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Nowadays world energy needs rely mostly on fossil fuels (oil, coal and natural gas) 

which accounts for more than 80% of global energy production. Fossil fuels reserves are 

estimated to deplete by 2050, moreover the total worldwide energy consumption is 

expected to rise in the next 25 years of about the 50%. In this context, it arises the need 

to establish new renewable energetic sources in order to replace fossil fuels and to 

minimize related climate change impacts, like the increasing concentration of CO2 in 

the atmosphere. Biomass, the organic waste derived mainly from agricultural and agro-

industrial productions, is being considered as valuable candidate for production of 

energy mostly because of its plentifully availability. A well-established technology for 

biomass-to-bioenergy conversion is the production of biogas through anaerobic 

digestion (AD). This process involves a complex consortium of different functional 

groups of microbes which, degrading the organic matter, produce biogas composed 

mainly of methane and carbon dioxide. In the latest 10 years there has been renewed 

interest for energy production from biomass through AD because of its versatility and 

potentiality: some advantages are the possibility to solve the problem of waste disposal 

and the biogas can be used for heating or for electricity. So far, the control and 

performance of AD process has typically been performed working on operational 

parameters (such as T, pH, COD, loading rate, etc.). However, recent studies concerning 

the microbial consortia involved in this complex process have been developing with the 

final aim to get an exhaustive knowledge of microbiology of the process and how it 

correlates to the operation of the reactor in order to improve the digester performance 

making preventive action possible.  

The aim of the opening chapter is to summarize the state of the art of the AD process 

focusing on the potential of application of the culture-independent methods for 

analyzing microbial communities in anaerobic digesters. An introduction concerning the 

description of conventional (single-phase) and innovative (two-phase) AD process 

technologies and the main functional groups of microorganisms is reported. Following, 

the limitations and strengths of the wide variety of molecular fingerprinting methods 

currently available are underlined. Key studies illustrating the utility of quantitative 

real-time PCR assays for elucidating the expression of genes associated with specific 

activities are also presented. The main statistical tools to analyse and correlate the 

molecular fingerprints data with operational parameters data are described. The 

advantages of different statistical approach are shown: descriptive statistical tools, like 

hierarchical clustering methods, multivariate ordination methods and Microbial 
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Resource Management (MRM) tool-set are discussed in details, as they can help to 

better elucidate the structure-to-function relations inside the methanogenic consortium. 

Recent selected studies illustrating the applicability of statistical analysis methods are 

presented. 

The choice of biomasses to be used as substrates for anaerobic reactors depends from 

different factors, such as their biochemical methane potential (BMP) as well as 

availability and cost. In order to evaluate the rate of conversion to methane from 

different organic substrates, a wide range of research has been dealing with biochemical 

methane potential (BMP) determinations. Since anaerobic digestion process is linked to 

microbial community structure and dynamics, recent research is focused on the 

precisely characterization of overall consortium involved in the AD with the final 

objective to link microbial community structure to function. To this aim, molecular 

techniques, like DGGE, and their molecular analysis parameters are valuable tools for 

microbial ecology interpretation and management. While a wide range of research paper 

have been developed on the determination of BMP of different substrates, very limited 

information is available about the description of microbial populations of these AD 

processes. 

The aim of the first work, presented in chapter 2, was to experimentally determine the 

BMP of different energetic crops and agro-industrial biomasses and, in order to get 

further insight into the processes, to characterize the microbial communities present 

both before and after the AD process. Anaerobic BMP was determined using an 

automated laboratory-scale multi-batch system. Microbial diversity and dynamics were 

analysed by Denaturing Gradient Gel Electrophoresis (DGGE) and quantification of 

bacterial and archaeal populations was performed by quantitative real-time PCR 

(qPCR).  

It was demonstrated that high BMP could be obtained from energy crops as well as 

other agro-industrial residues/by-products. Molecular biology techniques revealed to be 

useful tools for investigating the structure and diversity of microbial community during 

AD process. Real-time quantitative PCR revealed that the Methanosarcinales were the 

majority of the archaeal community and that sulphate-reducing bacteria were present at 

low titers. Denaturing gradient gel electrophoresis (DGGE) showed the dominance of 

microorganisms affiliated to Methanosarcina and Clostridia. It was shown that seeding 

sludge had a fundamental role in determining the basal microbial community with some 

dominant archaeal and bacterial taxa (Methanosarcinales, especially Methanosarcina 

and Clostridia) detected by DGGE analysis throughout the course of the process. 

However, definite changes in the microbial community were observed, suggesting that 

quantitative changes in the abundance of some key species occurred as response to 

microbial community adaptation to the different biomasses. Principal component 

analyses of DGGE profiles indicated that the microbial shifts between the beginning 

and the end of the AD processes were characterized by significant clustering in the case 

of Archaea whereas most variability was observed for Bacteria. In fact, compositional 

features of biomasses or processing (ensiling) seemed to play a role in the changes of 

archaeal microbial communities indicating Archaea as good indicators for monitoring 

AD microbial community dynamic. Bacterial communities were richer, more dynamic 
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and even than archaeal. A statistically significant correlation trend was also identified 

between archaeal community and BMP indicating that more even archaeal community 

were associated to higher BMP. 

In Italy, many medium- and small-scale biogas plants, usually developed in association 

with agro-zootechnical farms, were recently built. In these biogas plants, the organic 

substrates that are used for AD process cover a great variety of biomasses, such as, 

manure, agro-industrial wastes, energy crops. In particular, this study was focused on 

the potential use for bioenergy production of by-products and wastes derived from dairy 

farming. In fact, the exploitation of these products would permit their valorization, 

solving the problem of waste disposal, and at the same time contributing to the energy 

self-sustenance of dairy farming. 

The aim of the study presented in the third chapter was to evaluate the BMP of whey, 

alone, and in co-digestion with dairy manure and energy crops. Moreover, considering 

the importance of the microbial consortia for the performance of the AD process, the 

microbial community of the digestion tests were characterized by DNA-based 

molecular methods in order to point out the species associated with methane production.  

Anaerobic digestion BMP tests were carried out in batch reactors at mesophilic 

conditions (37°C). Results obtained demonstrated that whey, alone or in co-digestion 

with others biomasses, gave high values of BMP between 400 and 500 mlNCH4 g
-1

TS. 

Changes in bacterial and archaeal community structure were monitored both before and 

after the digestion processes by using the Denaturing Gradient Gel Electrophoresis 

(DGGE) technique. Qualitative analysis obtained through DGGE experiments showed a 

general high diversity of Archaea and Bacteria communities. Archaeal populations were 

dominated by aceticlastic methanogens belonging to genus Methanosaeta together with 

hydrogenotrophic methanogens affiliated to the Methanomicrobiales order. In the case 

of winery wastewaters, a drastic change in the methanogenic community was observed 

at the end of the process with the dominance of acetotrophic methanogens belonging to 

genus Methanosarcina. In all the test performed, bacterial communities were 

characterized by high stability and diversity. The main phylogenetic groups observed 

were Bacteroidetes, Deltaproteobacteria, Firmicutes and Aminoanaerobia. Only in rare 

cases, the presence of peculiar microbial groups was detected, such as Clostridium 

butyricum and Sintrophomonas found in digestate of whey and winery wastewaters, 

respectively. 

The conventional AD technology consists of one-stage continuously fed systems; the 

whole consortium of microbes responsible for the process is kept in a single digester 

and a delicate balance between the different trophic groups (different physiology, 

nutritional needs and sensitivity to environmental conditions) must be accomplished. 

Recently, a two-stage approach with two separate bioreactors in series has been 

previously proposed, splitting hydrolysis/acidogenesis and methanogenesis and 

allowing to optimize each phase and producing hydrogen and methane separately from 

each phase. In recent years, this technological process has been applied to an increasing 

number of complex feedstock. However, there is a limited knowledge on the microbial 

characterization of the anaerobic community in two-stage processes. A better 
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understanding of the ecology and function of the microbial community in these 

processes is desirable in order to better control and improve the biological processes. 

The aim of the work presented in chapter 4 was to characterize and compare the 

microbial community of a 65-days start-up period of a two-stage hydrogen-methane 

process (R1 and R2) and of the traditional single-stage anaerobic digestion process 

(R3), both fed with a mixture of fruit and vegetable wastes and swine slurry. The 

structure and the dynamics of the microbial population were qualitatively and 

quantitatively analysed. Denaturing Gradient Gel Electrophoresis (DGGE) was used to 

investigate the structure and the shifts of bacterial and archaeal communities and to 

identify the dominant hydrogen-producing bacteria and methanogens. Real-Time PCR 

was employed to monitor quantitatively the temporal changes of the major functional 

bacterial groups involved in the anaerobic process: total Bacteria, total Archaea, 

hydrogen-producing bacteria, sulphate-reducing bacteria and acetogens.  

In both the hydrogen (R1) and methanogenic reactors of two-stage process (R2), all the 

identified microorganisms matched with uncultured bacteria affiliated to the phylum 

Firmicutes, class Clostridia, whereas a greater diversity was observed in the methane 

reactor of single-stage process with bacteria belonging to the three phyla, Bacteroidetes, 

Firmicutes and Synergistes. In R1 the DGGE profiles obtained indicated that the 

bacterial community changed with time especially in the first 15 days of operation. 

Thereafter, a quite stable bacterial community, composed of very few bands, was 

established. This bacterial community, associated to the hydrogen production at the 

steady-state, was composed by bacteria affiliated to Clostridium senso stricto or to 

unclassified Clostridiales. Clostridium species are well known to ferment from various 

types of carbohydrates generating mainly acetate, butyrate, hydrogen and carbon 

dioxide. In the single-stage methanogenic reactor (R3), the community was 

characterized by a highest microbial diversity. At the steady-state, most of the 

sequenced dominant bands resulted affiliated to Bacteroidetes, bacteria commonly 

found in anaerobic digesters, capable of fermenting carbohydrates or proteins.  

R1 showed a constant archaeal community throughout the process dominated by few 

species all belonging to Methanosarcina. A modest microbial change was observed only 

in correspondence to a beginning in the accumulation of VFA (>1500 mg acetate/L) and 

a partial inhibition of the process, resulting in a reduced methane productivity. In R3, 

during the starting-up, the archaeal community remained identical to that of R1, as it 

was expected by the use of the same inoculum sludge. Thereafter, it was evidenced a 

drastic shift of the archaeal population with the establishment of the new community 

concurring with a stable methane production. The predominant species belonged both to 

Methanosarcina and Methanosaeta. From these DGGE findings, it can be inferred that 

the methane detected was produced mostly by the activity of microorganisms belonging 

to the Methanosarcinales order and mainly by Methanosarcina spp. 

PCR real-time quantifications showed that in R1 the group of hydrogen-producing 

bacteria, representing a minimal proportion to total Bacteria, varying within percentage 

0.05-1.4%, remained almost constant during all the process (106 bacteria per ml). In R2 

the maximal number of Archaea was reached after 44 day of operation (stable biogas 

production) with 1,77 × 10
8
 bacteria per ml. Among methanogens, the dominant group 
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was the Methanosarcinales, which constituted approximately the 50% of the total 

archaeal concentration. This result is in agreement with the PCR-DGGE data analysis 

that showed a high abundance of Methanosarcina. In R3, both total Archaea and 

Methanosarcinales showed a lower bacterial density than R1; Archaea did not get up to 

107 bacteria per ml. It is likely that the differences in structure and abundance of 

bacterial and archaeal community between the two anaerobic digesters are responsible 

for the diverse performance of two anaerobic processes. 
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The microbial diversity associated to Anaerobic 

Digestion processes for energy recovery 
 

 

 

1. Introduction 
 

Energy is the power of life. The standard of our living is strictly dependent on the 

availability of energy and on the its continuous and guaranteed supply. The global 

consumption of energy in all sectors, from agriculture to transportation and industrial 

processes, is raising constantly year by year. In the latest 20 years together with the 

energy consumed by developed countries there is also the energy needs of new rising 

economies that are striving for improve their standards of living: e.g. in the period from 

the mid eighties to the mid nineties the US energy consumption has raised 1,7% per 

year, while China and India, two of the biggest growing economic powers, respectively 

at 5,3% and 6,6% per year (Ghoniem, 2011). 

According to the International Energy Agency (IEA), nowadays world energy 

requirements are mostly dependent on fossil fuels: these non-renewable sources of 

energy accounts for close to 80% of global energy production, dominated by natural gas 

(45,7%) and oil reserves (32,9%) exploitation. Moreover the total worldwide energy 

consumption is expected to rise by more than 50% in the next 25 years, while the 

fractional share of the different raw sources in respect to the total amount is not 

expected to change significantly (Ghoniem, 2011). 

This present scenario and the prospect of a future rising consumption of fossil fuels has 

led to the alarms of irreversible global warming and the associated impacts of climate 

change due to the emission of Greenhouse gases (GHG), with carbon dioxide (CO2) 

being the most important contributor, which are released into the atmosphere as a result 

of the combustion of fossil fuels and have impacts on global warming (Das and Veziroa, 

2001; Hoffert et al., 1998). 

Thus an emerging drive towards a more sustainable society, through the establishment 

of new renewable sources of energy, is extremely necessary and urgent. Biomass, 

especially organic wastes, is being considered as a valuable candidate as renewable 

energy source for feasible utilization (Amann et al., 1995). It is environment-friendly, is 

widely available and its utilization for energy production has a great potential to reduce 

carbon dioxide emissions and consequently to prevent global warming (Claassen et al., 

1999). 

The Renewable Intensive Global Energy Scenario (RIGES) suggested that, by 2050, 

approximately half the world’s current primary energy consumption of about 400 EJ/yr, 

could be met by biomass and that 60% of the world’s electricity market could be 

supplied by renewables, of which biomass is a significant component. 
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There are several pathways enabling the conversion of biomass to bioenergy. Ethanol 

and hydrogen fermentation and microbial fuel cell (MFC) technology (Logan, 2004; 

van Haandel, 2005) are only some examples of new approaches for energy generation 

(Rabaey and Verstraete, 2005). Among all of these new options, methanogenesis in 

anaerobic digestion (AD) processes, has been studied and is now well established. This 

technology, which emerged during the seventies, enables the production of biogas 

mainly composed of methane. In the past 10 years, there has been renewed interest, 

world-wide, in biomass as an energy source through AD because the methane produced 

is regarded as a very versatile energy source. It can be used directly for heating and 

electricity generation or as an alternative gaseous vehicle fuel (Agency for Renewable 

Resources, Feeding biogas into gas network, 2nd ed. Gülzow, 2006; Agency for 

Renewable Resources,, Biofuels - a comparative analysis. Gülzow, 2006). 

Once produced, biogas is generally composed of ca. 48–65% methane, ca. 36–41% 

carbon dioxide, up to 17% nitrogen and traces of other gases (Rasi et al., 2007). Both 

carbon dioxide and methane are GHG and possibly 18% of global warming is thought 

to be caused by anthropogenically derived methane emissions (Ghosh, 1997). Carbon 

dioxide released through natural mineralization is considered neutral in GHG terms as 

the carbon has been recently removed from the atmosphere by plant uptake, to be 

released again as part of the carbon cycle. 

Controlled anaerobic digestion of organic material is therefore to be considered 

environmentally beneficial in different ways: 

 by containing the decomposition processes in a sealed environment, potentially 

damaging methane is prevented from entering the atmosphere, and subsequent burning 

of the gas will release carbon-neutral carbon dioxide back to the carbon cycle; 

 the energy gained from combustion of methane will displace fossil fuels, reducing the 

production of carbon dioxide that is not part of the recent carbon cycle; 

 less biomass sludge is produced in comparison to other aerobic treatment 

technologies; 

 digestate produced can be used as an improved fertilizer in terms of its availability to 

plants (Tafdrup, 1995), allowing to reduce dependence on mineral fertilizers (Tambone 

et al., 2009). 

Anaerobic digesters are characterized by complex microbial consortia (Riviere et al., 

2009) and culture-independent molecular techniques have demonstrated that the 

microbial community characteristics can play an important role for a good reactor 

performance (McHugh et al., 2004). Many studies have rencently postulated that 

monitoring of the microbial community characteristics could lead to an early detection 

of operational problems, making preventive action possible (McHugh et al., 2004; Lee 

et al., 2008; Malin and Illmer, 2008; Rincón et al., 2008; Talbot et al., 2008). However, 

no direct relationships between microbial community characteristics and process 

parameters have been established yet (Bouallagui et al., 2005). Thus, more needs to be 

understood about the microbiology of the process and how it correlates to the operation 

of the bioreactor. 
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2. Methanogenic Pathway 
 

Methanogenesis of complex organic materials is a widespread process in anoxic 

environments where inorganic electron acceptors such as oxygen, nitrate, iron, 

manganese, and sulfate are absent. Examples of these environments are wetlands, 

freshwater sediment, and the digestive tracts of animals and insects. 

This metabolic pathway is the least exergonic process when compared to aerobic 

degradation or the alternative anaerobic respirations. Conversion of hexose to methane 

and carbon dioxide releases only 15 % of the energy that would be available in aerobic 

degradation, ∆G
0'
 of -390 kJ mol

-1
 agaist -2.870 kJ mol

-1
 that can be obtained from 

degradation of glucose to CO2 and H2O (where ∆G
0'
 is the variation on Gibbs Free 

Energy under standard thermodynamic conditions [298 K, pH 7, solute at 1 M, gases at 

105 Pa]). 

As a consequence of this small energy gain, the reaction product, methane, stores a 

major part of the energy available in aerobic biomass conversion. This energy can be 

exploited subsequently in the presence of oxygen by other organisms, e.g., by aerobic 

methane oxidizers or by humans in heating and other physical processes. 

Anaerobic microbial communities can be classified into two domains, Bacteria and 

Archaea, and  is accomplished by four physiologically different microbial groups: i) 

hydrolytic-fermentative bacteria, ii) proton-reducing syntrophic bacteria, iii) 

hydrogenotrophic methanogens and iv) aceticlastic methanogens. Through the 

interactions of these microbial groups, the organic materials are eventually mineralized 

to CH4 and CO2. 

The first group of bacteria hydrolyze polymers including proteins, polysaccharides, 

nucleic acids, and lipids to monomers such as amino acids, sugars, nucleotides, and 

long-chain fatty acids. This microbial group further ferments monomers to reduced 

compounds (alcohols, short-chain fatty acids, organic acids), H2 and CO2. Subsequently 

reduced products are oxidized to acetate, hydrogen and carbon dioxide by the proton-

reducing syntrophic bacteria. H2 and CO2 are then converted to CH4 by the 

hydrogenotrophic methanogens whereas methanogenic acetate degradation is carried 

out by the aceticlastic methanogens. 

