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1.Introduction 
1.1 MVs as mediator of cellular communication 
	
  
Cell-to-cell communication is required to guarantee proper coordination among different cell types. 

Communication between cells is mediated mainly by extracellular molecules such as growth factor, 

cytokines, chemokines, hormones. Some of these molecules operate over long distances, signaling 

to cells far away; others signal only to immediate neighbors (Alberts, 2002). Cell can also 

communicate and exchange information through cell-to-cell contact, mediated by specialized 

adhesion molecules or through the release of membrane vesicle (Camussi et al, 2010). Cell–cell 

communication mediated by membrane vesicles emerged very early during evolution and served as 

a template for the further development of intercellular interaction mechanisms involving soluble 

bioactive mediators and fine-tuned ligand–receptor interactions (Ratajczak et al, 2011). Two classes 

of membrane vesicles have been described in literature: exosomes and shed vesicles (MVs). 

 

1.1.1 Exosomes 
	
  
Exosomes are a population of small membrane vesicles (50-90 nm) released by an endocytic 

pathway (Fig. 1). Exsosomes generation take place inside the lumen of multivesicular bodies 

(MVBs) by budding, fission ad segregation of their membrane. MVBs are ubiquitous membrane-

bound organelle that works as intermediates in endolysosomal transport. Based on their biochemical 

properties, intracellular MVBs can either traffic to lysosomes, where they are subjected to 

Fig.	
  1:Generation	
  of	
  exosomes	
  and	
  shed	
  vesicles.	
  (Cocucci	
  et	
  al,	
  2009)  
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proteosomal degradation (degradative MVBs), or to the plasma membrane, where release exosomes 

in the extracellular space (exocytic MVBs) upon fusion with the plasma membrane (Mathivanan et 

al, 2010). Sorting of vesicles inside MVBs is a regulated pathway, generally involving the ESCRT 

(endosomal sorting complex required for transport) machinery, which regulates membrane scission. 

Recent studies indicate that fission of exosome membrane is catalyzed by components of the 

ESCRT-III complex, called charged multivesicular body proteins (CHMPs); (Hanson et al, 2009; 

Wollert & Hurley, 2010; Wollert et al, 2009) and by the AAA-ATPase vacuolar protein sorting-

associated 4, VPS4 (Babst, 2005). Several other factors have been identified that promote exosome 

biogenesis, including the sphingolipid ceramide produced by neutral sphingomyelinase (N-SMase)	
  

(Kosaka et al, 2010; Trajkovic et al, 2008). The fusion of MVBs and consequently the release of 

exosomes in the extracellular space can occur either in a constitutive way or in response to specific 

stimuli. 
Exosomes are enriched in several proteins and lipids of the MVBs membrane, while depleted of 

many other. Indeed for these constituents, exosome biogenesis serves as a mechanism of regulated 

assembly of MVB components. As consequence of their endosomal origin exosomes contain 

numerous protein involved in membrane transport and fusion (i.e. annexin, flotillin, Rab GTPases), 

in MVBs biogenesis (Alix), besides integrins and tetraspanins (CD63, CD9, CD81, CD82). They 

are also characterized by the presence of high levels of cholesterol, sphingolipids, ceramide and 

glycerophospolipids in their membrane	
  (Simons & Raposo, 2009).  

 

1.1.2 Microvescicles  
	
  

Microvesicles (MVs), also referred to as shed vesicles or ectosomes (Sadallah et al, 2011), are a 

population of quite large membrane vesicles that are more heterogeneous in size (100nm-1µm) and 

shape as compared to exosomes. They bud directly from the plasma membrane and are released into 

the extracellular environment upon cell activation (Fig. 1). Shedding of MVs typically involves a 
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budding process, in which surface blebs selectively accumulates cellular constituents that are then 

packaged into MVs. MVs contain a variety of cell surface receptors, intracellular signalling proteins 

and genetic materials derived from the cell of origin. In terms of composition, MVs shed from 

distinct cells are molecularly different from each other, reflecting the differential expression of 

proteins of various donor cells. Composition and biological activity of MVs also vary depending on 

the state (e.g. resting, stimulated) of donor cells and depending on the agent employed for 

stimulation (Bernimoulin et al, 2008). However, shed vesicles are generally characterized by the 

presence of high levels of phosphatidylserine (PS) on their surface.  

 

1.1.3 Shedding of MVs induced by P2X7 receptor activation  
	
  

A specialized type of MV release exists for cells that express the ATP receptor P2X7, which shed 

MVs from the cell surface when exposed to ATP. P2X7 receptor is an ATP-gated ion channel that is 

highly expressed in immune cells, in particular macrophages (Steinberg & Silverstein, 1987) mast 

cells (Cockcroft & Gomperts, 1979) and microglia (Visentin & Levi, 1997), where it controls the 

release of inflammatory cytokines. Activation of P2X7 receptor can induce efficient inflammosome 

assembly and maturation of the inflammatory cytokines IL-18 and IL-1β, which is then followed by 

rapid cytokine secretion (Qu et al, 2007). P2X7 receptor differs from other members of the P2X 

family in its relatively low affinity for ATP and the presence of a long cytoplasmic C-terminus that 

contains several protein–protein interaction motifs. Depending on the concentration of ATP and the 

duration of stimulation, P2X7 receptor can function as an ion channel or a non selective pore, the 

latter generally leading to cytoxicity and apoptotic cell death. Many studies have shown that 

dramatic morphological changes occur in cells endogenously or heterologously expressing P2X7 

receptors during and subsequent to receptor activation (Hogquist et al, 1991). These changes consist 

in rapid formation of cell membrane blebs and are associated to cell death upon sustained P2X7 

receptor activation. Membrane blebbing requires several intra-signalling events, which are activated 
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by occupancy of the receptor such as the action of protein kinases and other effector enzymes 

(Duan & Neary, 2006). In particular, several lines of evidence indicated that blebbing induced by 

P2X7 receptor is dependent on P38 and requires ROCK kinase activation, which causes local 

disassembly of the cytoskeletal elements, associated to the P2X7 receptor C-terminus, (Budagian et 

al, 2003)	
  (Morelli et al, 2003; Verhoef et al, 2003). Notably, surface blebbing is preceded by loss of 

plasma membrane asymmetry and exposure of phosphatidylserine (PS) at the outer leaflet of the 

plasma membrane, a process controlled by specific enzymes, named flippase, floppase and lipid 

scramblase, which control PS segregation in the inner leaflet of the plasma membrane. Externalized 

PS is commonly accepted as a marker of a cell undergoing apoptosis. However, a pioneer study by 

Surprenant and colleagues (MacKenzie et al, 2001) reported that P2X7-induced PS externalization 

and bleb formation occur within the first few minutes of receptor activation and may be reversible 

after brief stimulation, thus dissotiating P2X7-induced bleb formation from cell apoptosis in 

monocytes. MacKenzye and colleagues also showed that during blebbing, MVs with externalized 

PS may form and be released into the extracellular space as a result of bleb detachment from the 

cell surface. Notably, during blebbing the pro-inflammatory cytokine IL-1β is packaged into plasma 

membrane blebs and subsequently released into the extracellular space from reactive monocytes as 

MVs. Almost ten year ago these results provided the first evidence that P2X7-induced MV shedding 

acts as a secretory pathway for rapid release of IL-1β and may represent a general mechanism for 

secretion of leaderless secretory proteins from P2X7-expressing myeloid cells. 

Few years ago data obtained in the laboratory demonstrated that a MVs-dependent mechanism IL-

1b release, very similar to that first described in monocytes(MacKenzie et al, 2001), occurs in 

microglial cells (Bianco et al, 2005) and contributed to clarify the mechanism mediating MVs 

shedding in glial cells that express P2X7 receptors.  We found that biogenesis of MVs storing IL-

1β  is controlled by acid sphingomyelinase (A-SMase), the enzyme which hydrolyzes 

sphingomyelin (SM) to the sphingolipid ceramide. Following P2X7 receptor activation and 
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subsequent P38 MAP kinase phosphorilation, A-SMase becomes promptly activated and moves to 

plasma membrane outer leaflet, where generates ceramide, thereby inducing budding of MVs	
  (Fig.	
  

2)	
  (Bianco et al, 2009a).  

Formation of blebs is likely caused by redistribution of extracellularly synthetized ceramide within 

the bilayer and by local enrichment of the cone-shape sphingolipid into the inner leaflet of the 

membrane, where it may induce, due to its spontaneous negative curvature, membrane subdomains 

with curvature different from the adjacent planar membrane	
  (Subra et al, 2007).  

The key role of A-SMase in MV formation was demonstrated using pharmacological inhibition and 

genetic inactivation of the enzyme.  Both approaches strongly abolished release of MVs and of IL-

1β  from reactive glial cells (Bianco et al, 2009a). These results were consistent with the 

involvement of neutral- (N-) rather than A-SMase and ceramide in the budding of exosomes in 

oligodendrocytes (Trajkovic et al, 2008) and further indicated that the budding of MVs may share 

Fig.	
  2:	
  Model	
  for	
  P2X7R-­‐induced	
  MVs	
  shedding	
  in	
  glial	
  cells	
  (Bianco	
  et	
  al,	
  2009a) 
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features with exosome biogenesis. The role of N- and A-SMase in exosome and MV formation, 

respectively, suggest that different members of the SMase family may control the release of distinct 

types of extracellular vesicles from brain cells, independently of the ESCRT complex. 

Other pathways besides shed MVs have been proposed to mediate IL-1β release from myeloid cells, 

including exosomes and exocytosis of secretory lysosomes in monocytes (Qu et al, 2007). 

However, enrichment of IL-1β  in larger MVs, derived from the plasmamembrane, and complete 

blockade of MV shedding and IL-1β release from A-SMase knock-out cells indicated that MV 

shedding represents the major mechanism mediating secretion of the inflammatory cytokine from 

reactive microglial cells.  

MVs shed from glial cells store the pro-inflammatory cytokine IL-1β	
   (Bianco et al, 2005), 

angiogenic factors and their respective mRNAs, and matrix metalloproteinases (Al-Nedawi et al, 

2009; Proia et al, 2008; Sbai et al, 2010).  

 

1.1.4  MVs role in communication  
	
  
In spite of the fact that MVs and exosomes contain numerous proteins, lipids ad RNAs and may be 

released from almost all the cell types both constitutively and upon stimulation; they are 

characterized by different composition depending on the cell origin ad activation state of parental 

cells	
  (Distler et al, 2005).  

The content of MVs and exosomes do not reflect the exact composition of the cytoplasm of the 

donor cells. The gene profile array, carry out on MC/9 (a mast-cell line) exosomes displayed 

essential difference in the levels of mRNA transcripts in the exosomes as compared to donor cells.  
Since membrane vesicles are released in the extracellular space they can interact with target cells; 

some evidence suggest that MVs can interact only with specific target cells and not with any cell 

present in the microenviroment (Camussi et al, 2010; Losche et al, 2004). 

