport GO:0043574 2 12 0,02 0,32 
2,23E-

05 4,73E-04 2 

Cellular processes (not DNA/RNA) 6 endocytosis GO:0006897 185 40 2,08 1,06 
4,65E-

05 8,33E-04 1 

Cellular processes (not DNA/RNA) 6 cation transport GO:0006812 447 93 5,02 2,47 
1,18E-

11 6,50E-10 1 

Cellular processes (not DNA/RNA) 6 anion transport GO:0006820 110 15 1,24 0,40 
4,29E-

06 1,08E-04 1 

Cellular processes (not DNA/RNA) 6 carboxylic acid transport GO:0046942 107 19 1,20 0,51 
1,74E-

04 2,40E-03 1 

Development 5 cell fate commitment GO:0045165 95 8 1,07 0,21 
9,34E-

08 1,74E-06 1 

Development 5 regulation of cell differentiation GO:0045595 262 74 2,94 1,97 
1,62E-

03 1,13E-02 1 

Development 5 embryonic development ending in birth or egg hatching GO:0009792 173 46 1,94 1,22 
4,46E-

03 2,61E-02 1 

Development 5 embryonic morphogenesis GO:0048598 178 28 2,00 0,74 
7,68E-

08 1,50E-06 1 

Development 5 regionalization GO:0003002 127 18 1,43 0,48 
1,39E-

06 2,02E-05 1 

Development 5 skeletal system development GO:0001501 224 56 2,52 1,49 
2,60E-

04 2,27E-03 1 

Development 5 nervous system development GO:0007399 660 147 7,41 3,91 
1,97E-

14 8,59E-13 1 

Development 5 organ development GO:0048513 1052 360 11,82 9,58 
2,34E-

04 2,08E-03 1 

Development 5 morphogenesis of a branching structure GO:0001763 42 6 0,47 0,16 
6,92E-

03 3,77E-02 1 

Development 5 cellular component morphogenesis GO:0032989 258 64 2,90 1,70 
7,15E-

05 7,99E-04 1 

Development 6 regulation of smooth muscle cell proliferation GO:0048660 11 15 0,12 0,40 
3,94E-

03 2,90E-02 2 

Development 6 cell fate specification GO:0001708 37 1 0,42 0,03 
4,50E-

05 8,33E-04 1 

Development 6 cell fate determination GO:0001709 26 2 0,29 0,05 
6,38E-

03 4,24E-02 1 

Development 6 negative regulation of cell differentiation GO:0045596 120 23 1,35 0,61 
2,09E-

04 2,75E-03 1 

Development 6 neurogenesis GO:0022008 324 65 3,64 1,73 
2,51E-

09 1,26E-07 1 

Development 6 chordate embryonic development GO:0043009 172 45 1,93 1,20 
3,37E-

03 2,66E-02 1 

Development 6 anterior/posterior pattern formation GO:0009952 87 7 0,98 0,19 
1,74E-

07 5,99E-06 1 

Development 6 somatic diversification of immune receptors GO:0002200 10 16 0,11 0,43 
8,45E-

04 8,97E-03 2 

Development 6 synapse assembly GO:0007416 26 2 0,29 0,05 
6,38E-

03 4,24E-02 1 

Development 6 central nervous system development GO:0007417 246 60 2,76 1,60 
6,18E-

05 1,03E-03 1 

Development 6 regulation of nervous system development GO:0051960 97 21 1,09 0,56 
4,35E-

03 3,16E-02 1 

Development 6 organ morphogenesis GO:0009887 464 124 5,21 3,30 
1,79E-

06 4,94E-05 1 

Development 6 tissue development GO:0009888 418 125 4,70 3,33 
4,47E-

04 5,61E-03 1 

Development 6 sensory organ development GO:0007423 138 26 1,55 0,69 
4,68E-

05 8,33E-04 1 

Development 6 muscle organ development GO:0007517 161 40 1,81 1,06 
1,80E-

03 1,58E-02 1 
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Development 6 respiratory tube development GO:0030323 57 10 0,64 0,27 
6,97E-

03 4,49E-02 1 

Development 6 embryonic organ development GO:0048568 32 2 0,36 0,05 
1,10E-

03 1,12E-02 1 

Development 6 cell morphogenesis GO:0000902 241 52 2,71 1,38 
2,78E-

06 7,30E-05 1 

Development 6 cell part morphogenesis GO:0032990 146 28 1,64 0,74 
3,77E-

05 7,43E-04 1 

DNA/RNA metabolism and transcription 5 chromatin organization GO:0006325 279 73 3,13 1,94 
1,46E-

04 1,39E-03 1 

DNA/RNA metabolism and transcription 5 chromosome condensation GO:0030261 4 18 0,04 0,48 
6,14E-

07 9,63E-06 2 

DNA/RNA metabolism and transcription 6 DNA metabolic process GO:0006259 249 249 2,80 6,62 
3,94E-

22 4,35E-20 2 

DNA/RNA metabolism and transcription 6 RNA metabolic process GO:0016070 1634 597 18,36 15,88 
8,23E-

04 8,92E-03 1 

DNA/RNA metabolism and transcription 6 ribonucleoprotein complex assembly GO:0022618 22 24 0,25 0,64 
1,73E-

03 1,56E-02 2 

DNA/RNA metabolism and transcription 6 protein-DNA complex assembly GO:0065004 72 9 0,81 0,24 
1,20E-

04 1,74E-03 1 

DNA/RNA metabolism and transcription 6 regulation of helicase activity GO:0051095 1 6 0,01 0,16 
3,57E-

03 2,77E-02 2 

Immune system response 5 production of molecular mediator of immune response GO:0002440 21 24 0,24 0,64 
9,18E-

04 7,19E-03 2 

Immune system response 5 inflammatory response GO:0006954 185 118 2,08 3,14 
5,64E-

04 4,62E-03 2 

Immune system response 5 positive regulation of immune system process GO:0002684 103 68 1,16 1,81 
5,24E-

03 2,98E-02 2 

Immune system response 6 natural killer cell activation GO:0030101 7 14 0,08 0,37 
4,98E-

04 5,73E-03 2 

Immune system response 6 T cell activation GO:0042110 79 71 0,89 1,89 
5,37E-

06 1,29E-04 2 

Immune system response 6 B cell activation GO:0042113 47 40 0,53 1,06 
1,35E-

03 1,33E-02 2 

Immune system response 6 lymphocyte proliferation GO:0046651 37 39 0,42 1,04 
7,60E-

05 1,20E-03 2 

Immune system response 6 regulation of leukocyte activation GO:0002694 64 60 0,72 1,60 
1,11E-

05 2,55E-04 2 

Multicellular activities 5 smooth muscle cell proliferation GO:0048659 12 16 0,13 0,43 
2,90E-

03 1,92E-02 2 

Multicellular activities 5 cognition GO:0050890 406 311 4,56 8,27 
1,55E-

15 7,59E-14 2 

Multicellular activities 6 striated muscle contraction GO:0006941 50 6 0,56 0,16 
1,09E-

03 1,12E-02 1 

Regulation of intracellular processes and metabolism 5 regulation of biosynthetic process GO:0009889 2069 544 23,24 14,47 
3,82E-

30 3,75E-28 1 

Regulation of intracellular processes and metabolism 5 regulation of cellular metabolic process GO:0031323 2383 654 26,77 17,40 
1,12E-

30 1,47E-28 1 

Regulation of intracellular processes and metabolism 5 regulation of nitrogen compound metabolic process GO:0051171 2000 500 22,47 13,30 
4,49E-

34 1,76E-31 1 

Regulation of intracellular processes and metabolism 5 regulation of macromolecule metabolic process GO:0060255 2260 642 25,39 17,08 
4,33E-

25 3,40E-23 1 

Regulation of intracellular processes and metabolism 5 regulation of cell activation GO:0050865 67 63 0,75 1,68 
6,85E-

06 8,94E-05 2 

Regulation of intracellular processes and metabolism 5 negative regulation of catalytic activity GO:0043086 135 84 1,52 2,23 
5,68E-

03 3,18E-02 2 

Regulation of intracellular processes and metabolism 5 regulation of lyase activity GO:0051339 63 8 0,71 0,21 
3,57E-

04 3,04E-03 1 

Regulation of intracellular processes and metabolism 5 regulation of ligase activity GO:0051340 39 37 0,44 0,98 
5,66E-

04 4,62E-03 2 

Regulation of intracellular processes and metabolism 6 regulation of protein complex assembly GO:0043254 54 8 0,61 0,21 
3,07E-

03 2,53E-02 1 
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Regulation of intracellular processes and metabolism 6 regulation of cellular biosynthetic process GO:0031326 2061 542 23,15 14,42 
5,53E-

30 1,52E-27 1 

Regulation of intracellular processes and metabolism 6 positive regulation of cell proliferation GO:0008284 190 112 2,13 2,98 
5,02E-

03 3,51E-02 2 

Regulation of intracellular processes and metabolism 6 positive regulation of cell activation GO:0050867 41 42 0,46 1,12 
8,61E-

05 1,32E-03 2 

Regulation of intracellular processes and metabolism 6 regulation of endothelial cell proliferation GO:0001936 12 15 0,13 0,40 
5,32E-

03 3,63E-02 2 

Regulation of intracellular processes and metabolism 6 regulation of fibroblast proliferation GO:0048145 12 15 0,13 0,40 
5,32E-

03 3,63E-02 2 

Regulation of intracellular processes and metabolism 6 negative regulation of homeostatic process GO:0032845 5 10 0,06 0,27 
3,34E-

03 2,66E-02 2 

Regulation of intracellular processes and metabolism 6 positive regulation of homeostatic process GO:0032846 8 13 0,09 0,35 
2,79E-

03 2,33E-02 2 

Regulation of intracellular processes and metabolism 6 negative regulation of lyase activity GO:0051350 29 1 0,33 0,03 
4,85E-

04 5,69E-03 1 

Regulation of intracellular processes and metabolism 6 negative regulation of ligase activity GO:0051352 29 34 0,33 0,90 
7,31E-

05 1,19E-03 2 

Regulation of intracellular processes and metabolism 6 positive regulation of ligase activity GO:0051351 33 35 0,37 0,93 
1,62E-

04 2,29E-03 2 

Regulation of intracellular processes and metabolism 6 regulation of lipase activity GO:0060191 63 11 0,71 0,29 
4,62E-

03 3,27E-02 1 

Regulation of intracellular processes and metabolism 6 regulation of ubiquitin-protein ligase activity GO:0051438 39 35 0,44 0,93 
1,34E-

03 1,33E-02 2 

Regulation of transcription 6 regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process GO:0019219 1984 495 22,29 13,17 
5,21E-

34 2,88E-31 1 

Regulation of transcription 6 regulation of gene expression GO:0010468 2012 530 22,60 14,10 
4,94E-

29 9,09E-27 1 

Signal transduction 6 intracellular signaling pathway GO:0007242 1101 303 12,37 8,06 
5,70E-

13 4,50E-11 1 

The functional analysis is made between duplicated (list 1) and singleton genes (list 2), as explained in Table 15.  

Table 17: functional comparison between recent genes and ancestral genes  

Process GO 
level GO description GO ID 

N 
genes 
(list 1) 

N 
gen
es 

(list 
2) 

% of 
total 
genes 
(list 1) 

% of 
total 
genes 
(list 2) 

p-value adjusted 
p-value 

Enriched 
list 

Development 5 sex differentiation GO:0007548 42 51 1,21 0,63 2,94E-03 8,16E-03 1 

Development 5 reproductive structure development GO:0048608 38 39 1,09 0,49 4,29E-04 1,34E-03 1 

Multicellular activities 5 ovulation cycle GO:0042698 20 14 0,57 0,17 5,70E-04 1,77E-03 1 

DNA/RNA metabolism and transcription 5 nucleobase, nucleoside and nucleotide metabolic process GO:0055086 77 271 2,21 3,37 7,10E-04 2,15E-03 2 

Cellular metabolism 5 cellular nitrogen compound catabolic process GO:0044270 5 76 0,14 0,95 1,46E-07 8,40E-07 2 

Cellular metabolism 5 cellular nitrogen compound biosynthetic process GO:0044271 22 130 0,63 1,62 7,25E-06 3,06E-05 2 

Cellular metabolism 5 macromolecule catabolic process GO:0043285 165 897 4,74 11,16 7,55E-31 3,75E-29 2 

Cellular metabolism 5 cellular macromolecule catabolic process GO:0044265 107 547 3,07 6,80 6,35E-17 8,69E-16 2 
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Cellular metabolism 5 organic acid catabolic process GO:0016054 10 90 0,29 1,12 1,72E-06 8,14E-06 2 

Cellular metabolism 5 cofactor catabolic process GO:0051187 1 27 0,03 0,34 7,47E-04 2,23E-03 2 

Cellular metabolism 5 vitamin biosynthetic process GO:0009110 2 24 0,06 0,30 9,55E-03 2,31E-02 2 

Cellular metabolism 5 organic acid biosynthetic process GO:0016053 25 122 0,72 1,52 2,78E-04 8,90E-04 2 

Cellular metabolism 5 heterocycle biosynthetic process GO:0018130 2 42 0,06 0,52 4,38E-05 1,69E-04 2 

Cellular metabolism 5 cofactor biosynthetic process GO:0051188 1 84 0,03 1,04 2,22E-12 2,01E-11 2 

Cellular metabolism 5 macromolecule modification GO:0043412 233 
121

6 6,69 15,12 1,53E-39 1,01E-37 2 

Cellular metabolism 5 cytokine metabolic process GO:0042107 46 24 1,32 0,30 1,20E-09 8,83E-09 1 

Cellular metabolism 5 cellular amino acid derivative metabolic process GO:0006575 28 105 0,80 1,31 2,23E-02 4,85E-02 2 

Cellular metabolism 5 pteridine and derivative metabolic process GO:0042558 1 20 0,03 0,25 7,85E-03 1,91E-02 2 

Cellular metabolism 5 water-soluble vitamin metabolic process GO:0006767 3 51 0,09 0,63 1,69E-05 7,00E-05 2 

Cellular metabolism 5 phosphate metabolic process GO:0006796 201 868 5,77 10,79 7,87E-19 1,56E-17 2 

Cellular metabolism 5 hydrogen peroxide metabolic process GO:0042743 1 19 0,03 0,24 1,27E-02 2,89E-02 2 

Cellular metabolism 5 tetrapyrrole metabolic process GO:0033013 2 23 0,06 0,29 1,48E-02 3,31E-02 2 

Cellular metabolism 5 coenzyme metabolic process GO:0006732 1 130 0,03 1,62 2,26E-19 4,72E-18 2 

Cellular metabolism 5 monosaccharide metabolic process GO:0005996 36 168 1,03 2,09 4,19E-05 1,63E-04 2 

Cellular metabolism 5 carbohydrate catabolic process GO:0016052 14 93 0,40 1,16 4,68E-05 1,75E-04 2 

Cellular metabolism 5 cellular carbohydrate metabolic process GO:0044262 41 196 1,18 2,44 5,76E-06 2,51E-05 2 

Cellular metabolism 5 cellular lipid metabolic process GO:0044255 134 480 3,85 5,97 1,98E-06 9,25E-06 2 

Immune system response 5 
adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin 
superfamily domains GO:0002460 48 29 1,38 0,36 5,68E-09 3,88E-08 1 

Immune system response 5 leukocyte mediated cytotoxicity GO:0001909 10 5 0,29 0,06 3,85E-03 1,05E-02 1 

Immune system response 5 production of molecular mediator of immune response GO:0002440 21 17 0,60 0,21 1,29E-03 3,81E-03 1 

Immune system response 5 leukocyte mediated immunity GO:0002443 44 35 1,26 0,44 3,00E-06 1,37E-05 1 

Immune system response 5 antigen processing and presentation of peptide antigen via MHC class I GO:0002474 7 4 0,20 0,05 2,25E-02 4,85E-02 1 

Immune system response 5 myeloid leukocyte activation GO:0002274 20 19 0,57 0,24 7,70E-03 1,89E-02 1 

Cell motility and interactions 5 heterophilic cell-cell adhesion GO:0007157 9 6 0,26 0,07 2,05E-02 4,49E-02 1 

Cell motility and interactions 5 homophilic cell adhesion GO:0007156 72 9 2,07 0,11 2,58E-28 1,14E-26 1 

Cell motility and interactions 5 neuron cell-cell adhesion GO:0007158 6 1 0,17 0,01 3,94E-03 1,05E-02 1 

Cell motility and interactions 5 calcium-dependent cell-cell adhesion GO:0016339 10 2 0,29 0,02 2,19E-04 7,31E-04 1 

Cell motility and interactions 5 cell-matrix adhesion GO:0007160 44 44 1,26 0,55 1,00E-04 3,54E-04 1 
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DNA/RNA metabolism and transcription 5 chromatin organization GO:0006325 36 303 1,03 3,77 3,50E-18 6,03E-17 2 

Multicellular activities 5 pigment granule organization GO:0048753 7 2 0,20 0,02 4,48E-03 1,16E-02 1 

Cell cycle 5 cell cycle arrest GO:0007050 38 51 1,09 0,63 1,44E-02 3,26E-02 1 

Signal transduction 5 generation of a signal involved in cell-cell signaling GO:0003001 61 30 1,75 0,37 6,19E-13 5,86E-12 1 

Cell cycle 5 apoptosis GO:0006915 348 437 9,99 5,43 5,52E-18 8,98E-17 1 

Multicellular activities 5 striated muscle cell proliferation GO:0014855 9 3 0,26 0,04 1,78E-03 5,05E-03 1 