 

2.1 Syntrophic methanogenesis 

 

During the methanogenic process, oxidation of reduced compounds catalyzed by the 

proton-reducing microbes is thermodynamically unfavorable. The oxidation of fatty 

acids is highly endoergonic. The variation of Gibbs Free Energy for the oxidation of 

butyrate or propionate coupled with proton reduction is +48.1 kJ mol
-1

 and +76.1 kJ 

mol
-1

, respectively. These reactions can proceed only through syntrophic interaction 

between the proton-reducing bacteria and hydrogenotrophic methanogens. These two 

groups of microorganisms through this interspecies hydrogen transfer are able to keep 

hydrogen partial pressure low. In this way ∆G
0'
 of the global process is negative (-135.6 

kJ mol
-1

), meaning a net gain of energy for the microorganisms. For this reason 

syntrophy is considered to be essential for the oxidation of these substrates. 



CHAPTER 1 

16 

Several syntrophic fatty acid-oxidazing bacteria including a butyrate oxidizer and a 

propionate oxidizer have been isolated and characterized (Kamagata and Tamaki 2005). 

In addition to these syntrophs, it has been discovered that several bacteria can also 

oxidize acetate syntrophically when hydrogenotrophic and/or formate-utilizing 

methanogens are present (Hattori et al., 2000; Schnurer et al., 1994). 

 

2.2 Acetotrophic methanogens 

 

Acetate is the precursor of two-thirds of the methane produced in anaerobic bioreactors. 

At present, two genera of methanogens are known to use acetate as sole energy source: 

Methanosarcina and Methanosaeta. Methanosarcina rapresents the acetoclastic 

methanogens. which predominate in many anaerobic ecosystems where organic matter 

is completely degraded to CH4 and CO2. Microorganisms belonging to this group are 

the most metabolically divers amongst methanogens and have a high growth rate but 

low affinity for acetate. On the contrary, Methanosaeta can be considered a specialist 

able to grow only on acetate, with higher affinity but lower growth rate than the former. 

Methanosaeta have a much lower minimum threshold for acetate utilization (7-70 μM) 

than Methanosarcina (0.2-1.2 mM), infact species from the genus Methanosaeta were 

found to be the dominant in a variety of laboratory-scale anaerobic continuously mixed 

reactors at 37 and 55 °C, at low acetate concentrations (Zheng and Raskin, 2000). 

Methanosarcina spp. was determined to be the most abundant aceticlastic methanogens 

in laboratory-scale mesophilic anaerobic bioreactors at high acetate concentrations 

(Stroot et al. 2001; McMahon et al. 2001). Karakashev et al. (2005) found that the 

methanogenic diversity was broader in plants operating at mesophilic ranges than the 

thermophilic plants. The dominance of Methanosaetaceae was observed in digesters fed 

with sludge, while Methanosarcinaceae were dominant in manure digesters. 

Karakashev et al. (2006) also stated that in the absence of Methanosaetaceae, the 

acetate oxidation to H2/CO2 with the subsequent generation of methane by 

hydrogenotrophic methanogens should be the dominant pathway. These results seem to 

be in agreement with other studies (Shigematsu et al. 2004). 

The optimum pH range for acetotrophic methanogens is between 6,6 and 7,3. 

Acetotrophic methanogens are inhibited strongly below a pH of 6,2, while free 

ammonia concentrations could also be inhibitory at pH levels above 7,4. 

 

2.3 Hydrogenotrophic methanogens 

 

The hydrogen partial pressure is an important parameter, which defines process stability 

or upsets in an anaerobic digestion process. Therefore, the activity of the 

hydrogenotrophic methanogens are crucial for a stable and efficient process 

performance. 

Hydrogenotrophs methanogens constitute the biggest group of methanogenic Archaea. 

They oxidize H2 and reduce CO2 to form methane and some of them are also able to 

oxidize formate. Methanogens of the orders of Methanobacteriales and 

Methanomicrobiales belong to this group. 
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Analysis of bacterial populations in anaerobic reactors by most probable number (MPN) 

technique under thermophilic and hyperthermophilic (up to max. 70 °C) conditions, in 

lab-scale continuous reactors indicated that the hydrogenotrophs dominated the 

acetotrophic methanogens by a factor of 10 to 10.000, presumably due to short HRTs 

(between 14.2 and 1.25 days) employed. The effect of a temperature was also 

investigated by Ahring et al. (2001). They found that Hydrogenotrophic methanogens in 

a digester treating cattle manure were the only microbial group, which exhibited higher 

specific methanogenic activity (SMA) and unchanged MPN at 65° C, compared to 55 

°C, while the activity and the amounts of other methanogens were significantly reduced. 

The microbial community of a laboratory-scale mesophilic two-phase anaerobic 

digestion system treating fruit and vegetable wastes was studied (Bouallagui et al. 

2005). The species composition seemed to change significantly during the entire study. 

In the firstphase/acidogenic reactor, Methanosphaera stadtmanii and 

Methanobrevibacter wolinii were observed to be the major hydrogenotrophic 

methanogens. The anaerobic digestion of fodder and sugar beet silage was investigated 

by Scherer and Lehmann (2004). They found that methanogens known to grow on 

H2/CO2 or formate were found to be dominant at short HRTs between 6.5 and 7.5 days. 

 

 

3. Anaerobic Digestion Process Technologies 
 

There are several types of reactor in use today, and the design is related to the material 

to be digested. There are three main groups of anaerobic digestion systems: batch 

reactors, continuous one-stage systems and continuous two-stage systems. 

 

3.1 Batch Systems 

 

The batch systems are digesters filled once with fresh materials, with or without 

addition of inoculum, and allowed to go through all degradation steps sequentially. The 

hallmark of batch systems is the clear separation between a first phase, where 

acidification proceeds much faster than methanogenesis, and a second phase, where 

acids are transformed into biogas. Batch systems have not succeeded in taking a 

substantial market share. However, the specific features of batch processes, such as 

simple design and process control, robustness towards coarse and heavy contaminants, 

and lower investment costs make them particularly attractive for developing countries 

(De Baere, 2000). The dependence of the methane yield on the starting level of 

digestible organic substances observed in batch digestion tests suggested the operating 

conditions for the fed-batch or continuous digestion of the materials under 

consideration. Application of sequencing batch reactor (SBR) technology in anaerobic 

treatments is of interest because of its inherent operational flexibility, characterised by a 

high degree of process variability in terms of cycle time and sequence, no requirement 

for separate clarifiers, and retention of a higher concentration of slow-growing 

anaerobic bacteria within the reactor (Suthaker et al., 1991). 
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3.2 Continuous one-stage systems 

 

The conventional technology is actually rapresented by one-stage continuously fed 

systems. In this reactor design, the acid-forming and the methane-forming 

microorganisms are kept together in a single digester and there is a delicate balance 

between these two groups, because both differ widely in terms of physiology, nutritional 

needs, growth kinetics and sensitivity to environmental conditions (Liu et al., 2006; 

Zoetemeyer et al., 1982).  About 90% of the full scale plants, currently in use in Europe 

for the anaerobic digestion of organic fraction of municipal solid wastes and biowastes, 

rely on continuous one-stage systems (Lissens et al., 2001). In this kind of system 

configuration, combining acidogens and methanogens in one vessel, hydrogen formed 

by acidogenic metabolism is assimilated by the methanogens to reduce carbon dioxide 

to methane and water (Poggi-Varalgo et al., 1997). On increasing the feeding rate of the 

substrate, acidogenic activity, including mainly acetate, carbon dioxide, and hydrogen 

production, is increased, whereas the methanogenic population cannot increase its 

activity to the same extent. At a loading rate, were the hydrogen consuming reactions 

become saturated, accumulation of hydrogen partially inhibits its further formation and 

consequently more organic electron sink will be formed, causing imbalances and 

cessation of methane production (Liu et al., 2002a). 

 

3.3 Continuous two-stage systems 

 

The last type of system configuration is the two-stage (or even multi-stage) 

continuously fed systems. This kind of system design implies a process configuration 

employing separate reactors for acidification and methanogenesis connected in series, 

allowing optimization of both processes. A two-stage system can improve the stability 

of the process compared to one-stage systems, particularly when digesting easily 

hydrolysable feedstocks (Bouallagui et al., 2005; Mata-Alvarez, 2002). The interesting 

feature of using two-stage process is to optimize each process separately, leading to a 

larger overall reaction rate and biogas yield (Blonskaja et al., 2003). Furthermore, a 

better pathogenic destruction is achieved by a two-stage process, which combines a 

short hydrolysis stage performing at thermophilic or hyper thermophilic temperatures 

and methane stage at thermophilic or mesophilic temperatures (Bendixen, 1994). 

Despite the fact that this kind of system design have a higher performance than single-

stage digesters, the two-stage systems have not won inpass as they are more complex 

from the engineering point of view and thus more expensive to build and maintain. 

In a comparison of one- and two-stage thermophilic reactors treating cattle manure 

(Nielsen et al., 2004), it was found that the two-stage digester had a 6-8% higher 

specific methane yield and a 9% more effective volatile solids removal than the 

conventional single stage reactor. Liu et al. (2006) found a 21% increase in methane 

yield in a two-stage reactor when compared to a single-stage reactor, both operating on 

municipal solid waste. 
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4. Molecular Biology Methods 
 

The number of studies dealing with biodiversity of microbial communities has increased 

exponentially over the last 20 years (Morris et al., 2002). Microbial diversity studies in 

both natural and engineering systems were limited in the past by the lack of 

methodological tools and were conducted only using conventional microbiological 

techniques. These methodologies are based on isolation of pure cultures and have 

provided extensive information on the biodiversity of microbial communities. However, 

culturing fails to reproduce the ecological niches and symbiotic relationships 

encountered in complex natural environments that are required to support the full 

spectrum of microbial diversity. It is therefore generally accepted nowadays that the 

number of known prokaryotic species is very small compared to the diversity of 

microorganisms. About 7000 bacterial species have been described nowadays (DSMZ, 

2005), but according to molecular and ecological estimates, the real number must be 

several orders of magnitude higher (Amann et al., 1995). The conventional 

microbiological tools enables scientists to detect only ca. 1% of the total microbial 

communities and this small known fraction can't reflect the composition and variability 

of the total microbial diversity on Earth. 

The disparity between culturable and in situ diversity has increased the importance of 

culture-independent molecular approaches. The possibility of identifying specific 

populations of microorganisms in their native habitat without the need to isolate them 

revolutionized microbial ecology and gave rise to various new applications in numerous 

research fields. Molecular techniques have recently been widely applied to the analysis 

of communities in anaerobic digesters (Bertin et al., 2004; Rizzi et al., 2006; Koppar 

and Pullammanappallil, 2008; Palatsi et al., 2010). 

This section will briefly outline the most widely molecular tools used for the 

investigation of microbial ecology of anaerobic digestion processes with a discussion of 

their limitations and strengths. 

 

4.1 Clone libraries and sequencing 

 

The microbial community composition has been commonly determined by constructing 

Small Subunit ribosomal RNA (SSU rRNA) clone libraries followed by phylogenetic 

identification by randomly sequencing the clones or sequencing only representative 

clones that have been previously clustered using PCR-based screening technologies 

such as DGGE (Roest et al., 2005) or restriction analysis (Collins et al., 2003). Random 

sequencing of the complete 16S rRNA genes offers the advantage of better taxonomic 

resolution, considering that one operational taxonomic unit (OTU) obtained by a 

fingerprinting method could actually be derived from more than one microbial species. 

SSU ribosomal DNA clone libraries are made from environmental samples by cloning 

PCR products from extracted DNA into plasmid vectors. In the anaerobic digestion 

research area, Archaea and Bacteria are both important, and both corresponding clone 

librairies are made separately by choosing domain-specific PCR primer sets, during the 

initial PCR amplification step. Each clone then contains one rRNA gene that is present 
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in the environmental sample. This cloning and sequencing approach was first reported 

by Giovannoni et al. (1990) in an analysis of the diversity of bacterioplankton in 

Sargasso Sea. 

Rarefaction curves are generated by plotting the cumulative number of unique OTUs 

versus the number of screened clones (Moyer et al., 1994). Such a curve indicates if the 

community diversity is well represented by the number of clones that have been 

sequenced, and reveals the approximate total number of different OTUs. 

Clone sequence analysis provides information about the phylogenetic identification of 

members of a microbial community. However, if the primary goal is to monitor changes 

in the community during a trial, this approach is time-consuming and expensive, 

compared with real-time PCR assays or fingerprinting techniques. 

The cloning/sequencing approach is onerous in terms of money and time but is suitable 

not only to determine the diversity, but also to get sequence information for the design 

of signature oligonucleotides that are complementary to interesting target groups, at 

different the taxonomic level. These newly designed oligonucleotides may be useful in 

other molecular approach, such as Fluorescence in situ Hybridization (FISH, section 

4.7) studies or in the development of real-time PCR assays (section 4.8) for 

quantification. A recent report (Ariesyady et al., 2007) used the cloning/sequencing 

approach to design new FISH probes. 

 

4.2 Denaturing gradient gel electrophoresis (DGGE) 

 

The DGGE technology is based on electrophoresis of PCR-amplified fragments of the 

variable regions of the 16S ribosomal RNA (rRNA) gene, in polyacrylamide gels 

containing a linearly increasing concentration of denaturant chemical agents 

(formamide and urea; Muyzer et al., 1993). Amplified DNA fragments may have the 

same length but with different base-pair sequence, they are characterized by different 

melting behavior and thus can be resolved by electrophoresis, revealing the diversity of 

the microbial community. 

This methodology has been used widely in environmental microbiology to study 

diversity, relative abundance and shifts of microbial populations (Muyzer, 1999) in 

complex systems, including anaerobic bioreactors (Liu et al., 2002b; Roest et al., 2005; 

Connaughton et al., 2006; Miura et al., 2007). 

The taxonomic specificity of the primers used in the PCR amplification process 

determines which particular groups of bacteria will be analyzed. DGGE bands can be 

exiced from gel, re-amplified and the PCR-product sequenced. Another advantage is 

that the DGGE electrophoresis system is less expensive than the automated sequencer 

required for LH-PCR, T-RFLP and automated RISA (ARISA) methods. However, DNA 

sequence information from excised gel bands may requires cloning (Kisand and Wikner, 

2003; Xing et al, 2008) because of bands co-migration or poor separation of gel bands, 

especially in the case of complex microbial communities. Furthermore, the size of 

DGGE bands is usually less than 500bp, so the DNA sequence information obtained 

from gel bands is limited and phylogenetic identification may be poor in the case of 

novel sequences having less than 85% identity to known sequences. Other bias are the 
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gel-to-gel variation and the lesser sensitivity, compared to fingerprints obtained by 

methods using automated analysis systems, which limit to ensure reproducibility and 

detection of minor populations and subtle changes. 

 

4.3 Restriction fragment length polymorphism (RFLP) and Terminal-

RFLP 

 

RFLP is a simple method based on restriction digestion, with one or more enzymes used 

either separately or in combination, of the PCR-amplified 16S rRNA total community 

DNA followed by electrophoretic separation of restriction fragments on high percent 

agarose or acrylamide gels. Amplification products are either processed as a pool or 

cloned to achieve separation of individual sequences for further analysis. The restriction 

digestion of a pool of PCR products and the subsequent separation can result in 

complex patterns. This approach is to be considered labor- and time-intensive, but it has 

been successfully used for examining the microbial diversity associated with different 

natural environment. 

Terminal-RFLP (T-RFLP) makes use of the resolution of automated sequencing 

technology and avoids some of the limitations of RFLP analysis (manual labor, low 

sensitivity, and low genotypic resolution). Marker genes are PCR-amplified using a 

fluorescent dye attached to the 5’-end of one of the primers so that the products become 

labeled (Clement et al, 1997; Osborn et al., 2000). PCR products are subsequently 

restriction-digested and the mixture of restricted PCR products is physically separated 

using acrylamide sequencing gels or capillary electrophoresis (CE). In contrast to RFLP, 

only labeled terminal fragments are detected reducing the complexity of the profiles. 

The polymorphism is based solely on the fragment length. A size standard labeled with 

a different fluorophore allows the precise assignment of fragment lengths with single 

base pair resolution. The main advantages are that the method is relatively simple and 

that in silico T-RFLP are possible through the implementation of automated fragment 

length assignment tools, so that the appropriate combination of primers and restriction 

enzymes are chosen in order to obtain the best resolution at the desired taxonomic level 

(Padmasiri et al., 2007). Compared with other molecular techniques, e.g. LH-PCR 

(section 4.5) or RISA (section 4.4), T-RFLP is more time-consuming and more 

expensive, because the PCR products have to be purified and de-salted before 

proceeding with the enzymatic restriction digestion step. The reproducibility may also 

be compromised by the possibility of incomplete restriction digestion. This enzymatic 

step cannot be controlled because it could happen that some microbial species in the 

sample have no restriction sites. 

Analysis of archeal SSU rRNA gene by T-RFLP has been commonly used to monitor 

methanogenic population dynamics throughout the bioreactor start-up (Collins et al., 

2003), normal operations, and during the development of crisis situations (Scully et al., 

2005). Lueders and Friedrich (2003) demonstrated that T-RFLP fingerprints from 

methanogenic SSU rRNA gene can give a quantitative view of defined template 

mixtures. They also obtained highly reproducible results from environmental samples. 

The low diversity of methanogens explains why this is the case. Lueders and Friedrich 
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(2002) studied the methanogenic populations in rice field soil using the T-RFLP 

method. By analyzing rDNA and rRNA in parallel, they were able to compare 

population dynamics and activity shifts. 

 

4.4 Ribosomal intergenic spacer analysis (RISA) 

 

RISA consists in the amplification of the intergenic spacer region (ISR) between 16S 

and 23S (large subunit) ribosomal genes. This region is variable in both sequence and 

length due to a lesser selective pressure leading to insertion or deletion events. An 

advantage over DGGE is that the PCR products are resolved on the basis of size using 

standard agarose gel electrophoresis, and the primers do not require a GC clamp. RISA 

profiles can be automated with a DNA sequencer for a higher throughput and a better 

resolution and named ARISA (Fisher and Triplett, 1999). Two major limitations are: the 

shorter RISA amplicons are preferentially PCR amplified leading to a quantitative bias 

and the genome from a single species can contribute to more than one RISA amplicon 

due to the presence of multiple genomic ribosomal operons. Nevertheless, ARISA has 

been used to assign specific bacterial and fungal community compositions to different 

soil types (Ranjard et al., 2001; Hewson and Fuhrman, 2004), and is very sensitive to 

subtle community shifts. Archaea as well as Bacteria specific primers can be designed 

to obtain the diversity for both microbial domains. Castillo-Gonzales and Bruns (2005) 

used RISA to characterize and to track temporal changes in swine wastewater 

community in biofilms attached to limestone gravel. Quantitative FISH experiments 

showed that the concentration of transcribed ISR reflected the activity of the cells more 

accurately than the 16S and 23S rRNA concentration revealed when using specific 

probes (Schmid et al. 2001). Therefore, this report suggests that, from the ISR 

sequences that would be obtained, one might also be able to design primers for 

quantitative real-time RT-PCR assays that would reflect the metabolic status of key 

bacteria more appropriately than 16S primers. Future research is needed to determine if 

transcribed ISR would be a better indicator of metabolic activity than 16S rRNA for 

biomonitoring of bioreactors. 