Fig. 3: Alternative mechanisms by which MVs may interact with target cells. (Ratajczak, 2011) 
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Different ways by which MVs can stimulate target cells are described shown in Fig.3.  

 

 

MVs can interact with other cells directly by surface expressed proteins like growth factors or by 

bioactive lipids. For example, platelet derived MVs have an important role in coagulation because 

their membrane, that is enrich in externalized phosphatydilserine, favours the assembly of clotting 

factors. Membrane vesicles can also transfer surface receptors between cells; it has been reported 

that MVs derived from tumor can transfer FAS ligand to T cells inducing apoptosis and promoting 

tumor immune escape. Furthermore MVs can deliver proteins to other cells and mediate horizontal 

transfer of genetic material such as mRNA and miRNA. Among other evidence, Deregibus et al. 

(Deregibus et al, 2007) reported that MVs derived from endothelial progenitors cells could transfer 

mRNA to endothelial cells both in vitro and in vivo. Interestingly, Valadi and coworkers  

Fig.	
  3:	
  Model	
  for	
  P2X7R-­‐induced	
  MVs	
  shedding	
  in	
  glial	
  cells	
  (Bianco	
  et	
  al,	
  2009a) 
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demonstrated that mRNAs taken up by recipient cells can be translated within the cells 	
  (Valadi et 

al, 2007). Indeed they identified three distinct mouse proteins in human mast cells after exposure to 

murine exosomes Notably, these proteins were not present in exosomes secreted from murine mast-

cells	
   (Valadi et al, 2007).  The presence of several miRNA has been reported in many 

microvesicles, including those derived from primary human glioblastoma, lung cancer, gastric 

cancer and ovarian cancer (Skog et al, 2008). 

miRNA are small non coding RNA that negatively regulate their mRNA target inducing 

degradation or translational repression. It has been estimated that a single miRNAs could interact 

with more than 200 different mRNA and that minor changes in the expression of a miRNA could 

have big impact on the expression of their target. So the MVs mediated transfer of miRNA can have 

important effect on the phenotype of the recipient cell	
  (van der Vos et al, 2011).	
   

 

1.1.5   Physological and pathological role of MVs  
	
  
Despite MVs were originally described as inert debris, MV shedding from the plasma membrane is 

now a recognized mode of intercellular communication and the role of MVs has been reported in 

several physiological and pathological process such as cell proliferation, coagulation, vascular 

function, apoptosis, inflammation and tumor progression. For example platelet derived MVs are 

important mediators of both coagulation and thrombosis. These MVs are released upon collagen 

stimulation and are characterized by the presence of tissue factor (TF) on their membrane. In 

physiological conditions platelet-derived MVs, by acting on macrophages, neutrophils and other 

platelets work as trigger of coagulation. However, p vesicles are also present in the lipid core of 

atherosclerotic plaque where promote thrombotic signals(Cocucci et al, 2009). 

Moreover, vesicles secreted from different cells can influence the immune response; for example 

MVs can present antigen to T cells, or transfer the antigen-MHCII complex to dendritic cells, or 

directly activate natural killer cells and macrophages	
  (Thery et al, 2009). During inflammation MVs 
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can act both as anti-inflammatory or pro-inflammatory mediators; neutrophil derived 

microvescicles stimulate the production of anti-inflammatory cytokines and MVs released from 

fibroblasts promote the synthesis of pro-inflammatory cytokines, such as inteleukin-6 (IL-6), the 

monocyte chemotactic protein 1 and metalloproteinase.  

The most well characterized membrane vesicles are those released from blood cells, i.e. platelets, 

leukocytes, erythrocytes, and endothelial cells. However accumulating evidence demonstrate that 

MVs and exosomes can also be released by brain cells and that these particles play an important 

function in the central nervous system (CNS) both in pathologic or healthy conditions. 

For example, exosomes derived from oligodendrocytes control myelination, and those produced 

from Schwann cells support local axonal protein synthesis by delivering ribosomes to injured 

neuron. Moreover exosomes released by neuron may contribute to the spreading of pathogenic 

agents or degenerative proteins like beta-amyloid and alpha-synuclein (Emmanouilidou et al, 2010). 

Also MVs derived from glioma contribute to transfer oncogenic proteins.  

 

1.1.6  Clinical prospective  
	
  
Besides their important function in cell-to-cell communication and their role in physiological and 

pathological process MVs are emerging as important diagnostic tool and therapeutic target (Cocucci 

et al, 2009). Because of their small size, released MVs can move from the site of discharge and 

enter into biological fluids; MVs has been described in almost all body fluids, including plasma, 

urine, milk, cerebrospinal fluid (CSF)	
  (Camussi et al, 2010). 

MVs derived from activated blood platelets, leucocytes and endothelial cells continuously circulate 

in peripheral blood under steady-state conditions, with their number increasing during stress 

situations (e.g. infection, organ tissue damage or neoplasia) (George et al, 1982; Quesenberry et al, 

2010; Ratajczak, 2011). The presence of MVs in body fluid make them easy accessible and analysis 

of their concentration and molecular composition can open a window on the damaged tissue	
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(Camussi et al, 2010).   

As a consequence of cell activation elevated levels of MVs mainly derived from platelets, 

endothelial cells and tumor were reported in several pathologies such as cardiovascular disease, 

rheumatoid arthritis, sepsis, cancer and also in CNS diseases as summarized in table 1. Their levels 

may be a measure of inflammation, or predictive of metastasis in case of tumor derived MVs 

(ratajczak). Therefore extracellular MVs released from blood or tumor cells are emerging as new 

biomarkers from a specific tissue undergoing activation or damage (Doeuvre	
  et	
  al,	
  2009). 

 

Table	
  1:	
  Cell-­‐derived	
  microvesicles	
  in	
  CNS	
  disease(Doeuvre	
  et	
  al,	
  2009)	
  

 

Clinical interest on MVs is not only related to their potential role as biomarkers of pathology. Also 

the possible therapeutic role of MVs has been recently considered.  

MVs derived from mesenchimal stem cells (MSC) have been reported to protect the kidney against 

ischemia–reperfusion-induced acute and chronic kidney injury. A single administration of MVs 

immediately after ischemia–reperfusion injury protected experimental animals from acute kidney 

injury by inhibiting apoptosis and stimulating tubular epithelial cell proliferation. This phenomenon 

was strongly dependent on mRNA present in MVs. Considering that MVs have specific targets and 

that do not interact with all cell types they can also be used as vehicle to delivery drugs or other 

molecules to specific cells in order to regulate the immune response such as in tumor or in organ 

transplantation (Camussi et al, 2010; Ratajczak, 2011). 
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1.2 Microglia in inflammation  
	
  

Microglial cells constitute 20% of the total glial cell population within the brain and are the resident 

macrophages of the central nervous system (CNS). These cells are derived from myeloid precursor 

that migrate into the CNS during embryogenesis	
  (Kettenmann et al, 2011). 

After invading the brain parenchyma microglial cells precursors mature into a ramified cells 

characterized by a small soma and long thin process (Fig.4) and display the so-called “resting” 

or”surveillant” microglia phenotype. (Hanisch & Kettenmann, 2007) 

 

 

Although they are called resting, ramified microglial cells are far from inactive.  Studies based on in 

vivo two-photon microscopy on transgenic mice that express EGFP in the locus of CX3CR1 

chemokine receptor, demonstrates that the process of microglial cells are highly mobile and 

continuously survey their surrounding parenchyma without disturbing the fragile neuronal structure. 

It was estimate that the complete brain parenchyma could be monitored every few hours by 

surveillant microglia ss. The rapid scanning process rapidly changes to a targeted movement toward 

the site of injury when microlesion are induced. (Hanisch & Kettenmann, 2007)	
  (Kettenmann et al, 

2011) 

One of the most remarkable properties of microglial cells is their ability to respond both to internal 

Fig.	
  4:	
  Resting	
  microglial	
  cell	
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signal such as damaged or stressed cells and to external signal like pathogens. Activation can be 

considered a stepwise transformation of resting cells that occurs upon disturbance of tissue 

homeostasis or upon experimental stimulation. 

Infection, trauma, ischemia, neurodegenerative disease, loss of brain homeostasis can evoke rapid 

and profound changes in the microglial cell shape, gene expression and functional behavior which 

summarily are defined as “activated” microglia	
  (Hanisch & Kettenmann, 2007).  

During activation microglial cells change their appearance and acquire an amoeboid phenotype. 

Microglial cells also become motile, proliferate, unfold their phagocytotic activities, release 

chemoattractive factors and present antigen to T cells	
  (Hanisch & Kettenmann, 2007).  

Regarding tissue resident macrophages, which represent the peripheral counterpart of microglial 

cells, several studies have shown that they can undergo two different forms of polarized activation. 

The first is the classic (M1) activation, characterized by high capacity to present antigen, high 

production of NO and ROS and of pro-inflammatory cytokines. M1 cells act as potent effectors that 

kill microorganisms and tumor cells, drive the inflammatory response and may mediate detrimental 

effects on neural cells. 

The second phenotype (M2) is an alternative apparently beneficial activation more related to a fine 

tuning of inflammation, scavenging of debris, promotion of angiogenesis, tissue remodeling and 

repair. Specific environmental signals are able to induce these different polarization states (Porta et 

al, 2009).A bipolar polarization has been also recently suggested for microglia, by showing that 

these cells, under certain conditions, can indeed be pushed to both extremes of the M1 and M2 

differentiation spectrum (Michelucci et al, 2009). Therefore, classically activated microglia (M1) 

refers to cytotoxic microglial cells which secrete ROS and proinflammatory cytokines. In contrast, 

alternatively activated microglia (M2) indicate myeloid brain cells that block proinflammatory 

responses and produce high levels of anti-inflammatory cytokines and neurotrophic factors	
  

(Buechler et al, 2000). 
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1.3 Multiple sclerosis  
	
  

Multiple sclerosis (MS) is a leading cause of disability in young adults in the western world. 

(Compston & Coles, 2002).It is considered an autoimmune inflammatory demyelinating disease of 

the CNS.	
  The disease is due to myelin autoreactive T cells, activated at the periphery, which cross 

the blood–brain barrier and drive an inflammatory process in the white matter. Clinically the most 

common form of the disease is partitioned into an early phase characterized by relapses an 

remission of neurological disability and a later chronic phase which shows a more progressive, non 

remitting feature (Compston & Coles, 2002). In	
  MS	
  patients,	
  acute	
  lesions	
  in	
  the	
  nervous	
  tissue	
  

are	
   observed.	
  These lesions are normally localized in the white matter and are characterized by 

breaking of the blood brain barrier, edema and demyelination, typical signals of an ongoing 

inflammatory process. In the last years, most of the research has focused on the inflammatory 

response of MS patients. The pathological hallmark of MS is, in fact, the presence within the CNS 

of inflammatory infiltrates containing few autoreactive T cells, a multitude of pathogenic 

nonspecific lymphocytes, macrophages and microglia	
   (Prineas et al, 2001; Sriram & Rodriguez, 

1997). A significant microglia activation is present in all the major steps of MS, including the 

secondary progressive form. This is why it's believed that microglial activation underlies the 

insidious and persistent inflammation which mediate demyelination and progressive axonal loss in 

MS (Hemmer et al, 2002; Takahashi et al, 2003). The MS brain is also characterized by elevated 

levels of microglia-derived cytokines, including the pro-inflammatory cytokine IL1 beta, which is	
  

thought	
   to	
   have	
   a	
   major	
   role	
   in	
   neuroinflammation.	
  Microglia and peripheral macrophages, 

together with the products of inflammation (cytokines, nitroxide, etc.) and the variable participation 

of an antibody response, are currently considered the major sources of tissue lesion.  