Multicellular activities 5 smooth muscle cell proliferation GO:0048659 16 11 0,46 0,14 2,38E-03 6,71E-03 1 

Development 5 muscle cell differentiation GO:0042692 32 40 0,92 0,50 1,00E-02 2,40E-02 1 

Development 5 cell fate commitment GO:0045165 67 34 1,92 0,42 6,83E-14 7,32E-13 1 

Development 5 fat cell differentiation GO:0045444 20 22 0,57 0,27 1,79E-02 3,98E-02 1 

Development 5 regulation of cell differentiation GO:0045595 170 150 4,88 1,87 5,65E-18 8,98E-17 1 

Cell cycle 5 cell development GO:0048468 292 272 8,39 3,38 8,41E-28 3,34E-26 1 

Cell cycle 5 stem cell differentiation GO:0048863 11 8 0,32 0,10 1,22E-02 2,80E-02 1 

Development 5 pigment cell differentiation GO:0050931 10 3 0,29 0,04 6,90E-04 2,11E-03 1 

Cellular processes (not DNA/RNA) 5 intracellular transport GO:0046907 119 482 3,42 5,99 3,44E-09 2,44E-08 2 

Cellular processes (not DNA/RNA) 5 cellular protein localization GO:0034613 101 311 2,90 3,87 1,02E-02 2,42E-02 2 

Multicellular activities 5 muscle contraction GO:0006936 68 94 1,95 1,17 1,39E-03 4,05E-03 1 

Multicellular activities 5 muscle adaptation GO:0043500 8 4 0,23 0,05 9,92E-03 2,39E-02 1 

Multicellular activities 5 vascular process in circulatory system GO:0003018 32 24 0,92 0,30 2,93E-05 1,16E-04 1 

Multicellular activities 5 blood circulation GO:0008015 79 99 2,27 1,23 6,90E-05 2,54E-04 1 

Multicellular activities 5 transmission of nerve impulse GO:0019226 163 132 4,68 1,64 1,71E-19 3,78E-18 1 

Multicellular activities 5 cognition GO:0050890 224 192 6,43 2,39 2,28E-24 7,53E-23 1 

Multicellular activities 5 neuromuscular process GO:0050905 26 21 0,75 0,26 3,58E-04 1,14E-03 1 

Development 5 embryonic pattern specification GO:0009880 20 5 0,57 0,06 3,82E-07 2,11E-06 1 

Development 5 embryonic development ending in birth or egg hatching GO:0009792 110 106 3,16 1,32 1,64E-10 1,33E-09 1 

Development 5 embryonic morphogenesis GO:0048598 121 80 3,48 0,99 8,71E-19 1,65E-17 1 

Development 5 regionalization GO:0003002 101 42 2,90 0,52 1,56E-23 4,41E-22 1 

Development 5 tube morphogenesis GO:0035239 38 28 1,09 0,35 4,80E-06 2,12E-05 1 

Development 5 skeletal system development GO:0001501 149 127 4,28 1,58 1,17E-16 1,50E-15 1 

Development 5 urogenital system development GO:0001655 40 35 1,15 0,44 3,71E-05 1,46E-04 1 
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Development 5 immune system development GO:0002520 122 140 3,50 1,74 2,51E-08 1,56E-07 1 

Development 5 nervous system development GO:0007399 388 366 11,14 4,55 2,71E-36 1,54E-34 1 

Development 5 endocrine system development GO:0035270 37 14 1,06 0,17 5,33E-10 4,12E-09 1 

Development 5 organ development GO:0048513 640 674 18,38 8,38 1,52E-50 2,01E-48 1 

Development 5 appendage morphogenesis GO:0035107 33 29 0,95 0,36 2,32E-04 7,66E-04 1 

Development 5 limb development GO:0060173 34 30 0,98 0,37 1,67E-04 5,73E-04 1 

Multicellular activities 5 hair cycle process GO:0022405 15 12 0,43 0,15 6,06E-03 1,52E-02 1 

Development 5 morphogenesis of a branching structure GO:0001763 27 21 0,78 0,26 2,03E-04 6,89E-04 1 

Development 5 establishment of tissue polarity GO:0007164 6 1 0,17 0,01 3,94E-03 1,05E-02 1 

Development 5 regulation of anatomical structure morphogenesis GO:0022603 85 86 2,44 1,07 8,34E-08 4,94E-07 1 

Development 5 cellular component morphogenesis GO:0032989 151 150 4,34 1,87 2,78E-13 2,76E-12 1 

Development 5 anatomical structure formation involved in morphogenesis GO:0048646 127 137 3,65 1,70 9,73E-10 7,29E-09 1 

Cell response to stimuli 5 behavioral defense response GO:0002209 8 2 0,23 0,02 1,67E-03 4,77E-03 1 

Immune system response 5 inflammatory response GO:0006954 144 97 4,14 1,21 1,13E-21 3,00E-20 1 

Immune system response 5 innate immune response GO:0045087 56 63 1,61 0,78 1,17E-04 4,10E-04 1 

Multicellular activities 5 wound healing GO:0042060 73 75 2,10 0,93 1,26E-06 6,24E-06 1 

Cell response to stimuli 5 fear response GO:0042596 11 2 0,32 0,02 7,76E-05 2,82E-04 1 

Multicellular activities 5 adult locomotory behavior GO:0008344 17 15 0,49 0,19 6,69E-03 1,65E-02 1 

Cell motility and interactions 5 taxis GO:0042330 74 30 2,13 0,37 6,94E-18 1,06E-16 1 

Multicellular activities 5 eating behavior GO:0042755 6 1 0,17 0,01 3,94E-03 1,05E-02 1 

Immune system response 5 immune response to tumor cell GO:0002418 5 1 0,14 0,01 1,13E-02 2,61E-02 1 

Cell response to stimuli 5 response to virus GO:0009615 36 43 1,03 0,53 4,37E-03 1,14E-02 1 

Cell response to stimuli 5 response to organic cyclic substance GO:0014070 20 9 0,57 0,11 1,88E-05 7,71E-05 1 

Cell response to stimuli 5 response to ATP GO:0033198 7 1 0,20 0,01 1,35E-03 3,97E-03 1 

Cell response to stimuli 5 response to alkaloid GO:0043279 17 5 0,49 0,06 7,05E-06 3,01E-05 1 

Cell response to stimuli 5 response to ethanol GO:0045471 15 7 0,43 0,09 2,65E-04 8,62E-04 1 
Regulation of intracellular processes and 
metabolism 5 regulation of protein localization GO:0032880 47 47 1,35 0,58 6,24E-05 2,32E-04 1 

Cellular processes (not DNA/RNA) 5 establishment of protein localization GO:0045184 164 572 4,71 7,11 7,49E-07 3,97E-06 2 

Cellular processes (not DNA/RNA) 5 establishment of RNA localization GO:0051236 7 76 0,20 0,95 2,95E-06 1,36E-05 2 

Cellular processes (not DNA/RNA) 5 lipid storage GO:0019915 21 13 0,60 0,16 2,12E-04 7,12E-04 1 
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Cellular processes (not DNA/RNA) 5 hydrogen transport GO:0006818 8 53 0,23 0,66 2,96E-03 8,16E-03 2 

Cellular processes (not DNA/RNA) 5 lipid transport GO:0006869 55 81 1,58 1,01 1,10E-02 2,57E-02 1 

Cellular processes (not DNA/RNA) 5 hormone transport GO:0009914 38 21 1,09 0,26 7,28E-08 4,38E-07 1 

Cellular processes (not DNA/RNA) 5 peptide transport GO:0015833 27 29 0,78 0,36 5,10E-03 1,32E-02 1 

Cellular processes (not DNA/RNA) 5 vitamin transport GO:0051180 10 7 0,29 0,09 1,55E-02 3,46E-02 1 

DNA/RNA metabolism and transcription 5 nucleobase, nucleoside, nucleotide and nucleic acid transport GO:0015931 8 90 0,23 1,12 1,86E-07 1,06E-06 2 
Regulation of intracellular processes and 
metabolism 5 regulation of transport GO:0051049 150 134 4,31 1,67 1,10E-15 1,32E-14 1 

Cellular processes (not DNA/RNA) 5 transmembrane transport GO:0055085 35 191 1,01 2,38 3,42E-07 1,91E-06 2 

Cell motility and interactions 5 regulation of cellular component movement GO:0051270 71 60 2,04 0,75 1,32E-08 8,56E-08 1 

Immune system response 5 negative regulation of immune system process GO:0002683 23 17 0,66 0,21 3,92E-04 1,24E-03 1 

Immune system response 5 positive regulation of immune system process GO:0002684 86 57 2,47 0,71 1,16E-13 1,21E-12 1 

Immune system response 5 regulation of immune response GO:0050776 69 57 1,98 0,71 1,19E-08 8,00E-08 1 
Regulation of intracellular processes and 
metabolism 5 regulation of biosynthetic process GO:0009889 851 

163
4 24,44 20,32 1,03E-06 5,23E-06 1 

Regulation of intracellular processes and 
metabolism 5 negative regulation of metabolic process GO:0009892 234 334 6,72 4,15 1,24E-08 8,21E-08 1 
Regulation of intracellular processes and 
metabolism 5 positive regulation of metabolic process GO:0009893 294 355 8,44 4,41 9,99E-17 1,32E-15 1 
Regulation of intracellular processes and 
metabolism 5 regulation of cellular metabolic process GO:0031323 979 

190
2 28,12 23,65 4,69E-07 2,52E-06 1 

Regulation of intracellular processes and 
metabolism 5 regulation of multicellular organismal metabolic process GO:0044246 7 4 0,20 0,05 2,25E-02 4,85E-02 1 
Regulation of intracellular processes and 
metabolism 5 regulation of nitrogen compound metabolic process GO:0051171 808 

157
5 23,21 19,59 1,30E-05 5,44E-05 1 

Regulation of intracellular processes and 
metabolism 5 regulation of macromolecule metabolic process GO:0060255 894 

186
1 25,67 23,14 3,71E-03 1,02E-02 1 

Cell response to stimuli 5 positive regulation of cell killing GO:0031343 9 2 0,26 0,02 6,10E-04 1,88E-03 1 

Development 5 regulation of multicellular organism growth GO:0040014 26 14 0,75 0,17 6,23E-06 2,69E-05 1 

Cell cycle 5 negative regulation of growth GO:0045926 38 35 1,09 0,44 9,87E-05 3,53E-04 1 

Cell cycle 5 positive regulation of growth GO:0045927 22 21 0,63 0,26 4,23E-03 1,11E-02 1 
Regulation of intracellular processes and 
metabolism 5 positive regulation of cellular process GO:0048522 605 673 17,38 8,37 1,71E-42 1,66E-40 1 

Cell response to stimuli 5 positive regulation of response to stimulus GO:0048584 83 69 2,38 0,86 3,44E-10 2,73E-09 1 

Development 5 positive regulation of developmental process GO:0051094 227 219 6,52 2,72 2,04E-20 5,06E-19 1 
Regulation of intracellular processes and 
metabolism 5 positive regulation of cellular component organization GO:0051130 67 56 1,92 0,70 2,64E-08 1,61E-07 1 

Development 5 positive regulation of multicellular organismal process GO:0051240 82 52 2,35 0,65 1,37E-13 1,40E-12 1 
Regulation of intracellular processes and 
metabolism 5 negative regulation of cellular process GO:0048523 512 669 14,70 8,32 7,47E-24 2,28E-22 1 

Development 5 negative regulation of developmental process GO:0051093 188 221 5,40 2,75 9,81E-12 8,66E-11 1 
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Regulation of intracellular processes and 
metabolism 5 negative regulation of cellular component organization GO:0051129 44 58 1,26 0,72 6,44E-03 1,60E-02 1 

Development 5 negative regulation of multicellular organismal process GO:0051241 54 47 1,55 0,58 1,07E-06 5,40E-06 1 

Immune system response 5 regulation of response to external stimulus GO:0032101 54 46 1,55 0,57 8,46E-07 4,36E-06 1 

Multicellular activities 5 regulation of behavior GO:0050795 21 6 0,60 0,07 4,55E-07 2,48E-06 1 

Signal transduction 5 signal transduction GO:0007165 1342 
143

4 38,54 17,83 1,21E-119 
4,81E-

117 1 

Cell motility and interactions 5 regulation of cell adhesion GO:0030155 45 41 1,29 0,51 2,58E-05 1,04E-04 1 

Cell cycle 5 regulation of cell proliferation GO:0042127 279 263 8,01 3,27 5,37E-26 1,94E-24 1 
Regulation of intracellular processes and 
metabolism 5 regulation of cell activation GO:0050865 71 37 2,04 0,46 3,47E-14 3,82E-13 1 
Regulation of intracellular processes and 
metabolism 5 regulation of cytokine production GO:0001817 77 47 2,21 0,58 2,98E-13 2,88E-12 1 

Development 5 regulation of tissue remodeling GO:0034103 35 22 1,01 0,27 1,42E-06 6,81E-06 1 

Cell cycle 5 cell growth GO:0016049 78 87 2,24 1,08 4,67E-06 2,08E-05 1 
Regulation of intracellular processes and 
metabolism 5 negative regulation of cell size GO:0045792 33 30 0,95 0,37 2,70E-04 8,72E-04 1 
Regulation of intracellular processes and 
metabolism 5 temperature homeostasis GO:0001659 9 1 0,26 0,01 1,52E-04 5,29E-04 1 
Regulation of intracellular processes and 
metabolism 5 cellular homeostasis GO:0019725 160 178 4,60 2,21 2,24E-11 1,93E-10 1 
Regulation of intracellular processes and 
metabolism 5 regulation of homeostatic process GO:0032844 44 26 1,26 0,32 2,08E-08 1,31E-07 1 

Multicellular activities 5 multicellular organismal homeostasis GO:0048871 18 19 0,52 0,24 1,91E-02 4,20E-02 1 

Multicellular activities 5 homeostasis of number of cells GO:0048872 35 46 1,01 0,57 1,46E-02 3,29E-02 1 
Regulation of intracellular processes and 
metabolism 5 chemical homeostasis GO:0048878 187 181 5,37 2,25 5,10E-17 7,23E-16 1 
Regulation of intracellular processes and 
metabolism 5 anatomical structure homeostasis GO:0060249 44 61 1,26 0,76 1,04E-02 2,45E-02 1 

Multicellular activities 5 hemostasis GO:0007599 52 51 1,49 0,63 1,93E-05 7,82E-05 1 
Regulation of intracellular processes and 
metabolism 5 positive regulation of catalytic activity GO:0043085 172 217 4,94 2,70 3,91E-09 2,72E-08 1 
Regulation of intracellular processes and 
metabolism 5 regulation of hydrolase activity GO:0051336 114 143 3,27 1,78 1,31E-06 6,36E-06 1 
Regulation of intracellular processes and 
metabolism 5 regulation of transferase activity GO:0051338 98 158 2,81 1,96 5,79E-03 1,46E-02 1 
Regulation of intracellular processes and 
metabolism 5 regulation of lyase activity GO:0051339 49 19 1,41 0,24 1,24E-12 1,15E-11 1 
Regulation of intracellular processes and 
metabolism 5 regulation of ligase activity GO:0051340 5 70 0,14 0,87 8,41E-07 4,36E-06 2 

Development 6 development of primary sexual characteristics GO:0045137 36 43 1,03 0,53 4,37E-03 1,40E-02 1 

Development 6 female sex differentiation GO:0046660 21 18 0,60 0,22 2,45E-03 8,42E-03 1 

Multicellular activities 6 ovulation cycle process GO:0022602 19 14 0,55 0,17 1,77E-03 6,32E-03 1 

Cellular metabolism 6 nucleoside phosphate metabolic process GO:0006753 77 253 2,21 3,15 5,13E-03 1,58E-02 2 

Cellular metabolism 6 amine catabolic process GO:0009310 4 62 0,11 0,77 2,40E-06 1,55E-05 2 
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Cellular metabolism 6 amine biosynthetic process GO:0009309 5 68 0,14 0,85 2,10E-06 1,37E-05 2 

Cellular metabolism 6 protein catabolic process GO:0030163 142 793 4,08 9,86 2,39E-28 3,25E-26 2 

Cellular metabolism 6 modification-dependent macromolecule catabolic process GO:0043632 78 446 2,24 5,55 1,28E-16 3,67E-15 2 

Cellular metabolism 6 cytokine biosynthetic process GO:0042089 45 24 1,29 0,30 2,39E-09 2,76E-08 1 

Cellular metabolism 6 lipoprotein biosynthetic process GO:0042158 8 47 0,23 0,58 1,15E-02 3,23E-02 2 

Cellular metabolism 6 proteoglycan metabolic process GO:0006029 21 15 0,60 0,19 7,34E-04 3,07E-03 1 

Cellular metabolism 6 cellular protein metabolic process GO:0044267 391 
192

1 11,23 23,89 2,59E-59 7,02E-57 2 

DNA/RNA metabolism and transcription 6 DNA metabolic process GO:0006259 95 386 2,73 4,80 1,52E-07 1,33E-06 2 

Cellular metabolism 6 macromolecule glycosylation GO:0043413 20 97 0,57 1,21 1,58E-03 5,97E-03 2 

Cellular metabolism 6 carboxylic acid metabolic process GO:0019752 65 435 1,87 5,41 3,74E-20 2,90E-18 2 

Cellular metabolism 6 cellular amino acid derivative biosynthetic process GO:0042398 6 39 0,17 0,49 1,37E-02 3,72E-02 2 

Cellular metabolism 6 phosphorylation GO:0016310 191 732 5,49 9,10 1,45E-11 2,01E-10 2 