 

4.5 Length heterogeneity PCR (LH-PCR) 

 

Length heterogeneity of PCR-amplified SSU rRNA gene (LHPCR) analysis allows 

distinguishing diverse microorganisms in a community based on natural length 

variations within SSU rRNA gene variable regions. Different primer sets targeting 

variable regions of Bacteria may be used in combination to obtain more discriminative 

concatenated data (Mills et al., 2006). LH-PCR has the advantage of being less 

laborious and cheaper than T-RFLP because there is no need to digest the PCR product 

by a restriction enzyme and to desalt before resolving the samples by automated CE. 

The simplicity of the LH-PCR method explains why more reproducible results are 

obtained than with the T-RFLP technique (Mills et al., 2003). Bernhard et al. (2005) 

studied bacterioplankton community shifts by multivariate ordination methods such as 

correlation coefficients and nonmetric multidimensional scaling (NMDS) and were able 
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to establish relationships between LH-PCR fragments and water chemistry. Microbial 

diversity in a thermophilic aerobic biofilm process treating pulp and paper mill 

wastewater has been monitored by LH-PCR (Tiirola et al., 2003). The study showed 

that LH-PCR was a valuable method to assess community shifts and recovery after 

alkaline shocks, even if sequencing studies showed that one LH-PCR amplicon was 

actually representing a mixture of members from several groups indicating limited 

phylogenetic resolution. This shortcoming was also noticed for T-RFLP analysis. As 

stated by Mills et al. (2006), fingerprinting methods have their limitations, but they are 

useful to monitor community shifts, without knowing exactly the species that are 

changing. Consequently, LH-PCR is an attractive method due to its simplicity, 

robustness, and cost-effectiveness compared to T-RFLP. 

 

4.6 Single-strand conformation polymorphism (SSCP) 

 

In SSCP analysis, the electrophoretic mobility of single-stranded DNA in a gel, under 

non-denaturing conditions, is dependent not only on its length and molecular weight, 

but also on its three-dimensional state. The folded DNA structure depends on the 

sequence of the PCR-amplified DNA fragment. An advantage over the DGGE 

methodology and T-RFLP is that no GC-clamped primer and restriction digestions are 

required, respectively. However, SSCP analysis has two major shortcomings which are 

the reannealing of single-stranded DNA during the electrophoretic migration, especially 

when DNA concentration is high, and the formation of more than one stable 

conformation resulting in the presence of extra bands (Schwieger and Tebbe, 1998). The 

lack of consistency between physico-chemical parameters and molecular biology results 

based on PCR amplification of bacterial genomic DNA could be explained by the 

assumption that DNA could have been amplified from inactive bacteria at the same 

extent as metabolically active bacterial groups. SSCP analysis has been used to resolve 

this issue in an anaerobic digester by comparative analysis of bacterial community 

rRNA and rDNA (Delbès et al., 2000). Nucleic acid was amplified by PCR or RT-PCR 

(in the case of rRNA) using fluorescent primers, and the mixtures were resolved by CE. 

The rRNA analysis has been shown to be useful in investigating the dynamics of 

activity of the bacterial community facing different perturbations. Bacterial and archeal 

rRNA and rDNA fingerprints were analyzed (Delbès et al., 2001) in anaerobic digesters 

seeded with sludges collected from an anaerobic lagoon and industrial-scale anaerobic 

digesters fed with distillery slops and fed with glucose. Particular bacterial species 

could be associated with a major but reversible crisis of the process that was reflected 

by an accumulation of acetate. The rDNA patterns alone could not reveal shifts in 

relative abundance. Furthermore, the rDNA-based fingerprints showed a higher number 

of peaks than the rRNA-based patterns, suggesting that some bacterial phylotypes may 

still be present during a process but are not metabolically active. We observed the same 

phenomenon in anaerobic digesters communities treating swine manure (Talbot et al., 

2004). 

 

 



CHAPTER 1 

24 

4.7 Fluorescence in situ hybridization (FISH) 

 

FISH is based on the microscopic analysis of already defined (at least its SSU rRNA 

gene sequence) groups of bacteria by a fluorogenic probe targeting SSU rRNA 

molecules inside cells (Amann et al., 1990). Several studies (Merkel et al., 1999; Araujo 

et al., 2000; Wu et al., 2001) include FISH results using these same oligonucleotides but 

the experimental conditions are variable. These probes are still reasonably accurate to 

target most of the defined phylogenetic groups of methanogenic Archaea. However, the 

availability of new SSU rRNA gene sequence data necessitates a re-evaluation of 

existing probes with a view of improving their target specificity (Crocetti et al. 2006). 

These authors published a technical report to evaluate oligonucleotide probes targeting 

methanogenic Archaea at various taxonomic levels and used in FISH. Seven previously 

published probes (Raskin et al., 1994a) and seven newly designed probes were 

optimized for use in FISH experiments. Two helper oligonucleotides were designed to 

target adjacent regions to the MS14114 binding site (probe MS1414 targets 

Methanosarcinaceae) and improved probe access to its binding site. The probes were 

designed and evaluated by alignment of 3000 sequences from methanogens and other 

Euryarchaeota using the ARB software package (http://www.arb-home.de). The studied 

probes targeted Archaea at the Order and Family level, and some targeted subgroups. 

Pure cultures of methanogens and environmental samples from lake sediments and 

mesophilic anaerobic digesters were used to optimize stringency conditions of FISH 

experiments, and to determine the specificity. FISH experiments are often performed in 

combination with one fingerprinting method (most of the time DGGE or T-RFLP) or 

with a cloning/sequencing approach to quantitatively determine the importance and the 

spatial distribution of the fingerprint OTUs (or clones) that were found of interest 

(Chouari et al., 2005b; Collins et al., 2006). In contrast to fingerprinting methods, FISH 

is limited by the taxonomic specificity of the probes. Nevertheless, FISH is very 

attractive to verify the level of metabolic activity by analyzing the intensity of 

fluorescence inside the positive cells. 

 

4.8 Quantitative real-time PCR 

 

Once the genetic identification of key Bacteria and Archeae is done, or if candidate 

bacterial species that are suspected to be of interest in the study are characterized, the 

design of specific primers is possible for a quantitative monitoring of these 

microorganisms by real-time PCR technology. In contrast to the conventional end-point 

detection PCR, quantitative real-time PCR (Q-PCR) technology is based on the 

detection of fluorescence during amplification of target DNA (Higuchi et al., 1993). The 

initial amount of target DNA is inversely proportional to the cycle threshold (CT) 

defined as the moment (or cycle) where the level of fluorescence in the assay is over the 

baseline fluorescence signal. Q-PCR has better sensitivity and reproducibility than 

conventional PCR or conventional hybridization techniques and can be easily used in 

studies requiring a large number of samples. The software included in the Q-PCR 

system can estimate the initial amount of target DNA. Two main Q-PCR chemistries 
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have been used in the study of methanogenic bioreactors: the TaqMan and the SYBR 

Green technologies. The principal advantage of the TaqMan technology is that it is more 

target-specific than SYBR Green technology which uses only forward and reverse 

primers. However, the SYBR Green technology is less expensive and the design of 

primers set is less restrictive than primers and probe set in TaqMan technology. For 

quantification, a standard curve must be produced from serial 10-fold dilutions of either 

genomic DNA from a pure culture of target bacteria, PCR-amplified DNA segments, or 

a plasmid containing target DNA insert. linearized plasmids will give more reproducible 

results, because eventual plasmid superhelicity can influence amplification efficiency. 

Once the concentration of standard DNA is determined, the number of SSU rRNA gene 

copies can be calculated from the average molecular weight of 660 Da for one DNA 

base pair, the Avogadro’s number (6,022∙10
23

 copies/mole), and the number of base 

pairs of the standard DNA. Q-PCR results are expressed as gene copy number per ml of 

sample. The amplification efficiency can be calculated from the slope of the standard 

curve, and should be between 80% and 115%, and the coefficient of determination (R
2
)  

should be more than 0.95 (Zhang and Fang, 2006). A source of variability may come 

from the fact that DNA extraction and purification efficiencies from samples may be 

different from time to time. 

The reactions that limit the rate and determine the efficiency of methane production in 

anaerobic bioreactors are typically those at the very end of the process. Methanogenic 

consortia are hard to obtain by conventional cultivation because of slow growth rate and 

obligate anaerobiosis. Biological models developed by engineers to effectively control 

the process operations would be greatly improved by knowledge of the dynamics of 

each methanogenic genus in absolute numbers. Many studies used quantitative real-time 

PCR methodology to detect and quantify methanogens at the order and family levels 

(Yu et al., 2005a, Hori et al., 2006; Yu et al., 2006; Nettmann et al, 2008; Lee et al., 

2010). Yu et al. (2005a; Nunoura et al., 2008) designed four TaqMan primers and probe 

sets that were specific for each of the four orders of methanogens associated with 

bioreactors: Methanococcales, Methanobacteriales, Methanomicrobiales and 

Methanosarcinales. Methanosarcinaceae and Methanosaetaceae families have also 

been quantified with the use of two specific TaqMan primers and probe sets. Two 

domain-specific primers and probe sets were also designed to quantify total Archaea 

and Bacteria. Specificity of the sets was verified in silico from SSU rRNA gene 

sequences using Probe Match analysis tool from the RDP-II and the PRIMROSE 

program and estimated experimentally using 28 archeal strains. Results showed 

satisfactory specificity of these primers and probe sets, and this study represents an 

important contribution for quantification of methanogens at the order and family 

taxonomic levels in anaerobic processes or in environmental samples by Q-PCR. The 

same research team (Yu et al., 2005b) demonstrated that these TaqMan Q-PCR assays 

were applicable to the determination of the concentrations of aceticlastic methanogens, 

and correlation with operation condition and performance of various anaerobic digesters 

was possible. Aceticlastic methanogens were quantified -using Methanosarcinales-, 

Methanosarcinacea-, and Methanosaetacea-specific primers and probe sets- in samples 

from various anaerobic processes. Assays with genomic DNA from pure cultures 
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demonstrated that quantification with the Methanosarcinales set was consistent with 

quantification using the Methanosaetaceae or the Methanosarcinaceae sets. The results 

were in accordance with hypothetical growth relationship between the two families 

competing for acetate utilization. For quantification in continuous processes operated at 

steady states, hydraulic retention time and acetate concentration are the parameters that 

are mainly affecting microbial concentrations. 

Molecular methods based on SSU rRNA are not suitable to monitor a relevant function 

(enzymatic activity) occurring in anaerobic bioreactors, especially if this enzyme is 

found in many distantly related species of organisms. Target genes encoding enzymes 

that are rate limiting steps for methanogenesis are ideal candidates for identifying 

metabolic bottlenecks that are sensitive to process changes. Reverse transcription of 

messenger RNA (mRNA) followed by Q-PCR would quantify the level of transcripts 

encoding a functional gene. Although the level of mRNA may not always be tightly 

coupled with potential enzyme activity because of possible post-transcriptional 

regulation, levels of message are likely to be generally informative of gene expression 

under specific operational conditions. The following are some functional genes that 

could be monitored using Q-PCR assays to determine their level of expression in 

operational anaerobic bioreactors. In anaerobic digestion processes it is interesting to 

monitor sulfate-reducing bacteria (SRB) due to the fact that methanogenesis 

predominates in the absence of significant concentrations of sulfate. However in the 

presence of sulfate, SRB can compete with methanogens for available electron donors 

such as acetate and hydrogen, and have the potential to inhibit the methanogenic 

decomposition of waste organic matter, resulting in increased production of H2S 

(Gurijala and Suflita, 1993). The dsrAB gene coding for α and β subunits of 

Dissimilatory Sulfite Reductase, an enzyme catalyzing the central energy-conserving 

step of sulfate respiration by reduction of sulfite to sulfide, is expressed in SRB. 

Leaphart and Lovell (2001) developed degenerated PCR primers to study the 

formyltetrahydrofolate synthetase (FTHFS) gene sequence diversity from bacterial 

DNA extracted from roots of smooth cord grass and from fresh horse manure. FTHFS, 

an enzyme which catalyzes ATP-dependent activation of formate in the acetyl-CoA 

pathway, is expressed in homoacetogenic bacteria. They demonstrated that sequence 

analysis of FTHFS gene sequences is more informative than SSU rRNA gene 

concerning physiological distinctions among FTHFS-producing organisms. Wawer and 

Muyzer (1995) reported the use of genes hyd, encoding for [Fe]-hydrogenases, which 

can be used as specific biomarkers of hydrogen producing bacteria (HPB). They used 

this catabolic genes to assess the genetic diversity of Desulfovibrio spp. in 

environmental samples. Luo et al. (2002) demonstrated that the mcr gene which 

encodes methyl coenzyme M reductase I (a key enzyme in methane production unique 

to methanogens) was expressed by the thermophilic hydrogen- and formate-utilizing 

methanogen Methanothermobacter thermoautotrophicus strain TM when it was 

cultured with the syntrophic acetate-oxidizing bacterium Thermoacetogenium phaeum 

type strain, This paper strongly suggests that the mcr gene is expressed in natural 

methanogenic ecosystems (because hydrogenotrophic methanogens are strictly 

dependent for growth on syntrophs) and thus may be a gene of interest to study the 



CHAPTER 1 

27 

metabolic activity of methanogens working in syntrophy with fatty acid oxidizing 

syntrophs. The results from Q-PCR mcrA transcripts assays (Shigematsu et al., 2004) 

were complementary to the results from Q-PCR SSU rRNA gene assays (Shigematsu et 

al., 2003), and demonstrated that this gene can be used as a functional marker of 

methanogens. 

 

 

5. Statistical methods applied to molecular data 
 

Community-level molecular techniques, as previously shown in section 3, have been 

widely used in studies to assess the diversity of microbial communities in different 

environments and to understand their response to changing environmental conditions. 

The amount of data obtained from these techniques is increasing and the lack of a 

standardized way to interpret the raw fingerprints makes it difficult to compare between 

different results. In fact, until recently, the results of these high quality molecular 

patterns were restricted only to a visual interpretation, neglecting the analytical potential 

in terms of statistical and ecological significance. Thus, future challenges in the 

investigation of microbial community of AD processes, as well as other processes or 

natural environments, will consist of interpreting the observed diversity patterns as a 

function of contextual operational/environmental parameters. 

Most obstacles encountered trying to summarize and further explore large data sets, 

derived from molecular methods, concern the choice of the adequate mathematical tools 

to evaluate the data statistically and graphically. 

 

5.1 Multivariate Analysis 

 

Multivariate analysis, as the name indicates, comprises a set of techniques dedicated to 

the investigation of data sets with more than one variable. This kind of techniques 

clearly differentiate and are considerably more complex than the corresponding 

univariate analysis, used when there is only one response variable under consideration. 

The variables contained in a complex data set may be correlated with each other, and 

their statistical dependence have to be taken into account when analyzing such data. 

Thus, multivariate statistical tools, which have been developed by community ecology 

to investigate the distribution and diversity patterns of plants and animals, could be 

readily applied in microbial ecology. 

Although multivariate analyses of community diversity patterns are well described in 

the literature, these statistical methods have been used rarely. Thus, the aim of this 

section is to present the most common multivariate techniques which can be used and 

integrated into AD microbial community studies, helping to elucidate the correlation 

between structure, dynamic and functionality of a community with operational 

parameters of the process. 

The typical multivariate data set consist of a matrix of objects (e.g. samples, sites, time 

periods) in rows and measured variables for those objects in columns. It is of crucial 

importance to understand what corresponds to objects and variables in the data set. In 
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general objects are defined a priori by the sampling strategy before making observations 

and variable measurements. In a typical study focused on the microbial community 

analysis of an AD process, where samples taken at different time or from reactors 

treating different substrates are compared on the basis of community fingerprinting 

techniques, those samples will be the objects while species information and 

operational/environmental measurements will be considered as variables. 

 

5.1.1 Cluster Analysis 

 

Cluster analysis is a versatile multivariate tool used to group objects into categories 

based on their dissimilarities. This statistical method allow to minimize within-group 

variation and maximize between-group variation in order to reveal well-defined 

categories of objects. The most used clustering methods for inferring evolutionary 

relatedness are the neighbor-joining (NJ) and the unweighted pair group method using 

arithmetic averages (UPGMA), classified as distance-based methods, and maximum 

parsimony (MP) and maximum likelihood (ML), classified as character-based methods. 

Cluster analysis is very popular in microbial ecology: the grouping of organisms based 

on their phenotypic or genotypic similarities in order to infer their taxonomic 

positioning is generally based on this kind of statistical analysis. A common application 

consists of sorting out clones from environmental samples based on 16S rRNA gene as 

genotypic marker, because clones or variants are expected to form tight clusters around 

their parental strains and to be more distinct from other lineages. This ordination 

method has been widely used in microbial community analysis of AD processes 

(Cardinali-Rezende et al., 2011; Nayak et al., 2009; Sousa et al., 2007). In a study aimed 

to elucidate the response of AD microbial community in psychrophilic conditions and 

perturbed by different temporary shocks, Madden and colleagues (2010) used cluster 

analysis together with non-metric multidimensional scaling (section 4.1.3) for the 

interpretation of molecular DGGE fingerprints. They found that microbial succession 

was independent of the applied shocks, indicating the robustness of the reactor biomass 

relevant for successful wastewater treatment under the low-temperature conditions. 

Sasaki et al.(2011) analyzed, by using stable isotopes, the microbial composition and the 

pathway of acetate degradation in a lab-scale thermophilic continuous-flow stirred-tank 

reactor operated using artificial garbage slurry. Their results suggest a strong 

contribution of non-aceticlastic oxidative pathway to acetate degradation, recognized as 

a rate-limiting step in methanogenic bioreactors. In particular they found an uncultured 

species, OTU-B1, which showed low sequence similarity (<90%) with the reference 

sequences in databases, implying that this bacterium may be a novel species of the 

acetate oxidizer. 