A central point in understanding the pathogenesis of the MS is the role of inflammation and the 

relationship between inflammation, demyelination and axonal degeneration. There is still a 

consensus among most researchers that immunological process play a pivotal role in the 
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pathogenesis and progression of MS (Fig. 5) but there is also an alternative hypothesis that propose 

that activation of autoimmune cells is a consequence of toxic insults to CNS cells (Hauser & 

Oksenberg, 2006).  

 

1.4 Experimental autoimmune encephalomyelitis  
	
  

Experimental autoimmune encephalomyelitis (EAE) is the most widely used model of multiple 

sclerosis. Different types of EAE have been developed in order to investigate this heterogenic 

human disease (Mix et al, 2010).  

The history of EAE started in the first half of the 20th century; experiment were performed first in 

guinea pig and monkeys, and later in rat and mouse, enabling more extensive immuno-genetic, 

histopathological and therapeutic studies. 

Currently, the most common mode of EAE induction is based on the injection of an 

encephalitogenic peptide, mostly MOG 35-55 or PLP 139-151, which is emulsified in CFA containing 

Fig.	
  5:	
  Models	
  of	
  disease	
  pathogenesis	
  in	
  MS.	
  (Hauser	
  &	
  Oksenberg,	
  2006) 
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mineral oil and Mycobacterium tuberculosis, followed by intraperitoneal injection of pertussis 

toxin(Mix et al, 2010). 

The phenotype of immunized animals depends mainly on the antigen source and the genetic 

background of the species and the strain of animal used. For example PLP induces relapsing 

remitting EAE in SJL mice, while MOG induces chronic-progressive EAE in C57BL mice	
  (Gold et 

al, 2006; Mix et al, 2010). 

 

1.5 mir-146a in reactive microglia  
	
  

MicroRNAs represent an evolutionary conserved class of endogenous ~ 22 nucleotide non coding-

RNA that act as small regulatory molecules involved in post-transcriptional gene repression(Cao et 

al, 2006). Several miRNA have been described in the CNS and they are found to play a crucial role 

in several biological process. Among miRNAs present in the brain, Mir-146a is known to be an 

important regulator of the immune response. miRNA-146a is induced by different pro-

inflammatory stimuli, such as IL1-β and TNFα and its up-regulation is reported in various human 

pathologies associated with activation of inflammatory responses.	
  (Aronica et al, 2010). Studies in 

recent years have shown that miRNAs have a unique expression profile in cells. For this reason they 

are emerging as potential biomarkers. Large miRNA expression studies have shown that miRNA 

profiles may reflect the differential status of a tumor and have supported the role of miRNA as 

either prognostic and/or diagnostic markers in various types of cancer (Calin & Croce, 2006; Rusca 

& Monticelli, 2011). 

In this context, a very interesting study by Ponomarev and colleagues recently demonstrated that 

expression of Mir-146a reflects the M1 pro-inflammatory phenotype displayed by microglia and 

peripheral macrophages during the active phase of EAE (Ponomarev et al, 2011). 
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2. Aim of the study 
 
Extracellular microvesicles (MVs) are important mediators of cell-to-cell communication and are 

emerging as new biomarkers of tissue damage.  

Results of the laboratory have recently shown that the typical danger signal ATP, which 

accumulates in the brain during inflammation, induces shedding of microvesicles (MVs) from 

microglia, which store and release pro-inflammatory cytokines. However no information is 

available about existence of microglia-derived MVs within the brain and of their possible biological 

activity. Although microglia are the immune cells of the CNS, which provide the first line of 

defense in brain pathologies (Graeber et al, 2011), all reports which exploited the diagnostic value 

of MVs in CNS diseases have focused so far on platelet-, endothelial cell- or oligodendrocyte-

derived MVs (Doeuvre et al, 2009; Emmanouilidou et al, 2010; Scolding et al, 1989). The 

possibility that microglia-derived MVs exist in vivo and may represent biomarkers of inflamed CNS 

has never been explored. 

Aim of the present study was to address this hypothesis  in the prototypic inflammatory disease of 

the CNS, multiple sclerosis (MS). 

Cerebrospinal fluid represents an easily accessible source of material for diagnosis and monitoring 

of neurological diseases. It is a potential indicator of abnormal CNS states such as inflammation, 

infection, neurodegenerative processes and tumor growth (Zougman et al, 2008). Therefore, to 

investigate the presence of microglia-derived MVs in vivo we analyzed by fluorescence 

microscopy, western blotting and flow cytometry the CSF collected from healthy rodents. We found 

that rodent CSF contains microvesicles (MVs) of microglial origin, similar in size and content to 

MVs released in vitro from microglia. We also showed that microglia-derived MVs deliver a pro-

inflammatory signal to glial cells, both to astrocytes and microglia, and that contribute to 

neuroinflammation in the course of Experimental Autoimmune Encephalomyelitis (EAE). All 

together these findings demonstrated a previously unappreciated role for microglia-derived MVs in 



	
  
	
  

21	
  

neuro-inflammation and identified microglial MVs as a novel biomarker of brain diseases 

characterized by microglia activation. 
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3.Material and methods 
 

3.1 Animals 
	
  
Sprague Dawley and Lewis rats, C57BL/6 and SJL/j mice were purchased from Charles River. A-

SMase KO mice (Horinouchi et al, 1995a) are a gift of Prof. Edward H. Schuchman. CX3CR1-

EGFP	
  (Jung et al, 2000)  mice were provided by F. Kirchhoff.  

Animals were housed at constant temperature (22-18°C) and relative humidity (50%) under a 

regular light–dark schedule (lights on 7 a.m. to 7 p.m.). Food and water were freely available. All 

experiments were carried out in accordance with the European Communities Council Directive of 

24 November 1986 (86/609/EEC). All efforts were made to minimize animal suffering and to use 

only the number of animals necessary to produce reliable scientific data. 

 

3.2 Human patients 
	
  
Human CSF samples were obtained for diagnostic purpose from subjects with CIS (n=18) or 

definitive MS (n=40) according to revised McDonald’s criteria	
  (Polman et al, 2011), attending the 

MS Center of the San Raffaele Hospital. Two patients had a primary progressive course (PPMS), 

while among relapsing remitting MS patients (RRMS), 23 were clinically stable and 15 were 

sampled during an acute attack. Two subjects with neuromyelitis optica (NMO), positive for NMO-

Ig, were also included in the analysis. CSF from age and sex matched healthy donors (n=7) without 

known neurological disease was collected from subjects undergoing local anesthesia for orthopedic 

surgery. This research project was approved by the ethical Committee of the San Raffaele Scientific 

Institute and all subjects signed a written informed consent.  
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3.3 Astrocytes and Microglia primary culture 
	
  
Primary mixed glial cultures from embryonic rat pups (embryonic days 20–21) were obtained as 

previously described (Bianco et al, 2009).  Dissociated cells were plated on poly-L-lysine-treated 

(10 µg/ml, Sigma-Aldrich) T75 flasks at density 1x106 cells/flask, and grown in MEM (Invitrogen 

Life Technologies) supplemented with 20% FCS (Gibco) and 100 IU/ml penicillin, 10 mg/ml 

streptomycin, and 5.5 g/L glucose (glial medium). Purified microglial cultures were harvested by 

shaking 2-weeks old mixed glial cultures.  1x106 microglia cells were plated onto poly-D,L-

ornithine-coated (final concentration 50 µg/ml; Sigma-Aldrich) 60mm tissue culture dish and 

maintained in the same medium.  

 

3.4 Hippocampal neuron 
	
  
Primary neuronal cultures were prepared from the hippocampi of 18-day-old fetal rats, as described 

by Bartlett and Banker (1984).  Dissociated cells were plated on poly-L-lysine-treated (1mg/ml, 

Sigma Chemical Co., St Louis, MO, USA) glass coverslips in Neurobasal medium (Invitrogen) 

supplemented with 2% B27 (Invitrogen).  

 

3.5 Isolation of MVs from cells 
	
  
MVs shedding is induced by treatment of microglial cells with ATP (1 mM) for 30 min in Krebs-

Ringer solution (125mM NaCl, 5mMKCl, 1.2mM MgSO4, 1.2mM KH2PO, 2mM CaCl2, 6mM D-

glucose, and 25mM HEPES/NaOH, pH 7.4). MVs were then isolated by differential centrifugation 

as previously described(bianco) The shedding vesicles were pelletted at 10.000 g for 30 min while 

exosomes were pelleted at 110.000 g., (Bianco et al, 2009). Micro BCA protein assay kit (Thermo 

Fischer Scientific) was used to determine the protein concentration, according to manufacturer’s 

specifications. We obtained 4,2± 0,15 µg of MVs (n=5, ±SE) from 1X106 primary microglia.  
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3.6 Isolation of MVs from rodent CSF 
	
  
Rats or mice have been anaesthetized by intraperitoneal injection of 4% Cloralium Hydrate; CSF 

has been sampled from the cisterna magna using a glass capillary and checked for the absence of 

blood contamination. CSF pooled from 2-5 rats has been diluted in ice-cold PBS containing 

protease inhibitors and subjected to differential centrifugation to obtain three vesicles pellets 

corresponding to larger shed vesicles (P2), smaller shed vesicles (P3) and exosomes (P4) (Bianco), 

or pelletted at 110,000g for 1h to obtain the whole MV fraction.  

  

3.7 Fluorescence microscopy  
	
  
MVs from rat or mouse CSF were re-suspended in 20 µl of PBS buffer and stained with Annexin-

V-FITC, CD11b-PE or IB4-FITC, spotted on glass slides and observed with an inverted Zeiss 

Axiovert 200M microscope. Staining of fixed MVs with Abs directed against intracellular epitopes, 

like Iba-1, GFAP, MBP and SNAP-25 was performed adding primary Ab was in a 1:1 volume of 

PBS buffer containing goat serum and 0.3% TritonX-100 and incubations were allowed for 1h at 

RT. Primary Ab-conjugated MVs were then washed with PBS and pelletted before incubation with 

fluorochrome-conjugated secondary Abs for 2h at RT and further washing in PBS. Re-pelletted 

labelled MVs were then spotted on glass slides and observed at the microscope. CSF collected from 

CX3CR1-EGFP mice was directly stained for Cd11b, spotted on glass microscope, sealed and 

analyzed. 