Cellular metabolism 6 dephosphorylation GO:0016311 12 129 0,34 1,60 4,72E-10 5,69E-09 2 

Cellular metabolism 6 porphyrin metabolic process GO:0006778 2 23 0,06 0,29 1,48E-02 3,97E-02 2 

Cellular metabolism 6 group transfer coenzyme metabolic process GO:0006752 1 24 0,03 0,30 1,94E-03 6,90E-03 2 

Cellular metabolism 6 membrane lipid metabolic process GO:0006643 10 61 0,29 0,76 2,57E-03 8,73E-03 2 

Immune system response 6 T-helper 1 type immune response GO:0042088 7 2 0,20 0,02 4,48E-03 1,41E-02 1 

Cellular metabolism 6 immunoglobulin production GO:0002377 17 12 0,49 0,15 1,77E-03 6,32E-03 1 

Immune system response 6 lymphocyte mediated immunity GO:0002449 40 29 1,15 0,36 2,05E-06 1,36E-05 1 

Immune system response 6 lymphocyte activation during immune response GO:0002285 10 6 0,29 0,07 1,07E-02 3,09E-02 1 

Immune system response 6 natural killer cell activation GO:0030101 12 2 0,34 0,02 2,71E-05 1,49E-04 1 

Immune system response 6 T cell activation GO:0042110 75 51 2,15 0,63 1,20E-11 1,71E-10 1 

Immune system response 6 B cell activation GO:0042113 52 22 1,49 0,27 1,27E-12 2,23E-11 1 

Immune system response 6 lymphocyte proliferation GO:0046651 43 21 1,23 0,26 1,17E-09 1,38E-08 1 

Development 6 regulation of smooth muscle cell proliferation GO:0048660 16 9 0,46 0,11 6,12E-04 2,64E-03 1 

Multicellular activities 6 regulation of muscle cell differentiation GO:0051147 12 4 0,34 0,05 2,84E-04 1,32E-03 1 

Development 6 muscle cell development GO:0055001 12 10 0,34 0,12 1,86E-02 4,82E-02 1 

Development 6 cell fate specification GO:0001708 27 11 0,78 0,14 2,44E-07 1,95E-06 1 

Development 6 cell fate determination GO:0001709 16 12 0,46 0,15 3,28E-03 1,09E-02 1 

Development 6 negative regulation of cell differentiation GO:0045596 68 68 1,95 0,85 1,23E-06 8,77E-06 1 
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Development 6 positive regulation of cell differentiation GO:0045597 91 66 2,61 0,82 4,94E-13 9,25E-12 1 

Cell cycle 6 developmental programmed cell death GO:0010623 6 2 0,17 0,02 1,17E-02 3,23E-02 1 

Development 6 neurogenesis GO:0022008 195 178 5,60 2,21 2,14E-19 1,45E-17 1 

Development 6 cell maturation GO:0048469 27 24 0,78 0,30 6,85E-04 2,90E-03 1 

Development 6 melanocyte differentiation GO:0030318 10 2 0,29 0,02 2,19E-04 1,03E-03 1 

Cellular processes (not DNA/RNA) 6 cytoskeleton-dependent intracellular transport GO:0030705 5 37 0,14 0,46 1,04E-02 3,05E-02 2 

Cellular processes (not DNA/RNA) 6 Golgi vesicle transport GO:0048193 6 82 0,17 1,02 1,26E-07 1,14E-06 2 

DNA/RNA metabolism and transcription 6 ribonucleoprotein complex assembly GO:0022618 4 41 0,11 0,51 9,48E-04 3,81E-03 2 

DNA/RNA metabolism and transcription 6 protein-DNA complex assembly GO:0065004 4 75 0,11 0,93 4,22E-08 4,02E-07 2 

Multicellular activities 6 plasma lipoprotein particle remodeling GO:0034369 11 6 0,32 0,07 5,62E-03 1,70E-02 1 

Multicellular activities 6 regulation of muscle contraction GO:0006937 23 26 0,66 0,32 1,81E-02 4,74E-02 1 

Multicellular activities 6 smooth muscle contraction GO:0006939 27 15 0,78 0,19 5,40E-06 3,26E-05 1 

Multicellular activities 6 striated muscle adaptation GO:0014888 5 1 0,14 0,01 1,13E-02 3,18E-02 1 

Multicellular activities 6 muscle hypertrophy GO:0014896 7 1 0,20 0,01 1,35E-03 5,16E-03 1 

Multicellular activities 6 regulation of blood pressure GO:0008217 32 37 0,92 0,46 5,32E-03 1,63E-02 1 

Multicellular activities 6 synaptic transmission GO:0007268 142 115 4,08 1,43 4,73E-17 1,51E-15 1 

Cell response to stimuli 6 sensory perception GO:0007600 199 160 5,72 1,99 7,58E-24 6,86E-22 1 

Multicellular activities 6 startle response GO:0001964 9 1 0,26 0,01 1,52E-04 7,37E-04 1 

Development 6 embryonic axis specification GO:0000578 7 2 0,20 0,02 4,48E-03 1,41E-02 1 

Development 6 chordate embryonic development GO:0043009 109 105 3,13 1,31 2,19E-10 2,76E-09 1 

Development 6 embryonic appendage morphogenesis GO:0035113 31 22 0,89 0,27 2,86E-05 1,55E-04 1 

Development 6 anterior/posterior pattern formation GO:0009952 67 25 1,92 0,31 3,56E-17 1,29E-15 1 

Development 6 dorsal/ventral pattern formation GO:0009953 28 18 0,80 0,22 1,71E-05 9,89E-05 1 

Development 6 segmentation GO:0035282 22 11 0,63 0,14 2,34E-05 1,31E-04 1 

Development 6 branching morphogenesis of a tube GO:0048754 23 18 0,66 0,22 8,92E-04 3,67E-03 1 

Development 6 kidney development GO:0001822 32 32 0,92 0,40 9,28E-04 3,79E-03 1 

Development 6 synapse assembly GO:0007416 13 7 0,37 0,09 2,11E-03 7,34E-03 1 

Development 6 central nervous system development GO:0007417 142 150 4,08 1,87 2,58E-11 3,51E-10 1 

Development 6 nerve development GO:0021675 13 7 0,37 0,09 2,11E-03 7,34E-03 1 

Development 6 regulation of nervous system development GO:0051960 64 51 1,84 0,63 1,53E-08 1,60E-07 1 
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Development 6 vasculature development GO:0001944 96 111 2,76 1,38 8,21E-07 6,03E-06 1 

Development 6 organ morphogenesis GO:0009887 295 256 8,47 3,18 1,83E-31 3,31E-29 1 

Development 6 tissue development GO:0009888 260 245 7,47 3,05 2,12E-24 2,30E-22 1 

Development 6 sensory organ development GO:0007423 89 66 2,56 0,82 1,65E-12 2,80E-11 1 

Development 6 heart development GO:0007507 68 85 1,95 1,06 1,83E-04 8,79E-04 1 

Development 6 muscle organ development GO:0007517 79 112 2,27 1,39 1,07E-03 4,23E-03 1 

Development 6 pancreas development GO:0031016 18 6 0,52 0,07 7,73E-06 4,56E-05 1 

Development 6 gland development GO:0048732 58 31 1,67 0,39 9,70E-12 1,42E-10 1 

Development 6 limb morphogenesis GO:0035108 33 29 0,95 0,36 2,32E-04 1,08E-03 1 

Development 6 cell morphogenesis GO:0000902 139 134 3,99 1,67 6,21E-13 1,12E-11 1 

Development 6 cell part morphogenesis GO:0032990 88 76 2,53 0,95 3,21E-10 3,96E-09 1 

Cell response to stimuli 6 behavioral fear response GO:0001662 8 2 0,23 0,02 1,67E-03 6,16E-03 1 

Cell response to stimuli 6 acute inflammatory response GO:0002526 36 28 1,03 0,35 1,52E-05 8,89E-05 1 

Multicellular activities 6 blood coagulation GO:0007596 49 50 1,41 0,62 6,07E-05 3,14E-04 1 

Multicellular activities 6 circadian sleep/wake cycle GO:0042745 5 1 0,14 0,01 1,13E-02 3,18E-02 1 

Cell motility and interactions 6 chemotaxis GO:0006935 74 30 2,13 0,37 6,94E-18 2,90E-16 1 

Cell response to stimuli 6 response to food GO:0032094 6 1 0,17 0,01 3,94E-03 1,28E-02 1 

Cell response to stimuli 6 detection of light stimulus GO:0009583 17 14 0,49 0,17 5,09E-03 1,58E-02 1 

Cell response to stimuli 6 response to steroid hormone stimulus GO:0048545 27 30 0,78 0,37 8,49E-03 2,52E-02 1 

Cell response to stimuli 6 response to nicotine GO:0035094 9 1 0,26 0,01 1,52E-04 7,37E-04 1 

Cell response to stimuli 6 response to calcium ion GO:0051592 19 16 0,55 0,20 2,95E-03 9,94E-03 1 

Cellular processes (not DNA/RNA) 6 apical protein localization GO:0045176 6 2 0,17 0,02 1,17E-02 3,23E-02 1 

Cellular processes (not DNA/RNA) 6 protein transport GO:0015031 161 567 4,62 7,05 5,25E-07 3,96E-06 2 

Cellular processes (not DNA/RNA) 6 endocytosis GO:0006897 88 117 2,53 1,46 1,13E-04 5,59E-04 1 

Cellular processes (not DNA/RNA) 6 peptide secretion GO:0002790 25 20 0,72 0,25 4,69E-04 2,09E-03 1 

Cellular processes (not DNA/RNA) 6 secretion by cell GO:0032940 120 109 3,45 1,36 1,87E-12 3,07E-11 1 

Cellular processes (not DNA/RNA) 6 acid secretion GO:0046717 7 3 0,20 0,04 1,10E-02 3,18E-02 1 
Regulation of intracellular processes and 
metabolism 6 regulation of secretion GO:0051046 68 45 1,95 0,56 3,92E-11 5,07E-10 1 

Cellular processes (not DNA/RNA) 6 ion transmembrane transport GO:0034220 5 38 0,14 0,47 7,00E-03 2,11E-02 2 
Regulation of intracellular processes and 
metabolism 6 regulation of ion transport GO:0043269 35 16 1,01 0,20 2,69E-08 2,66E-07 1 
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Regulation of intracellular processes and 
metabolism 6 regulation of neurotransmitter transport GO:0051588 10 5 0,29 0,06 3,85E-03 1,26E-02 1 

Cellular processes (not DNA/RNA) 6 monoamine transport GO:0015844 17 11 0,49 0,14 1,34E-03 5,15E-03 1 
Regulation of intracellular processes and 
metabolism 6 regulation of amine transport GO:0051952 17 1 0,49 0,01 1,83E-08 1,84E-07 1 
Regulation of intracellular processes and 
metabolism 6 regulation of organic acid transport GO:0032890 8 2 0,23 0,02 1,67E-03 6,16E-03 1 

DNA/RNA metabolism and transcription 6 nucleic acid transport GO:0050657 7 76 0,20 0,95 2,95E-06 1,84E-05 2 
Regulation of intracellular processes and 
metabolism 6 positive regulation of transport GO:0051050 84 54 2,41 0,67 8,21E-14 1,71E-12 1 
Regulation of intracellular processes and 
metabolism 6 negative regulation of transport GO:0051051 50 42 1,44 0,52 1,71E-06 1,16E-05 1 

Cell motility and interactions 6 cell migration GO:0016477 147 122 4,22 1,52 4,40E-17 1,49E-15 1 

Cell motility and interactions 6 negative regulation of cellular component movement GO:0051271 26 25 0,75 0,31 1,99E-03 7,00E-03 1 

Cell motility and interactions 6 positive regulation of cellular component movement GO:0051272 36 22 1,03 0,27 7,75E-07 5,77E-06 1 

Immune system response 6 positive regulation of immune response GO:0050778 46 39 1,32 0,49 4,39E-06 2,71E-05 1 

Immune system response 6 regulation of immune effector process GO:0002697 28 24 0,80 0,30 3,99E-04 1,82E-03 1 

Immune system response 6 regulation of adaptive immune response GO:0002819 19 12 0,55 0,15 5,32E-04 2,31E-03 1 
Regulation of intracellular processes and 
metabolism 6 negative regulation of biosynthetic process GO:0009890 181 248 5,20 3,08 9,59E-08 8,98E-07 1 
Regulation of intracellular processes and 
metabolism 6 positive regulation of biosynthetic process GO:0009891 248 268 7,12 3,33 3,59E-18 1,77E-16 1 
Regulation of intracellular processes and 
metabolism 6 regulation of cellular biosynthetic process GO:0031326 847 

163
0 24,33 20,27 1,45E-06 9,98E-06 1 

Regulation of intracellular processes and 
metabolism 6 negative regulation of macromolecule metabolic process GO:0010605 219 321 6,29 3,99 1,93E-07 1,61E-06 1 
Regulation of intracellular processes and 
metabolism 6 negative regulation of cellular metabolic process GO:0031324 213 314 6,12 3,90 3,96E-07 3,07E-06 1 
Regulation of intracellular processes and 
metabolism 6 negative regulation of nitrogen compound metabolic process GO:0051172 160 231 4,60 2,87 5,17E-06 3,16E-05 1 
Regulation of intracellular processes and 
metabolism 6 positive regulation of catabolic process GO:0009896 20 22 0,57 0,27 1,79E-02 4,70E-02 1 
Regulation of intracellular processes and 
metabolism 6 positive regulation of macromolecule metabolic process GO:0010604 279 335 8,01 4,17 3,41E-16 8,42E-15 1 
Regulation of intracellular processes and 
metabolism 6 positive regulation of cellular metabolic process GO:0031325 285 341 8,18 4,24 1,35E-16 3,67E-15 1 
Regulation of intracellular processes and 
metabolism 6 positive regulation of nitrogen compound metabolic process GO:0051173 227 245 6,52 3,05 1,08E-16 3,25E-15 1 

Regulation of transcription 6 regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process GO:0019219 799 
156

4 22,95 19,45 2,41E-05 1,34E-04 1 
Regulation of intracellular processes and 
metabolism 6 regulation of phosphorus metabolic process GO:0051174 141 204 4,05 2,54 2,19E-05 1,24E-04 1 

Regulation of transcription 6 regulation of gene expression GO:0010468 791 
162

8 22,72 20,25 3,03E-03 1,02E-02 1 
Regulation of intracellular processes and 
metabolism 6 regulation of lipid metabolic process GO:0019216 37 37 1,06 0,46 4,97E-04 2,19E-03 1 

Development 6 positive regulation of multicellular organism growth GO:0040018 11 5 0,32 0,06 1,66E-03 6,16E-03 1 
Regulation of intracellular processes and 
metabolism 6 positive regulation of cell proliferation GO:0008284 149 124 4,28 1,54 2,61E-17 1,01E-15 1 

Cell motility and interactions 6 positive regulation of cell adhesion GO:0045785 22 12 0,63 0,15 3,83E-05 2,06E-04 1 
Cell cycle 6 positive regulation of cell cycle GO:0045787 28 14 0,80 0,17 1,42E-06 9,87E-06 1 
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Regulation of intracellular processes and 
metabolism 6 positive regulation of cell activation GO:0050867 51 23 1,46 0,29 9,30E-12 1,40E-10 1 
Cell response to stimuli 6 positive regulation of response to biotic stimulus GO:0002833 5 1 0,14 0,01 1,13E-02 3,18E-02 1 
Cell response to stimuli 6 positive regulation of response to external stimulus GO:0032103 30 11 0,86 0,14 1,71E-08 1,75E-07 1 
Multicellular activities 6 positive regulation of behavior GO:0048520 18 5 0,52 0,06 2,70E-06 1,72E-05 1 
Regulation of intracellular processes and 
metabolism 6 positive regulation of cytokine production GO:0001819 28 20 0,80 0,25 5,48E-05 2,86E-04 1 
Regulation of intracellular processes and 
metabolism 6 positive regulation of tissue remodeling GO:0034105 14 8 0,40 0,10 1,57E-03 5,96E-03 1 
Regulation of intracellular processes and 
metabolism 6 negative regulation of cell proliferation GO:0008285 136 122 3,91 1,52 3,95E-14 8,58E-13 1 
Cell cycle 6 negative regulation of cell cycle GO:0045786 25 28 0,72 0,35 1,02E-02 3,00E-02 1 
Regulation of intracellular processes and 
metabolism 6 negative regulation of cell activation GO:0050866 17 12 0,49 0,15 1,77E-03 6,32E-03 1 
Immune system response 6 negative regulation of cytokine production GO:0001818 12 9 0,34 0,11 1,45E-02 3,92E-02 1 
Regulation of intracellular processes and 
metabolism 6 negative regulation of tissue remodeling GO:0034104 11 2 0,32 0,02 7,76E-05 3,94E-04 1 
Immune system response 6 regulation of response to tumor cell GO:0002834 5 1 0,14 0,01 1,13E-02 3,18E-02 1 

Cell response to stimuli 6 regulation of defense response GO:0031347 40 40 1,15 0,50 2,09E-04 9,97E-04 1 
Cell cycle 6 regulation of programmed cell death GO:0043067 257 309 7,38 3,84 7,80E-15 1,84E-13 1 
Cell cycle 6 regulation of mitotic cell cycle GO:0007346 52 74 1,49 0,92 8,27E-03 2,47E-02 1 

Signal transduction 6 cell surface receptor linked signaling pathway GO:0007166 806 438 23,15 5,45 4,72E-158 
2,56E-