 

5.1.2 Principal Component Analysis (PCA) 

 

This is the oldest and most versatile multivariate method and has been applied to 

numerous data sets obtained from genotypic fingerprints. PCA calculates synthetic 

variables (principal components), which are linear combinations of the original 
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variables of the data set and that account for as much of the variance of the original data 

as possible. The aim is to represent objects and variables in a new system of coordinates 

(generally on two axes or dimensions) where the maximum amount of variation from 

the original data set can be depicted. In recent years PCA approach has been used with 

increasing frequency in researches aimed at the investigation of AD microbial 

community. 

Ye et al. (2007) monitored the effect of different medium pH on the bacterial 

community during fermentation step of an AD process fed with vegetable wastes. 

DGGE was chosen to compare the community structure and the relationship between 

fermentation product distribution and bacterial community were investigated. The PCA 

results clearly demonstrated that the microbiota at pH 7 and 8 were more similar to each 

other and it was also true for pH 4, 5 and 6.Thus, the change of pH effectively 

influenced the bacterial community structures. Tale and colleagues (2011) used PCA to 

correlate the specific methanogenic activity (SMA) against propionate of biomasses 

from various full-scale anaerobic reactors with the DGGE banding patterns for the 

mcrA gene generated for the same biomass samples. They observed that the biomasses 

giving the higher SMA values clustered together (derived from reactors treating brewery 

wastes) and were correlated with species which shared 88-89% and 93-98% sequence 

similarity to Methanospirillum hungatei and Methanobacterium beijingense 

respectively, suggesting these microorganisms to have an important metabolic function 

leading to higher SMA values. 

 

5.1.3 Non-Metric Multidimensional Scaling (NMDS) 

 

Non-metric multidimensional scaling is a method which reduces complex molecular 

patterns to a point in a two-dimensional space. By connecting the consecutive points, 

the relative changes in the bacterial community can be visualized. NMDS is generally 

efficient at identifying underlying gradients and at representing relationships based on 

various types of distance measures. The NMDS algorithm ranks distances between 

objects, and uses these ranks to map the objects nonlinearly onto a simplified, two-

dimensional ordination space so as to preserve their ranked differences, and not the 

original distances. Lee et al. (2010) analyzed quantitative and qualitative methanogen 

community shifts of a batch AD process treating cheese-processing wastewater. 

Methanogenic community shifts were statistically correlated with process data using 

NMDS. The results obtained on the qualitative ordination plot suggested that the shifts 

were affected by the accumulation and degradation of acidogenic intermediates. On the 

quantitative ordination plot significant transitions were observed associated with the 

increase of Methanosarcinaceae and the resulting shift in community structure and 

dominance. In a previous study the same research team (Lee et al., 2009) was able to 

correlate the quantitative shifts of the methanogenic community, of a digester fed with 

synthetic glucose medium, visualized by NMDS plot to the sudden rises or drops of the 

Methanosarcinaceae populations, the dominant one in the digester. Moreover they 

compared the microbial community and the performance of this process with two others 

digesters fed with whey permeate and sewage sludge. Through NMDS analysis it was 
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clearly observed how the community in three digesters tested produced had different 

quantitative evolution during the operations. Given that the operating conditions for all 

trials were identical, the difference in substrate characteristics was likely to be the main 

factor affecting the direction of community shifts. 

 

5.2 Environmental Interpretation 

 

All the techniques described above can be classified as Exploratory Analysis. This kind 

of statistical tools are generally aimed at revealing the existence of groups of objects in 

a data set. When a supplementary matrix of environmental variables is available for 

those same objects, it is possible to examine whether the observed patterns are related to 

environmental gradients. In this way it can be possible to reveal the existence of a 

relationship between community structure and habitat heterogeneity or to identify the 

main variables affecting bacterial communities when a large set of environmental 

variables has been conjointly collected. 

 

5.2.1 Redundancy Analysis (RDA) 

 

This is a method in which multiple linear regressions are used to ‘explain’ variation 

between independent variables (the matrix containing the species data) and dependent 

variables (the matrix containing environmental data). These operations are performed 

within the iterative procedure to find the best ordination of the objects. The objective is 

to represent not only the main patterns of species variation as much as they can be 

explained by the measured environmental variables but also to display correlation 

coefficients between each species and each environmental variable in the data set. 

RDA was used by Kim et al. (2010) to elucidate the quantitative changes in 

methanogenic community structure in two anaerobic digestion systems fed with swine 

wastewater and operated under physic-chemically similar conditions. The results 

suggest correlations between Methanobacteriales and Methanosarcinales populations 

with chemical parameters such as VFAs in both digesters, whereas the correlation 

between Methanomicrobiales and propionate was different: in fact it was stronger in the 

digester that showed the higher amount of methane produced. Thus the metabolism of 

propionate by Methanomicrobiales, after the depletion of acetate mainly by 

Methanosarcinales, was a crucial factor controlling production of methane. 

 

5.2.2 Canonical Correspondence Analysis (CCA) 

 

The technique is very similar to that of RDA, except that CCA is based on unimodal 

species-environment relationships whereas RDA is based on linear models. The main 

goal is to model species response to the environmental variation to enable the estimation 

of a large number of parameters and the identification of a small number of ordination 

axes. CCA is particularly adapted for the environmental interpretation of tables of 

abundance and occurrence of species, and accommodates well the absence of species at 

certain sites in the data set. Typical questions that are addressed concern the 
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identification of environmental factors that influence the diversity of bacterial 

community among large sets of candidate environmental parameters measured for the 

same samples, when the diversity is determined by genetic fingerprinting techniques. 

Another interesting feature of the technique is the possibility of determining the specific 

species that respond to particular environmental variables. In an anaerobic digester fed 

with mixed wastes, Supaphol and colleagues (2011) investigated the relationship 

between environmental variables, microbial community structure and putative 

ecophysiology of the microorganisms, plotting the taxa scores for individual bacteria 

and Archaea (obtained from the sequences of DGGE bands): this enabled the key 

components of the microbial communities responsible for driving AD process to be 

identified using multivariate approaches. 

 

5.3 Microbial Resource Management (MRM) 
 

In recent years Marzorati et al. (2008) proposed a theoretical approach allowing the 

interpretation of molecular fingerprints, through the use of a three parameters tool-set. 

Born as technique-dependent approach, based on the interpretation only of DGGE gel 

patterns, MRM has been proposed to be used on other widely used high-throughput 

molecular techniques (Marzorati et al, 2008; Read et al., 2011). 

The first parameter is range-weighted Richness (Rr) and it is used to establish a specific 

range of values which indicate the richness and genetic diversity of species within a 

microbial community. In the beginning, Rr was expressed as the total number of bands 

multiplied by the percentage of denaturing gradient needed to describe the diversity of 

the sample being analyzed. Dynamics (Dy), the second parameter of the tool-set, was 

used to determine the rate of change within the same community over a fixed time 

interval. It refers to the number of species, on average, that are detected to be of 

significance in a given environment at a certain time point, thus providing a big picture 

of the dynamics within a community. Recently Dy has been used as a standalone 

parameter looking at the changing community during bioaugmentation of activated 

sludge (Bathe et al., 2009). The third parameter is Functional organization (Fo). The Fo 

of a community should be the result of the action of the microorganisms that are most 

fitting to the ongoing environmental-microbiological interactions. Thus, this parameter 

should give an idea of which microorganism tend to become dominant within the 

structure of the microbial community. However, fingerprinting techniques make use of 

the differences on the 16S rRNA gene to discriminate among different bacterial species. 

Thus, it is not always possible to correlate a given functionality with the respective 

group of microorganisms at the 16S rRNA gene level. As a consequence, Fo fails the 

original purpose of correlating the distribution of bacteria and their respective role in the 

overall functionality. In this respect, Read et al. (2011) proposed to rename Fo as 

Community organization (Co), a parameter that describes the microbial community in 

terms of degrees of evenness: it describes the species abundance distribution in the 

microbial community, has a percent value (0=even community, 100=uneven 

community) and is calculated as the Gini coefficient times 100. 
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The use of these tools in combination, can help providing with an ecological 

interpretation of the raw data describing the structure of the community. This has been 

demonstrated in the last few years on studies carried out in various environments 

including anaerobic digestion. In a study investigating the correlation of the microbial 

community structure with reactor functionality in continuous lab-scale anaerobic 

reactors using MRM concepts, Carballa et al. (2011) found a correlation between Co, Rr 

and Ripley Index: reactors with low Ripley values (indicative of good performance) 

typically had also low Co response and high Rr values, suggesting that an even and rich 

association of Bacteria corresponded with good conversion of fatty acids and thus with 

a well-functioning process. 
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Anaerobic digestion is an engineering process which allow the production of energy in 

the form of biogas. This process is carried out by a complex consortium of 

microorganisms, which degrade anaerobically the complex initial substrates to obtain as 

only final product biogas, mainly composed of methane. Anaerobic digestion was 

discovered during the seventies, but only in the last 20 years had received renewed 

interest because of the urgent need to find alternatives to the exploitation of non-

renewable energy sources. In fact our society is strictly dependent on the continuous 

availability of energy and the main sources from which this energy is produced are 

nowadays the fossil fuels reserves. The International Energy Agency (IEA), has 

estimated that these non-renewable resources accounts for close to 80% of global 

energy production. It is also important to consider that with the emergence of new fast 

growing economic powers, the consumption of energy is constantly growing year by 

year and this is leading to the fast depletion of the non-renewable fossil fuels reserves. 

Moreover the continuous combustion of oil and natural gas is leading to big 

environmental issues: greenhouse gases released in the atmosphere are considered to be 

the main responsible for global warming and the associated impacts of climate change. 

In this scenario anaerobic digestion has been pointed as an environmentally-friendly, 

economic valuable alternative. One of the most interesting possibilities, which makes it 

so charming, is to couple the production of energy to the treatment of waste materials 

and wastewater derived from a wide range of industrial and agricultural productive 

processes. 

In recent years numerous studies were focused on anaerobic digestion. In the most of 

the cases the research has been aimed mainly on the evaluation of the potential yield of 

a variety of biomasses and on the identification of the optimal operational conditions of 

the process. However, in spite of this increasing attention on this technology, there still 

exists relatively few information about the activity, the performance and the interactions 

of the microbial community of Archaea and Bacteria involved. In this context, there is 

the need to gain a more deep knowledge of the microbiology of the process in order to 

improve the stability, to prevent imbalances and carry corrective measures. 

Research on the microbial communities both in natural and engineering systems, in the 

past, was established only on the limited support of conventional microbiological 

techniques. These methodologies, based on isolation of pure cultures, fail to describe 

and deeply investigate the complexity of a microbial ecosystem. In fact has been 

reported that the conventional microbiological tools enables scientists to detect only ca. 
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1% of the total microbial communities on Earth. New recently developed high-

throughput culture-independent molecular techniques gave a strong new impulse on the 

investigation of microbial communities in different environment, including anaerobic 

digestion processes. 

Thus the general aim of this PhD thesis was to investigate the microbiology of both 

batch and continuous, single and two-stage anaerobic systems. The goals were (i) to 

elucidate the structure of the microbial communities, (ii) to investigate the dynamics, 

interactions and responses of the key metabolic groups responsible for the degradation 

of substrates and  (iii) to give valuable information on the correlation between structure 

and function inside the microbial consortiums. To achieve these objectives high-

throughput molecular techniques were used. Denaturing gradient gel electrophoresis 

(DGGE) and Real-Time PCR gave, respectively, qualitative and quantitative valuable 

information about the structure of the microbial communities, the variation during the 

process of the proportion and dominance of the different metabolic groups and key 

microbial species inside the reactors. Ultimately, to further explore the large data sets 

obtained from these molecular methods, the use of statistical multivariate analysis was 

evaluated. 
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anaerobic digestion of agro-industrial energetic 

crops and food industry byproducts
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1. Introduction 
 

Treatment of organic waste by anaerobic digestion (AD) is an environmental friendly 

technology for addressing waste disposal with the benefit of energy recovery in the 

form of biogas (methane or hydrogen) (Chynoweth et al., 2001, Angenent, 2004). 

Relevant advantages of AD are the reduced sludge release, organic matter stabilization, 

odor control and pathogen abatement (Van Starkenburg, 1997). Nowadays, AD 

represents a consolidated technology in many EU countries and the number of biogas 

plants is estimated to increase, especially for small-scale plants (up to 1 MW). 

Biogas plants traditionally treat wastes/biomasses, such as manure, agro-industrial 

wastes, industrial residues and urban wastewater. For instance, in Italy, biogas plants 

have usually been developed in association with agro-zootechnical farms, especially in 

the flat area of Pianura Padana, intensively exploited for livestock farming. During the 

last years, however, especially in some countries like Germany and Austria, the use of 

energy crops and crop residues as substrate constantly increased (Weiland, 2010). For 

the full scale implementation of modern anaerobic digestion processes, involving 

design, economic and managing issues, a key parameter is the biochemical methane 

potential (BMP) of the treated biomasses (Angelidaki et al., 2009). In the last 30 years a 

wide range of research dealt with BMP analysis of different substrates. However, 

limited information has been recovered on microbial communities of these AD 

processes including those treating energetic crops. 

The AD process involves a consortium of different functional groups of microorganisms 

establishing a complex system of interactions that drive the overall process 

performance. In particular, methanogenic Archaea deserved particular attention (Ueno 

et al., 2001, Lee et al., 2010) since they catalyse a final rate-limiting step of the whole 

AD process. Recent research has been focused on the precise characterization of the 

involved consortia (Riviere et al., 2009) with the final objective to link microbial 

community structure to function (Werner et al., 2011). To this aim, molecular 

techniques, like DGGE, and their molecular analysis parameters are valuable tools for 

microbial ecology interpretation and management (Marzorati et al., 2008). 

The aim of the present study was to experimentally determine the BMP of different
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 energetic crops and agro-industrial biomasses and, in order to get further insight into 

the processes, to characterize the microbial communities present both before and after 

the AD process. Anaerobic BMP was determined by using an automated laboratory-

scale multi-batch system. Microbial diversity and dynamics were analysed by 

Denaturing Gradient Gel Electrophoresis (DGGE) and quantification of bacterial and 

archaeal communities was performed by quantitative real-time PCR (qPCR). 

 

 

2. Experimental 
 

2.1 Bio-methane potential (BMP) determination 

 

BMP experiments were carried out on a 36 batch-digesters system owned by Ente 

Regionale per i Servizi all'Agricoltura e alle Foreste della Regione Lombardia (ERSAF, 

Mantova, Italy). The mini-digesters (3 liter working volume) lodged in temperature-

controlled chambers and were connected to 2 liters gas meter-bags. The automated, 

software-controlled analysis apparatus consisted of a gas drying system, a drum-type 

gas meter (Ritter Apparatebau Gmbh, mod. TGO5) for quantitative gas measurement 

and a gas-quality analyzer for the determination of the percentage of CO2, CH4, H2S and 

O2. Trials were carried out in three consecutive runs under mesophilic conditions (40°C) 

for 35 days each. Before trials performing, each substrate was analysed for total solids 

(TS) and volatile solids (VS) (Table 1) according to standard methods (APHA, 1998). 

Mixtures of biomass and inoculum were prepared with 1:2 ratio, based on TS content. 

The inoculum consisted of an anaerobic seed sludge collected at three different times 

from a local biogas plant treating swine slurry. Each biomass, including blank trial 

(inoculum only), was tested in triplicate.  

 

Biomasses TS (%) VS (% TS) N-tot (% TS) pH 

Maize silage 37.0 95.6 5.6 3.7 

Triticale silage 41.0 90.5 1.6 3.9 

Sorghum silage 25.0 92.3 2.9 3.8 

Green rice grains 86.8 98.2 13.6 6.1 

Scrapped rice 86.3 90.0 13.0 6.9 

Rice flour 89.9 97.5 18.4 6.7 

Dry maize wastes 88.3 95.7 3.3 5.0 

Broken soybeans 89.7 94.2 78.0 6.6 

Grass mowing 57.5 90.2 4.0 6.8 

Whey 6.6 87.0 0.6 6.2 

Triple-tomato waste 27.2 95.8 3.9 4.1 

Scrapped pasta 89.2 99.1 18.4 5.0 

Poultry manure 35.8 15.6 16 7.3 

Table 1. Characteristics of the biomasses. 

 



CHAPTER 2 

47 

2.2 DNA extraction 

 

One hundred ml from triplicate batch experiments of the same biomass were put 

together and homogenised with a blender; where required a water dilution (1:1) was 

done. Aliquots of variable volumes (2-3 ml), to obtain final pellets of 150 mg, were 

centrifuged (10000×g, 30 min, 4°C); the resulting pellets were washed twice with water 

and centrifuged in the same conditions. DNA extraction (in triplicate) was performed by 

using the PowerSoil DNA Isolation kit (MoBio Laboratories, Inc., Milan, Italy) 

according to the manufacturer’s instructions. The purified DNA was eluted with 100 µl 

of elution buffer (10 mM Tris-HCl, pH 8.0) and stored frozen at -20°C until use. 

Quality of DNA extracted was evaluated by agarose gel electrophoresis. 

 

2.3 PCR-DGGE analyses 

 

The primer sets targeting the 16S rRNA gene of Bacteria and Archaea were GC-357-

F/907-R  and GC-ARC787-F/ARC1059-R, respectively (Sass et al., 2001; Hwang et al., 

2008). PCR reactions and preparation of polyacrylamide gels (40-60% or 30-70% 

denaturant gradient) were performed as described previously (Sass et al., 2001; Hwang 

et al., 2008). Bands excised and eluted from the gels were re-amplified using DGGE 

primer set without GC clamp and sequenced (Macrogen, Seoul, Korea). The sequences 

were compared with sequences deposited in the National Center for Biotechnology 

Information (NCBI) database by using BLAST program. The sequences were 

phylogenetically classified using the RDP Naive Bayesian rRNA Classifier Version 2.2, 

March 2010 (http://rdp.cme.msu.edu/classifier/hierarchy.jsp). 