 

3.8 Mir-146a real time PCR 
	
  
MVs and exosomes were collected from 24x106 primary cortical astrocytes after exposure to ATP 

for 30 minutes. P2, P3 (shed vesicles) and P4 (exosomes) fractions were isolated by differential 

centrifugation as reported above. Total RNA was extracted from MVs pellet using MirVana 



	
  
	
  

25	
  

miRNA isolation Kit (ambion) following the manufacturer's protocol.  

TaqMan miRNA assays (Applied Biosystem) used the stem-loop method to detect the expression 

level of mature microRNA. As a first step total RNA was retrotrascribed using RT primer specific 

for the mir of interest; cDNA was then used for PCR reaction along with TaqMan primers. The RT 

primer, the TaqMan primer and probe for mir-146a and RNU6B, which was used for normalization, 

were from Applied Biosystem 

 

3.9 Mir-146a functional assay  
	
  
 To evaluate the levels intracellular mir-146a in neuronal culture a functional analysis was done 

using a luciferase-based assay. 

Primary culture of hippocampal neuron at DIV 6 were transiently transfected with 

PM146a/PsiCheck-2. In this the mature sequence of hsa-miR-146a in the antisense orientation was 

cloned downstream to the Renilla Luciferase coding region	
  (Rom et al, 2010).  

The day after transfection cells were exposed to MVs released from microglial cells, approximately 

2,8 mg/ml. As positive control neuron were co-transfected with PM146a/PsiCheck-2 and 

mir146a/block-it a plasmid that induces the overexpression of mir-146a in the cells 	
   (Rom et al, 

2010).  

 Twenty-four hours after the exposure to MVs, Firefly and Renilla luciferase activities were 

measured using the dual-luciferase assays (Promega) following the manufactures instruction. 

Briefly cells were washed in PBS and then scraped using the passive lysis buffer that is furnished 

with the kit. Renilla luciferase activity was normalized to firefly luciferase activity. 

 Plasmids were a gift from Peruzzi F. (LSU Health Sciences Center, New Orleans, ). 

 

3.10 Western blotting  
	
  
 MVs fraction collected from rat CSF as previously described were re-suspended in SDS sample 
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buffer, loaded on a single lane of a 12% polyacrylamide gel and blotted onto nitrocellulose filters. 

0,2µg of corpus callosum homogenate, 10 µg of rat brain and 1µg of cortical astrocyte lysate were 

run in the same gel, as positive controls. Selected proteins were detected with specific Abs followed 

by HRP-conjugated secondary Abs and revealed using an ECL system. Samples from MVs-

stimulated cultured astrocytes (10 µg) were processed similarly.  

 

3.11 Flow cytometry analysis of rodent and human CSF 
	
  
Human or mice CSF was directly stained with FITC-conjugate Isolectin B4 from Bandeiraea 

Simplicifolia, (IB4-FITC, SIGMA), and/or annexin-V-APC in 1% BSA. Specificity of IB4 labelling 

was evaluated on MVs produced by cultured microglia, by pre-treating IB4-FITC with 1M 

melibiose (6-O-a-D-galactopyranosyl-D-glucose) for 30 min as previously described (Ayoub & 

Salm, 2003). CSF was then diluted in PBS buffer and labelled MVs were acquired within a fixed 

time interval on a Canto II HTS flow cytometer (Becton Dickinson). Data were analyzed using FCS 

3 software (Becton Dickinson, Franklin Lakes, NJ, USA). Unstained and single-color controls were 

used to properly set PMT voltages and compensations. Forward scatter (FSc) height and width were 

used to discard doublets or aggregates. Using side-scatter (SSc) and FSc a vesicle gate was 

determined over the instrument noise (set by running PBS filtered through a 100 nm filter). Within 

this gate, IB4 positive events (number of events/µl) were evaluated as a parameter of myeloid MVs 

concentration in the CSF.  

In a first set of experiments, the vesicular nature of detected events was confirmed by using the 

lipophylic membrane styril-dye FM1-43. In addition, in vitro generated MVs were analyzed and 

sorted using similar FACS parameters on a FACSAria followed by fluorescence microscopy 

analysis. 
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3.12 Spectrophotometric quantification of shed MVs  
	
  
Spectrophotometric quantification of MVs shed from primary microglia was performed in Kreb’s 

Ringer.  Cells were incubated with 50µM NBD-C6-HPC (Molecular Probes, Invitrogen), washed 

and stimulated with 100µM BzATP for 20 min. Supernatant was collected, centrifuged 10 min 300g 

at 4°C to remove cells and debris, and the total fluorescence was assayed at 485/535 nm with the 

spectrophotometric system Tecan Infinite500, (TecanGroup Ltd , Switzerland). 

 

3.13 Glial cells cultures and in vitro stimulation 
	
  
Glial cells were exposed to either 0.4µg/ml LPS for 6 hours or Th1 cytokines (100 U/ml IL1-β, 200 

U/ml TNF  and 500 U/ml IFN ) for 48 hours. Recipient glial cells were exposed to an amount of 

MVs produced by twice as many donor microglia (1:2 receiving cells to donor cells relative ratio). 

At the end of activation, recipient glia were washed and either lysed in SDS sample buffer for 

western blotting or harvested with TRIZOL (invitrogen) for RT-PCR analysis or fixed with 4% 

paraformaldehyde for immunocytochemistry or loaded with the calcium dye FURA-2/AM 

(Invitrogen) for calcium imaging or analyzed by flow cytometry after surface staining with CD86-

PE for 20 min (at least 5 × 104 events/sample were analyzed).  

 

3.14 Semiquantitative reverse transcriptase-coupled PCR   
	
  
Total RNA was isolated from rat primary astrocytes/microglia  using miRNeasy Qiagen kit 

following the manufacturer’s protocol. To remove any contaminating genomic DNA, total RNA 

was digested with DNase. Reverse transcriptase was performed using SuperScript® III First-Strand 

Synthesis System (Invitrogen) and oligo (dT)20 as primer in a final volume of 20 µl. The resulting 

cDNA was amplified using FastStart Taq DNA Polymerase (Roche) and the following primers for 

rat proinflammatory genes IL-1β (339 bp), sense, 5’- CAG GAA GGC AGT GTC ACT CA -3’; 
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antisense, 5’- GGG ATT TTG TCG TTG CTT GT -3’; IL-6 (473 bp), sense, 5’- CCG GAG AGG 

AGA CTT CAC AG -3’; antisense, 5’-TGG TCC TTA GCC ACT CCT TC -3’; iNOS (595 bp), 

sense, 5’- AAG TCC AGC CGC ACC ACC CT -3’; antisense, 5’- TGC AGA CGC CAT GGT 

GCA GG -3’; CD206 (493 pb) sense, 5’- ACC TGG CAA GTA TCC ACA GC -3’; antisense, 5’-

TTT TCA GGC CTC AAT CCA AC -3’; COX-2 (334), sense,  5’-GAG CAC CTG CGG TTC 

GCT GT -3’; antisense, 5’-GCA GCA GCG GAT GCC AGT GA -3’;. Amplified products were 

electrophoresed on a 2% agarose gels and visualized by SYBR® safe staining. Actin (sense,  5’-

CTA GAA GCA TTG CGG TGG ACG ATG GAG GG -3’; antisense, 5’-TGA CGG GGT CAC 

CCA CAC TGT GCC CAT CTA -3’) was used to ascertain that an equivalent amount of cDNA 

was synthesized from different samples.  

Primer specific for the mouse and rat isoforms of IL-1β were also used: IL-1βrat (600 pb), sense 5’-

CCA AAT TCA ATT CAT CCC ATA-3’ antisense 5’-TGC CCG TGG AGC TTC CAG GA-3‘ 

and IL-1βmouse (500pb), sense 5’- GGG ATT TTG TCG TTG CTT GT-3’ antisense 5’- CCC TGG 

AGA TTG AGC TGT CTG-3’. All the primers were designed using Primer3 (REF). 

 

3.15 Quantitative real time PCR 
	
  
RNA was extracted from primari microglial cells and astrocytes as desribed above. cDNA synthesis 

from total RNA was performed using ThermoScriptTM RT-PCR system (Invitrogen) and Random 

Hexamers as primer. IL1-β, iNOS, COX-2, CD206, TGFβ and IL-10 mRNA levels were measured 

by real time PCR using Taqman® Gene Expression Assays on the ABI-Prism7000 sequence 

detection system (Applied Biosystems). 50 ng of starting RNA were used as template. The mRNA 

expression was normalized to the levels of GAPDH mRNA.  
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3.16 Cell fluorescence analysis of recipient glia 
	
  
Surface stainings for CD11b-PE and IB4-Texas red were carried out for 20 min at 4 °c or 3 min at 

RT, before fixing the cells. Iba-1, GFAP and phalloidin staining was performed on cells fixed with 

4% paraphormaldeyde. Nuclei were stained with 4′-6-diamidino-2-phenylindole (DAPI). Cells were 

mounted and observed with a Leica SP5 confocal microscope.  

 

3.17 [Ca2+]i determination 
	
  
Astrocytes, after exposure to shed MVs for 72h, were loaded with 10 µm Fura-2/AM for 45 min at 

37°C in culture medium. Polychrome IV (TILL Photonics) was used as a light source. Fura-2 

fluorescence images were collected after excitation at 340 and 380nm wavelengths and the emitted 

light was acquired at 505nm at 1–4 Hz. The ratio values in discrete areas of interest were calculated 

from sequences of images to obtain temporal analyses. Calcium concentrations were expressed as 

F340/380 fluorescence ratios. 

 

3.18 Lentivirus injections  
	
  
Mice were anesthetized with 2,2,2-tribromoethanol (10 mg/ml; 1/27 of body weight) and the head 

was placed in a stereotactic injection apparatus (David Kopf Instruments, Tujunga, CA, USA). 

Vesicular stomatitis virus-pseudotyped lentivirus (LV) LV-PGK-IFNγ and LV-PGK-TNFα, 

previously described in (Muzio et al, 2010), were injected within the right lateral ventricle at the 

following coordinates: A. +0; L. + 0.8 and D. −2.4. CSF was collected 10 days after lentivirus 

injection. 
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3.19 Relapsing-remitting and chronic rodent EAE  
	
  
Chronic progressive EAE (c-EAE) was induced in female C57Bl/6 mice by immunization with 

200µg/mouse of MOG35-55 (Espikem, Florence, Italy) and two injections of pertussis toxin 

(500ng/mouse) the day of immunization and 48 hours later. A reduced concentration of pertussis 

toxin (250ng/mouse) was used to induce EAE in 6 weeks old female A-SMase-/- mice and their 

littermates, in consideration of the young animal age, necessary to avoid interference with the 

inherent phenotype of these mice, consisting of ataxia and mild tremors which appears after about 

10 weeks of age	
  (Otterbach & Stoffel, 1995). To obtain sub-clinical EAE for focal MV injections, 

mice were immunized with 50µg/mouse of MOG35-55 and 250ng/mouse of pertussis toxin. 