155 1 

Signal transduction 6 intracellular signaling pathway GO:0007242 489 819 14,04 10,19 3,76E-09 4,09E-08 1 

Signal transduction 6 regulation of signal transduction GO:0009966 290 352 8,33 4,38 2,23E-16 5,77E-15 1 
Regulation of intracellular processes and 
metabolism 6 regulation of endothelial cell proliferation GO:0001936 16 8 0,46 0,10 4,21E-04 1,90E-03 1 
Regulation of intracellular processes and 
metabolism 6 regulation of epithelial cell proliferation GO:0050678 27 14 0,78 0,17 2,96E-06 1,84E-05 1 

Immune system response 6 regulation of leukocyte activation GO:0002694 67 35 1,92 0,44 2,26E-13 4,39E-12 1 
Regulation of intracellular processes and 
metabolism 6 regulation of chemokine production GO:0032642 10 4 0,29 0,05 1,76E-03 6,32E-03 1 

Immune system response 6 regulation of interferon-gamma production GO:0032649 11 8 0,32 0,10 1,22E-02 3,32E-02 1 

Immune system response 6 regulation of interleukin-2 production GO:0032663 13 6 0,37 0,07 6,60E-04 2,82E-03 1 

Immune system response 6 regulation of interleukin-6 production GO:0032675 17 12 0,49 0,15 1,77E-03 6,32E-03 1 

Development 6 regulation of bone remodeling GO:0046850 34 21 0,98 0,26 1,92E-06 1,29E-05 1 

Development 6 regulation of neurological system process GO:0031644 36 35 1,03 0,44 3,73E-04 1,71E-03 1 
Regulation of intracellular processes and 
metabolism 6 regulation of cell growth GO:0001558 64 62 1,84 0,77 1,25E-06 8,84E-06 1 
Regulation of intracellular processes and 
metabolism 6 cell redox homeostasis GO:0045454 5 47 0,14 0,58 6,89E-04 2,90E-03 2 
Regulation of intracellular processes and 
metabolism 6 cellular chemical homeostasis GO:0055082 151 121 4,34 1,50 2,84E-18 1,54E-16 1 
Regulation of intracellular processes and 
metabolism 6 negative regulation of homeostatic process GO:0032845 9 4 0,26 0,05 4,24E-03 1,37E-02 1 
Regulation of intracellular processes and 
metabolism 6 positive regulation of homeostatic process GO:0032846 15 5 0,43 0,06 4,65E-05 2,45E-04 1 
Regulation of intracellular processes and 
metabolism 6 tissue homeostasis GO:0001894 18 18 0,52 0,22 1,65E-02 4,37E-02 1 
Multicellular activities 6 leukocyte homeostasis GO:0001776 17 8 0,49 0,10 1,07E-04 5,34E-04 1 
Regulation of intracellular processes and 
metabolism 6 carbohydrate homeostasis GO:0033500 20 15 0,57 0,19 1,26E-03 4,90E-03 1 
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Regulation of intracellular processes and 
metabolism 6 ion homeostasis GO:0050801 152 144 4,37 1,79 2,13E-14 4,82E-13 1 
Regulation of intracellular processes and 
metabolism 6 lipid homeostasis GO:0055088 21 17 0,60 0,21 1,29E-03 4,99E-03 1 
Regulation of intracellular processes and 
metabolism 6 negative regulation of hydrolase activity GO:0051346 16 15 0,46 0,19 1,68E-02 4,43E-02 1 
Regulation of intracellular processes and 
metabolism 6 negative regulation of lyase activity GO:0051350 23 7 0,66 0,09 2,00E-07 1,65E-06 1 
Regulation of intracellular processes and 
metabolism 6 negative regulation of ligase activity GO:0051352 3 59 0,09 0,73 1,06E-06 7,66E-06 2 
Regulation of intracellular processes and 
metabolism 6 positive regulation of hydrolase activity GO:0051345 83 53 2,38 0,66 1,04E-13 2,09E-12 1 
Regulation of intracellular processes and 
metabolism 6 positive regulation of transferase activity GO:0051347 71 85 2,04 1,06 6,68E-05 3,42E-04 1 
Regulation of intracellular processes and 
metabolism 6 positive regulation of lyase activity GO:0051349 28 11 0,80 0,14 1,01E-07 9,33E-07 1 
Regulation of intracellular processes and 
metabolism 6 positive regulation of ligase activity GO:0051351 3 65 0,09 0,81 1,70E-07 1,44E-06 2 
Regulation of intracellular processes and 
metabolism 6 positive regulation of oxidoreductase activity GO:0051353 13 10 0,37 0,12 1,05E-02 3,05E-02 1 
Regulation of intracellular processes and 
metabolism 6 regulation of GTPase activity GO:0043087 19 80 0,55 0,99 1,55E-02 4,13E-02 2 
Regulation of intracellular processes and 
metabolism 6 regulation of peptidase activity GO:0052547 32 30 0,92 0,37 4,41E-04 1,98E-03 1 
Regulation of intracellular processes and 
metabolism 6 regulation of lipase activity GO:0060191 55 11 1,58 0,14 4,53E-19 2,73E-17 1 
Regulation of intracellular processes and 
metabolism 6 regulation of ubiquitin-protein ligase activity GO:0051438 4 69 0,11 0,86 2,55E-07 2,01E-06 2 
Regulation of intracellular processes and 
metabolism 6 regulation of monooxygenase activity GO:0032768 12 10 0,34 0,12 1,86E-02 4,82E-02 1 
Regulation of intracellular processes and 
metabolism 6 regulation of protein homodimerization activity GO:0043496 5 1 0,14 0,01 1,13E-02 3,18E-02 1 

 

 

The functional analysis is made between recent (i.e. genes that originated with metazoans or vertebrates, list 1) and ancestral genes (i.e., genes that originated with the last universal 

common ancestor or eukaryotes list 2), as explained in Table 15.  



5. Gene dosage of human duplicated hubs is regulated through three 

different mechanisms 

The duplication of a gene entails dosage imbalance between itself and its 

interactors. In principle, the more connections the protein encoded by this gene has, the 

more deleterious will be the effect of the dosage imbalance caused by its duplication. 

Therefore, the presence of a class of duplicated hubs in the human protein interaction 

network is counterintuitive. The fact the human duplicated hubs appeared at a particular 

time in evolution suggests that an unexpected event occurred in the ancestor of vertebrates. 

It is now demonstrated that the early vertebrate genome underwent two rounds of whole 

genome duplication (Dehal and Boore, 2005; Nakatani et al., 2007) and that this particular 

mechanism of large-scale gene duplication preserves the dosage balance between genes, 

hence dosage-sensitive genes may retain duplications. This has been demonstrated in both 

yeast (Qian and Zhang, 2008) and vertebrates (Makino and McLysaght, 2010) and may 

explain why H. sapiens has a class of duplicated hubs that is not conserved in non-

vertebrate species.  

Other mechanisms may allow the retention of duplicates of dosage-sensitive genes. 

First, enhanced post-transcriptional regulation may act as a buffer to control the gene 

dosage. Therefore, if a gene is subjected to this type of regulation, its duplication does not 

affect the fitness of the organism and may be retained in the genome. microRNAs are an 

example of such regulation. Tissue selectivity is another mechanism that may allow the 

retention of the duplicates of dosage-sensitive genes. Indeed, if subfunctionalization occurs 

after duplication, then the paralogs may become tissue-specific and be expressed in 

different tissues, therefore they would not interfere with each other (Fernandez and Chen, 

2009; Semon and Wolfe, 2007).  
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To understand whether the effect of the combination of these three mechanisms 

influences the retention of hub duplications, we analyzed the enrichment of young 

duplicated hubs in genes that are involved in at least one of these mechanisms. We found 

that 61.4% of duplicated hubs are also ohnologs, i.e. that duplicated via whole genome 

duplication (Wolfe, 2000), miRNA targets, or tissue-selective genes, a fraction that is 

significantly higher compared with singleton hubs (33.9%, p-value 4e-40 from Fisher’s 

exact test) (Figure 41). All three mechanisms, separately, show a similar trend (Figure 42, 

Figure 43, Figure 44), but the most significant is represented by ohnologs. The effect of 

miRNA targets is weak, because we could analyze only less than 1,000 genes. Therefore, 

the signal is not significant, but it contributes to the general trend, when added to that of 

ohnologs and tissue-specific genes.  

It is remarkable to note that housekeeping genes (i.e. genes that are expressed in all 

human tissues) preferentially encode for ancestral hubs, independently from their 

duplicability (Figure 45). This is yet another characteristic that is peculiar of the hubs that 

are conserved throughout evolution. Not only they highly conserved throughout evolution, 

but they are needed to be expressed in all cells of a multicellular organism.  

 

Figure 41: dosage regulation of hubs  

The fraction of genes that are ohnologs, miRNA targets or tissue-specific is compared between singleton and 

duplicated hubs. Given the small number of hubs that originated with opisthokonts and primates (43 and 17, 

respectively), genes that originated at these two levels are grouped with eukaryotes and mammals, 

respectively. “*” represents significant enrichment when compared with more ancient genes (Fisher’s exact 

test). 
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Figure 42: relationships between ohnologs and singleton hubs  

The origin distribution of hubs that are ohnologs is compared with singleton hubs and hubs duplicated via 

small-scale duplications. “*” represents significant enrichment when compared with more ancient genes 

(Fisher’s exact test). 

 

 

Figure 43: miRNA regulation of singleton and duplicated hubs  

The origin distribution of duplicated hubs that are targets of miRNAs is compared with singleton hubs.  

 

 

Figure 44: tissue-selectivity of singleton and duplicated hubs  

The origin distribution of duplicated tissue-specific hubs with singleton hubs. 

Tissue-selective genes are expressed in less than 25% of human tissues. “*” represents 

significant enrichment when compared with more ancient genes (Fisher’s exact test). 
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Figure 45: relationships between housekeeping genes and duplicability of hubs 

 

The origin distribution of housekeeping hubs is compared between singleton and duplicated hubs. 

Housekeeping genes are expressed in at least 97% of human tissues. 

6. Dominant and recessive cancer genes are representative of ancient and 

recent human hubs 

We demonstrated that all protein interaction networks conserve a core of highly 

connected, central proteins, which are preferentially encoded by singleton genes that are 

expressed in all tissues of the multicellular organism (at least in H. sapiens). The human 

protein interaction network gained a new set of hubs, which originated later in evolution 

and duplicated in the two rounds of whole genome duplications in the ancestral vertebrate. 

The presence of this new class of hubs in the human protein interaction network would 

imply an increased robustness towards dosage perturbations, since even genes that encode 

highly connected proteins are allowed to retain their paralogs. However, this is not the 

case. The dosage of young duplicated hubs is tightly regulated by miRNAs or through 

tissue-selective expression and mutations in their corresponding genes are often associated 

to cancer (Jonsson and Bates, 2006; Rambaldi et al., 2008; Syed et al., 2010). Actually, the 

relationships between hubs and their involvement in cancer are highly complex. 

Cancer genes are genes whose mutations are associated to the development of 

cancer (Futreal et al., 2004). As it was previously shown (Rambaldi et al., 2008; Syed et 

al., 2010), cancer genes encode highly connected proteins in the human protein interaction 
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network. Their origin differs from that of the rest of the human genes: they are enriched in 

genes born with metazoans and are depleted in genes that originated with mammals and 

primates (Figure 46). Furthermore, the analysis of dominant and recessive cancer genes 

(Futreal et al., 2004) showed that they have different evolutionary properties. In particular, 

while the origin of dominant genes reflects that of all cancer genes, recessive genes are 

ancient: they are enriched only in genes that originated with the last universal common 

ancestor (Figure 46).  

 

Figure 46: origin of cancer genes  

The fraction of genes that originated at each level of evolution is plotted for different categories of cancer 

genes. “CGC” represents the cancer genes from the cancer gene census (Futreal et al., 2004), dominant and 

recessive genes are defined as in (Futreal et al., 2004), while “all cancer genes” includes all the candidate 

cancer genes from high-throughput mutational screenings and whole genome sequencing of cancer samples. 

P-values are calculated with Fisher’s exact test. LUCA, last universal common ancestor. 

 

Overall, cancer genes have less highly conserved duplications than the rest of 

human genes, although the duplicability of a gene is tightly related to its time of 

appearance. Hence, we repeated the analysis of duplicability of cancer genes at each level 

of origin. Among old genes, all cancer genes are less duplicated than the rest of human 
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genes. Younger genes, instead showed striking differences. Recessive genes that originated 

recently in evolution are all singleton, while dominant genes that originated with 

metazoans and vertebrates are enriched in duplicated genes (18.5%), compared with the 

rest of human genes (11.0%) (Figure 47). 

 

Figure 47: relationships between origin and duplicability of cancer genes  

The fraction of duplicated genes is calculated for genes that originated at different times in evolution. 

Eukaryotes are taken as representative of ancient genes, while metazoans and vertebrates are representative 

of recent genes. Duplicability is calculated as the presence of additional hits longer than 60% of the original 

length of the gene of interest. Fisher’s exact test is calculated with respect to the rest of the human genes. 

 

The analysis of gene and network properties of cancer genes showed that there are 

two evolutionarily distinct classes of cancer genes that correspond to the two distinct 

classes of human hubs. Recessive genes are representative of old hubs: they originated 

early in evolution and are mostly singleton. Dominant genes are instead representative of 

young hubs: they mostly originated with metazoans and retain duplications. The analysis 

of the biological processes that involve cancer genes showed less striking results compared 

with the analyses of hubs. This is mostly due to the small number of dominant (276) and 

recessive (80) genes that are associated to GO terms at level 5 and 6. Dominant genes are 

enriched in regulation of metabolism, while recessive genes are particularly enriched in 
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processes related with cell cycle, metabolism and DNA metabolism (Table 18). This 

roughly reflects the functional differences between the two classes of hubs: recessive genes 

are representative of ancestral singleton hubs and are involved in basic cellular functions, 

while dominant are mostly involved in complex cellular functions that are related to the 

regulation of metabolism.  

7. Cancer genes are neighbors in the human protein interaction network 

Given the fact that cancer genes are highly connected and central in the human 

protein interaction network, we analyzed whether this reflects a different distance between 

cancer proteins and the rest of human proteins. We calculated the distance between each 

couple of proteins inside the human protein interaction network, thus creating a 11,988-by-

11,988 distance matrix with each row and column representing a protein. We then 

calculated the average distance between each cancer protein and the other cancer proteins 

that have network information by extracting the corresponding rows and columns. We 

found that both dominant and recessive proteins are closer to each other than the rest of 

human genes (p-value 7e-94 and 2e-34, respectively, from Wilcoxon test, Figure 48).  

 

Figure 48: distance between cancer proteins  

The distribution of mean distance between dominant proteins, recessive proteins and the rest of the human 

proteins. The distance is defined as the smallest number of interactions that must be crossed to join two 

nodes. 



Table 18:  functional comparison between dominant and recessive cancer genes  

Process GO 
level GO description GO ID N genes 

(list 1) 
N genes 
(list 2) 

% of total genes 
(list 1) 

% of total genes 
(list 2) p-value adjusted p-

value Enriched list 

Regulation of intracellular processes and metabolism  6  regulation of cellular biosynthetic process  GO:0031326  156  29  53,42465753  35,36585366  4,09E‐03  3,90E‐02  1 

Regulation of intracellular processes and metabolism  5  regulation of biosynthetic process  GO:0009889  156  29  53,42465753  35,36585366  4,09E‐03  4,93E‐02  1 

Cell cycle  6  cell cycle checkpoint  GO:0000075  4  16  1,369863014  19,51219512  1,86E‐08  1,68E‐06  2 

Cell cycle  5  regulation of cell cycle  GO:0051726  15  20  5,136986301  24,3902439  1,77E‐06  7,18E‐05  2 

Cell cycle  6  regulation of mitotic cell cycle  GO:0007346  8  11  2,739726027  13,41463415  5,01E‐04  1,30E‐02  2 

Cell cycle  6  regulation of cell cycle process  GO:0010564  4  7  1,369863014  8,536585366  2,98E‐03  2,99E‐02  2 

Cell motility and interactions  5  regulation of cell adhesion  GO:0030155  4  7  1,369863014  8,536585366  2,98E‐03  4,82E‐02  2 

Cell response to stimuli  6  response to UV  GO:0009411  6  12  2,054794521  14,63414634  3,60E‐05  1,63E‐03  2 

Cell response to stimuli  5  response to light stimulus  GO:0009416  9  13  3,082191781  15,85365854  1,04E‐04  2,80E‐03  2 

Cell response to stimuli  5  response to ionizing radiation  GO:0010212  2  8  0,684931507  9,756097561  1,23E‐04  2,84E‐03  2 

Cellular metabolism  5  macromolecule catabolic process  GO:0043285  16  21  5,479452055  25,6097561  1,06E‐06  5,70E‐05  2 

Cellular metabolism  5  cellular macromolecule catabolic process  GO:0044265  12  19  4,109589041  23,17073171  7,45E‐07  5,70E‐05  2 

Cellular metabolism  6  modification‐dependent macromolecule catabolic process  GO:0043632  9  11  3,082191781  13,41463415  9,13E‐04  2,06E‐02  2 

Cellular metabolism  6  protein catabolic process  GO:0030163  14  13  4,794520548  15,85365854  2,50E‐03  2,66E‐02  2 

Development  6  gastrulation  GO:0007369  3  7  1,02739726  8,536585366  1,32E‐03  2,65E‐02  2 

Development  6  tissue development  GO:0009888  27  19  9,246575342  23,17073171  1,84E‐03  2,66E‐02  2 

Development  5  embryonic morphogenesis  GO:0048598  12  12  4,109589041  14,63414634  1,59E‐03  2,87E‐02  2 

Development  5  positive regulation of developmental process  GO:0051094  27  18  9,246575342  21,95121951  3,45E‐03  4,93E‐02  2 

DNA/RNA metabolism and transcription  6  DNA metabolic process  GO:0006259  16  32  5,479452055  39,02439024  5,27E‐13  9,54E‐11  2 

Regulation of intracellular processes and metabolism  5  negative regulation of catalytic activity  GO:0043086  2  10  0,684931507  12,19512195  7,27E‐06  2,35E‐04  2 

Regulation of intracellular processes and metabolism  6  negative regulation of transferase activity  GO:0051348  2  8  0,684931507  9,756097561  1,23E‐04  4,44E‐03  2 

Regulation of intracellular processes and metabolism  6  negative regulation of macromolecule metabolic process  GO:0010605  28  19  9,589041096  23,17073171  2,17E‐03  2,66E‐02  2 

Regulation of intracellular processes and metabolism  6  negative regulation of cellular metabolic process  GO:0031324  27  19  9,246575342  23,17073171  1,84E‐03  2,66E‐02  2 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Regulation of intracellular processes and metabolism  6  regulation of phosphorus metabolic process  GO:0051174  19  15  6,506849315  18,29268293  2,14E‐03  2,66E‐02  2 

Regulation of intracellular processes and metabolism  6  negative regulation of cell proliferation  GO:0008285  15  14  5,136986301  17,07317073  1,51E‐03  2,66E‐02  2 

Regulation of intracellular processes and metabolism  6  positive regulation of hydrolase activity  GO:0051345  7  9  2,397260274  10,97560976  2,33E‐03  2,66E‐02  2 

Regulation of intracellular processes and metabolism  5  negative regulation of metabolic process  GO:0009892  29  20  9,931506849  24,3902439  1,35E‐03  2,74E‐02  2 

Regulation of intracellular processes and metabolism  5  negative regulation of cellular process  GO:0048523  66  32  22,60273973  39,02439024  4,26E‐03  4,93E‐02  2 

Regulation of intracellular processes and metabolism  5  anatomical structure homeostasis  GO:0060249  8  9  2,739726027  10,97560976  4,07E‐03  4,93E‐02  2 

The functional analysis is made between dominant (list 1) and recessive genes (list 2), as explained in Table 15.  