 

2.4 Real-time quantitative PCR (qPCR) 

 

Four qPCR assays targeting Bacteria, Archaea, Methanosarcinales and sulfate-reducing 

bacteria  were used. The primer sets were: Bac357-F/Bac907-R for Bacteria (Favia et 

al., 2007), Arch 931-F/ArchM1100-R for Archaea (Einen et al., 2008), Msl812-

F/Msl1159-R for Methanosarcinales (Yu et al., 2005) and  Drs1+-F/Dsr-R for sulfate-

reducing (Kondo et al., 2004).All primer pairs used as target gene the 16S rRNA gene, 

except for sulfate-reducing primer set targeting the dsrA gene, codifying for the α 

subunit of dissimilatory sulfite reductase. PCR SYBR Green reactions were prepared by 

using the “Brilliant SYBR Green QPCR Master Mix” kit (M-Medical, Stratagene, 

Milan, Italy). The reaction mix (25 µl) contained: 1 × Brilliant SYBR Green (2.5 mM 

MgCl2), 0.12 µM of each primer, and 5 µl of template DNA. For Methanosarcinales, 

extra MgCl2 was added to a final concentration of 4.0 mM. The thermal cycling 

program consisted of 10 min at 95°C, followed by 40 cycles of 30 s at 95°C, 1 min at 

X°C (X = 58°C for Bac357-F/Bac907-R,  59°C for Drs1+-F/Dsr-R, 64°C for Arch 931-

F/ArchM1100-R, 60°C for Msl812-F/Msl1159-R) and 1 min at 72°C.  Finally, a 

melting curve analysis was performed: denaturation of 1 min at 95°C, cooling of 1 min 

at 55°C and then 95°C again, at a rate of +0.5°C/cycle. Cycle threshold values were 

calculated using the Biorad real-time software (version 3.0a). Standard curves ranging 
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from 10 to 10
8
 copies of plasmid DNA were used. The standard plasmids were made by 

cloning into pCRII-TOPO vector (Invitrogen) the specific fragments obtained by PCR 

amplification of the target genes (see above) using as template DNA isolated from a 

batch digester sample. The cloned gene fragments were: Methanobrevibacter sp. 

(DQ402034.1) for Archaea, Methanosarcina mazeii LM5 (DQ987528.1) for 

Methanosarcinales, Desulfobacterium autotrophicum (CP001087.1) for sulfate-

reducing. Asaia sp. (AM404260) was used as target gene in the case of Bacteria as 

previously described (Favia et al., 2007). DNA plasmids were extracted by E. coli using 

the QIAprep Spin Miniprep kit (Qiagen, Milan, Italy) and DNA concentration was 

evaluated by UV260 absorption. Conversion of 16S rRNA gene copy numbers to cell 

number was done considering the average 16S rRNA gene copy numbers of bacteria (4 

copies/cell) and methanogens (2.5 copies/cell) reported in the Ribosomal RNA 

Database (rrnDB, Lee ZM-P (http://rrndb.mmg.msu.edu/search.php)). In the case of 

real-time PCR targeting the dsrA gene, it was assumed that copy number is equivalent 

to cell number (Kondo et al, 2004). 

 

2.5 Statistical analyses 

 

Each DGGE gel image was converted into a binary matrix by using the free software 

ImageJ (Rasband W(http://rbs.info.nih.gov/ij/)). Each binary matrix of Archaea and 

Bacteria line profiles was statistically analysed by Principal Component Analysis 

(PCA) using XLSTAT (vers. 7.5.2 Addinsoft, France) on autoscaled data. DGGE gel 

images were also analyzed using the Quantity One software (Biorad). Lane background 

was substracted by the “rolling disk” tool; bands were detected automatically and 

matched manually. DGGE-based molecular parameters, namely dynamycs (Dy), 

richness (Rr) and community organization (Co), were calculated as previously described 

(Mertens et al., 2005, Marzorati et al., 2008). Briefly, Dy was calculated from the 

similarity matrix (100-%similarity); Rr was the total number of bands multiplied by the 

percentage of denaturing gradient used; Co was the percentage of Gini coefficient, a 

value describing the degree of evenness within a community by measuring the 

normalized area between the Lorenz curve and the perfect evenness line. Statistical 

significance of molecular parameters and BMP was assessed by test F (ratio regression 

variance to error variance). Statistical analysis of the qPCR results was performed by 

ANOVA (analysis of covariance). Statistical significance was considered for p values 

less than 0.05.  

 

 

3. Results and Discussion 
 

3.1 BMP from different biomasses 
 

The biogas and methane yields from the tested biomasses are shown in Figure 1. The 

concentration of methane to the total biogas production varied among the biomasses, 

ranging from 42% to 68% (results not shown). All the energy crops gave efficient 
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methane productions, in particular maize silage yielded the highest methane rate (394 ± 

20 Nm
3
 t

-1
VSadded), whereas sorghum and triticale silages showed slightly lower 

methane yields Methane yields were in the range of methane productions typically 

found in literature, ranging from about 280 to 420 Nm
3
 t

-1
VSadded (Gunaseelan, 1997; 

Bruni et al, 2010; Herrmann et al., 2011). Methane productions as efficient as silage 

crops were obtained from some agro-industrial wastes and residues, such as those 

derived from rice (green rice grains and broken rice), soy (broken soya beans) and 

maize (dry maize wastes) which produced methane yields higher than 300 Nm
3
 t

-

1
VSadded. These results are not surprising considering the high contents of starch, 

proteins and fat in these biomasses. Lower methane yields were obtained in the case of 

rice flour, grass mowing, scrapped pasta and whey with productions rate recorded to 

average values of 150 Nm
3
 t

-1
SVadded. High BMP was observed in the case of triple-

tomato paste residues (380 ± 9 Nm
3
 t

-1
VS) and poultry manure (385 ± 2 Nm

3
 t

-1
VSadded) 

in accordance with previous findings and indicating that wastes or agro-industrial by-

products that have no market are efficiently suitable and for AD process (Dinuccio et 

al., 2010; Schievano et al., 2009).  

 

3.2 DGGE and phylogenetic analyses of Archaea and Bacteria 

 

Microbial diversity of archaeal and bacterial communities before and at the end of the 

AD processes were assessed by DGGE analysis of 16S rRNA gene. The gel images of 

Archaea and Bacteria are shown in Fig. 2A and 2A' and Fig. 2B and 2B', and the 

phylogenetic affiliation of the bacterial and archaeal sequences are reported in Table 2 

and Table 3, respectively. A high similarity of the DGGE band patterns among samples 

Figure 1. Potential production of methane for all the substrates tested. MS, maize silage; TS, triticale 

silage; SS, sorghum silage; GRG, green rice grains; SR, scrapped rice; RF, rice flour; DM, dry maize 

wastes; BS, broken soybeans; GM, grass mowing; W, whey; TTP, triple-tomato paste residues, SP, 

scrapped pasta; PM, poultry manure. All values are the mean value of triplicate batches with their 

corresponding standard error and are expressed in Nm
3
 t

-1
SV. 
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tested with the same inoculum was observed for both Archaea and Bacteria, indicating 

the importance of inoculum in the developing of the AD processes. 

In the DGGE gel of Fig. 2A, the bands 2, 3 and 4, phylogenetically affiliated to the 

genus Methanosarcinas, were dominant in all samples, both at the beginning and at the 

end of the processes. Changes occurred and some bands appeared or became more 

intense at the end of the process suggesting that the related methanogens played an 

important role in methane production 

This was the case of band 5, identified by RDP Classifier (confidence threshold of 

80%) as Methanosarcina and bands 6-12 matching with strain Methanosarcina sp. 

HB-1. The bands showed high intensity in the digestates of grass mowing, broken 

soybeans e pasta wastes. Band 1 was phylogenetically related to Methanosarcina 

barkeri, whereas band 13 was affiliated to the genus Methanobrevibacter by RDP. In 

DGGE gel of Fig. 2A', two main DGGE band patterns could be recognized, in 

accordance with the use of two different inoculum sludge. The digestates of AD 

experiments performed with seed sludge 2 were characterized by the dominance of 

Figure 2. Archaeal (A, A') and bacterial DGGE (B, B') profiles of the 16S rRNA gene PCR products 

generated from DNA extracted from ingestate (i) and digestate (d) of substrates analyzed for BMP. A, 

B) 1-2, green rice grains i, d; 3-4, rice flour i, d; 5-6, scrapped pasta i, d; 7-8, grass mowing  i, d; 9-

10, broken soybeans i, d; 11-12, dry maize wastes i, d; 13-14, scrapped rice i, d. All lanes refers to 

BMP experiments performed with seed sludge 1. A', B') 1-2, triticale silage i, d; 3-4, poultry manure 

i, d; 5-6, sorghum silage i, d; 7-8, maize silage i, d; 9-10, triple-tomato paste residues i, d; 11-12, 

whey i, d. Lanes 1-8 and lanes 9-12 refers to BMP experiments performed with seed sludge 2 and 3, 

respectively. Dots and numbers indicate the bands sequenced. 
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three intense bands (18-20), affiliated to Methanosarcina genus. Bands 15, 16, 17 and 

23 were affiliated to the hydrogenotrophic genus Methanobrevibacter. In particular, 

band 23 resulted in a more intense signal at the end of the process in sorghum and 

maize silages. 

On the contrary, bands 14, 21 and 22, phylogenetically related to uncultured Archaea 

of the family Methanomicrobiaceae were observed in the energy crop biomasses and 

poultry manure only before the onset of the process and disappeared thereafter. The 

archaeal community of whey and triple-tomato paste (seed sludge 3) showed the 

prevalence of bands 25 and 31, phylogenetically related to the genus Methanosaeta. 

Whereas the archaeal community remained stable in whey, in the case of triple-tomato 

paste, a significant band pattern change was observed after the AD process, with a shift 

from Methanosaeta (bands 25 and 31) to Methanosarcina (bands 26-30). 

The overall data showed a prevalence of the genus Methanosarcina, indicating that 

acetoclastic methanogenesis was the principal pathway of methane production. 

Methanosarcina spp. produce methane from acetate, although some species are more 

versatile (for example M. barkeri) and can also utilize H2 and CO2, methylated amines 

and methanol (Whitman et al., 2006). Methanosarcina outcompetes with 

Methanosaeta at high acetate concentrations, in agreement with the higher affinity for 

acetate of Methanosarcina compared to Methanosaeta (Jetten et al., 1992). 

Almost all the bacterial sequences obtained were affiliated to Firmicutes and 

Bacteroidetes, phyla of remarkable importance in the degradation of complex organic 

matter in anaerobic bioreactors (Riviere et al., 2009, Li et al, 2009 environ microb, 

Tang et al, 2004). Sequences assigned to the Clostridia class (bands 1, 2, 5 11 14, 22, 

27) as determined by the RDP Classifier (confidence threshold of 80%), or more 

specifically to the Clostridium genus (bands 13 and 17), whose bacterial members 

include saccharolytic, but also proteolytic and lipolytic species (Wiegel et al. 2006 cap. 

Prokaryotes) were frequent in the DGGE profiles. In particular, bands 1, 2, 13 and 14 

were dominant with high intensity bands in all samples before and after the process. 

Assigned to Firmicutes were also bands 6, 7, 23, 8, 15, 9, 20. Changes in the DGGE 

profiles were also observed in the case of Bacteria. Particularly, some bands appeared 

or became more intense at the end of the AD process suggesting that the related 

microorganisms were actively involved in the process. Band 6, which appeared at the 

end of the process in rice flour and scrapped pasta, was affiliated to Syntrophomonas 

genus (100%). This syntrophic acetogenic bacteria have an important role in fatty-acid 

degradation and work in a synergetic way together with hydrogen-scavenging 

microbes such as hydrogenotrophic methanogens (Zhao et al, 1993, Wu et al, 2006). 

Bands 7 and 23, strictly related to the genus Desulfotomaculum (>99%), were 

observed in several biomasses with high intensity at the end of the process in scrapped 

pasta and rice flour. This genus includes a number of gram-positive, spore-formers, 

sulfate-reducing bacteria, capable of incompletely (to acetate) or completely oxidizing 

various organic substrates like, H2, alcohols and short chain fatty acids, by using 

sulfate as final electron acceptor (Widdel, 2006). Band 9 was phylogenetically closely 

related to an uncultured Symbiobacterium (>98% similarity). To this genus belongs the 

gram-positive species S. thermophilum, previously identified in an anaerobic process



 

 

 Band Closest relative (NCBI) Accession n
o
. Identity (%) Classification*  

1 Methanosarcina barkeri strain TR-Z13 HQ591417 97.0 Methanosarcinaceae 

2 Methanosarcina siciliae type strain DSM 3028
T
 FR733698 100 Methanosarcinaceae 

 Methanosarcina vacuolata type strain DSM1232
T
 FR733661 100  

3 Methanosarcina siciliae type strain DSM 3028
T
 FR733698 99.6 Methanosarcinaceae 

 Methanosarcina vacuolata type strain DSM1232
T
 FR733661 99.6  

4 Uncul. Methanosarcina sp. clone W30B AB489230 99.6 Methanosarcinaceae 

5 Uncul. archaeon clone F776O8Q02BXGN4 GU855992 96.2 Methanosarcinaceae 

6-12 Methanosarcina sp. HB-1 AB288262 99.0-99.6 Methanosarcinaceae 

13 Uncul. Methanobrevibacter sp. clone RbtMet_14 HM449726 95.3 Methanobacteriaceae 

14 Uncul. archaeon clone 3A10 HQ678048 100 Methanomicrobiaceae 

15 Uncul. Methanobrevibacter sp. clone RbtMet_33 HM449745 98.0 Methanobacteriaceae 

16 Methanobrevibacter smithii strain ATCC 35061 CP000678 99.5 Methanobacteriaceae 

17 Uncul. Methanobrevibacter sp. CSIRO2.21 AY351487 96.1 Methanobacteriaceae 

18-19 Methanosarcina sp. HB-1 AB288262 98.6-98.7 Methanosarcinaceae 

20 Methanosarcina sp. 48 EF112192 97.4 Methanosarcinaceae 

21 Uncul. archaeon clone F776O8Q02CFHTT GU843899 99.0 Methanomicrobiaceae 

22 Uncul. archaeon clone F776O8Q02CEUWA GU885092 100 Methanomicrobiaceae 

23 Uncul. Methanobrevibacter sp. clone 26 DQ402034 99.5 Methanobacteriaceae 

 Uncul. Methanosphaera sp. clone 24 DQ402032 99.5  

24 Uncul. Methanosarcina sp. gene clone W30B AB489230 99.1 Methanosarcinaceae 

25 Uncul. Methanosaetaceae isolate DGGE gel band 23 GU734611 97.2 Methanosaetaceae 

26 Methanosarcina sp. HB-1 AB288262 99.1 Methanosarcinaceae 

 Methanosarcina siciliae strain C2J U89773 99.1  

27 Methanosarcina sp. HB-1 AB288262 97.8 Methanosarcinaceae 

 Methanosarcina siciliae U89773 97.8  

28 Uncul. methanogenic archaeon clone SMPFLSS56m_3 FJ982699 99.5 Methanosarcinaceae 

 Methanosarcina mazeii strain LM5 DQ987528 99.1  

29 Uncul. archaeon clone F776O8Q02BXGN4 GU855992 99.1 Methanosarcinaceae 

 Methanosarcina mazeii strain LM5 DQ987528 98.6  

30 Uncul. Methanosarcina sp. clone A686 JN173201 99.5 Methanosarcinaceae 

31 Uncul. Methanosaeta sp. clone D007024C03 GU179492 99.2 Methanosaetaceae 

 Table 2. Phylogenetic affiliation of the archaeal 16S rRNA sequences from DGGE bands. (*) Family, based on NCBI and RDP Classifier results, is given. 
 



 

 

Band Closest relative (NCBI) Accession n
o
. Identity (%) Classification* 

1 Uncultured bacterium clone MS01639-UBM006 FN985304 99.8 unclassified Clostridia 

2 Uncultured bacterium clone 50 AB375726 100 unclassified Clostridia 

3 Uncultured Bacteroidetes bacterium clone 

QEDV2CE03 

CU919517 99.4 Bacteroidia, unclassified 

Porphyromonadaceae 

4 Uncultured Bacteroidetes bacterium clone 

QEDV3DE11 

CU919667 99.2 Bacteroidia,unclassified 

Porphyromonadaceae 

5 Uncultured bacterium clone MS11817-B104 FN993970 100 Clostridia, (unclassified Clostridiales) 

6 Syntrophomonas sp. clone D2CL_Bac_16S_Clone14 EU498380 100 Clostridia, Syntrophomonadaceae 

7 Desulfotomaculum sp. DEM-KMe98-6 AJ276560 99.3 Clostridia, Peptococcaceae 

8 Uncultured Bacillus sp. clone De31 HQ183765 97.2 Bacilli, Bacillaceae 

9 Uncultured Symbiobacterium sp. clone SHBZ891 EU639261 99.2 Clostridia, Family XVIII incertae sedis 

10 Uncultured Bacteroidetes bacterium clone G14 EU551114 97.1  (unclassified Bacteroidetes) 

11 Uncultured bacterium clone M35_D8_L_B_C04 EF586010 100  unclassified Clostridia 

12 Alcaligenes sp. BBTR16 EF471233 99.7 Betaproteobacteria, Alcaligenaceae 

13 Uncultured Clostridium sp. clone BBC810 GQ868409 99.6 Clostridia, Clostridiaceae 

14 Uncultured bacterium clone 148_BE1_40 FJ825467 100 unclassified Clostridia 

15 Bacillus sp. CHNTR52 DQ337594 98.7 Bacilli, Bacillaceae 

16 Uncultured bacterium clone LL141-8P23 FJ675660 99.0 Bacteroidia, unclassified 

Porphyromonadaceae 

17 Uncultured Clostridium sp. isolate Marmara9 AM980561 91.8 Clostridia, Clostridiaceae 

18 Uncultured Bacteroidetes clone G14 EU551114 99.6 (unclassified Bacteroidetes) 

19 Ruminofilibacter xylanolyticum strain S1 DQ141183 99.6 Bacteroidia, Rikenellaceae 

20 Acetivibrio sp. enrichment culture clone WSC-3 HM635213 99.8 Clostridia, Ruminococcaceae 

21 Uncultured WWE1 bacterium clone EEB1CG06 CU918241 99.4 (unclassified Bacteria) 

22 Uncultured bacterium clone 1-1B-28 JF417919 99.8 unclassified Clostridia 

23 Desulfotomaculum sp. DEM-KMe98-6 AJ276560 99.8 Clostridia, Peptococcaceae 

24 Brumimicrobium mesophilum strain YH207 DQ660382 99.8 Flavobacteria, Cryomorphaceae 

25 Uncultured Bacteroidetes clone QEDR1DA08 CU922385 99.0 (unclassified Bacteroidetes) 

26 Uncultured Bacteroidetes bacterium clone De114 16S HQ183935 98.0 (unclassified Bacteroidetes) 

27 Clostridia bacterium enrichment culture clone WSC-8 HM635205 99.6 unclassified Clostridia 

28 Uncultured Bacteroidetes clone QEEA3BB03 CU918989 98.2 Bacteroidia, unclassified 

Porphyromonadaceae 

 Table 3. Phylogenetic affiliation of the bacterial 16S rRNA sequences from DGGE bands. (*) Family, based on NCBI and RDP Classifier results, is given. 
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treating synthetic substrates mimicking energy crops (Pobeheimet al., 2010). This 

unique bacterium lives in symbiosis with a Bacillus sp. strain and uses formate as 

electron donor during anaerobic respiration (Ueda et al., 2004). Accordingly, an 

uncultured Bacillus was also found in the majority of the samples tested in the first trial 

(band 8) and in the digestates of triticale silage and poultry manure. Bacillus is a 

widespread genus of gram-positive, spore-forming bacteria with the ability to degrade 

a wide range of organic compounds, including proteins and carbohydrates (Slepecky 

and Hemphill, 2005). Band 20, sharing a high sequence identity with Acetovibrio sp., 

was present only in sorghum silage digestate. Acetivibrio sp., like Clostridium and 

Bacillus, degrades cellulose and has been previously identified in AD processes of 

municipal solid wastes (Li T. et al., 2009). Other bands detected only after the AD 

process in some biomasses, such as energy crops and poultry manure, were 

unclassified Bacteroidetes (bands 10 and 18). Uncultured Bacteroidetes (bands 25 and 

26) were also found in triple-tomato paste and whey and with strong intensity (bands 3 

and 4) in all the biomasses samples inoculated with seed sludge 1 (Fig. 2B). Bands 3 

and 4 were affiliated to the family Porphyromonadaceae, acidogenic bacteria capable 

of producing various VFA from carbohydrates or proteins and frequently found in 

anaerobic digesters (Ziganshin et al 2011, Li et al. 2009 envir microb). These bands, 

however, disappeared at the end of the process suggesting that these microorganisms 

played a minor role in the degradation of polysaccharides and were displaced by other 

hydrolytic bacteria. Also assigned to unclassified Porphyromonadaceae were bands 16 

and 28. Another band observed only before the AD process was band 19, present in 

energy crops and manure, and assigned to Ruminofilibacter xylanolyticum, a rumen 

bacterium involved in xylan digestion. Specifically detected in whey, was 

Brumicrobium (band 24), a facultative anaerobic bacterium with fermentative 

metabolism, capable to use lactate as electron donor under anaerobic conditions 

(Bowman et al., 2003). The only band assigned to Betaproteobacteria was band 12, 

assigned to the genus Alcaligenes, a soil and water bacterium capable of dissimilatory 

denitrification under anaerobic conditions using various carbon sources like 

monoterpenes, aliphatic sulfonic acids or aromatic compounds (Heyen and Harder, 

2000). Classification by the RDP Classifier was possible only at the level of domain in 

the case of band 21, phylogenetically closely related to an uncultured bacterium from a 

wastewater sludge. 