Relapsing-remitting EAE (r-EAE) was induced in female SJL/j mice by two immunizations, seven 

days apart, with 200 µg/mouse of PLP139-151 (Espikem, Florence, Italy) and four injections of 500ng 

of pertussis toxin the day of immunization and 48 hours later. CSF was collected at 10, 20, and 60 

days post injection (dpi), in c-EAE and at 29, 35, and 48 dpi, in r-EAE. Female Lewis rats weighing 

about 150gr were immunized under the skin of the flanks using 1mg lyophilized spinal cord 

homogenate emulsified in a total of 200µl of complete Freund adjuvant. Weight and clinical score 

were assigned according to a standard and validated 0 to 5 scale, described in g	
  (Furlan et al, 2009) .  

 

3.20 MVs injections in EAE mice 
	
  
Mice with sub-clinical EAE, 20 days post immunization, were stereotactically injected in the corpus 

callosum (coordinates: 0 mm anterior, 1.0 mm lateral to the bregma and 2.2 mm in depth) with the 

whole fraction of vesicles (MVs and exosomes) derived from primary microglia dissolved in 1 µl of 

sterile saline (2µg/µl) or with liposomes, mimicking the phospholipid composition of the plasma 

membrane, which were prepared as follows: bovine brain PC, PS, SM and cholesterol (60:10:10:20, 

molar ratio), were dissolved in chloroform. The lipid mixtures were evaporated under a nitrogen 

stream, dried for 1 hour at 50°C and re-suspended in PBS at 40°C in order to obtain multilamellar 
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vesicles. Small unilamellar vesicles were obtained by sonicating multilamellar vesicles. Mice were 

sacrificated  72 hours after MV/liposome injection to analyze formation of focal lesions at site of 

administration.  

 

3.21 Neuropathological analysis 
	
  
Brain tissue sections were fixed, embedded in paraffin and stained with H&E and Luxol fast Blue to 

reveal perivascular inflammatory infiltrates and demyelinated areas respectively. Infiltrating 

microglia and T cells were stained using IB4 and anti-CD3, revealed using a biotin-labeled 

secondary anti-rat antibody. Inflammatory infiltrates, demyelinated areas and axonal loss were 

quantified on an average of 10 complete cross-sections of spinal cord per animal. Perivascular 

inflammatory infiltrates, T cells, and macrophages were evaluated as the number per mm2, while 

demyelinated areas and axonal loss were expressed as the percentage per mm2. 

 

3.22 miRNA profiling 
	
  
To map miRNAs MVs and exosomes were isolated from 15x106 microglial cells exposed for 24 

hours to inflammatory Th1 cytokines and to the anti-inflammatory cytokines IL4. Total RNA has 

been isolated from MVs collected using miRNeasy mini Kit; cDNA has been prepared by a single 

in vitro transcription amplification step, using Universal cDNA synthesis kit (Exiqon) starting from 

22 ng of total RNA.  The obtained cDNA was used as template for microRNA quantitative real-

time PCR using microRNA Ready-to-Use PCR, Mouse&Rat panel I, V2.M (Exiqon). The 

experiment was run on  Roche LightCycler 480. Analysis of data has been carried out with GenEx 

software (Exiqon) using UniSp6 (Spike in RNA) as  calibrator and mir-499c as refefence gene. 
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3.23 Chemicals and antibodies 
	
  
ATP, BzATP, LPS, FICT- and APC-annexin V, IB4-FITC, IB4-Texas red, phalloidin-Texas red, 

melibiose were from Sigma-Aldrich. CellTracker green CMFDA, were from Molecular Probes, PI 

was BD Biosciences, NBD-C6-HPC was from Invitrogen, IL1-β was from Euroclone, TNFα and 

IFNγ from Peprotech. The following antibodies were used: anti mouse CD11b-PE (BD 

Biosciences), anti human CD63-PE (BD Biosciences) anti-rat CD86 (eBioscience), anti-mouse 

GFAP (Sigma-Aldrich), anti-human calnexin (Sigma-Aldrich), anti-mouse CNPase (Chemicon), 

anti-mouse MBP (Chemical), anti-mouse SNAP-25 SMI 81 (Sternberger Monoclonals) anti-mouse 

Iba-1 (Wako), anti-CD3 (Serotec Ltd), anti-OX42 (Harlan Sera-Lab, UK). PC, PS, cholesterol and 

SM were from Sigma-Aldrich. 

 

3.24 Statistical Analysis  
	
  
All data are presented as mean or median + SD or SE from the indicated number of experiments. 

Data were compared using the Student's t-test for parametric data or the Mann–Whitney U-test for 

non-parametric data or non normally distributed data. Differences were considered to be significant 

if p<0.05 and are indicated by an asterisk; those at p<0.01 are indicated by double asterisks, and 

p<0.0001 by triple asterisk. 
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4. Results 
 

4.1 MVs shedding is increased upon inflammation  
	
  
The release of shedding vesicles takes place in resting cells, but it is increased upon stimulation 

such as during inflammation and in tumor cells. 

To verify whether the activation state of microglia may influence MV production, cultured 

microglia were exposed for 48 hours to Th1 cytokines (IL-1β- TNF - IFN ). Cells were incubated 

in vivo with antibodies directed against CD11b, then were fixed with PFA 4% and counter stained 

for Iba1. Fluorescence microscopy analysis showed the presence of several blebs at the cell surface, 

characterized by Iba1 accumulation in Th1 treated cells not detectable in unstimulated cells. (Fig. 6) 

This finding suggests that exposure to a pro-inflammatory enviroment may strongly induce the 

process of shedding in microglial cells.   

  

 

Consistent	
  with	
  the	
  ability	
  to	
  induce	
  massive	
  formation	
  of	
  blebs	
  at	
  the	
  cell	
  surface,	
  

spectrometric	
  quantification. of ATP-induced MVs shedding from resting microglia and cells pre-

Fig. 6: MVs shedding in activated cells. Primary microglia exposed to Th1 cytokines for 24h, showing numerous 
blebs at the plasma membrane enriched in Iba-1 (upper panels). Double staining for surface CD11b and Iba-1 in 
control and Th1-treated BV2 microglial cells (lower panels).The histogram shows the spectrophotometric 
quantification of MVs shed from resting or reactive microglial cells, prelabelled with NBD-C6-HPC and exposed to 
the P2X7 agonist BzATP (100 µM) for 20 min 
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activated with Th1 cytokines or LPS indicated that Th1 cytokines are the best priming stimuli for 

the process(Fig.6) 

 

4.2 MVs interaction with glial cells: astrocytes and microglia 
	
  
To evaluate whether microglia-derived MVs may have a pathological role in inflammation we 

analyzed the effect of MVs on primary glial cells both astrocytes and microglia. 

1x106 astrocytes were exposed for 48 hours to MVs released from 2x106 microglial cells (ratio 1:2) 

at concentration of 2 µg/ml. After exposure to MVs astrocytes appeared e more reactive, they 

looked hypertrophic, displaying more thicker process, and showed higher levels of GFAP (Fig. 7). 

72 hours after exposure to MVs we also evaluate basal calcium concentration of astrocytes exposed 

to MVs. produced either from LPS or TH1 primed microglial cells. To this aim, cells were loaded 

with the fluorescent calcium dye FURA-2, and calcium levels were analyzed evaluating F340/F380 

fluorescence ratio. We found that that astrocytes exposed to MVs have higher basal calcium 

concentration as compeared to control cells, confirming that they are activated.  

To further analyze the phenotype acquired by astrocytes after exposure to MVs we used semi-

quantitative PCR and Real Time PCR. 

Exposure of astrocytes to MVs produced by LPS-treated microglia induced up regulation of the 

Fig. 7: Effect of MVs on astrocytes.  1-Fuorescent staining for the activation marker GFAP of naïve cortical astrocytes 
and astrocytes exposed to MVs shed from LPS-treated microglia. 2-Western blotting for GFAP of control astrocytes and 
astrocytes activated by MVs ; the endoplasmic reticulum protein calnexin was used as loading control. 3-Cytoplasmic 
calcium concentration, expressed as F340/380 fluorescence ratio, of astrocytes, loaded with the fluorescent calcium dye 
FURA-2, 72 hours after exposure to MVs produced from LPS- or Th1-treated microglia. 
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pro-inflammatory markers iNOS, COX-2, IL1β, IL6 and COX-2 as indicated by both by semi-

quantitative PCR and real time PCR without changing the level of expression of the anti-

inflammatory molecules TGF-β and IL-10. Inflammatory markers were induced in a dose-

dependent manner, as indicated by linear correlation between the amount of MVs, used as a 

stimulus, and level of expression of markers of astrogliosis in recipient astrocytes.	
  Of	
  note,	
  a	
   less	
  

robust	
  response	
  was	
  evoked	
  by	
  MVs	
  produced	
  by	
  resting	
  microglia	
  (Fig.8).	
   

 

 

Similar results were obtained on microglial cells exposed to MVs. 

Microglia cells responded to MVs by up-regulating the T-cell co-receptor ligand CD86 at the cell 

surface, mimicking the effects induced by exposure to the inflammatory stimulus LPS. This was 

indicated by flow cytometry analysis of surface expression of CD86 in control microglia and cells 

exposed to MVs (Fig. 9). Microglia-derived MVs were also able to stimulate expression of 

inflammatory markers (iNOS, COX-2, IL6, IL1beta) and to reduce the level of expression of the 

Fig. 8: MVs shed from microglia deliver a pro-inflammatory signal to astrocytes.  1-2 RT-PCR for COX-2, IL-6, IL-
1β, and iNOS mRNA in control cells, astrocytes activated overnight with LPS or exposed for 48 hours to MVs 
produced by resting or LPS--treated microglia. Both amplicons run on agarose and real time quantitative evaluation 
are shown. 3- dose-response correlation between concentration of MVs and induction of inflammatory markers 
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M2 marker CD206, the mannose-6 phosphate receptor, as indicated by quantitative real time and 

semi-quantitative PCR analysis (Fig. 9). A treatment of 48 hours with MVs was necessary to induce 

these variations in the expression of  mRNAs. 

Activation of glial cells was likely mediated by interaction of MVs with recipient cells and 

subsequent MV internalization into their cytoplasm. This was indicated by confocal analysis of N9 

microglial cells exposed for 1h to GFP labeled MVs ,released from N9 cells, stably expressing 

GFP. As shown in Fig. 10, staining with the f-actin ligand phalloidin clearly revealed the presence 

of GFP-labelled MVs inside the cytoplasm of a recipient N9 cell.  