 

8. Cancer genes are depleted in highly conserved paralogs 

It was previously demonstrated that cancer genes are depleted in highly conserved 

paralogs, compared with the rest of human genes (Rambaldi et al., 2008). However, the 

previous paragraphs showed that gene origin influences the duplicability of cancer genes 

(Figure 47). Furthermore, dominant and recessive cancer genes have different behaviors in 

terms of duplicability. These differences are highly complex and depend also on the level 

of the conservation of duplication. Therefore, after analyzing the role of the gene origin, 

we investigated the level of conservation of the paralogs.  

Instead of considering as duplicated all genes that have additional hits above 60% 

of their length as in Rambaldi et al. (Rambaldi et al., 2008), we set variable thresholds and 

investigated whether cancer genes behave differently than the rest of human genes. We 

discovered that cancer genes are more duplicated when considering low levels of paralog 

conservation (less than 30%), while they are less duplicated at higher levels of 

conservation (more than 40%) (Figure 49). However, not all cancer genes have the same 

behavior: recessive genes are less duplicated than the rest of human genes independently 

on the level of conservation. We performed the same analyses considering two types of 

duplications separately: duplications that overlap known genes and those that fall in 

intronic or intergenic regions. The relationships between both types of cancer genes and 

the rest of human genes did not change when analyzing duplications that overlap known 

genes (Figure 50). Duplications that do not overlap known genes instead always involve 

less than 20% of human genes and are relatively constant between 10 and 80% of sequence 

conservation (Figure 51). Therefore, the differences in duplicability between cancer genes 

and the rest of human genes are due to functional duplications, not to spurious hits on the 

genome, which do not overlap known genes.  
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The different duplicability of cancer genes and the rest of human genes might be 

due to their different length. The median length of cancer genes (3,979 bp) is significantly 

different from the rest of human genes (1,941 bp, p-value from Wilcoxon test 8.5e-82) 

(Figure 52). In principle, longer genes have a higher low-coverage duplicability, because 

the likelihood to find a highly identical sequence on another chromosomal location is 

proportional to the gene length. At high levels of coverage, instead, long genes have a 

lower probability to find highly identical sequences. In order to eliminate this potential 

bias, we repeated the analysis normalizing by the gene length. Instead of considering the 

number of duplicated genes, we used the sum of the length of all duplicated genes and 

divided this by the total gene length. The results remain consistent with the previous 

findings also when normalizing by the gene length (Figure 53, Figure 54, Figure 55). 

 

Figure 49: conservation of duplicates of cancer genes 

Duplicability as a function of the conservation level (i.e. the length of the longest additional hit on the 

genome) is calculated for all cancer genes (CGC genes, i.e. all genes that are included in the cancer gene 

census), dominant genes, recessive genes and the rest of human genes. 
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Figure 50: conservation of genic duplicates of cancer genes  

Duplicability is calculated as in Figure 49. Only hits that overlap exons of known genes are considered. 

 

Figure 51: conservation of genomic duplicates of cancer genes  

Duplicability is calculated as in Figure 49. Only hits that do not overlap exons of known genes are 

considered. 

 

 

Figure 52: length of cancer genes 

The distribution of the length of cancer genes (red) is compared with the length distribution of the rest of 

human genes (black). To calculate the gene length only the coding sequence of the longest isoform of each 

gene is considered. 
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Figure 53: conservation of normalized duplicates of cancer genes  

Duplicability is calculated as in Figure 49. In order to normalize by the gene length, the fraction of duplicates 

is calculated as ratio between the sum of the length of all duplicated genes and the sum of the length of all 

genes, for each level of conservation. 

 

Figure 54: conservation of normalized genic duplicates of cancer genes  

Duplicability is calculated and normalized as described in Figure 49. Only hits that overlap exons of known 

genes are considered. 
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Figure 55: conservation of normalized genomic duplicates of cancer genes  

Duplicability is calculated and normalized as described in Figure 49. Only hits that do not overlap exons of 

known genes are considered. 
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Discussion 

In the past few years, several technical innovations allowed extensive studies of 

biological networks. In particular, the development of high-throughput techniques such as 

yeast-two-hybrid and TAP increased the protein interaction networks data exponentially 

and protein-protein interactions analysis is now feasible in several species with different 

levels of complexity (Breitkreutz et al., 2008; Kerrien et al., 2007). However, we are far 

from having a comprehensive picture of protein interaction networks. Yu et al. (Yu et al., 

2008a) estimated that the protein interaction network of S. cerevisiae consists of 18,000 ± 

4,500 interactions, but we identified almost 100,000 interactions between yeast proteins. 

Furthermore, it is still matter of debate whether high-throughput data include more or less 

false positives than literature-based data (Gandhi et al., 2006; Hart et al., 2006; Venkatesan 

et al., 2009; Yu et al., 2008a). Given the high rates of both false negatives and false 

positives, it would seem unfeasible to compare networks from different species, especially 

taking into consideration the fact that different networks have different levels of 

completeness and are based on different combinations of high-throughput and literature-

based primary data (Table 8). Notwithstanding these pivotal issues, we identified several 

properties that are common in the available protein interaction networks. From any 

analyses, we first eliminated all the networks that include too few proteins and interactions, 

such as M. musculus, C. elegans, A. thaliana and M. pneumoniae, while we retained H. 

sapiens, D. melanogaster, S. cerevisiae and E. coli. Although the number of species is 

small, they well represent different levels of complexity. Indeed we were able to analyze 

one prokaryote (E. coli), one unicellular eukaryote (S. cerevisiae), one lower metazoan (D, 

melanogaster) and one vertebrate (H. sapiens).  

Gene properties presented less issues for these four species. Only for H. sapiens we 

needed to convert the identifiers, in order to have the same type of gene IDs between 
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network and gene properties. For other species not all data were available. In particular, for 

M. musculus, G. gallus and C. elegans we were able to identify none or very few group-

specific genes. This is due to the fact that we could use only one or very few species to 

define the corresponding group-specific nodes. However, this did not affect the results in a 

significant way, because metazoans, and vertebrates in particular, have a very low fraction 

of group-specific genes. 

Having identified the duplicability and the origin of genes from several different 

species, we could hypothesize how protein interaction networks evolved. In particular, we 

discovered the role that gene duplications have in the evolution of protein interaction 

networks. We identified a network core that is common to all the analyzed species. It is 

composed of ancient central hubs whose singleton status is retained throughout evolution. 

These genes evolve slowly, hence we were able to identify their orthologs in distantly 

related species, such as vertebrates and prokaryotes. Our studies on the function and the 

expression of human ancient hubs, together with previous findings in S. cerevisiae (Kunin 

et al., 2004), showed that these are ubiquitously expressed and are involved in basic 

cellular processes, related with the survival of the single cell. Functions like transcription, 

replication and cellular metabolism are typical of these proteins. Although the proteins 

inside the network core have similar properties, they are not a homogeneous set. Indeed, it 

was demonstrated that yeast hubs might be divided into two categories: date and party 

hubs (Han et al., 2004). This distinction was made on the basis of the expression of each 

hub and its interactors. The expression of the interactors of party hubs is highly correlated, 

therefore party hubs may interact simultaneously with their interactors. Date hubs, instead, 

display a low level of co-expression, which may be explained by the fact that their 

interactions occur at different times and in different locations (Figure 56) (Han et al., 

2004).  
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Figure 56: date and party hubs  

Adapted from (Han et al., 2004). Nodes with thick borders are hubs. Different colors represent different 

locations and/or different time of expression. The grey hub is a date hub, because it interacts with different 

proteins at different times and localizations, while the other four hubs are party hubs because they are co-

localized with their interactors. 

 

In S. cerevisiae, E. coli, D. melanogaster and H. sapiens, connectivity and 

centrality negatively correlate with the age of the corresponding genes, i.e. younger 

proteins are less connected and more peripheral than older proteins. Furthermore, ancient 

hubs are preferentially singleton. Studies on the S. cerevisiae protein interaction network 

showed that essential genes are preferentially singleton (Papp et al., 2003; Yang et al., 

2003) and occupy central positions inside the yeast protein interaction network (Gandhi et 

al., 2006), while peripheral proteins are involved in ongoing adaptive evolution (Kim et al., 

2007). Our results support these findings, showing that all protein interaction networks 

conserve of backbone of essential singleton nodes that are ancient, slow-evolving and are 

involved in basic cellular processes. The network periphery, instead, includes non-essential 

young proteins that are under positive selection. Therefore, their duplications are more 

likely to be retained in the genome.  

Ancient human hubs, independently from their duplicability status, are expressed in 

several tissues and many of them are housekeeping (i.e. they are expressed in all tissues), 

while younger hubs are expressed in fewer tissues (Figure 44, Figure 45). This strengthens 
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the hypothesis that the network core is composed of genes that are important for the 

survival of the cell and, therefore, must be expressed in all the cells of an organism. 

The protein interaction networks of H. sapiens, D. melanogaster, S. cerevisiae and 

E. coli are scale-free (Figure 29, Figure 30, Figure 31, Figure 32). Barabasi and Albert 

(Barabasi and Albert, 1999) described the “preferential attachment” theory of evolution of 

scale-free networks starting from two assumptions: 

1. The models that describe random networks (Erdős-Rényi and Watts-

Strogatz) start with a fixed number of nodes, which are either randomly 

connected or reconnected, without implying any expansion of the network 

(Barabasi and Albert, 1999). In biological networks and, in general, real 

world networks, the probability to gain new nodes is non-zero; 

2. In random networks, the probability of a connection between two nodes is 

random and uniform. However, nodes in real networks establish 

connections in a non-random way. In particular, new nodes tend to attach to 

already existing nodes that are highly connected, with a probability that is 

proportional to their degree (Barabasi and Albert, 1999).  

The preferential attachment theory seems to be supported by our results. Indeed, we 

found that, in all four networks, older proteins are highly connected and central, while 

younger proteins have fewer connections and are located at the network periphery.  

The preferential attachment theory does not take into account the mechanisms of 

gene evolution. The evolution of new genes from non-coding DNA sequences accounts for 

a negligible fraction of the genome (Cai et al., 2008; Knowles and McLysaght, 2009; Toll-

Riera et al., 2009; Zhou et al., 2008), while gene duplication is responsible for the vast 

majority of new genes (Wolfe, 2001). Therefore, while the preferential attachment 

mechanism may be applied to genes that are created de novo from non-coding sequences 

(Figure 57), it cannot be valid to explain the evolution of paralogous genes.  
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Figure 57: three models of network evolution  

The network evolves in different ways, depending on mechanisms of appearance of new genes. Genes that 

originate de novo from non-coding DNA sequences (red) preferentially attach to existing hubs. In case of 

single-gene duplication (orange and cyan), the new gene will have the same interactions of its paralog. 

Through neo- and subfunctionalization the two paralogs diverge, gaining new interactions and losing others. 

After whole genome duplication, all interactions are duplicated, both lowly connected peripheral and highly 

connected central nodes. The divergence of duplicates allows the rewiring of interactions (green and violet). 

 

The “duplication and divergence” model takes into account the fact that the 

principal source of new genes is the duplication of existing genes (Evlampiev and 

Isambert, 2008). Right after the duplication, the two paralogs have identical interactions. 
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Both paralogs undergo positive selection and diverge, losing part of their interactions and 

gaining new ones, following the mechanisms of sub- and neofunctionalization. Peripheral 

nodes are more likely to retain duplications because they have fewer connections and 

include a smaller fraction of essential proteins than central nodes. The presence of a second 

copy creates smaller perturbations in nodes that have few connections. Therefore the 

network periphery evolves more quickly than the network core (Figure 57).  

A further level of complexity to the evolution of protein interaction networks is 

given by the duplication of the entire genome. Several taxonomic groups underwent one or 

more rounds of whole genome duplications, such as plants (up to three rounds) (Proost et 

al.), fungi (Kellis et al., 2004) and vertebrates (two rounds, with a further round in fish) 

(Dehal and Boore, 2005; Nakatani et al., 2007). As a consequence of whole genome 

duplication, also protein-protein interactions are duplicated. Then neo- and 

subfunctionalization occur and some interactions are lost, while new ones are created 

(Figure 57). However, the difference compared to single-gene duplications is that through 

whole genome duplication also the duplication of hubs may be retained. Furthermore, also 

dosage-sensitive genes may retain their duplicates, because, having all their interactors 

duplicated, the dosage balance remains unchanged. Another consequence of the two 

rounds of whole genome duplication in the ancestor of vertebrates may be the increase of 

organismal complexity. Two facts indirectly support this hypothesis. First, the number of 

genes that constitute gene families positively correlates with the organismal complexity 

(Vogel and Chothia, 2006). Second, the expansions of vertebrate gene families correlate 

with each other (Vogel and Chothia, 2006), suggesting that they followed similar 

evolutionary paths.  

Human recent hubs duplicated preferentially through the two rounds of whole 

duplications of the early vertebrate genome. We have no evidence to understand whether 

they were already singleton hubs or they gained the “hub” status after duplication, 

although we are able to make some speculations. Following the “duplication and 
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divergence” theory of network evolution, the vertebrate protein interaction network 

underwent massive rearrangements after whole genome duplication, with partial loss of 

redundant interactions and formation of de novo interactions. Given that the network 

periphery is under positive selection (Kim et al., 2007), young proteins (i.e. proteins that 

originated with metazoans or later) underwent substantial rewiring and gained many 

interactions. The network core, instead, was able to resist to these rearrangements and 

ancestral hubs retained their singleton status. However the signal of ancestral singleton 

proteins to be more connected than duplicated proteins is weaker in human than in the 

other protein interaction networks (Figure 39, Table 8). This may be due to the fact that a 

fraction of human ancestral hubs was able to retain duplications.  

Genes that duplicated through whole genome duplication do not undergo further 

small-scale duplications or copy number variations, while genes duplicated via small-scale 

duplications are more prone to copy number variations (Makino and McLysaght, 2010). 

Therefore whole genome duplications allow the retention of the duplication of dosage-

sensitive genes, which could not duplicate otherwise. The fact that the dosage of human 

duplicated hubs is tightly regulated is evident also for other reasons. These genes are 

regulated post-transcriptionally by miRNAs. These short RNA strands control the dosage 

of a gene by coupling with its 3’ UTR, thus allowing mRNA degradation. miRNAs control 

the dosage of duplicated hubs: although the signal is not statistically significant, 

independently from the origin, the fraction of duplicated hubs that are miRNA targets is 

higher than singletons (Figure 43).  

An example that explains how the dosage of duplicated hubs is accurately regulated 

by miRNAs is represented by PTEN and its highly conserved paralog PTENP1. Although 

it is an ancient gene (it has orthologs in prokaryotes), PTEN is a duplicated hub that 

occupies a central position in the human protein interaction network. Its paralog is a 

processed pseudogene located on chromosome 9, which has 97% of sequence conservation 

with PTEN. Also part of the PTENP1 3’ UTR is highly identical to PTEN: the 5’ region 
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has 95% conservation, the 3’ region has 50% conservation, but PTENP1 3’ UTR lacks the 

3’-most 1 kilobase. PTENP1 does not encode a functional protein because of a missense 

mutation in the initiatior methionine codon (Fujii et al., 1999). A recent study by Poliseno 

et al. (Poliseno et al.) showed that the binding sites for five miRNAs are highly conserved 

between PTEN and PTENP1 3’UTRs (miR-17, miR-19, miR-21, miR-26 and miR-214) 

(Figure 58). The gene expression levels of the two paralogs are highly similar in normal 

tissues and their mRNA abundance is lowered upon the expression of miR-19b and miR-

20a. Furthermore, the overexpression of the 3’ UTR of one of the two paralogs results in 

the downregulation of both PTEN and PTENP1 (Poliseno et al.). These observations show 

that the expression of both paralogs is regulated by the same elements. In particular 

PTENP1 functions as a decoy of PTEN-targeting miRNAs, allowing a higher expression 

level of PTEN by sequestering the miRNAs that should target it (Poliseno et al.).  