 

3.3 Statistical qualitative community analyses  

 

In order to compare the batch AD processes and evaluate the qualitative shifts in 

archaeal and bacterial community structure, statistical analysis of the DGGE profiles 

was performed by Principal Component Analysis (PCA).  

Multivariate analysis on the two data matrices of Archaea are shown in Figure 3A and 

3A’. The plots of the two-dimensional scores, defined by PC1 and PC2, accounted for 

88% and 66% of the input data variability, meeting the general criteria for reliable 

analysis. In Figure 3A it can be observed the grouping of the archaeal genetic profiles 

of all the substrates tested in a very compact cluster (a), indicating that the initial 
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communities were highly similar to each other before the process, as expected by the 

use of the same seed sludge. The archaeal communities of substrates changed over 

time and mostly grouped together at the end of the process locating in quadrant IV 

(cluster b). Interestingly, all these biomasses (rice biomasses, scrapped pasta and dry 

maize wastes) were characterized by a high content of starch suggesting that the 

compositional content of biomasses played a role in determining the changes of 

community. The PCA of the DGGE samples of run 2 are presented in Figure 3A’. The 

initial microbial communities of energy crops and poultry manure were located in 

quadrant III (cluster a), and then, in the case of all the energy crops, shifted over time 

clustering together at the end of the anaerobic process (cluster b). The high similarity 

of the final archaeal communities of these three samples could be attributed to the 

occurrence of lactic acid fermentation, and of intermediates favoring the development 

of specific dominant methanogens. On the contrary, whey and triple-tomato paste 

Figure 3. Principal component analysis of archaeal (A, A') and bacterial (B, B΄) DGGE profiles.  A, 

B) 1-2, green rice grains; 3-4, rice flour; 5-6, scrapped pasta; 7-8, grass mowing; 9-10, broken 

soybeans; 11-12, dry maize wastes; 13-14, scrapped rice; A΄, B΄) 1-2, triticale silage; 3-4, poultry 

manure; 5-6, sorghum silage; 7-8, maize silage; 9-10, triple-tomato paste residues; 11-12, whey. Dots, 

ingestate; triangles, digestate. Circles indicating significant clustering are commented in the text. 
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showed limited shift of the microbial community diversity and clustered in cluster c 

separated from the other samples in accordance to sequencing results that showed the 

prevalence of Methanosaeta-like methanogens. The resulting plots of the PCA 

analyses carried on the bacterial DGGE gels are shown in Fig. 3B, and 3B’. 

The plots explained 70% or more of the total variance in the data set indicating 

Figure 4. (a) Dynamics, (b) richness and (c) community organization parameters from archaeal 

(grey) and bacterial (white) DGGE profiles. 
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reliability. The PCA analysis of DGGE samples of run 1 is shown in Figure 3B. As 

already observed for the archaeal community, the initial bacterial community of all the 

substrates, except scrapped pasta, grouped together (cluster a), however here the shifts 

of communities were generally moderate and no clear grouping of the final microbial 

communities could be observed. A similar situation was observed for the initial 

bacterial community of all silages samples (Fig. 3B’, cluster a). In the case of whey 

and triple-tomato paste, similarly to Archaea, initial and final communities grouped 

together (Fig. 3B’, cluster b), with whey exhibiting no change between the beginning 

and the end of the process. Taken together, PCA analyses showed that, compared to 

Archaea, larger shifts in function of the different matrices occurred for bacterial 

communities suggesting that diverse bacteria, possibly with different substrate 

specificity, are involved in the AD process. 

The archaeal and bacterial DGGE patterns were further characterized using parameters 

independent from the DGGE run, namely the dynamics of change (Dy), the richness 

(Rr) and the microbial community organization (Co) (Fig. 4). The average rate of 

change and extent of variability (standard deviations) of Bacteria and Archaea were in 

the same range (46.4±14.6 for Bacteria and 42.7 ±13.1 for Archaea), with values 

lower for the archaeal community as observed previously in studies performed on 

continuous anaerobic reactors (Fernandez et al, 1999, Carballa et al, 2011). The final 

bacterial community was in most cases richer than the archaeal one (average values of 

45±13 for Bacteria and 39±11 for Archaea) in accordance with previous findings 

(Fernandez et al, 1999, Malin and Illmer 2008, Carballa et al, 2011) and with the 

evident consideration that a wide range of substrates supports the growth of a widest 

number of species. 

Figure 5. Correlation between community organization (Co) for Archaea and biochemical methane 

potential (BMP). Linear regression equation y = -15,966× + 1304,6; R
2
 = 0,4038. 

Figure 5. Correlation between community organization (Co) for Archaea and 
biochemical methane potential (BMP). Linear regression equation y = -15,966× + 
1304,6; R2 = 0,4038.re 5. Correlation between community organization (Co) for 
Archaea and biochemical methane potential (BMP). Linear regression equation y = -
15,966× + 1304,6; R2 = 0,4038. 
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The range of values obtained were those typical of very habitable environments 

characterized by high microbial diversity (Marzorati et al., 2008). The values of Co 

were higher for Archaea than for Bacteria (average Co values of 64±4 for Archaea 

and 47±8 for Bacteria). As higher Co values correspond to more uneven microbial 

community, results indicated that archaeal community was more uneven than 

bacterial, as observed by Carballa (Carballa et al, 2011). These molecular parameters 

describing the community structure and diversity were attempted to be correlated with 

the reactor performance, measured as BMP. Whereas no correlation was found for Dy 

and Rr, and for Co in the case of Bacteria (p>0.05), some statistically significant 

(p<0.02) trend was observed between Co of Archaea and BMP (Fig. 5). This trend 

indicates that communities with higher evenness, i.e. with lower Co, have higher 

methane production, in agreement with recent findings demonstrating the more robust 

functional stability of communities with higher evenness, capable of using more 

parallel metabolic pathways and hence of adapting and responding more efficiently to 

disturbances (Wittebolle et al., 2009; Werner et al., 2011). However, whereas 

evenness analysis has proven to be very useful for understanding the relationship 

between microbial community and its functioning, indication on the AD performance 

trend may be not so predictive when merely looking at species richness (Werner et al., 

2011, Malin and Illmer 2008). 

The same can be said for Dy, because well-functioning reactors were observed in stable 

microbial community  (LaPara et al., 2002) as well as in dynamic community 

(Fernandez et al, 1999), though recent findings seems to indicate that community with 

higher phylogenetic diversity functioned more efficiently (Werner et al., 2011). 

 

 

 

Figure 6. (A) Abundance of sulfate-reducing bacteria (grey) to total Bacteria (white) and (B) of 

Methanosarcinales (grey) to total Archaea (white) at the completion of the AD processes. MS, maize 

silage; TS, triticale silage; SS, sorghum silage; GRG, green rice grains; RF, rice flour; DM, dry maize 

wastes; BS, broken soybeans; GM, grass mowing; W, whey; TTP, triple-tomato paste; SP, scrapped 

pasta; PM, poultry manure. Measurements are the average values of three independent 

determinations. Values that were significantly different between groups by ANOVA's analysis (p < 

0.05) are indicated by different letters. No data reported for scrapped rice due to analysis problems. 
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3.4 qPCR analyses of the Archaea 

 

Quantification of Bacteria, Archaea, Methanosarcinales and sulfate-reducing bacteria 

was performed by real time PCR in order to get further insight into the structure of 

microbial community at the end of the AD process. 

The results are shown in Fiugure 6. Bacteria were present in the different anaerobic 

biomasses at concentrations ranging from 10
8
 to 10

10
 cells g

-1
 VSadded, a variability 

confirmed by ANOVA analysis (Fig. 6A). The sulfate-reducing bacteria were always 

10
2
/10

5
-fold lower than Bacteria and were present in the order of magnitude of 10

5
 g

-1
 

VSadded (Figure 6A). Archaea were relatively stable for all the samples and were 

enumerated at values around 10
9
 cells g

-1
 VSadded (Figure 6B), thus several order 

magnitude higher than sulfate-reducing bacteria which may compete with 

hydrogenotrophic methanogens for hydrogen utilization. The Methanosarcinales 

represented the majority of the archaeal community (up to 80% of total Archaea) (Fig. 

6B), confirming the data of the DGGE analyses. The ANOVA analyses performed on 

Archaea, Methanosarcinales and sulfate-reducing bacteria showed that all the 

quantification values were not significantly different, except for whey and triple-tomato 

paste. In the case of Bacteria, no apparent correlation with DGGE data could be 

deduced. However, matrices containing relatively low titers of Bacteria (silages and 

poultry manure) were those in which hydrolysis and fermentation process were 

previously carried out. On the whole, however, no evident correlation was found 

between qPCR values and BMP determinations. 

 

 

4. Conclusions 
 

In this study it was demonstrated that high BMP could be obtained from energy crops as 

well as other agro-industrial residues/by-products. Molecular biology techniques 

revealed to be useful tools for investigating the structure and diversity of microbial 

community during AD process, allowing identifying the dominant species associated 

with the biogas production. It was shown that seeding sludge had an important role in 

determining the basal microbial community with some dominant archaeal and bacterial 

taxa (Methanosarcinales and Clostridia) detected by DGGE analysis throughout the 

course of the process. However, definite changes in the microbial community were 

observed, suggesting that quantitative changes in the abundance of some key species 

occurred as response to microbial community adaptation to the different biomasses. In 

particular, compositional features of biomasses or processing (ensiling) seemed to play 

a role in the changes of archaeal microbial communities indicating Archaea as good 

indicators for monitoring AD microbial community dynamics. A correlation trend was 

identified between archaeal community and BMP indicating that more even archaeal 

community were associated to higher BMP. 

 

 

 



CHAPTER 2 

60 

acknowledgements 

 

This study was funded by the project “Produzione di biogas da biomasse vegetali e 

reflui zootecnici: ottimizzazione del processo e innovazione tecnologica – PROBITEC” 

by Regione Lombardia. 



CHAPTER 2 

61 

References 
 

 Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P 

and van Lier JB. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a 

proposed protocol for batch assay. Water Sci. Technol. 59, 927–934 (2009). 

 Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA and Domıguez-Espinosa R, Production of 

bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22, 477–485 

(2004). 

 APHA. Standard Methods for the Examination of Water and Wastewater. 20th ed by American Public 

Health Association (APHA), Washington, DC (1998). 

 Bowman JP, Mancuso C, Nichols CM and Gibson JAE. Algoriphagus ratkowskyi gen. nov., sp. nov., 

Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix 

catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int. J. Syst. Evol. 

Microbiol. 53, 1343–1355 (2003). 

 Bruni E, Jensen AP, Pedersen ES and Angelidaki I. Anaerobic digestion of maize focusing on variety, 

harvest time and pretreatment. Appl. Energy. 87, 2212–2217 (2010). 

 Carballa M, Smits M, Etchebehere C, Boon N and Verstraete W. Correlations between molecular and 

operational parameters in continuous lab-scale anaerobic reactors. Appl. Microbiol. Biotechnol. 89, 303–

314 (2011). 

 Chynoweth DP, Owens JM and Legrand R. Renewable methane from anaerobic digestion of biomass. 

Renewable Energy. 22, 1–8 (2001). 

 Dinuccio E, Balsari P, Gioelli F and Menardo S. Evaluation of the biogas productivity potential of some 

Italian agro-industrial biomasses. Bioresour. Technol. 101, 3780-3783 (2010). 

 Einen J, Thorseth IH and Øvreås L. Enumeration of Archaea and Bacteria in seafloor basalt using real-

time quantitative PCR and fluorescence microscopy. FEMS Microbiol. Lett. 282, 182–187 (2008). 

 Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, Rizzi A, Urso R, Brusetti L, Borin S, 

Mora D, Scuppa P, Pasqualini L, Clementi E, Gench M, Corona S, Negri I, Grandi G, Alma A, Kramer L, 

Esposito F, Bandi C, Sacchi L and Daffonchio D. Bacteria of the genus Asaia stably associate with 

Anopheles stephensi, an Asian malarial mosquito vector. PNAS. 104, 9047–9051 (2007). 

 Fernández A, Huang S, Seston S, Xing J, Hickey R, Criddle C and Tiedje J. How stable is stable? 

Function versus community composition. App. Environ. Microbiol. 65, 3697–3704 (1999). 

 Gunaseelan VN. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg. 

13, 83–114 (1997). 

 Herrmann C, Heiermann M and Idler C. Effects of ensiling, silage additives and storage period on 

methane formation of biogas crops. Bioresour. Technol. 102, 5153–5161 (2011). 

 Heyen U and Harder J. Geranic acid formation, an initial reaction of anaerobic monoterpene 

metabolism in denitrifying Alcaligenes defragrans. Appl. Environ. Microbiol. 66, 3004–3009 (2000). 

 Hwang K, Shin SG, Kim J and Hwang S. Methanogenic profiles by denaturing gradient gel 

electrophoresis using order-specific primers in anaerobic sludge digestion. Appl. Microbiol. Biotechnol. 

80, 269–276 (2008). 

 Jetten MSM, Stams AJM and Zehnder AJB, Methanogenesis from acetate: a comparison of the acetate 

metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol. Rev. 88, 181–197 

(1992). 

 Kondo R, Nedwell DB, Purdy KJ and de Queiroz Silva S. Detection and enumeration of sulphate-

reducing bacteria in estuarine sediments. Geomicrobiol J. 21, 145–157 (2004). 

 LaPara TM, Nakatsu CH, Pantea LM and Alleman JE. Stability of the bacterial communities supported 

by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. 

Water Res. 36, 638–646 (2002). 

 Lee C, Kim J, Shin SG, O’Flaherty V and Hwang S. Quantitative and qualitative transitions of 

methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater. 

Appl Microbiol Biotechnol. 87, 1963–1973 (2010). 



CHAPTER 2 

62 

 Li T, Mazéas L, Sghir A, Leblon G and Bouchez T. Insights into networks of  functional microbes 

catalysing methanization of cellulose under mesophilic conditions. Environ Microbiol. 11, 889–904 

(2009). 

 Malin C and Illmer P. Ability of DNA content and DGGE analysis to reflect the performance condition 

of an anaerobic biowaste fermenter. Microbiol Res. 163, 503–511 (2008). 

 Marzorati M, Wittebolle L, Boon , Daffonchio D and Verstraete W. How to get more out of molecular 

fingerprints: practical tools for microbial ecology. Environ Microbiol. 10, 1571–1581 (2008). 

 Mertens B, Boon N and Verstraete W. Stereospecific effect of hexachlorocyclohexane on activity and 

structure of soil methanotrophic communities. Environ Microbiol. 7, 660–669 (2005). 

 Pobeheim H, Munk B, Müller H, Berg G and Guebitz GM. Characterization of an anaerobic population 

digesting a model substrate for maize in the presence of trace metals. Chemosphere. 80, 829–836 (2010). 

 Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P 

and Sghir A. Towards the definition of a core of microorganisms involved in anaerobic digestion of 

sludge. The ISME Journal. 3, 700–714 (2009). 

 Sass AM, Sass H, Coolen M JL, Cypionka H, and Overmann J, Microbial Communities in the 

Chemocline of a Hypersaline Deep-Sea Basin (Urania Basin, Mediterranean Sea). Appl Environ 

Microbiol. 67, 5392–5402 (2001). 

 Schievano A, D’Imporzano G and Adani F. Substituting energy crops with organic wastes and agro-

industrial residues for biogas production. J Environ Manage. 90, 2537–2541 (2009). 

 Slepecky RA and Hemphill HE. The Genus Bacillus – Nonmedical, in The Prokaryotes. A Handbook 

on the Biology of Bacteria, third edition, vol 4, ed by Dworkin M, Falkow S, Rosenberg E, Schleifer K-H 

and Stackebrandt E. Springer-Verlag Publisher, New York, pp 530–562 (2006). 

 Tang YQ, Shigematsu T, Ikbal, Morimura S and Kida K. The effects of micro-aeration on the 

phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. 

Water Res. 38, 2537–2550 (2004). 

 Ueda K, Yamashita A, Ishikawa J, Shimada M, Watsuji T-O, Morimura K, Ikeda H, Hattori M and 

Beppu T. Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends 

on microbial commensalism. Nucleic Acids Res. 32, 4937–4944 (2004). 

 Ueno Y, Haruta S, Ishii M, Igarashi Y. Changes in product formation an bacterial community by 

dilution rate on carbohydrate fermentation by methanogenic microflora in continuous flow stirred tank 

reactor. Appl Microbiol Biotechnol. 57, 65–73 (2001). 