To further study the interaction of MVs with target gial cells we also did a surface staining for IB4-

Texas red (red) in primary microglia exposed to MVs derived from CMFDA-loaded microglia 

(green). CMFDA-storing MVs were incubated with recipient microglia for 1h and microglia were 

briefly exposed to IB4-PE and gently washed before being fixed. This protocol allows staining with 

Fig. 9:	
  MVs shed from microglia deliver a pro-inflammatory signal to microglial cells 1- Fluorescent images revealing 
increased surface expression of the activation marker CD86 (red) in primary microglia exposed overnight to LPS, as 
compared to control. Nuclei are shown in blue with DAPI staining.  2- Quantitative flow cytometry analysis of CD86 
surface expression in microglia maintained in control condition, treated for 3 hours with LPS or incubated overnight 
with MVs derived from Th1-primed microglial cells.3- RT-PCR for inflammatory genes and for the proregenerative 
marker CD206 in control microglia and cells stimulated with Th1 cytokines or LPS, or exposed to MVs derived from 
either resting or LPS/Th1-primed donor microglia. Amplicons run on agarose gels, compared to actin, and real time 
quantitative analysis. 
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IB4 of only MVs attached to the cell surface of receiving microglia but not of those already 

internalized into the cells. As shown in Fig. 10, some CMFDA-loaded MVs were IB4 negative 

(arrows), indicating that they were already internalized into the cytoplasm 

To evaluate whether MV internalization into recipient cells may be associated to transfer of 

cytoplasmic components I settled up a PCR based assay based on the use of primers specific for 

murine IL1β mRNA.  

	
   	
  
Fig. 10: MVs interact with by recipient glial cells. 1- Confocal images of N9 cells exposed for 1 h to GFP-labelled 
MVs, isolated from the medium of GFP-expressing N9 cells, fixed and stained with the f-actin ligand phalloidin. 
2- Surface staining for IB4-Texas red (red) of primary microglia exposed to CMFDA-labelled MVs (green), 
derived from CMFDA-loaded microglia. CMFDA-storing MVs were incubated with recipient microglia for 1h 
and microglia were then briefly exposed to IB4 and gently washed before being fixed. 3- PCR amplification of 
mouse IL-1b mRNA in rat microglia exposed to MVs derived from mouse microglia. 4- Expression of 
inflammatory marker induced from MVs, MVs depletet of the content, Annexin V coated MVs and to lipid 
fraction extracted from MVS revealed by Real Time PCR 



	
  
	
  

38	
  

1x106 rat primary microglia cells were incubated for 5 hours with MVs released from mouse 

microglial cells. Cells were then extensively washed before extraction of RNA and amplification 

with mouse specific primers.   Because the low amount of mouse mRNA a nested PCR was 

necessary. Amplicons were then run on agarose gel. As shown in figure 10 mRNA for the mouse 

isoform of IL1 beta was present in rat microglia cells incubated with mouse MVs, thus indicating 

that MVs transfer cytoplasmic components to recipient microglia. We next evaluated whether 

interaction of MVs with the surface of target cells and MV internalization may contribute to the 

pro-inflammatory response of receiving cells. To this aim astocytes were exposed to artificially 

broken MVs, depleted of their content, to the lipid fraction of MVs or to MVs in which externalized 

PS, that is determinant for recognition on recipient cells, was masked by annexin V. Our 

preliminary data suggested that inhibition of MV interaction by annexin-V stongly reduce  the 

capability of MVs to activate an inflammatory response. Furthermore these data suggested that  that 

the active components of MVs are located in the MVs lumen rather than in the MV surface. 

However, further experiments are necessary to confirm that propagation of the inflammatory signal 

is mediated  by MV cargo and to identify the components responsible for the inflammatory activity 

of MVs	
   

 

4.3 Mir-146a in MVs 
	
  
Since mir146a is expressed in primary human fetal microglia and a large amount of small RNAs, 

including microRNA (miRNA) has been described in extracellular vesicles (Valadi et al, 2007) we 

evaluate the possibility that mir146a was present in microvesicles. 
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To assess the presence of mir146a, RNA was extracted from MVs and exosomes produced from the 

N9 microglia cell line, either unstimulated or exposed or to LPS, and analysed by Real Time PCR. 

Graph in figure 11 shows that mir146a is present in both shed vesicles (P2-P3 population) and 

exosomes (P4) and that its expression is increased in vesicles released	
  from LPS primed cells. 

	
  
4.4 MVs interaction with neuron	
  
	
  
Recent data of the laboratory have shown that microglia-derived MVs can also interact with the 

surface of recipients neurons, maintained in primary culture. Confocal analysis of hippocampal 

neurons exposed for 1 hour to GFP-labelled MVs, extensively washed and processed for 

immunocytochemistry, revealed the presence of MVs anchored to the surface of neuronal processes 

as showed in figure 12.	
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Fig. 11: mir-146a in glial MVs. LPS induced upregulation of  mir-146a is in glial MVs and exosomes 
revealed by Real Time PCR 

Fig. 12: MVs shed from microglia interact with neuronal surface. MVs shed from N9 microglial cells, 
stably expressing GFP were incubated for 1 h whit hippocampal neurons. Culture were then fixed and 
stained for the plasma membrane protein SNAP-25. 
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I therefore evaluated the possibility that MVs could transfer luminal components to neuronal 

cytoplasm. By the used of the assay described above I cannot observe any IL1β mRNA transfer 

from glial MVs to neuron. To confirm this result by a different methodology approach I 

investigated the possible transfer of mir146a from microglia-derived MVs to neurons. The levels of 

expression of mir-146a were evaluated using a functional assay based on luciferase activity. Neuron 

were transfected with a reporter construct that contain the Renilla Luciferase gene fused to the 

perfect match sequence of mir-146a; the plasmid also contained the firefly luciferase gene for 

normalization. Transfected neurons were then incubated in presence of glial MVs for 24 hours and 

the mir-146a levels were evaluated by dual luciferase assay. As shown in figure 12 the exposure of 

neuron to MVs or exosomes induced a significant down-regulation of Renilla luciferase activity 

indicating an increase in the levels of mir-146a in the cells as compare to control cells. As positive 

control we evaluated the reduction of Renilla luciferase activity in neuron transfected with mir-

146a; in this sample we observe a reduction of around 70% of luciferase activity.	
  	
  

	
  

These data indicate that the levels of mir-146a are increased in neurons exposed to MVs and 

exsosomes. Data obtained clearly indicated an increase of mir146a in neurons exposed to MVs. 

However it is not clear at the moment whether this increase results from upregulation of the mirna 

or transfer.. 

0,00

0,05

0,10

0,15

0,20

0,25

0,30

MV s E xos ome miR -­‐146aC trl

Fig. 13: Dual luciferase assay on mir-146a activity.	
  Levels	
  of	
  mir146a	
   in	
  cells	
  exposed	
  to	
  MVs	
  and	
  exosomes	
  
were	
   analyzed	
  using	
  a	
   luciferase	
   reporter	
   sensitive	
   to	
  mir-­‐146a.	
   As	
  positive	
   control	
  mir146a	
   expression	
  
was	
  induced	
  in	
  cells.	
  The	
  reduction	
  in	
  luciferase	
  activity	
  indicate	
  an	
  increase	
  in	
  the	
  levels	
  of	
  mir146a. 
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4.5 MVs in rodent CSF 
	
  
To demonstrate the existence in vivo of microglia-derived MVs the cerebrospinal fluid collected 

from healthy rodents was recently analyzed in the laboratory by negative staining electron 

microscopy. Analysis of three distinct pellets (P2,P3 and P4) obtained by differential centrifugation 

of rat CSF showed that extracellular vesicles, similar in size to both MVs and exosomes, released in 

vitro from glial cells, are indeed present in the cerebrospinal fluid of healthy rats. (Fig. 13) 

 

To better characterize these vesicles, rodent CSF was also analyzed by fluorescence microscopy 

(Fig. 15). The membrane vesicles pelleted from the CSF (P2-P4 fraction) were stained with the 

fluorescent phosphocholine analog NBD-C6-HPC to label the lipid bilayer of the vesicles.  

 

 

 

Fig. 14: MVs in rodent CSF. MVs of decreasing size isolated from the CSF of healthy rats by differential 
centrifugation (P2, P3, P4 fractions) and analyzed by negative staining EM. Corresponding frequency histograms, 
indicating the size distribution of MVs pelleted at increased centrifugal force, are shown on the right. 
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They were also stained with specific markers for shed vesicles or exosomes, such as Annexin V, 

that binds to phosphatidyl serine on the outer leaflet of the MVs plasma membrane and CD63 that is 

a typical exosomal marker. This analysis confirmed the exosome nature of part of CSF vesicles and 

the plasmamembrane origin of larger vesicles.	
   

Rodent CSF was also analyzed by fluorescence microscopy or western blot analysis in order to 

evaluate the cellular origin of MVs. Vesicle fractions were isolated by differential centrifugation the 

pellets stained with fluorescent markers for distinct cell types and observed at confocal microscope. 

Alternatively vesicle fractions were solubilized for WB analysis with the same markers. We 

observed vesicles immunopositive for markers of distinct brain populations, i.e. SNAP-25 for 

neurons, GFAP for astrocytes and MBP and CNPase oligodendrocytes. These data indicated that 

MVs can be released from all these cell types (Fig. 16). To assess the presence of microglial MVs 

in the CSF we analyzed the CSF of CX3CR1-EGFP transgenic mice, in which microglial cells 

express the green fluorescent protein GFP.  The presence of  EGFP+ MVs in the CSF of these mice 

is a clear demonstration of the microglial origin of some CSF MVs. that are positive also for the 

microglial marker CD11b stained in red.  

 

Fig. 15: MVs in the CSF of healthy rodents. Examples of CSF MVs analyzed by fluorescence microscopy using 
the fluorescent phosphocholine analog NBD-C6-HPC to label the lipid bilayer of MVs,  the shed MVs marker 
annexin-V-FITC, and the exosomal marker CD63 
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The existence of microglia derived microvesicles was also confirmed with fluorescent microscopy 

and immunogold electro-microscopy staining MVS with specific microglial markers such as Iba1, 

IB4-FITC and OX-42(CD11b). 

 
4.6 Quantification of MVs in the CSF 

Cerebrospinal fluid represents an easily accessible source of material for diagnosis and monitoring 

of neurological diseases. It is a potential indicator of abnormal CNS states such as inflammation, 
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Fig. 16: Origins of MVs in the CSF of healthy rodents. Confocal microscopy and WB analysis of the CSF 
collected from healthy rodents revealed MVs displaying neuronal (SNAP-25), astrocytic (GFAP), 
oligodendroglial (MBP-CNPase) and microglia (Iba1, IB4 CD11b) markers. Fluorescence micrographs of EGFP+ 
MVs present in the CFS of CXCR3-EGFP transgenic mice, stained for the microglia marker CD11b-PE before 
microscope observation. 



	
  
	
  

44	
  

infection, neurodegenerative processes and tumor growth (Zougman et al, 2008). CSF is the only 

body fluid in direct contact with the brain and therefore can act as a recipient of shedding products 

release by neuronal cells. With the objective of quantify MVs in the CSF of rodent we settled up a 

cytofluorimetric assay specific for microglia derived MVs.  