 

Figure 58: miRNA regulation of PTEN and PTENP1 

Adapted from (Poliseno et al., 2010). The 3’-UTR of PTEN and PTENP1 includes three regions: highly 

conserved (dark gray), lowly conserved (light gray) and a PTEN-specific region. miRNA binding sites are 

highlighted by the vertical colored lines. 

 

These results show that the duplication of PTEN did not cause catastrophic 

perturbations in the human protein interaction network. Although its paralog does not 

encode functional proteins, its expression helps the regulation of PTEN, because it acts as 

a decoy for the miRNAs that regulate PTEN, thus increasing the dosage of PTEN 

(Salmena et al., 2011). A similar example is given by KRAS and its processed pseudogene 

paralog KRAS1P. The overexpression of KRAS1P in vitro results in increased KRAS 
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mRNA abundance, because of this dosage imbalance induced between the two paralogs 

(Poliseno et al., 2010). 

In addition to being duplicated through whole genome duplication and being tightly 

regulated by miRNAs, human duplicated hubs that appeared recently in evolution are 

mostly tissue-specific. Therefore the retention of more than one copy of a single gene does 

not imply an increased dosage, but subfunctionalization, intended as diversification of the 

gene expression in different tissues. Hence the two paralogs are duplicated at the genomic 

level but their function retains a “singleton” status. The expansion of tissues and cell types 

with vertebrates (Vogel and Chothia, 2006) may have helped this particular type of 

subfunctionalization.  

Being singleton and essential, deletion of hubs brings to cell death in S. cerevisiae 

(Hughes and Friedman, 2005; Prachumwat and Li, 2006). This demonstrates that the 

network is not robust towards dosage modifications of hubs, since they cannot retain 

duplicates and cannot be lost by the cell. In H. sapiens, different evidence suggests the 

same conclusion, taking also into consideration the presence of the new class of duplicated 

hubs. First, genes that duplicated through whole genome duplication do not undergo 

further duplications (Makino and McLysaght, 2010). Second, the dosage of duplicated 

hubs is controlled by alternative mechanisms, such as miRNAs or tissue-selective 

expression. Third, mutations in the sequence of hubs are often associated with disease. 

Germline mutations that are associated with disease do not affect hubs (Goh et al., 2007), 

while somatic mutations of hubs are often involved in tumorigenesis (Jonsson and Bates, 

2006; Rambaldi et al., 2008).  

Previous analyses showed that cancer genes are mostly singleton and encode 

proteins with higher connectivity than the rest of human genes (Jonsson and Bates, 2006; 

Rambaldi et al., 2008). This holds true when analyzing cancer genes as a unique entity. 

However, we were able to distinguish between two categories of cancer genes, which are 

significantly different: dominant and recessive cancer genes (Futreal et al., 2004). 
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Dominant genes require only mutations in one allele to develop cancer and are associated 

with gain-of-function mutations (Vogelstein and Kinzler, 2004). Recessive genes, instead, 

need loss-of-function mutations in both alleles to start tumorigenesis (Vogelstein and 

Kinzler, 2004). Both dominant and recessive genes are more connected and more central 

than the rest of human genes: hubs represent the 25% most connected nodes inside the 

human protein interaction network, but they include more than half of dominant genes and 

three quarters of recessive genes (Figure 59). Dominant and recessive genes represent two 

subgroups of cancer genes with strikingly different characteristics. Recessive genes are 

ancient and associated with basic cellular processes, while dominant genes are more recent 

(i.e. they are enriched in genes that originated with metazoans) and involved in regulatory 

functions and processes related to multicellularity (Figure 46, Table 18). A further 

difference is represented by duplicability. Although all cancer genes are less duplicated 

than the rest of human genes, their duplicability depends on the origin of the genes. 

Ancient cancer genes are less duplicated than the rest of human genes, while, among 

younger genes, dominant and recessive genes have different behaviors: recessive genes 

that originated with metazoans or later are never duplicated, while dominant genes with the 

same origin are enriched in duplicated genes, compared with the rest of the human genome 

(Figure 47).  

 

Figure 59: cancer hubs  

The pie charts show the distribution of hubs among recessive and dominant genes. The white part represents 

the genes that are not included in the protein interaction network. Hubs are defined as the top 25% most 

connected nodes in the human protein interaction network. 
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Recessive and dominant cancer genes roughly correspond to caretakers and 

gatekeepers, which promote two distinct mechanisms of tumorigenesis (Domazet-Loso and 

Tautz, 2010; Kinzler and Vogelstein, 1997). Caretakers are responsible of the maintenance 

of genome stability and are involved in DNA repair (recessive genes), while gatekeepers 

are mainly involved in regulatory processes and directly control cell proliferation 

(dominant genes) (Hanahan and Weinberg; Kinzler and Vogelstein, 1997). Therefore, 

while in the first case mutations impair mechanisms that are directly related to proteins that 

interact with DNA and increase the mutation rate of the cell’s DNA, mutations in 

gatekeeper genes spoil regulatory processes, hence perturbing normal interactions that are 

necessary for the correct cell functioning. However, tumorigenesis arises because the 

function of hubs, which are fragile components of the human protein interaction network, 

is impaired. This promotes the perturbation of a number of proteins and cellular processes 

that is proportional to the number of interactions that involve the mutated hub.  

Having identified the complex mechanisms that regulate the evolution of protein 

interaction networks, we investigated what rules control other types of biological networks. 

In particular, we analyzed the human genetic interaction network, with the aim at 

identifying the network structure and understanding the characteristics of cancer genes. 

Given the absence of databases that collect genetic interactions in human (only less than 

300 interactions are present in BioGRID), we developed a method to identify genetic 

interactions in human. We reconstructed the human genetic interaction network and 

exploited both protein interaction and genetic interaction network data to develop a method 

to detect new putative cancer genes (Appendix 2). 
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Appendix 1 – Network of Cancer Genes: a web resource for 

integration and analysis of gene and network properties of 

cancer genes 

In order to collect and organize the information about evolutionary and protein 

interaction network properties of cancer genes, with the help of Adnan Syed, we built the 

Network of Cancer Genes (NCG, http://bio.ifom-ieo-campus.it/ncg), a web application that 

stores information on several systems-level properties of cancer genes. The first version of 

NCG was published in 2008 (Rambaldi et al., 2008), and we updated in 2010 (Syed et al., 

2010). Together with Vera Pendino and Shruti Sinha, we have now completed a second 

updated version, with several improvements.  

1. Database description 

NCG collects information about origin, orthology relationships, duplicability and 

function of cancer genes, together with their interactions with miRNAs and the network 

properties of their encoded proteins.  

The newest version of NCG (NCG 3.0) includes data for 1,494 cancer genes, 

gathered from several different sources (Table 2):  

• 498 genes from the Cancer Gene Census (Futreal et al., 2004) (updated at 

March 22nd 2011) and from the census of amplified genes in cancer 

(Santarius et al.). These are known cancer genes, i.e. genes whose 

involvement in cancer has already been experimentally demonstrated; 

• 698 candidate cancer genes from 18 high-throughput mutational screenings. 

These genes were selected among the 7,439 that were found mutated 

because of their high mutation frequency among different samples; 
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• 454 mutated genes in 11 whole genome sequencing studies of 39 cancer 

patients. 

We were not able to include all genes from the original data as they were extracted 

from the corresponding experiments, because for five we could not associated an up-to-

date Entrez IDs.  

The definition of duplicability was explained in the Methods section. Briefly, a 

gene is duplicated if it has a second hit on the genome that spans at least 60% of its length. 

In addition to this threshold, on the website the user may choose different levels of 

sequence conservation in order to analyze more or less conserved paralogs of the gene of 

interest.  

We modified the dataset of unique human genes, in order to have the most recent 

updates. Instead of using RefSeq, we chose GenCode v.7.0 (Harrow et al., 2006). This is a 

highly curated set of unique human genes that is used as reference for the ENCODE 

project, the 1000 Genomes Project and to capture baits of the whole human exome (Coffey 

et al., 2011). It is therefore likely to contain all genes that are found mutated in current and 

future high-throughput mutational screenings of cancer exomes. As with RefSeq proteins, 

we aligned all the 84,408 protein sequences (20,700 genes) to the human genome build 

hg18, using BLAT (Figure 20). We were able to positively align the 99.2% (83,769) of 

these sequences. After the application of all the filters described in Figure 20, we retrieved 

19,560 genes. The loss of many of the 1,140 genes upon the application of the filter for 

isoforms was due to the presence of many sequences that span two consecutive genes. 

These sequences seem to be errors in the Ensembl database, since their only supports are 

Ensembl transcripts that include exons from clearly different genes (Figure 60). For these 

sequences, there is no evidence of other mRNAs or ESTs. In these cases, the clusters of 

sequences with overlapping best hits span both genes and only the longest isoform is 

retained. In order to overcome this problem, we made the union between the coordinates of 

the 19,960 genes from GenCode and the results from the application of the pipeline to the 



  161 

most recent version of RefSeq (version 46, 19,356 genes after the removal of isoforms) 

(Figure 60). We were able to add 971 genes, bringing the number of unique genes to 

20,531.  

 

Figure 60: Loss of genes in the genome alignment pipeline  

The figure shows an example of a misidentification of genes due to the presence of an isoform (magenta) that 

spans two consecutive genes. When considering only the Gencode hits, the six isoforms of Gene A and Gene 

B are overlapping, therefore only the longest isoform (green) is retained and Gene B is completely lost. 

When aligning RefSeq sequences to the genome, both genes are retained, because the spurious isoform is not 

present. The final union of the results from both Gencode and RefSeq isoform filters allows the retrieval of 

both Gene A and Gene B.  

 

We updated the orthology information to the most recent release of eggNOG 

(Muller et al., 2010) (version 2.0), which include 20,122 genes. The new protein-protein 

interaction data was retrieved from the most recent releases of the databases described in 

Table 3.  This allowed us to define 98,492 interactions between 13,531 proteins (Table 19).  
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Table 19: integration of protein interaction networks from different sources  

Dataset Version Nodes Interactions Publications 

BioGRID 
3.1.75 (Apr 1st 
2011) 8,940 35,893 11,491 

IntAct 
138 (Mar 2nd 
2011) 8,785 34,677 2,090 

MINT Dec 15th 2010 5,428 13,309 2,709 
DIP Oct 10th 2010 4,669 12,422 2,263 
HPRD 9 (Apr 13th 2010) 8,897 37,026 18,837 

Total 13,531 98,492 25,915 
 

Primary protein interaction network data are gathered from five sources. The number of nodes is calculated 

as the number of Entrez IDs that it is possible to associate to the original data from each database. 

Interactions are non-redundant.  

 

The integration of the newest data in terms of duplicability, orthology and protein 

interaction networks allowed us to have information of 23,535 genes (Figure 61). For 

12.161 genes (51.7%) we were able to retrieve duplicability, orthology and network 

information (Figure 61). 

 

Figure 61: Orthology visualization in NCG  

The figure shows the number of genes that have information from the three sources. The total number of 

genes that have information from at least one dataset is 23,535. 

 

The new version of NCG allows the user to gather information about the 

interactions between cancer genes and miRNAs. Tarbase v.5 (June 2008) (Papadopoulos et 
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al., 2009) and miRecords v.1 (August 15th 2008) (Xiao et al., 2009) were used to gather 

these interactions and the information about what genes are hosts of miRNAs (see Methods 

section). 

We also exploited the functional analysis of hubs to create a section of functional 

information of cancer genes. For each gene the user may retrieve the functional classes that 

are associated to it and the GO terms from Biological Process at level 5 and 6. The data 

collected in NCG are stored in a MySQL database. The web interface to interrogate the 

database is built in Perl. We adopted Cytoscape Web (Lopes et al., 2010) to visualize both 

the protein interaction networks and the miRNAs-cancer genes networks.  

2. Web interface 

The user may retrieve information on cancer genes in three ways: 

1. Search for a specific gene or a list of genes by using one of the supported 

identifiers (Entrez ID, RefSeq ID, Ensembl protein ID or gene symbol); 

2. Select a pre-compiled list of cancer genes, which includes all the genes 

from a single study or from one of the three types of cancer genes; 

3. Select all genes that have similar properties. The user may choose all cancer 

genes that have peculiar characteristics, such as duplicability, function, 

origin, network properties or tissues where the genes were found mutated. 

The primary output of the query is divided into six sections: 

1. The summary table that provides several links to external databases, in 

addition to the gene information and its involvement in cancer. If the user is 

interested in the involvement of a gene in cancer, a link opens a new page 

with the description of all the experiments that found it mutated; 

2. The duplicability report, which describes whether the gene has duplications 

above 60% of its length; 

3. The description of its origin; 
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4. The description of its network properties; 

5. The report of its interactions with miRNAs, i.e. whether it is target or host 

of miRNAs; 

6. The functional report, with the list of all functional classes that are 

associated to it. 

Each of these sections allows the user to open a new page, which describes the 

gene properties in detail. The duplicability page displays all the duplications of the gene of 

interest, with information about the duplicated loci (i.e. whether they overlap a real gene or 

an intergenic region). The user may set different thresholds of duplicability in order to 

study more or less conserved paralogs. The orthology page shows the tree of life with 

information about the presence or absence of orthologs and a table with all the orthologs of 

the gene of interest (Figure 62). The network page shows all the interactions of the protein 

of interest and between its primary interactors (Figure 63), in addition to a brief report that 

describes the properties of its interactors. The miRNA page is very similar to the network 

page: it shows all the interactions that involve the miRNAs that target the gene of interest 

(Figure 64). The function page displays all the Biological Process GO terms at level 5 and 

6 that are associated to the gene of interest. 

The user may also search directly for miRNAs and their cancer targets, in several 

ways: 

1. Search for a particular miRNA or cancer gene that is a target of miRNAs; 

2. Retrieve the list of all the 118 cancer genes that are targets of miRNAs; 

3. Retrieve the list of all the 55 cancer genes that are host of miRNAs. 

In the first case the miRNAs page will be displayed, while in the latter two cases 

the result page will be shown with the properties of all cancer genes that are target or host 

of miRNAs. 
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Figure 62: Orthology visualization in NCG  

The figure shows the orthology relationships of ADAM metallopeptidase domain 29 (ADAM29). The tree of 

life shows the presence (yellow) or absence (white) of orthologs for a gene of interest. The red node 

represents the origin of the gene. 

 

Figure 63: protein interaction network visualization in NCG 

The figure shows the 12 interactors of c-abl oncogene 1, non-receptor tyrosine kinase (AKT2). Triangles 

represents genes from the cancer gene census, squares are candidate cancer genes. Dark blue nodes represent 

ancient proteins, while cyan represents recent proteins. Primary interactions (i.e. interactions that involve 

AKT2) are depicted in green, while secondary interactions (i.e. interactions between the interactors of AKT2) 

are depicted in violet. Thick lines correspond to interactions detected by more than one expreriment, while 
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thin lines are detected only in one experiment. Red proteins are duplicated (i.e. they have an additional hit 

that covers than 60% of their length), while black proteins are singleton. 

 

Figure 64: miRNA-gene interactions in NCG 

The figure shows the interactions between miRNAs and DNA (cytosine-5-)-methyltransferase 3 alpha 

(DNMT3A). miRNAs are depicted in green, while the gene properties are shown as explained in Figure 63. 
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Appendix 2 – The human genetic interaction network 

1. Introduction 

Genetic interactions were used in S. cerevisiae to identify the presence of 

functional relationships between genes and discriminate between two distinct types of 

paralogs (VanderSluis et al.). In particular, negative genetic interactions may imply 

functional redundancy between two genes (VanderSluis et al.). The application of this 

concept to paralogs entails the identification of two definite classes of duplicated genes: 

functional paralogs and dosage paralogs (VanderSluis et al.). Functional paralogs have at 

least partially redundant functions. They have negative genetic interactions between them 

and few negative genetic interactions with other genes because they functionally buffer 

one another (VanderSluis et al.). Therefore the deletion of one paralog is not lethal because 

the other is able to at least partially restore the original function. Dosage paralogs instead 

do not functionally buffer one another, are highly identical and are involved in the same 

function (VanderSluis et al.). They have similar genetic interactions and, in order to 

correctly accomplish their function and maintain the dosage balance, both functional 

copies are needed, therefore the deletion of a single copy has a severe effect (VanderSluis 

et al.).  

2. Genetic interactions between cancer genes and their paralogs 

Assuming the hypothesis that the distinction between functional and dosage 

paralogs exists also in human, duplicated cancer genes should be depleted only in dosage 

duplicates, because both copies must be functional in order to accomplish their function 

correctly. Indeed we found that, only considering highly conserved duplications, cancer 
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genes are less duplicated than the rest of human genes, while they are enriched in lowly 

conserved duplications (less than 30% sequence identity) (Figure 50).  