 Van Starkenburg W, Anaerobic treatment of wastewater: state of the art. Microbiology 66, 589-596 

(1997). 

 Weiland P. Biogas production: current state and perspectives. Appl Microbiol Biotechnol. 85, 849–860 

(2010). 

 Werner JJ, Knights D, Garcia ML, Scalfonea NB, Smith S, Yarasheski K, Cummings TA, Beers AR, 

Knight R and Angenent LT. Bacterial community structures are unique and resilient in full-scale 

bioenergy systems. PNAS. 8, 4158–4163 (2011). 

 Whitman WB, Bowen TL and Boone DR. The order Methanosarcinales, in The Prokaryotes. A 

Handbook on the Biology of Bacteria, third edition, vol 3, Ed by Dworkin M, Falkow S, Rosenberg E, 

Schleifer K-H and Stackebrandt E. Springer-Verlag Publisher, New York, pp. 165–207 (2006). 

 Widdel F. The genus Desulfotomaculum, in The Prokaryotes. A Handbook on the Biology of Bacteria, 

third edition, vol 4, ed by Dworkin M, Falkow S, Rosenberg E, Schleifer K-H and Stackebrandt E. 

Springer-Verlag Publisher, New York, pp. 787–794 (2006). 

 Wiegel J, Tanner R and Rainey FA. An Introduction to the Family Clostridiaceae, in The Prokaryotes. 

A Handbook on the Biology of Bacteria, third edition, vol 4, ed by Dworkin M, Falkow S, Rosenberg E, 

Schleifer K-H and Stackebrandt E. Springer-Verlag Publisher, New York, pp. 654–678 (2006). 

 Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W and 

Boon N. Initial community evenness favors functionality under selective stress. Nature. 458, 623–626 

(2009). 

 Wu C, Liu X and Dong X. Syntrophomonas erecta subsp. sporosyntropha subsp. nov., a spore-forming 

bacterium that degrades short chain fatty acids in co-culture with methanogens. Syst. Appl. Microbiol. 29, 

457–462 (2006). 



CHAPTER 2 

63 

 Yu Y, Lee C, Kim J and Hwang S. Group-specific primer and probe sets to detect methanogenic 

communities using Quantitative Real-Time Polymerase Chain Reaction. Biotechnol. Bioeng. 89, 670–679 

(2005). 

 Zhao H, Yang D, Woese CR and Bryant MP. Assignment of fatty acid-β-oxidizing syntrophic bacteria to 

Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analysis. Int J Syst Bacteriol. 43: 

278–286 (1993). 

 Ziganshin AM, Schmidt T, Scholwin F, Il’inskaya ON, Harms H and Kleinsteuber S. Bacteria and 

Archaea involved in anaerobic digestion of distillers grains with solubles. Appl Microbiol Biotechnol. 89, 

2039–2052 (2011). 

 



 

64 



CHAPTER 3 

65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

66 



CHAPTER 3 

67 1
 Manuscript in preparation for submission as: Energetic yield and microbial characterization of 

Anaerobic Digestion processes of different dairy and agricultural wastes. Merlino G., Rizzi A., 

Cabassi G., Cattaneo , Borin S. and Daffonchio D. 

 

 

 

Energetic yield and microbial characterization of 

Anaerobic Digestion processes of different dairy 

and agricultural wastes
1
 

 

 

 

1. Introduction 
 

Whey is one of the main waste products of dairy industry. Approximately 50% of the 

whey produced worldwide every year is discharged in the environment (Saddoud A. et 

al., 2007). Uncontrolled disposal of this waste can cause serious environmental 

problems: alteration of chemical and physical structure of the soil, reduction of crop 

yields and serious groundwater pollution issues. This is important considering that dairy 

industry represents one of the most influential economic sectors worldwide, also 

because of the strong rise in the demand for milk and milk products in many countries 

which led to steady growth in the productivity of dairy business. 

The principal components of whey are lactose, proteins and mineral salts. This waste is 

characterized by a high organic content concentration and this make such biomass 

suitable for anaerobic digestion (AD) technology with the advantage of energy 

generation in the form of methane. This scenario may represent a significant gain of 

resources, particularly in Italy for the huge number of small and medium-size dairy 

factories which produce typically high-quality cheeses and which may exploit whey as a 

potential renewable resource at zero cost and zero environmental impacts. 

AD is a well-established technology, which enables the production of energy in the form 

of biogas, mainly composed of methane ad carbon dioxide. The process that takes part 

in anaerobic digesters is called methanogenesis. A complex consortium of different 

bacterial and archaeal microorganisms in absence of oxygen, are able to degrade 

gradually the initial organic material breaking it down to biogas. 

Few studies have focused on whey as feeding material for AD process. Demirel et al. 

(2005) showed that AD of dairy wastewater is possible with satisfactory results. 

However, in some studies Malaspina et al. (1996) and Mockaitis et al. (2006) stated that 

whey is a difficult substrate to treat because of the lack of alkalinity, its high organic 

content concentration and the tendency to acidify very rapidly. Recently has been 

reported that co-digestion of whey with manure was proved to be possible up to 50% 

participation of whey, by volume (Gelegenis et al, 2007). 

Limited traditional culture-dependent methods do not allow to identify and characterize 

most of the microorganisms present in the complex anaerobic digestion community 

responsible for the conversion of the organic matter in methane and carbon dioxide.
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However, recently developed molecular techniques have provided powerful tools to 

investigate anaerobic communities without cultivation In this study, anaerobic co-

digestion of cheese whey with dairy manure and other biomasses was studied. 

Experiments were carried out in batch reactors at mesophilic conditions (37°C) for the 

evaluation of biochemical methane potential (BMP). Changes in bacterial and archaeal 

community structure were monitored both before and after the digestion process using 

Denaturing Gradient Gel Electrophoresis (DGGE) technique. This molecular method is 

effective in detecting microbial community shifts and in identifying the phylogenetic 

affiliation of microbial populations in mixed culture systems (Ueno Y., et al., 2001). 

 

 

2. Materials and Methods 
 

2.1 Experimental system 

 

The Automated Methane Potential Test System (AMPTS; Bioprocess control, Sweden) 

was used to carry out the BMP experiments of this research. This is a multi-batch lab-

scale equipment which allow on-line measurements of ultra-low biogas and bio-

methane flows produced from the anaerobic digestion. 

The instrument setup can be divided into 3 units: 15 batch vials (500 ml of operative 

volume) containing the sample with anaerobic inoculums are incubated in a controlled-

temperature bath. The media in each vial is mixed by a slow rotating agitator. The 

biogas produced from each vial passes through an individual vial (CO2-fixing unit), 

containing an alkali NaOH solution. Several gas fractions, such CO2 and H2S, are 

removed allowing only CH4 to pass through the NaOH solution without change. A pH 

indicator is used so the pH level of the solution can be monitored in order to ensure a 

sufficiently high OH
-
 concentration for taking away CO2 and H2S. Thus, CH4 gas 

released from CO2-fixing unit is analyzed using a wet gas flow measuring device with a 

multi-flow cell arrangement, 1 cell for each batch vial. This measuring device works 

according to the principle of liquid displacement and can monitor very low gas flow, 

where a digital pulse is generated when a defined volume of gas flows through the 

device. A data acquisition system is used together with the flow cells in order to record, 

display and calculate data, as well as analyze the results. 

 

2.2 Inoculum 

 

Two samples, taken in different moments, of the same digestate from the Anaerobic 

Digester of Activeted Sludge of a Wastewater Treatment Plant (WWTP) were used as 

bacterial inoculum for two different trials of anaerobic digestion experiments. The 

inoculum samples were processed in the same way. Firstly they were sieved through a 

0.5 mm sieve; than they were per-incubated in anaerobic conditions in order to deplete 

the residual biodegradable organic content, releasing the gas produced. This has be done 

by storing the digestate typically for 5 days at mesophilic temperature (37°C) 

corresponding to the process temperature from where the inoculum was taken from. 



CHAPTER 3 

69 

2.3 Substrates for Bio-Methane Potential (BMP) tests 

 

The choice of the substrates to be used in BMP trials was dependent on the biomasses 

availability in a typical small or medium-size Italian dairy company. Thus the first 

option for our experiments was whey, as one of the most abundant and continuously 

produced byproduct of milk processing. This waste has been tested alone or in co-

digestion with other typical biomasses of a dairy company, but less abundant, both in 

terms of continuous availability and/or quantity. For this reason two energy crops 

residues, i.e. sorghum and triticale silage, where chosen. We further choose to test in co-

digestion with whey also dairy manure, which is typically produced in high quantities in 

a dairy farm, to test the possibility of maintaining the optimal pH conditions for 

methanogenesis as stated by Gelegenis et al (2007). Chemical characterization of 

biomasses used in our trials is shown in Table 1. 

Biomasses pH SO4
2-

 PO4
3-

-P NH4
+
-N NT COD 

Inoculum 8.0 61.1 148.3 643.3 9053.3 12.5 

Whey 5.0 1250.0 190.3 101.4 871.3 71.7 

Table 1. Characteristics of the biomasses. All measure are expressed in mg l
-1

. COD is expressed in g l
-1

. 

 

2.4 Bio-Methane Potential tests 

 

All trials were carried out under mesophilic conditions (37°C) until no methane 

production was detected, typically for a period of 30 days. Each trial was performed in 

triplicate and was composed of a mixture of biomass and inoculum with 1:2 ratio on 

total solids content. The blank trial (inoculum only) was also carried out in triplicate. 

 

2.5 Analytical methods 

 

Each substrate and the inoculum were analyzed for pH, total solids (TS), volatile solids 

(VS), chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH4
+
-

N), sulfate (SO4
2-

) and phosphate (PO4
3-

-P) (Table 1). 

TS and VS were measured according to the procedures in Standard Methods (APHA, 

1998). The pH was measured by a Jenway 3510 pH meter (Bibby Scientific, UK). COD, 

total nitrogen, NH4
+
-N, sulphate and PO4

3-
-P analysis were carried out using Lange DR 

2800 spectrophotometer and cuvette tests from Hach-Lange (Germany). When 

necessary the samples were diluted to reach the correct concentration range for the 

measurement. 

 

2.6 Sampling 

 

Samples from each batch reactor were collected both at the beginning and at the end of 

each trial. The samples were centrifuged (15 minutes, 4000 rpm, +4°C) in a centrifuge 

model 5804R (Eppendorf, Germany) in order to obtain a pellet, which was washed with 

physiological solution and re-centrifuged at the same condition above. In order to obtain 
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a final pellet of 100 mg, variable volumes (2-3 ml) of starting samples were used for 

centrifugation. The pellets were stored at -20°C until DNA extraction. 

 

DNA Extraction 

 

Total community DNA was extracted from the pellet of bioreactor samples using 

PowerSoil DNA Isolation Kit (MoBio Laboratories, USA) following the manufacturer 

guidelines. The purified DNA was eluted with 100 µl of elution buffer (10 mM Tris-

HCl, pH 8.0) and stored frozen at -20°C until use. All DNA were extracted in triplicate. 

Quality of DNA was evaluated by agarose gel electrophoresis. 

 

2.7 Archeael and Bacterial Denaturing Gradient Gel Electrophoresis 

(DGGE) Analysis 

 

The 16S rRNA gene of Archaea was PCR amplified using specific primers ARC787F 

and ARC1059R (Hwang et al., 2008) with an expected PCR product of about 300 bp. A 

40-bp GC-clamp was added at the 5’ end of ARC787F to stabilize the melting behavior 

of PCR fragments (Muyzer et al., 1993). PCR amplification was carried out in a final 

volume of 50 µl reaction mix by using the “FastStart HiFi PCR System dNTPack” kit 

following the manifacturer’s indications (Roche Applied Science, Germany). One µl of 

the extracted DNA was used as template for amplification. The PCR program was 

performed as described by Hwang et al. (2008). 

Bacterial 16S rRNA gene fragments (expected length of 630 bp) were amplified by 

using primers GC357f, containing a 40-bp GC clamp, and 907r (Sass et al., 2001). PCR 

amplification was performed as described previously by Sass et al. (2001). 

The PCR products were loaded onto 7% polyacrylamide gels with a 40-60% and 30-

70% gradient for Bacteria and Archaea respectively (100% denaturant corresponding to 

7M urea and 40% [v/v] formamide) and run for 17h at 90 V in 1× TAE buffer at a 

constant temperature of 60°C using a D-Code electrophoresis system (BioRad, USA). 

Gels were prepared with a gradient maker (BioRad, USA) according to the 

manufacturer’s instructions. Gels were stained with SYBR Green I Nucleic A 

(Invitrogen) and documented with the GelDoc 2000 apparatus (BioRad) by using the 

Diversity Database software (BioRad). Bands of interest were excised from the gels, 

transferred to 50 µl of 10 mM Tris-HCl pH 8 solution and incubated at 37°C for 4 

hours. Eluted DNA (5 µl aliquots) were re-amplified by standard PCR conditions using 

DGGE primer set without GC clamp. The obtained PCR products were purified and 

sequenced (Macrogen, Korea). The sequences were compared with sequences deposited 

in the National Center for Biotechnology Information (NCBI) database by using 

BLAST program. Sequence alignment and neighbor-joining Phylogenetic tree 

construction were carried out using MEGA software, version 5.0 (Tamura et al., 2011). 
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3. Results and Discussion 
 

3.1 BMP results 

 

Two different runs were carried out at mesophilic temperature of 37 °C, up to no 

methane production was detected by the gas cell-flow measuring device of AMPTS. 

In the first run of BMP determination, whey alone was tested. 

In Figure 1 the cumulative production of methane (lN g
-1

TSadded) after deducting the 

production of the blank (inoculum only) are shown. An initial lag phase between day 1 

and 5 can be observed, after which a fast rising in methane production was detected. 

After 21 days no remarkable methane generation was observed. The final volume of 

CH4 produced during this trial was of 400 mlN g
-1

TSadded. 

In the second trial, the potential methane production of whey in co-digestion with dairy 

manure, triticale and sorghum silage was tested (Figure 2). Similar production curves 

were obtained in this second trial. In this case was observed a longer lag phase 

Figure 1. Methane cumulative production (lN g
-1

TSadded) obtained during the BMP trial of whey, after 

deduction of cumulative production of blank. 

Figure 2. Methane cumulative production (lN g
-1

TSadded) obtained during the BMP trial of whey in 

co-digestion with other biomasses, after deduction of cumulative production of blank. 
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compared to the first BMP experiment (between day 1 and 7). Subsequently the plateau 

was reached at day 20 as was observed for the first trial. In general the cumulative 

production obtained with whey alone or in co-digestion gave similar final volume of 

methane of about 500 mlN g
-1

TSadded. 

 

3.2 DGGE and Archaea and Bacteria and phylogenetic analysis 

 

Microbial diversity of archaeal and bacterial communities present in the samples at the 

beginning and after the AD process were assessed by DGGE analysis of 16S rRNA 

gene. 

For what concerns Archaea DGGE gel (Figure 3a), high similarity was clearly 

appreciable both between the beginning and ending time of the AD process of a same 

substrate and also between DGGE profiles of different substrates. It is interesting to 

notice that also the genetic fingerprints of the two different inoculum used in our tests 

were compatible. In fact the samples of inoculum used in our BMP trials were taken 

from the same WWTP, even if in different moments. This suggests that the dominant 

species were already present in the inoculum and were consolidated during the digestion 

process. 

DGGE bands were excised from the gel and then sequenced. The phylogenetic 

affiliation of the sequences and the phylogenetic tree constructed to visualized the 

relationship of the band sequences to the database sequences are reported in Table 2 and 

Figure 4, respectively. Microorganisms strictly affiliated to Methanomicrobiales group 

(similarity higher than 98%) were found in all the samples (bands 12, 13, 14, 25 and 

31). Bands 11 and 22 were only found at the end of the process in the samples of whey 

anaerobically digested alone. Sequence identification of these bands showed similarity 

with methanogens belonging to Methanobacteriales group for band 11 and to genus 

Figure 3. Archaeal (a) and bacterial (b) DGGE profiles of the 16S rRNA gene PCR products 

generated from DNA extracted from ingestate (i) and digestate (d) of substrates analyzed for BMP. 

Samples 1 to 4 are relative to the first trial, while samples 5 to 14 are relative to the second trial. 1-

2, inoculum 1
ST

 i, d; 3-4, whey 1
ST

 i, d; 5-6, inoculum 2
ND

 i, d; 7-8, whey 2
ND

 i, d; 9-10, whey & 

dairy manure i, d; 11-12, whey & triticale silage i, d; 13-14, whey & sorghum silage i, d. Dots and 

numbers indicate the bands sequenced. 
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Methanobacterium for band 22. These two groups include  hydrogenotrophic 

methanogens, which are able use mainly H2 and CO2 as substrates, but also formate and 

sometimes alcohols. 

Microorganisms belonging to genus Methanosarcina were identified in digastate 

samples of whey alone and in co-digestion with dairy manure or triticale silage. 

Similarly to bands 11 and 22, the presence of Methanosarcina-belonging species at the 

end of the AD process suggests the importance of these microorganisms in methane 

production. The sequences of these bands were closely affiliated to species 

Methanosarcina barkeri, Methanosarcina vacuolata and Methanosarcina siciliae. 

Genus Methanosarcina, as Genus Methanosaeta, comprises acetoclastic methanogens, 

which are the main responsible for CH4 production in typical anaerobic digestion 

processes (Demirel and Scherer, 2008). Methanosaeta is able to grow only on acetate, 

while Methanosarcina is more versatile and can use other substrates, as H2 and CO2, 

methanol and methylamine. 

Figure 4. Phylogenetic tree showing the phylogenetic relationships of archaeal 16S rRNA 

sequences with reference sequences deposited at the GenBank database. The tree was construct 

using the Maximum Likelihood algorithm and the Tamura Nei parameter correction and was 

bootstrapped 2000 times. 