 

 

Flow cytometry analysis is a quantitative and reliable methodology to measure MVs, and it has 

been already used to detect small extracellular vesicles, exosomes, in samples of human plasma. A 

gate was established on size, using beads of 0.5-2 µm, to analyze particles ranges from 50 to 1000 

nm. Within this gate, IB4 events were evaluated as parameter of MVs concentration. CSF sample 

were directed immunolabeled with IB4-FITC in order to avoid the formation of immuno complexes 

that can be detectable within the MVs gate. To asses the specificity of IB4 labelling we use 

Fig. 17: IB4 labeling of microglia-derived MVs. Differential interference contrast microscopy (right panels) and in 
vivo fluorescent labeling for IB4-FITC (left panels) of rat microglia in primary cultures. Note that IB4-FITC 
pretreatment with 1M melibiose, a specific ligand for the isolectin IB4, completely prevents its binding to the surface 
of microglial cells, confirming specificity of the staining. Melibiose pretreatment completely abolished IB4-FITC 
labeling, confirming the specificity of the FACS assay. 
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melibiose, a specific ligand for the isolectin IB4. Pretreatment with 1M melibiose completely 

prevents IB4 binding to the surface of microglial cells confirming the specificity of the staining. 

(Fig. 17) FACS analysis of   microglia MVs pretreated with melibiose completely abolished IB4-

FITC staining, confirming the specificity of the FACS assay (Fig. 17).  

 

4.7 CSF MVs during neuroinflammation 
	
  
We	
   and	
   others	
   have	
   shown	
   that	
   both	
   the	
   typical	
   danger	
   signal	
   ATP	
   and	
   bacterial	
  

lipopolysaccharide	
   greatly	
   enhance	
   the	
   release	
   of	
  MVs	
   and	
  MV-­‐dependent	
   secretion	
  of	
   IL1-­‐

beta	
   and	
   MHC-­‐II,	
   in	
   vitro,	
   from	
   microglia	
   (Fig.	
   6	
   Bianco	
   et	
   al.,	
   2005;	
   Qu	
   et	
   al.,	
   2009).	
   To	
  

evaluate	
   if	
  a	
  similar	
  phenomenon	
  occurs	
   in	
  vivo,	
  healthy	
  C57BL/6	
  mice	
  were	
  stereotaxically	
  

injected	
  into	
  the	
  ventricular	
  cavity	
  with	
  lentiviral	
  vectors	
  codifying	
  for	
  the	
  pro-­‐inflammatory	
  

cytokines	
  INF-­‐γ	
  or	
  TNFα.	
  This protocol is known to induce a strong infiltration of macrophage and 

the expansion of microglia in the periventricular area and in the choroid plexus (Muzio et al, 2010). 

Consistently the confocal analysis of the choroid plexus isolated from mice, ten days after the 

injection and labeled with microglial marker Iba1 and DAPI, showed a significant increase in 

microglial cells Iba1 positive in TNF  and IFN  injected mice. (Fig. 18) Analysis by flow 

cytometry of MVs of myeloid origin indicated that intrathecal release of pro-inflammatory cytokine 

dramatically increased microglia-derived MVs of myeloid origin in the CSF. Giving the proof of 

principle that microglia-MVs were increased in vivo in inflammatory conditions.  
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4.8 CSF MVs in EAE 
	
  
We then analyzed rodents affected by experimental autoimmune encephalomyelitis (EAE), a 

neuroinflammatory model for human multiple sclerosis (MS). Quantitative analysis of MVs in mice 

affected by chronic or relapsing EAE, mimicking the two most common clinical forms of MS, 

showed that the amount of total MVs, and myeloid MVs was closely associated to disease course, 

increasing at onset and during clinical relapses, and decreasing in the chronic phase of the disease 

(Fig 19). During EAE, myeloid cells enter the CNS from the blood stream and accumulate in both 

parenchimal and meningeal perivascular inflammatory infiltrates. Choroid plexi, which have been 

identified as the site of first entry of inflammatory cells during EAE (Kivisakk et al, 2009)  

B 

IB
4+

 M
Vs

 (n
o /µ

l)!

* 

IFNγ!GFP! Sham! TNFα!
1!

10!

100! * 

Iba-1/DAPI Iba-1/DAPI 

control TNFα#

Iba-1/DAPI 

IFN-γ#A 

Fig. 18: The amount of microglia-derived MVs in the CSF increases upon inflammation  1-Representative choroid 
plexus from mice injected with lentiviral vectors encoding for GFP (control), TNFα or IFNγ, ten days after injection. 
Staining for Iba-1(red) and DAPI, to label nuclei (light blue) 2- Flow cytometry analysis of IB4+ MVs in the CSF 
collected from naïve mice, sham mice and mice injected with the lentiviral vectors. 
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are in close contact with the CSF and present therefore the more plausible source of myeloid CSF 

MVs. 

 

In the last panel was reported a representative FACS analysis of MVs in the CSF of EAE mouse 

compare to a control. Those data open the possibility that MVs can be an useful biomarker to 

monitor the disease progression. 

 

4.9 Can MVs propagate an inflammatory signal in vivo? 
	
  
To evaluate whether microglia-MVs can have a role in the propagation of an inflammatory signal in 

vivo during EAE stereotactically injected MVs derived from cultured microglia into the brain of 
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Fig.19: The amount of microglia-derived MVs in the reflects EAE activity. 1-Histogram shows the percentage of 
IB4+ MVs in the CSF of naïve mice, mice injected with lentivirus codifying for TNFα, and mice affected by chronic 
(c-) or relapsing-remitting (r-) EAE. 2- Flow cytometry analysis of IB4+ CSF MVs at different disease stages during 
relapsing remitting (r-EAE) and chronic (c-EAE) 3- Representative flow cytometry scatter plots of IB4+ and 
annexin-V+ CSF MVs collected from a naïve mouse and a EAE mouse, in the chronic phase of the disease.  
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mice affected by subclinical EAE. Injections were performed into the corpus callosum, a site 

usually devoid of inflammation during EAE. Seventytwo hours after injection we found 

perivascular inflammatory foci close to the site of injection in all MVs-injected EAE mice and in 

none of saline- or liposome-injected controls (Fig. 12). Inflammatory perivascular infiltrates were 

constituted by very few CD4+ T cells and a vast majority of IB4+ microglia. These data suggest 

that MVs may contribute to formation of focal inflammatory lesion. 

 

4.10 Pathogenic role of MVs 
	
  
We have previously shown the enzyme acid sphingomyelinase (A-SMase) controls the budding of 

MVs from the plasma membrane and that MV shedding is abolished in A-SMase KO glial cells. 

Therefore, to further explore the pathogenic role of MVs in vivo we induced EAE in A-SMase KO 

mice. Since these mutants develop neurological signs starting from 10-12 weeks of age, EAE was 

induced in 6 weeks-old animals and the disease was monitored until 8 weeks of age. Notably, 

ASMase KO mice were highly resistant to the development of EAE as compared to wild type 

Fig. 20: Microglia-derived MVs amplify brain inflammation. Coronal sections of the brain of EAE mice injected 
in the corpus callosum with MVs or liposomes mimicking the phospholipid composition of the plasma membrane. 
Triple staining for DAPI (blue), Iba1 (red) and CD4 (green) shows perivascular inflammatory infiltrates in mice 
injected with MVs  but not with control. 
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littermates (Fig. 21). The lower score of A-SMase KO mice was associated with an expected lower 

amount of myeloid MVs in the CSF, reduced perivascular infiltrates and absence of tissue damage 

in the spinal cord, confirming that shed MVs may have pathogenic functions during EAE. 

 

 

 

4.11 Human sample 
	
  
In order to verify whether the increase in microglia derived MVs that we demonstrate in the CSF of  

EAE mice can be extended to humans, we collected CSF from healthy donors, patients with 

Clinically Isolated Syndrome (CIS), patients with definite primary progressive or relapsing-

remitting multiple sclerosis (PPMS and RRMS, respectively), the latter during a stable phase of the 

disease (stable RRMS), or during an acute attack (acute RRMS). Quantitative flow cytometry 

analysis of IB4 positive microvesicles was done. Similar to data obtained in the animal model IB4 

positive MVs were significantly increased in the CSF from CIS and relapsing RRMS patients (Fig 

22), when inflammatory processes are at higher levels. 

These data indicate that CSF MVs represent novel in vivo biomarker of microglia/macrophage 

Fig. 21: Pathogenic role of microglia-derived MVs. 1-2-3Body weight and median and cumulative clinical score of A-
SMase KO mice and WT littermates affected by c-EAE 4- FACS analysis of IB4+ MVS in CSF of EAE-A-SMase 
KOmice and EAE WT littermate 5-6 Quantification of IB4+macrophages and CD3+ T cells in the spinal cord of EAE 
A-SMase KO mice and WT littermates.  
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activation. 

 

 

4.12 MVs miRNA profiling 
	
  
To address the possibility that CSF MVs contain miRNA signatures that specifically reflect 

microglial activation occurring in the brain during neuroinflammatory disease we carried out a 

profiling of miRNAs present in extracellular vesicles.  

We analyzed by Real Time PCR the expression of 376 microRNAs in MVs and exosomes released 

from control cells as well as from cells exposed to Th1 pro-inflammatory cytokines (IL1-b, TNFa, 

INFg) and to IL4, an anti inflammatory cytokine. We observed a differential expression of several 

miRNAs (~110) in our samples. As shown in figure 23 some miRNAs were expressed only in TH1 

extracellular vesicle; other were expressed only in IL4 vesicles or in control cells. We also 

compared the expression data on microRNA present in vesicles with those present in parental cells. 

Interestingly we detected in vesicles miRNA that are not present in cells, indicating that some 

miRNAs may be uniquely packed into MVs and/or exosomes (Fig. 24). Nevertheless, these data are 

very preliminary and the presence of the microRNA identified as significantly up-/down-regulated 

in MVs need to be confirmed by quantitative real-time PCR. 

Fig. 22: Microglia derived MVs in Multiple sclerosis patients. Quantitative flow cytometry analysis of IB4+ 
positive MVs in human CSF collected from CIS patients, relapsing remitting MS patients in a clinical and 
neuroradiological stable (stable RRMS) or acute (relapsing MS) phase of the disease, primary progressive MS 
patients, patients with neuromyelitis optica and age-and sexmatchedcontrols . 



	
  
	
  

51	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23: miRNAs relative expression in extracellular vesicles. Heatmap of the relative expression of miRNA 
in MVs and exosomes release from differently activated microglial cells. The wap was done at 
http://www.chibi.ubc.ca/matrix2png/bin/matrix2png.cgi 
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Fig. 24: Relative abundance of miRNAs in MVs released from Th1 primed microglia compared 
to parental cells . 
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5 Discussion 
	
  

5.1 Inflammatory role of Mvs in vitro 
	
  
Microglial cells constitute the resident macrophage population in the brain. They are generally 

considered the immune cells of the CNS. They show a resting phenotype in normal CNS where they 

provide tissue maintenance and immune surveillance	
  (Cameron & Landreth, 2010). Microglia cells 

become promptly activated in response to alteration of brain homeostasis	
  (Hanisch & Kettenmann, 

2007).  