We divided the 35 cancer genes from the Cancer Gene Census with highly 

conserved duplicates into three possible categories of duplicates (Table 20). Since some 

duplicated cancer genes are reciprocal paralogs, we identified 27 distinct clusters of 

paralogs. By literature search, we identified the majority (16, 63%) as diverging paralogs: 

nine have different expression (i.e. their expression levels are different or they are 

expressed in different tissues) and eight have different function. Only the lysine (K)-

specific demethylase 5C (KDM5C) and its paralog KDM5D are dosage duplicates. 

KDM5C is a recessive gene that is involved in clear cell renal carcinoma, while its paralog 

has never been associated with cancer. They are both histone demethylases that repress 

SMAD3 activity (Kim et al., 2008). They both may act as monomers, heterodimers and 

KDM5C also as homodimer, activating different transcription factors (Kim et al., 2008) 

(Figure 65). The dosage of both paralogs must be tightly regulated, in order to activate the 

right transcription factors (Kim et al., 2008). When KDM5C is mutated, its function is 

impaired and it cannot activate any transcription factor (Kim et al., 2008). KDM5D, 

instead, is wild type and can activate its targets as monomer, thus producing aberrant 

transcription factor activation.  

For five clusters of paralogs (seven cancer genes) we were not able to determine 

the paralog type, while we identified the last five genes as functional duplicates: clathrin 

heavy chain (CLTC), pre-B-cell leukemia homeobox 1 (PBX1), guanine nucleotide 

binding protein q polypeptide (GNAQ), SWI/SNF related, matrix associated, actin 

dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) and Von Hippel-

Lindau tumor suppressor (VHL).  
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Table 20: highly conserved paralogs of cancer genes 

Cancer Gene(s) Paralog(s) Coverage 
(%) 

Identity 
(%) 

Mutation type 
(CGC) 

Cancer Type 
(CGC) Paralog type 

LCP1 PLS3 62,84 84,27 T (BCL6) NHL different expression 

MSN RDX 82,05 86,7 T (ALK) ALCL different expression 

PAX3 PAX7 86,73 85,84 T (FOXO1A, 
NCOA1) 

alveolar 
rhabdomyosarcoma different expression 

POU5F1 POU5F1B 73,49 95,82 T (EWSR1) sarcoma different expression 

PRKAR1A PRKAR1B 95,83 87,51 T (RET), M, N, F, 
S papillary thyroid different expression 

SEPT6 SEPT11 65,58 85,25 T (MLL) AML different expression 

SH3GL1 SH3GL2 78,8 80,29 T (MLL) AL different expression 

TPM3, TPM4 
TPM1, 
TPM2, 
TPM3, TPM4  

66,49 88,46 T (Alk, NTRK1) papillary thyroid, 
ALCL different expression 

UTX UTY 65,02 87,42 D, N, F, S renal, oesophageal, 
myoepithelioma different expression 

AKT1, AKT2 AKT1, 
AKT2, AKT3   62,79 89,38 M, A 

breast, colorectal, 
ovarian, NSCLC, 
pancreatic 

different function 

FCGR2B FCGR2A, 
FCGR2C 68,39 93,36 T (?) ALL different function 

HRAS, KRAS, 
NRAS 

HRAS, 
KRAS, 
NRAS 

83,6 86,1 M many different function 

KLK2 KLK3 75,52 84,38 T (ETV4) prostate different function 

MYH9, MYH11 
MYH9, 
MYH11, 
MYH10   

63,43 80,34 T (ALK, CBFB) ALCL, AML different function 

NPM1 CLEC2D 62,5 92,67 T (ALK, RARA, 
MLF1), F NHL, APL, AML different function 

RARA RARB, 
RARG 66,93 84,12 

T (PML, ZNF145, 
TIF1, NUMA1, 
NPM1) 

APL different function 

KDM5C KDM5D 78,08 91,75 N, F, S clear cell renal 
carcinoma dosage duplicates 

CLTC CLTCL1 77,79 85,95 T (ALK, TFE3) ALCL, renal functional 
duplicates 

GNAQ GNA11 89,97 89,94 M uveal melanoma functional 
duplicates 

PBX1 PBX3 60,79 92,31 T (TCF3, EWSR1) ALL, 
myoepithelioma 

functional 
duplicates 

SMARCA4 SMARCA2 61,41 87,14 F, N, M NSCLC functional 
duplicates 

VHL VHLL 61,05 76,71 D, M, N, F, S renal, hemangioma, 
pheochromocytoma 

functional 
duplicates 

DUX4 LOC653543 82,27 99,01 T (CIC) soft tissue sarcoma unknown 

EIF4A1, EIF4A2 EIF4A1, 
EIF4A2 86,49 92,13 T (BCL6) NHL unknown 

HSP90AA1, 
HSP90AB1 

HSP90AA1, 
HSP90AB1 71,55 87,48 T (BCL6) NHL unknown 

LMO1 LMO3 69,7 95,52 T (TRDA) ALL unknown 

SSX1, SSX2 
SSX1, SSX2, 
SSX3, SSX4, 
SSX4B  

61,11 81,48 T (SS18) synovial sarcoma unknown 
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The 35 cancer genes from the cancer gene census (CGC) that have paralogs at 60% conservation are shown. 

Orange represents dominant genes, while blue represents recessive genes. Coverage corresponds to the 

percentage of the gene length that is conserved in its paralog. The mutation type is derived from the cancer 

gene census: A, amplification; D, large deletion; F, frameshift; N, nonsense; S, splice site; T translocation. In 

case of translocations, the translocation partner is indicated. The cancer type is also derived from the cancer 

gene census: NHL, non-Hodgkin lymphoma; ALCL, anaplastic large-cell lymphoma; AML, acute myeloid 

leukemia; AL, acute leukemia; NSCLC, non-small cell lung cancer; APL, acute promyelocytic leukemia. The 

paralog type may be functional, dosage, diverging (different function or expression in different tissues) or 

unknown. These information retrieved from a literature-based search. 

 

 

Figure 65: KDM5C and KDM5D  

KDM5C and KDM5D may act as monomers, homodimers (only KDM5C) or heterodimers, each activating 

different transcription factors (Kim et al., 2008). 

 

CLTC is a ubiquitous protein involved in receptor-mediated endocytosis, 

intracellular trafficking and recycling of receptors (Hood and Royle, 2009). Its active form 

is a trimer, with each subunit bound to a clathrin light chain (Hood and Royle, 2009). Its 

paralog has an equivalent function and is also expressed ubiquitously (Hood and Royle, 

2009). CLTC was found translocated in cancer with TFE3 and ALK. TFE3 is a 

transcription factor involved in cell growth and proliferation. The fusion protein acts as 

aberrant transcription factor, with the promoters of CLTC and the DNA-binding activity of 

TFE3 (Argani et al., 2003) (Figure 66). ALK is a receptor tyrosine kinase involved in 

nervous system development. The fusion protein includes almost all the CLTC sequence, 

which most likely does not lose its function, while ALK is activated in a ligand-

independent way (Gascoyne et al., 2003; Patel et al., 2007) (Figure 66).  
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Figure 66: CLTC and its translocations in cancer  

CLTC possesses a globular N-terminus and two C-terminal domains: the light chain binding and the 

trimerization domain. TFE3 has an activation domain and a basic helix-loop-helix (BHLH) domain that binds 

DNA. ALK has a kinase domain. The CLTC-TFE3 chimeric protein loses the CLTC C-terminus and the 

TFE3 N-terminus, but keeps the DNA-binding properties of TFE3 (Argani et al., 2003). The CLTC-ALK 

translocation maintains almost all the CLTC structure and the kinase activity of ALK, which remains 

constitutively active {Gascoyne, 2003 #216; Patel et al., 2007). 

 

PBX1 is a ubiquitous transcription regulator associated to HOX proteins. It is 

frequently translocated with TCF3, a widely expressed transcription factor, in acute 

lymphoid leukemia (Hunger, 1996), and with EWSR1, a ubiquitous RNA-binding protein 

involved in splicing regulation, in myoepithelioma (Antonescu et al.).  

GNAQ is part of heterotrimeric G-proteins involved in NF-κB activation. Its 

mutations in uveal melanoma impair the GTP binding site, keeping the G protein always 

active (Van Raamsdonk et al., 2009). Its paralog GNA11 was recently found mutated with 

high frequency in the same tumors, with a mechanism highly similar to GNAQ mutations 

(Van Raamsdonk et al.). This implies that not only the function of the genes is maintained 

between the paralogs, but also the mechanisms that promote tumorigenesis are conserved.  

Both SMARCA4 (also known as BRG1) and its paralog SMARCA2 (BRM) are 

part of the SWI/SNF chromatin-remodeling complex, which regulates the expression of 5-

7% of all genes in yeast (Sudarsanam et al., 2000; Zraly et al., 2006) and between 1-2% 

and the whole genome in D. melanogaster (Armstrong et al., 2002). SMARCA4 and 

SMARCA2 have 61% conserved sequence and share the same domains. They differ for 

one expansion repeat of 33 glutamines (polyQ) present only in SMARCA4 (Figure 67) 
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(Reisman et al., 2009). Their functions are redundant in vivo (Reisman et al., 2009; 

Reisman et al., 2002), although it was demonstrated that only the knockout of SMARCA4 

is embryonic lethal in mouse (Reisman et al., 2002), while only SMARCA2 is 

epigenetically silenced in vitro (Glaros et al., 2007; Mizutani et al., 2002; Yamamichi et 

al., 2005). Although the two paralogs seem very similar in terms of both domain 

composition and function, only SMARCA4 presents strong evidence of involvement in 

cancer and is included in the Cancer Gene Census.  

 

Figure 67: domain composition of SMARCA4 and SMARCA2  

Adapted from (Reisman et al., 2009). The figure shows that SMARCA2 and SMARCA4 have a very similar 

domain composition. QLQ, glutamine-leucine/glutamine domain; poly Q, polyglutamine, HSA, 

helicase/SANT-associated domain. 

 

VHL and its paralog von Hippel-Lindau like (VHLL) are involved in the response 

to hypoxia by regulating hypoxia-inducible factor α (HIFα).  VHL is a component of the 

E3 ubiquitin ligase complex and contains two domains: the α domain is required for the 

binding to the rest of the E3 ubiquitin ligase complex, while the β domain binds directly 

HIFα (Stebbins et al., 1999). Under normal oxygen concentrations, HIFα has a 

hydroxylated proline residue that is required for the binding with VHL, which promotes 

HIFα ubiquitination and degradation by the E3 ubiquitin ligase complex (Figure 68). 

VHLL shares 60% sequence conservation with VHL, but does not have the  domain. 

Indeed it is able to bind HIFα and protects it from ubiquitination by the E3 complex (Qi et 

al., 2004). Mutations in VHL have been associated with several tumor types (Leung and 
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Ohh, 2002; Maher and Kaelin, 1997). Mutated VHL is unable to recognize either the E3 

complex or HIFα, which remains always active and induces the transcription of several 

target genes, such as VEGF, EPO, TF, TFRC, and GLUT1, keeping the cell in an 

inappropriate response to hypoxia (Leung and Ohh, 2002).  

 

Figure 68: VHL and VHLL pathway  

The mechanism of action of VHL and VHLL is shown. VHL binds to hydroxylated HIF  and allows its 

degradation by binding to E3 ubiquitin ligase complex (Stebbins et al., 1999). VHLL, instead, binds to 

hydroxylated HIFα and sequester it from degradation because it cannot bind to E3 ubiquitin ligase complex. 

In case of lack of oxygen, VHL cannot bind HIFα, which remains free or bound to VHLL and can activate 

the hypoxia-inducible genes (Qi et al., 2004).  

 

The detection of cancer genes that have functional paralogs has two major 

implications:  

1. The discovery of new pharmaceutical targets of tumors with one of these 

genes mutated, and 

2. The identification of new candidate cancer genes. 

The functional redundancy between two paralogs may imply a similar involvement 

in tumorigenesis of both paralogs, as was demonstrated for GNAQ and GNA11 (Van 

Raamsdonk et al.). It was also shown that mutations of these two paralogs are mutually 

exclusive (Van Raamsdonk et al.), indirectly indicating the presence of negative genetic 

interactions between functional paralogs in human.  

In S. cerevisiae, functional paralogs have negative genetic interactions between 

them, because they are able to buffer one another’s function (VanderSluis et al.). When 
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one paralog is deleted, the other is able to rescue its original function, but, if also the other 

paralog is deleted, the cell has lower fitness than the expected product of the two single 

deletions. In human, homozygous mutations in tumor suppressor genes impair their 

function, promoting tumorigenesis. This roughly corresponds to a single gene deletion in 

yeast. If one manages to block the function of the tumor suppressor’s paralog, the fitness of 

the cancer cell will be impaired. Among all cancer genes, we identified candidates that 

may be used to demonstrate this hypothesis. We analyzed several cancer cell lines to 

discover those that have homozygous mutations in duplicated cancer genes. We plan to 

infect these cells with short hairpin RNAs (shRNAs) that target the functional paralog of 

the duplicated cancer gene in order to prove that a synthetic lethal (or, at least, a negative 

genetic) interaction exists between the couple of paralogs. This experimental part will be 

performed by Francesco Nicassio in Pier Paolo Di Fiore’s group. 

2.1. Dataset of cancer cell lines  

We retrieved mutation data in cancer cell lines from two sources inside the Cancer 

Genome Project: NCI-60 (http://www.sanger.ac.uk/genetics/CGP/NCI60/) (Ikediobi et al., 

2006) and the Cancer Cell Line Project 

(http://www.sanger.ac.uk/genetics/CGP/CellLines/). NCI-60 includes a set of 59 cancer 

cell lines derived from several tissues that have been extensively characterized: they were 

treated with more than 100,000 chemical compounds, their expression profile was 

characterized using several microarray platforms and their karyotype was determined. 

Furthermore, 24 cancer genes (13 dominant, 11 recessive) were sequenced in all 24 cell 

lines (Ikediobi et al., 2006). The Cancer Cell Line Project tries a systematic 

characterization of the genetics and genomics of a large number of cancer cell lines. To 

date, 67 cancer genes were sequenced in 683 cell lines.  

In total, we were able to gather mutational data for 68 cancer genes in 694 cancer 

cell lines. 
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2.2. Detection of candidates for synthetic lethal screenings 

We applied several filters to the mutation data in the 694 cell lines in order to 

detect candidate cell lines for screenings of synthetic lethal interactions between a cancer 

gene and its functional paralog: 

1. The cancer gene must have at least one paralogous gene with 10% sequence 

conservation; 

2. The cancer gene must have homozygous mutations in at least one cell line, 

which must have only one gene with homozygous mutations; 

3. The mutations must be missense or nonsense. 

The 68 cancer genes included 40 duplicated genes, of which 11 had a highly 

conserved paralog. Seven genes were further eliminated because they did not bear 

homozygous mutations in any of the 694 cell lines or they had homozygous mutations in 

cell lines with more than one homozygous mutation (Table 21). From the 144 cell lines 

with one homozygous mutation in one duplicated cancer genes, we retrieved 15 that bore 

frameshift or nonsense mutations. We focused only on these mutations, because they 

disrupt whole gene function by impairing the whole protein structure. We found eight 

genes with missense or nonsense mutations in these cell lines (Table 22). Three genes 

(PTEN, SMARCA4 and VHL) have a highly conserved paralog (PTENP1, SMARCA2 

and VHLL, respectively). We decided to try to validate synthetic lethal interactions for 

VHL and SMARCA4, because their functional paralog is highly conserved and expressed 

in the same tissues (Qi et al., 2004; Reisman et al., 2009). PTEN was discarded because its 

paralog does not produce a functional protein, since it lacks the initiator methionine codon 

(Fujii et al., 1999).  

Table 21: filters on cell lines 

filter  cell 
lines  

duplicated 
cancer genes 

with highly 
conserved 

with lowly 
conserved 



 176 

duplicated 
cancer genes filter  cell 

lines  
(N=68) 

paralogs 
(≥60%) paralogs (<60%) 

Initial data 694 40 11 29 
homozygous mutations 144 33 9 24 

frameshift 9 6 3 3 
nonsense 3 3 1 2 
deletion 2 2 1 1 

splice site 1 1 - 1 

mutation 
type 

total 15 8 3 5 

2n 4 3 PTEN, 
SMARCA4 TP53 

3n 3 3 VHL ERBB2, TP53 
4n 3 2 PTEN TP53 ploidy 

NA 5 4 SMARCA4 JAK2, KDR, 
NOTCH1 

From the initial data, three filters are applied to identify the best candidate cell lines: first, only cell lines with 

homozygous mutations in one gene are considered. Second, missense mutations are eliminated. Third, the 

filter on ploidy is applied. 