We and others have shown that both the typical danger signal ATP and the bacterial membrane 

component lipopolysaccharide (LPS) enhance the release of MVs (Bianco et al, 2009a; Qu et al, 

2007) Here we show that Th1 cytokines (TNF-α, INF-γ and IL1-β)  are the best priming stimuli to 

mediate shedding of MVs and that microvescicles shedding takes place very efficiently in microglia 

exposed in vitro to a pro-inflammatory environment. Several study indicate that microvesicles 

contribute to inflammation via their influence on cell-cell communication and cytokine release. In 

this work we demonstrate that microglia derived microvesicles are able to propagate an 

inflammatory signal to glial cells. iNOS, IL1beta, IL6, COX2 expression is increased in astrocytes 

and microglia exposed to MVs as indicated from Real Time PCR analysis. Interestingly MVs 

produced by microglia exposed to an inflammatory environment, such as those released from LPS 

primed microglia, induced a stronger up-regulation of the inflammatory markers in recipient glial 

cells.  

Microvesicles may influence the behaviour of target cells in several ways, including the transfer of 

protein, mRNAs and miRNAs (Ratajczak et al, 2006). Our data indicate that MVs can be 

internalized from microglial cells and astrocytes in culture and as a consequence of this process, 

mRNAs that are present inside the MVs are transferred to recipient cells. Nevertheless the role of 
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MVs internalization and mRNA transfer in the propagation of the inflammatory signal remain to be 

largely explored.   

We also show that MVs can interact with the surface of cultured neurons, thereby causing an 

increase in the levels of mir-146a in hippocampal cultures. Mir-146a is an inflammatory 

microRNA, and its expression is induced by NF-kB activation (Aronica et al, 2010). Hence, the 

increase in Mir-146a suggest that MVs propagate an inflammatory signal to neurons, besides glial 

cells. However, lack of detectable levels of murine mRNA for Il1 beta in the extract from rat 

neurons exposed mouse MVs, indicate that MVs fail to transfer components from their lumen to the 

neuronal cytoplasm. Based of this observation, it is unlikely that the increase in mir-146 levels 

evoked in neurons by MV exposure is mediated by a direct transfer of the miRNA.  Although 

further study are required to clarify this point, it is likely that MVs induce an up-regulation of 

neuronal of mir-146a through the activation of inflammatory pathway in neurons. 

 

5.2 Role in vivo of microglia-derived MVs 
	
  
Previous studies indicated that microglia and other myeloid cells in vitro can shed MVs, which 

store and release the pro-inflammatory cytokine IL-1b, together inflammosome components  	
  

(Mathivanan et al, 2010) and MHCII protein, a central player in the adaptive immune response 	
  (Qu 

et al, 2007). These data suggest that MVs produced from reactive myeloid cells may propagate 

inflammation and provide an efficient route for rapid dissemination and presentation of antigens. 

This possibility has been clearly demonstrated by the in vitro experiments described in this thesis. 

In addition, recent results of our laboratory indicated that microglia-derived MVs interact with the 

plasma membrane of neurons and enhance excitatory transmission (Antonucci  et al., in press), 

possibly contributing to the excessive potentiation of neurotransmission, which occurs in 

neuroinflammatory diseases (Centonze et al, 2009a). However, whether MVs of microglial origin 
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exist and play a role in vivo was still elusive. Aim of this work was to investigate the existence of 

MVs of microglia origin in vivo and to explore their possible role during inflammatory brain 

diseases. We showed, by electron and fluorescence microscopy, the presence of MVs positive for 

myeloid markers in the CSF of healthy rodents and humans, indicating that myeloid cells can 

secrete MVs in vivo. Given peripheral macrophages are virtually absent in healthy brain 

parenchyma, the presence in the CSF of MVs positive for myeloid markers or derived from 

CX3CR1-EGFP expressing cells suggest that MVs originate from resident microglia in the normal 

brain. However, MVs may also originate from the low number of macrophages which are present at 

choroid plexus and within leptomeninges in the uninjured brain. The capability of MVs to travel 

away from parechymal microglia and to enter the CSF is consistent with the presence in the CSF of 

MVs of neuroectodermal origin, including neurons and oligodendrocytes, that are strictly 

parenchymal and have no contact with liquoral space. Neurons and astrocytes have been described 

to release MVs in vitro(Faure et al, 2006),(Taylor et al, 2007),(Bianco et al, 2009b). However, to 

our knowledge, this is the first evidence that rodent and human CSF contain MVs derived from 

these brain cells.  

Quantification of MVs by flow cytometry indicated an increase in the absolute amount of 

microglia/macrophages MVs in EAE mice. Choroid plexus, which is in direct contact with the CSF 

and has been identified as the site of first entry of inflammatory cells and peripheral macrophages 

during EAE(Engelhardt et al, 2001; Kivisakk et al, 2009), represent the more plausible source of 

increased amounts of myeloid MVs during neuroinflammation. Consistent with this possibility 

myeloid MVs were detected in plexus from from mice injected with inflammatory cytokines. Due 

to the fact that small volumes of CSF collected from single mice do not allow the use of beads for 

exosome capture(Gyorgy et al, 2011),(Ostrowski et al, 2010), exosomes cannot be accurately 

analyzed by flow cytometry. We could not therefore distinguish between the two populations of 

extracellular membrane vesicles of myeloid origin. However, the majority of events above the 

detection limit of  the flow cytometer most likely represents large MVs, originating from the plasma 
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membrane of microglia/macrophages. Consistent with this possibility, MVs of larger size were 

detected by EM in the CSF of EAE rats as compared to naive animals.  

One of the main accomplishments of this study is the finding that the concentration of 

microglia/macrophage-derived MVs in mouse CSF reflects the course and severity of EAE. 

Consistently, the amount of MVs in human CSF is higher in patients presenting with the first 

clinical symptom of MS or in relapsing patients as compared to patients in a stable phase of the 

disease or healthy controls. These results link the events of microglia activation and infiltration of 

peripheral macrophages to the process of MV secretion. They also identify CSF myeloid MVs as 

novel biomarkers of microglia/macrophage activation in vivo, useful as companion tool for disease 

diagnosis and for monitoring the efficacy of drugs targeting MS. Microglia is considered at the 

crossroad between inflammation and neurodegeneration with both detrimental and protective 

roles(Ransohoff & Cardona, 2010; Schwartz & Shechter, 2010). The evidence that different 

methods of activation result in different functional phenotypes of myeloid cells, ranging from 

purely phagocytic and tissue destructive, to immuno-modulating and promoting tissue 

remodeling(Biswas & Mantovani, 2010), has led to the idea that suppressing microglia or 

modulating/redirecting its activation holds a therapeutic potential for progressive forms of MS and 

for neurodegenerative disorders(Centonze et al, 2009b). However, information on the quality of the 

microglial activation in vivo in humans is missing as are reliable biomarkers to monitor the efficacy 

of drugs targeting activated microglial cells. We propose that MVs produced by 

microglia/macrophages and leaking into the CSF may represent a rich source of information on 

microglia/macrophage activation in the brain, which may lead to the identification of specific 

disease cell signature through the analysis of their content.  

The second main accomplishment of our study is the demonstration that increased amounts of 

microglia/macrophage-derived MVs actually promote neuro-inflammation The pro-inflammatory 

activity of MVs was demonstrated in vitro by the dose-dependent induction of inflammatory 

markers in recipient glial cells. The glial reaction was associated to MV interaction and transfer of 
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IL-1β mRNA in the cell cytoplasm. Accordingly, our unpublished observation suggested that MVs 

depleted from their luminal content greatly lose their capacity to activate target astrocytes and the 

lipid fraction from MVs only weakly stimulates the expression of inflammatory markers in 

astrocytes, thus ruling out that phospholipids of microglia-derived MV are responsible for the 

inflammatory activity. However, further studies are required to identify the active component of 

MVs and to determine whether MV internalization and transfer of genetic information contribute to 

the pro-inflammatory response target cells. The pathogenic role of MVs in the inflammatory 

response was demonstrated in vivo by showing that injection of microglia-derived MVs induces the 

formation of inflammatory foci at the site of delivery. This was further corroborated by the finding 

that A-SMase KO mice, genetically impaired in MV production, are largely protected from EAE. 

Mice lacking A-SMase develop a phenotype similar to Niemann-Pick type A disorder(Horinouchi 

et al, 1995b),(Otterbach & Stoffel, 1995), an inherited disease characterized by progressive visceral 

organ abnormalities and neurodegeneration, that leads to growth retardation and death in early 

childhood. A-SMase KO mice appear normal at birth and develop normally until about 8-10 weeks 

of age, when ataxia and mild tremors become noticeable, as a result of Purkinje cell 

neurodegeneration (Otterbach & Stoffel, 1995). Of note, despite growth defects, incipient 

neurodegeneration and the slight gliosis in the gray and white matter (Otterbach & Stoffel, 1995) 

we found that 8 week-old EAE KO animals were about 20% more the weight of EAE WT 

littermates. Moreover, EAE KO mice displayed no demyelinating lesions and less perivascular 

infiltrates in the spinal cords as compared WT littermates, thus strongly linking A-SMase 

deficiency and impairment in MV shedding to EAE amelioration.  

 Give these data MVs are a unique way for exchanging integrated signals, targeting MVs may 

represent a therapeutic strategy more advantageous than classical approaches aimed at neutralizing 

single inflammatory molecules in MS.  

From the data exposed in this thesis Microglia derived MVs are emerging as new biomarkers for 

neuroinflammatory desease. To address the possibility that CSF MVs contain signatures which 
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specifically reflect microglial activation occurring in neuroinflammatory disease  we analyse their 

miRNAs contents. RNAs profiling of human MVs is hardly feasible, due to the small amount of 

organelles available for the analysis. Therefore we will identify putative multiple sclerosis markers 

by mapping miRNAs expressed in MVs shed in vitro upon activation with either Th1 inflammatory 

cytokines and anti-inflammatory cytokine (IL4).  

Data collected from the miRNAs Exiqon’s panels revealed several miRNAs that are differently 

expressed in MVs. Moreover miRNA that are significantly up-/down-regulated in MVs shed from 

Th1 microglia as compared to resting cells or cells stimulated with IL4, will be confirmed by 

quantitative real-time PCR and their expression will be evaluated by Real Time PCR also in MVs 

isolated from the CSF of MS patients or healthy donor 

 

5.3 Conclusions 
	
  
Overall our data link activation of myeloid cells in vivo to propagation of MVs, as cargo structures 

delivering pro-inflammatory signals, and identify myeloid MVs as a novel therapeutic target and a 

companion tool for MS diagnosis. 
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