Table 22: candidate cell lines 

highly lowly 

conserved conserved cell line   tissue   ploidy   cancer 
gene   mutation effect  

paralogs  paralogs  

HUTU-80  small intestine   2n  SMARCA4  Helicase and chromatin-
binding domains are lost  SMARCA2   

PTENP1 
CCRF-CEM  haematopoietic  2n+/-  PTEN  PTP domain is lost  

(pseudogene)  
  

HL-60  haematopoietic  2n+/-  TP53  Deletion (?)   TP73 

NCI-H522  lung  2n+/-  TP53  DNA-binding motif is 
lost   TP73 

K-562  haematopoietic  3n-  TP53  DNA-binding motif is 
lost   TP73 

MDA-MB-
468  breast  3n-  ERBB2  Almost all protein is 

disrupted   EGFR, ERBB4 

A498  kidney  3n  VHL  C-terminus is lost (E2A 
binding?)  VHLL   

PTENP1 
MOLT-4  haematopoietic  4n  PTEN  C2 domain is lost  

(pseudogene) 
  

SK-OV-3  ovary  4n+/-  TP53  DNA-binding motif is 
lost   TP73 

HOP-62  lung  4n+  TP53  DNA-binding motif is 
lost   TP73 

NCI-H1573  lung  na  JAK2  Tyrosine kinase domain 
is lost   JAK3 

NCI-H838  lung  na  KDR  Tyrosine kinase domain 
is lost   FLT1, FLT4 

TE-1  oesophagus  na  NOTCH1  ANK repeats and C-
terminus are lost   NOTCH2, 

NOTCH4 

TE-11  oesophagus  na  NOTCH1  Transmembrane receptor 
domain is lost   NOTCH2, 

NOTCH4 

GAMG  CNS  na  SMARCA4  chromatin-binding 
domain is lost  SMARCA2   

 

The 15 cell lines with homozygous mutations in one cancer gene are shown. Highly conserved paralogs refer 

to 60% conservation, while lowly conserved corresponds to 10% conservation. 
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We identified one cell line (A498) that has a frameshift mutation in VHL that 

disrupts its  domain, thereby inhibiting its role in the degradation of HIF , and two cell 

lines (GAMG and HUTU-80) that have frameshift and nonsense mutations in SMARCA4, 

which both disrupt the chromatin-binding domain. Without this domain, the SWI/SNF 

complex cannot bind to chromatin, therefore it cannot regulate gene expression. For each 

of these cell lines we investigated the presence of negative genetic (or synthetic lethal) 

interactions between the mutated gene and its paralog. We also identified two controls for 

each cell line: these are cell lines from the same cancer tissue that did not present 

mutations in the analyzed genes (Table 23). 

Table 23: candidate controls 

Mutations Mutated Genes 
cell line Histology Tissue Ploidy 

Homozygous Heterozygous Total Homozygous Heterozygous 

HUTU-
80 carcinoma small 

intestine NA 1 4 5 SMARCA4 
ERBB2, 
RB1, TSC1, 
WT1 

HT-29 carcinoma large 
intestine 

3n+/-, Near-
triploid 
69+/- (58-
80) 

2 3 5 TP53, 
SMAD4 

APC, BRAF, 
PIK3CA 

SK-CO-1 carcinoma large 
intestine 

3n+, 
hypertriploid 
(73) 

0 3 3   
FLCN, 
PDGFRA, 
RET 

GAMG glioma 
central 
nervous 
system 

NA 1 3 4 SMARCA4 
FBXW7, 
NOTCH1, 
TET2 

SW1088 glioma 
central 
nervous 
system 

NA 1 1 2 SUFU TET2 

LN-405 glioma 
central 
nervous 
system 

NA 0 5 5   

ALK, 
FBXW7, 
MLH1, SMO, 
TET2 

A498 carcinoma kidney 3n, Triploid 
(69) 1 1 2 VHL SMARCA4 

CAKI-1 carcinoma kidney 3n, Triploid 
(69) 1 3 4 CDKN2A MET, PTCH, 

RB1 

ACHN carcinoma kidney 

2n+/-, Near-
diploid 
46+/- (35-
57) 

1 1 2 CDKN2A SMO 

Two controls for each cell line are identified. Each control is the most similar to the cell line it refers to, in 

terms of histology, tissue, ploidy and mutated genes. 
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3. The human genetic interaction network 

Since no data of genetic interactions is available in human, we constructed a map of 

genetic interactions involving cancer genes, by integrating the data from several large-

scale studies of RNA interference (RNAi) in human cancer cell lines. The purpose of these 

studies was to identify genes that are essential for the survival of a cancer cell but not of a 

normal cell, in order to discover new drugs that may act on one of these essential genes in 

order to kill only tumor cells.  

3.1. Construction of a cancer gene-centered network of genetic 

interactions 

We identified 13 experiments that described essential genes in 64 human cancer 

cell lines (Table 24). 29 of these (45%) have at least one mutated gene reported in 

COSMIC (Forbes et al.) (Table 24). The other 36 were discarded from the analysis. We 

eliminated an additional cell line (HCC1954) because it was hypermutated. Indeed it had 

89 mutated genes, while for the others the median value of mutated genes was 2. The 28 

cell lines had 25 mutated genes in total, of which 24 were included in the Cancer Gene 

Census (11 dominant and 13 recessive). 



Table 24: experiments used to identify genetic interactions of cancer genes  

Study Cancer Normal_cells Cancer_cells Screened_genes 
(Arora et al., 2010) Ewing sarcoma normal fibroblast TC-32, TC-71, SK-ES-1, RD-ES 572 kinases 

(Baldwin et al., 2010) cervical intraepithelial neoplasia (CIN) human foreskin keratinocytes 
(HFK) Ca-Ski, SiHa, HeLa 88 kinases 

(Barbie et al., 2009) KRAS-driven cancers   19 cell lines 1028 (Moffat) 
Bommi-Reddy2008 
(Bommi-Reddy et al., 
2008) 

clear cell renal carcinoma 786-0, RCC-4 with reconstituted 
VHL 786-0, RCC-4 88 kinases 

Firestein2008 (Firestein et 
al., 2008) colorectal cancer   DLD-1, HCT116 1000 

Gruenberg2008a 
(Grueneberg et al., 2008a) 

non-small cell lung adenocarcinoma, 
kidney, cervical cancer 

human foreskin keratinocytes 
(HFK), human foreskin 
fibroblasts (HFF) 

HeLa, 293T, NCI-H1299, NCI-H358, NCI-H1975, 
NCI-H23, 786-0, A498, ACHN, Calu-1, A549, MCF7, 
293T, WI38, BJ, MCF10A, Ca-Ski, SiHa, RKO 

88 kinases 

(Grueneberg et al., 2008b) cervical, renal cancer   786-0, HeLa, Ca-Ski, siHA, C-33-A, ACHN, A498, 
RCC-4 

88 kinases + 25 in other 
cell lines 

Luo2008 (Luo et al., 2008) 
small-cell lung cancer, non-small-cell lung 
cancer, glioblastoma, CML, lymphocytic 
leukemia 

  H82, H87-772, A549, H1650, H1975, HCC827, LN-
229, U251, K-562, Jurkat, SUP-T1, REH 9500 

Moffat2006 (Moffat et al., 
2006) colon cancer   HT29 1028 

Schlabach2008 (Schlabach 
et al., 2008) colon, breast cancer HMEC DLD-1, HCT116, HCC1954 2924 

Silva2008 (Silva et al., 
2008) breast cancer   MCF-10A, MDA-MB-435, MDA-MB-231, ZR-65.1, 

T47D ? 

Thaker2009 (Thaker et al., 
2009) glioblastoma HA (control) T98G, U87, U373-MG, A172, A549, LN-308, LN-428, 

HUVEC, SG388 5520 

Tyner2008 (Tyner et al., 
2008) acute myeloid leukemia   K-562, CMK, HEL, HMC-1_1 tyrosine kinases 

Yang2010 (Yang et al.) osteosarcoma HOB-c KHOS, TC-71, U2-OS, MES-SA, SK-OV-3, OSA344, 
CS1, SS-1,  673 kinases 

 

The number of screened genes is derived from the Methods sections of the respective experiments. Barbie et al. (Barbie et al., 2009) identified all the genes that are essential for KRAS-

driven cancer. They do not provide information about the cell line used to identify these genes, therefore we can only assume a genetic interactions between each of these genes and 

KRAS. 



We defined the interaction between a mutated gene and an essential gene in a 

particular cancer cell line as negative genetic interaction, because the sum of the mutation 

of one gene and the silencing of the second gene impairs the viability of the cell, while the 

mutation only is not sufficient. Essential genes for each cell line were defined in different 

ways in every experiment, although the experimental procedures to determine essential 

genes were highly similar. Briefly, a cell culture is infected with lentiviruses able to 

encode shRNAs that suppress specific genes. The cells are infected with a high number of 

different lentiviral RNAs: the experiments that we analyzed used libraries that targeted 

from less than 100 to almost 10,000 genes. After a period of time that ranges between 10 

days and four weeks, microarray analysis is preformed to measure the abundance of the 

shRNAs in the cells. The levels of shRNAs are compared with those of a control, which 

may be of two types: the same cells right after infection or a normal cell line. If the 

abundance of a shRNA that targets a particular gene is higher in the control, then this gene 

is likely to be essential in the cell line and, if it is silenced, the cell cannot survive (Berns et 

al., 2004).  

In order to identify the essential genes in each cell line, we used the definitions 

given by the authors. These varied from simple differences between the expression values 

in the cancer cell line and the control to complex statistical methods (Luo et al., 2008). In 

total, we identified 1,735 essential genes (94 cancer genes from the Cancer Gene Census 

and 111 candidate cancer genes) in the 28 cell lines. Each cell line had between three and 

312 essential genes (median 94). We identified also 525 genes (30 cancer genes) that were 

found essential in a normal cell line (HMEC). 

We identified 8,525 genetic interactions between the 25 mutated genes and the 

1,735 essential genes. 
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3.2. Genetic interactors of cancer genes are ancient duplicated hubs 

Of all the 1,735 essential genes, 1,045 (60.2%) are specific for one cell line, while 

74 (4.3%) are essential in at least five cell lines (Figure 69). We analyzed origin, 

duplicability and network properties of essential genes and found that they significantly 

differ from the rest of the human genes (Table 25). All essential genes, independently from 

the number of cell lines where they were found essential, are ancient, having 49% of the 

genes that originated with the last universal common ancestor (p-value 5e-35, Fisher’s 

exact test, Figure 70), highly connected and central (p-value 1e-74 and 2e-44, respectively, 

Wilcoxon test). Duplicability, instead, depends on the number of cell lines. Considering 

low coverage (10% sequence conservation of the additional hit on the genome), genes that 

are essential in 4 cell lines at most are highly duplicated, while at high coverage only genes 

that are essential in more than 4 cell lines are highly duplicated (37.0%, p-value 5.8e-3 

from Fisher’s exact test, Figure 71).  

 

Figure 69: essential genes and cancer cell lines  

The relationship between essential genes and the number of cell lines they are found essential is shown.  
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Table 25: properties of essential genes 

essential in cancer essential in 1 cell 
line 

essential in 2-4 cell 
lines 

essential in >4 cell 
lines Property 

N p-value N p-value N p-value N p-value 

rest of 
human 
genes 

total 1,735 NA 1,045 NA 616 NA 74 NA 20,392 

with origin 1,683 NA 1,006 NA 603 NA 74 NA 18,427 

LUCA 49.0 5.48E-35 46.4 3.06E-18 50.1 1.35E-15 74.3 8.40E-08 27.5 

eukaryotes 23.4 5.07E-02 22.3 3.28E-02 25.5 8.20E-01 20.3 4.32E-01 26.2 

opisthokonts 0.8 5.25E-01 1.1 7.50E-01 0.5 2.96E-01 0.0 1.00E+00 1.0 

metazoans 13.3 7.84E-05 14.2 1.91E-02 12.8 7.29E-03 4.1 3.48E-03 17.6 

vertebrates 10.2 7.97E-11 11.7 1.63E-04 8.6 6.96E-07 1.4 2.01E-04 16.9 

mammals 3.3 3.94E-20 4.0 5.52E-10 2.5 1.54E-10 0.0 1.67E-03 9.8 

primates 0.2 1.53E-04 0.3 1.97E-02 0.0 4.82E-03 0.0 1.00E+00 1.0 

with duplicability 1658 NA 988 NA 597 NA 73 NA 16,797 

60% 21.7 4.27E-02 20.1 5.16E-01 22.4 1.13E-01 37.0 5.82E-03 19.2 

10% 62.7 8.40E-04 61.6 2.05E-02 63.5 2.44E-02 69.9 1.87E-01 54.5 

60% exonic 17.0 2.51E-02 16.3 2.03E-01 16.4 2.98E-01 31.5 3.01E-03 14.6 

10% exonic 56.9 9.28E-05 56.6 2.79E-03 56.8 1.57E-02 61.6 2.00E-01 48.0 

with protein interaction 
network 1441 NA 845 NA 526 NA 70 NA 12,078 

mean 27.5 23.0 34.4 30.2 12.9 
degree 

median 12 
1.36E-74 

11 
1.94E-34 

14 
3.23E-42 

20 
2.01E-08 

5 

mean 49,461 36,262 71,138 40,656 16,976 
betweenness 

median 6,058 
2.10E-44 

5,676 
2.33E-22 

6,683 
7.31E-24 

9,592 
5.40E-05 

1,574 

Essential genes are divided into three categories, on the basis of the number of cell lines where they are 

found essential. From the rest of the human genes, all genes that are essential in the normal cell line are 

excluded.  P-values are calculated with Fisher’s exact test for origin and duplicability, with Wilcoxon test for 

the network properties. Red represents enrichment in comparison with the rest of the human genes, while 

green represents depletion. 
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Figure 70: origin of essential genes  

Essential genes are divided into three categories, on the basis of the number of cell lines where they were 

found essential: 1 cell line, 2-4 cell lines and at least 4 cell lines. The first column represents all essential 

genes in cancer cell lines, while the last column corresponds to the rest of the human genes. Origin is 

calculated as in Figure 26. 

 

Figure 71: duplicability of essential genes and cancer cell lines  

Duplicated genes are divided into three categories: duplicates at high coverage (>60%) that overlap known 

genes, genomic duplicates at high coverage, duplicates at low coverage (10%). Duplicability is calculated as 

in Figure 28.  

 

Among the essential genes, we identified 93 cancer genes from the cancer gene 

census (5.4% of all essential genes), while, among the non-essential genes, cancer genes 

represent less than 2% of all human genes (437, 1.7%). Therefore essential genes are 

enriched in known cancer genes (p-value 1.4e-25 from chi-squared test). These findings 

are independent from the number of cell lines where a gene was found essential, having 49 

cancer genes essential in one cell line (4.7%), 41 in two, three or four cell lines (6.7%) and 

3 in more than four cell lines (4.1%). 
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3.3. The integration of protein-protein interactions and genetic 

interactions allows the identification of putative cancer genes 

The identification of genetic interactions that involve cancer genes allows the 

detection of direct or indirect interactors that may be important in the development of 

cancer or essential for the survival of the tumor cells. These interactors are enriched in 

known cancer genes, although their properties do not fully correspond to those of cancer 

genes. Essential genes are highly connected and central in the human protein interaction 

network and they are ancient like recessive genes, but their duplicability does not reflect 

that of recessive genes. In particular, genes that are essential in many cell lines are 

enriched in highly conserved duplicates. 

The enrichment of cancer genes among essential genes, in addition to the fact that 

cancer genes are near in the human protein interaction network (Figure 48), suggests that 

interactors of already known cancer genes are likely to have an active role in tumor 

development, when mutated. Given this premise and knowing the systems-level properties 

of cancer genes, we are developing a method to identify putative new cancer genes. 

A first screening on the basis of origin, duplicability and network properties 

allowed us to narrow down the search for new putative cancer genes to two classes of 

genes: 

• Singleton hubs that originated with the last universal common ancestor or 

eukaryotes; 

• Duplicated hubs that originated with metazoans or vertebrates. 

The identification of these two categories allowed us to set a first filter to identify 

putative recessive and dominant genes, respectively. We detected 844 recessive genes and 

78 dominant genes that were not included in either the cancer genes census or in the 

collection of candidate cancer genes. Among these putative cancer genes, 406 (48%) 

recessive and 20 (25.6%) dominant had known non-synonymous mutations in high-
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throughput mutational screenings of cancer tissues, but were not considered as candidates 

because they were not found mutated in the validations screenings. Both putative dominant 

and recessive genes are enriched in genes that are essential in cancer cell lines, having 14 

(18.0%, p-value 0.006 from Fisher’s exact test) and 203 (24.0%, p-value 3.25e-46 from 

Fisher’s exact test), respectively. These findings support our hypothesis that, by analyzing 

the systems-level properties of cancer genes and studying their interactors, new putative 

cancer genes may be identified. However, these initial results need to be further 

investigated, in order to narrow down the pool of possible new cancer genes. The filter on 

genes that have genetic interactions with known cancer genes is strict and may cause the 

loss of real new candidates, because only less than 1,700 genes have this type of 

information. A further way to proceed is to identify, among the 922 putative cancer genes, 

genes that are enriched in protein interaction network neighbors that are known cancer 

genes. However, in order to identify more accurately the genes whose mutations drive 

tumorigenesis, we need to consider other properties that, in this Thesis, we did not take 

into account.  

A further filter would be the identification of functional interactions. To identify 

them, the association of genes with GO terms may be used. An interaction is present 

between two genes if they are associated with at least one common GO term. The 

functional network would be weighted and the weight of each interaction would be 

calculated on the basis of the number of common GO terms. However, a drawback of this 

method is the fact that it is based on manual annotations of genes to GO terms. This is not 

an issue when considering global functional classifications of gene lists or when 

comparing the functional characteristics of different gene lists, but the analysis of 

functional features of single genes may biased due to misclassifications or lack of 

knowledge in the functional classification.  

In order to have a more complete view of the interactions between proteins and 

genes, in addition to protein-protein and genetic interactions, we are planning to identify 
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the protein-DNA interaction networks. This will add information about the genes that are 

regulated by the numerous DNA-binding proteins that are involved in cancer and will 

allow the identification of new cancer candidates defined on the basis of their common 

binding sites on the genome. Mutations in many transcription factors or DNA-binding 

proteins have often been associated with cancer. We will be able to identify putative new 

cancer genes by studying the similarities with the DNA-binding sites of known cancer 

genes and with the genes that they regulate at the transcriptional level.  
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