 

 

 

 

 

 

Band Closest relative (NCBI) Accession n
o
. Identity (%) 

2-15-

16-17-

18 

Methanosata concilii Opfikon NR028242 99.5-99.8 

3 Uncultured Methanomicrobiales archaeon CU917241 98.0 

 Methanolinea tarda strain sk0808-3 FJ155846 97.0 

6-19 Methanosaeta concilii Opfikon NR_028242 100 

7-24 Uncultured Methanosarcina sp. clone W30B CU916955 100 

 Uncultured Methanomicrobiaceae archaeon isolate GU734610 98.3 

 Uncultured Methanolinea sp. EU857626 98.0 

9 Methanosarcina sp. MO-MS1 AB598272 100 

10 Methanosarcina sp. HB-1 AB598272 98.7 

 Methanosarcina barkeri strain TR-Z13 AJ012094 98.5 

11 Uncultured Methanobacteriales archaeon CU916723 98.6 

12-13-

14-25-

31 

Uncultured Methanomicrobiales archaeon CU916955 98.5-99.5 

20 Uncultured Methanomicrobiales archaeon CU917455 94.7 

22 Methanobacterium beijingense strain M4 EU544027 99.5 

 Uncultured Methanobacterium sp. Clone Gran5M4 AY899839 99.5 

23-30 Methanosarcina siciliae. Type strain DSM3028 (T) FR733698 99.1 

 Methanosarcina vacuolata type strain DSM1232 (T) FR733661 99.1 

26 Methanosarcina barker strain TR-Z13 HQ591417 99.1 

27-28 Methanosarcina barkeri type strain DSM 800 (T) AJ012094 99.0-99.5 

   Table 2. Phylogenetic affiliation of the archaeal 16S rRNA sequences from DGGE bands. 

 

 

 



 

 

 

 

 

Band Closest relative (NCBI) Accession n
o
. Identity (%) 

6MA Comamonas sp. strain SFCD1 AY134850 99.4 

8MA Uncultured Betaproteobacteria from clone QEEB1DH12 CU917876 99.6 

 Diaphorobacter oryzae strain RF21 EU342380 EU342380 97.9 

10MA Azovibrio sp. BS20-3 AF011349 97.5 

11MA Syntrophomonas sp. TB-6 AB098336 99.8 

12MB/21MB Uncultured Firmicutes bacterium clone QEEB1CF08 CU918340 100 

20MB/14MB Coprothermobacter sp. GK5 AB537980 100 

15MA Petrobacter sp. Clone SEQ55_11FClone_AER HM059778 98.2 

16MA Uncultured Bacteroidetes bacterium from clone QEDR2DB12 CU922568 99.6 

 Uncultured Anaerophaga sp. Clone MDAF11 EU214540 90.6 

17MA/19MB Uncultured Aminanaerobia bacterium from clone QEDN10CG08 CU926332 99.8 

 Synergistetes bacterium enrichment culture clone DhR^2/LM-F01 HQ012836 97.4 

18MA Uncultured Aminanaerobia bacteriumfrom clone QEEA1CC11. CU918717 98.7 

 Synergistaceae bacterium enrichment culture clone B31171 HQ133014 98.3 

1MB/1MA Uncultured Unclassified bacterium clone QEEB2BA10 CU918318 100 

 Uncultured Bacteroidetes bacterium clone QEDQ CU923255 99.8 

 Uncultured Caldiserica bacterium clone NRB39 HM041956 94.7 

3MB Uncultured Unclassified bacteriumfrom clone QEEB2BA10 CU918318 99.6 

 Uncultured Bacteroidetes bacterium from clone QEDQ2DA03 CU923255 99.4 

5MB Uncultured Bacteroidetes bacterium from clone QEDN11CG07 CU926077 99.2 

6MB Uncultured Bacteroidetes bacterium from clone QEDP1BC04 CU924115 97.6 

3MA-4MA/8MB Clostridium butyricum strain TM 9B FR734080 99.0-100 

11MB Uncultured bacterium clone 382H08 . HQ236882 97.5 

 Uncultured Clostridium sp. Clone MS7r-11 HQ396565 97.3 

16MB/MA Uncultured OP8 bacterium clone 

QEDP1CE04 

CU924634 99.4-99.8 

  Table 3. Phylogenetic affiliation of the bacterial 16S rRNA sequences from DGGE bands. 
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Moreover, is important to emphasize that the first one is characterized by a higher 

affinity to substrates but lower growth yield, while the latter has a lower affinity to the 

subbstrates and outcompete Methanosaeta at high concentrations of acetate (>70 mg/l). 

Genetic profiles of bacterial community is shown in Figure 3b. Compared to genetic 

fingerprints obtained for Archaea, a more complex community was observed. 

This is not surprising considering the high variability of the chemical characteristics of 

the substrates tested. Bacterial communities in all samples were characterized by a high 

diversity, including species belonging to phylogenetic groups of Bacteroidetes, 

Deltaproteobacteria, Firmicutes and Aminoanaerobia. High stability of the community 

was observed for the different substrates tested, as already seen for the archaeal 

community structure. The most intense bands (e.g. 1MB/1MA, 9MA/16MB, 

14MA/20MB) were present in all the samples. The same profile was clearly visible for 

the inoculum bacterial community suggesting, as already seen for Archaea, the 

importance of the inoculum for the good performance of the AD process. Only few 

bands were observed only in the inoculum of the second trial (8MB, 11MB). However 

for the majority of the bands sequenced, it was not possible to obtain a specific 

identification. Most of the microorganisms identified were related to unknown Bacteria, 

mostly found in anaerobic digesters. Phylogenetic affiliation of the sequences is 

reported in Table 3. The most abundant bands were 1MA/1MB and 3MB strictly related 

to unknown Bacteroidetes (>99% similarity); bands 9MA/16MB were closely affiliated 

to a microorganism isolated from mesophilic anaerobic sludge; sequences of bands 

14MA/20MB were identical to Coprothermobacter sp., a microorganism belonging to 

Thermoanaerobacteriaceae; bands 17MA/19MB were found to be very similar to 

Bacteria belonging to Aminoanaerobia. 

These results are in agreement with the data of recent studies which found the presence 

in anaerobic reactors of a core of bacterial phylotypes formed by microorganisms 

affiliated to Chloroflexi, Betaproteobacteria, Bacteroidetes e Synergistetes (Riviere et 

al., 2009) As observed for Archaea, sometimes some characteristic bacterial species 

were found only at the end of the process. Clostridium butyricum was observed in the 

digestate sample of whay in the first trial (bands 3MA and 4MA/8MB). 

 

 

4. Conclusions 
 

BMP trials showed that whey can be a extremely good substrate for anaerobic digestion 

alone and in co-digestion with other biooamsses (METTERE I VALORI DI 

PRODUZIONE MASSIMA). 

Microbial characterization at the beginning and at the end of the AD trials showed a 

high microbial diversity both for Archaea and Bacteria. Samples of different substrates 

tested often had a similar microbial community. However some significant differences 

were observed in the genetic profiles between start and end of the same substrates, 

allowing to identify microorganisms with a main role in the digestion process. Archaeal 

DGGE fingerprints showed in almost all the samples the dominance of acetoclastic 

methanogen belonging to Methanosaeta and of hydrogenotrophic methanogens 
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affiliated to Methanomicrobiales. The genetic profiles of the bacterial communities 

suggested substantial stability and diversity in the structure, comprising species 

belonging to Bacteroidetes, Deltaproteobacteria, Firmicutes and Aminoanaerobia. 

Sometimes the presence of microbial characteristic species was observed at the end of 

the process, e.g Clostridium butyricum in digestate samples of whey. 
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Microbial community structure and dynamics of a 

two-stage anaerobic digestion process treating 

swine slurry and market bio-waste and comparison 

with a single-stage system
1

 

 

 

 

1. Introduction 

 

Anaerobic digestion process is considered an effective way to treat organic waste 

producing energy in the form of biogas of high calorific value (methane and hydrogen) 

(Angenent et al., 2004). This technology has been successfully performed to produce 

methane since 1970s, but recently its use has raised an revived and increased interest as 

an alternative to fossil fuel-derived energy, with the benefit of reducing environmental 

impact by providing a clean fuel and reducing carbon dioxide emissions to the 

atmosphere (Chynoweth et al., 2001; Nath and Das, 2004). Significant advantages 

compared to aerobic treatment include: reduced generation of sludge, lower energy 

requirement, lower space requirements, lower overall costs, stabilization of organic 

waste, reduction of the odor (Van Starkenburg, 1997; Chan et al., 2009). Anaerobic 

process has been applied on a variety of solid biomasses, such as organic fractions of 

municipal solid wastes, and high-strength organic wastewaters, such as agro-industrial 

wastewaters (Gunaseelan 1997; Chong et al., 2009; Nishio et al., 2004).  

Anaerobic digestion process is a complex biological process requiring three major steps 

(hydrolysis/acidogenesis, acetogenesis and methanogenesis) and involving the 

participation of different functional groups which, interacting together in a delicate 

balance system, make the whole process of conversion of complex organic matter to 

methane. It has been commonly performed by using a single-phase anaerobic digestion 

process, however recently a two-phase process has been received significant attention 

Demirel and Yenigun, 2002; Demirel et al., 2010. Splitting the anaerobic biological 

process in two phases, hydrolysis-acidogenesis and methanogenesis, and using two 

reactors in series with production of hydrogen and methane, respectively, is considered 

a way to enhance the control and stability of the process and has been proposed recently 

also an approach to increase the efficiency of energy recovery (Liu et al., 2006; Luo et 

al, 2011; Tenca et al., under submission). Biological production of hydrogen entails 

bacteria fermenting organic compounds, generally carbohydrates, directly to hydrogen, 

carbon dioxide and organic acids and alcohols (Valdez-Vazquez and Poggi-Varaldo, 

2009). Residual energy contained in the high-volatile fatty acids (VFAs) content 

effluent is subsequently converted to bio-methane by methanogens in a second-stage
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reactor. Early studies of bio-hydrogen production were focused on pure cultures of 

Clostridia (Karube et al., 1982; Taguchi et al., 1996) and Enterobacteria (Tanisho  et al., 

1989; Kumar and Das, 2000) fermenting simple soluble substrates, like starch, glucose 

or sucrose. However, pure carbohydrates are very expensive and the use of pure culture 

system is problematic as they are prone to contamination. In following studies, 

exploitation of mixed cultures proved to be successful because easy of control and 

permitting the use of low cost solid organic waste. Recently, a number of studies have 

been performed investigating the feasibility of use of different wastewaters. 

Investigations for production of hydrogen were carried out using diverse organic wastes, 

such as agro-industrial wastewaters (Hussy et al., 2003; Fang et al., 2006; O-Thong et 

al., 2008), organic municipal wastes, including food wastes (Shin et al., 2004; Ueno et 

al., 2006; Liu et al., 2006; Chu et al., 2010; Lee et al., 2010). The utilization of organic 

wastes as substrate for hydrogen production may also be useful for solving the problem 

of problematic waste disposal, as the case of substrates with very low pH or with high 

concentrations of ammonia (Demirel et al., 2010). 

In general two categories of organic substrates particularly promising to be used for 

suistainable bio-hydrogen production, because of their abundance and cheapness, are 

livestock waste and food waste. Fruit and vegetable wastes are produced in large 

quantities, especially in the big cities, where constitutes about 40% of the total organic 

solid waste. Also animal manure is produced in large amounts, only in Europe 1500 

million tons of livestock manure are produced yearly (Holm-Nielsen et al., 2009). Food 

waste, due to its high biodegradability it represents a nuisance in municipal landfills, 

manure a major risk of air and water pollution. Since livestock manure has been 

typically treated in conventional single-step biogas plants in co-digestion together with 

other biomasses, these farm biogas plants provide the necessary equipment to readily 

implement bio-hydrogen bioprocesses (Cantrell et al., 2008). Although research studies 

were performed examining the influence on the digester performance of operational 

conditions, such as temperature, pH, heat, chemical treatments and addition of nutrients, 

only a limited number of experiments were performed in continuous system (Zhu et al., 

2007; Karlsson et al., 2008; Kotsopoulos et al., 2009; Wang et al., 2009; Xing et al., 

2010), and characterization of microbial community was rarely carried out (Yokoyama 

et al., 2007a; Yokoyama et al., 2007b). Hence, further research is desirable, especially 

investigating the potential of the co-digestion of livestock manure and carbohydrate-rich 

feed, known to be ideal substrate for hydrogen production (Guo et al., 2010).  

In the anaerobic digestion process molecular hydrogen is an important intermediate of 

the energy transfer system. In a two-phase anaerobic system, in the acidogenic phase for 

the production of hydrogen, the key issue is to enable the accumulation of hydrogen 

which in anaerobic environments is typically consumed very quickly by different 

microbial groups. In particular, due to energetic of biochemical reactions carried out by 

different microorganisms, three microbial groups appear to be most important: H2 

producers (fermenters), H2-consuming methanogens and the H2-consuming acetogens. 

In order to facilitate hydrogen producing bacteria, while preventing H2-consuming 

microorganisms, pretreatments and biokinetic control of parameters, such as, pH and 

hydraulic retention time (HRT), have been applied. Heat-treatment of the inoculum, 
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selecting for spore-forming bacteria, is adopted to kill methanogens, while operating at 

low pH and high dilution rate is employed for inhibition of methanogens and possibly 

other H2-consuming microorganisms (Valdez-Vazquez and Poggi-Varaldo, 2009). 

However, the knowledge on the microbial characterization of the anaerobic community 

in two-stage processes is still limited. Studies on hydrogen fermentation system have 

been mainly focused in investigating the structure of the microbial consortia; the 

dynamics of bacterial populations were often limited to qualitative evaluations (Fang et 

al., 2006; Xing et al., 2008; Huang et al., 2010), and quantitative analysis, when 

performed, were restricted to the monitoring of the hydrogen producing bacteria (Hung 

et al., 2008; Tolvanen et al., 2008; Wang M-Y et al., 2008). Quantitative analysis carried 

out by real time PCR were recently reported for single-phase anaerobic digestion (Hori 

et al., 2006; Yu et al., 2006), but, to our knowledge, no reports relating to quantitative 

dynamics of the key functional bacterial groups have yet been reported for two-phase 

anaerobic processes. Knowledge of evolution of microbial community structure during 

bioreactor operation is important in order to improve the anaerobic digestion process 

and increase process stability (McMahon et al., 2007) 

The aim of this study was to characterize and compare the microbial community of a 

two-stage reactor and a conventional single-phase bioreactor both fed with a mixture of 

liquid swine manure and fruit and vegetable market waste. Energetic and chemical 

performance of these lab-scale intermittent-continuous stirred tank reactor (I-CSTR), 

operating under thermophilic conditions, was previously reported (Tenca et al., under 

submission). Here the structure and the dynamics of the microbial population were 

qualitatively and quantitatively analysed. Denaturing Gradient Gel Electrophoresis 

(DGGE) was used to investigate the structure and the dynamics of bacterial and 

archaeal communities and to identify the dominant hydrogen-producing bacteria and 

methanogens; Real-Time PCR was employed to monitor quantitatively the temporal 

changes of the major functional bacterial groups involved in the anaerobic process. 

 

 

2. Materials and methods 
 

2.1 Bioreactor set up and operation 

 

Three anaerobic previously described (Tenca et al., under submission) completely 

stirred tank reactor (CSTR) were used as source of biomass samples. Briefly, the two-

stage process consisted of a hydrogen-producing reactor with 2.3 Lworking volume (H) 

and a methane-producing reactor with 14.7 L working volume for (M). The single-stage 

process was a reactor with 14.7 Lworking volume (MM). The hydrogen-producing 

reactor was inoculated with heat-shocked (100 ºC for 2 h) anaerobic seeding sludge 

collected from a full-scale anaerobic digester treating household source-separated bio-

waste and agro-industrial by-products. The same sludge, without heat-shock, was used 

as inoculum for both M and MM. A mixture of swine manure and fruits and vegetables 

market waste (3:1 w/w ratio) were used as feeding substrate and added to H and MM 

twice a day. The feeding source to H was drastically reduced to about once a week 
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during the days 16-35 17-32 and the response of the community to starvation was 

evaluated. The characteristics of the feeding mixture are reported in Table 1. The 

operational hydraulic retention time (HRT) in H, M and MM were 3, 22 and 25 days, 

respectively. The organic loading rate (OLR), expressed as total solids (TS) were 13.3, 

2.3 and 1.6, respectively. 

Parameters Values 

Total solids (TS) (g kg
-1

) 40 ± 1 

Volatile solids (VS) (g kg
-1

) 854 ± 26 

Chemical Oxygen Demand (COD) (g kg
-1

) 40 ± 3 

Total Kjeldahl Nitrogen (TKN) (g kg
-1

) 2.4 ± 1.2 

Ammonium (mg kg
-1

) 1.5 ± 0.7 

Acetate (mg kg
-1

) 689 ± 853 

Propionate (mg kg
-1

) 182 ± 275 

Butyrate nd 

pH 7.2 ± 0.1 

 Table 1: Physicochemical characteristics of the influent mixture “nd”, not detected. 

 

Temperature was maintained at 55 ± 2°C by the temperature controller. pH was 

measured in continuous and was not actively controlled. Qualitative and quantitative 

biogas analysis were performed automatically in each reactor by gas flow-meters.  

 

2.2 DNA Extraction 

 

Samples were centrifuged (10000g, 30 min, 4°C) and the pellet washed twice with 2 

ml of sterile distilled water and centrifuged again in the same conditions. Variable 

volumes (2-3 ml) were used for centrifugation to obtain a final pellet of 100 mg. The 

pellets were stored at -20°C until DNA extraction. The DNA extraction was performed 

using the PowerSoil DNA Isolation kit (MoBio Laboratories, Inc., Milan, Italy) 

according to the manufacturer’s instructions. The purified DNA was eluted with 100 l 

of elution buffer (10 mM Tris-HCl, pH 8.0) and stored frozen at -20°C until use. The 

quantity and quality of the DNA extracted was checked by agarose gel electrophoresis 

and by spectrophotometer measurement of the ratio A260/A280. All DNA were extracted 

in duplicate. 

 

2.3 PCR-DGGE analysis 

 

The primer sets targeting the 16S rRNA gene of Bacteria and Archaea were GC-357-

F/907-R  and GC-ARC787-F/ARC1059-R, respectively (Sass et al., 2001; Hwang et al., 

2008). Primer pair GC-Bac357-F/Bac907-R generated a 550-585-bp fragment (Table 2), 

whereas primer pair GC-ARC787-F/ARC1059-R generated a 273-bp fragment. PCR 

reaction mix (50 l) for GC-Bac357-F/Bac907-R  primer pair contained the following 

concentrations: 1 PCR buffer, 1.5 mM MgCl2, 200 M of each dNTP, 0.3 µM of each 

primer (Primm, Milan, Italy), 1.5 U of Taq DNA polymerase. All reactions components, 

except primers, were from Invitrogen (Invitrogen, Milan, Italy). PCR amplification with 
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GC-ARC787-F/ARC1059-R primer set was carried out by using the “Fast Start High 

FastStart HiFi PCR System dNTPack” kit following the manifacturer’s indications. The 

PCR program for primer sets GC-Bac357-F/Bac907-R and GC-ARC787-F/ARC1059-

R, was performed as described by Sass et al. (2001) and Hwang et al. (2008), 

respectively. 

Target group Name Target 

gene 

Amplicon 

(bp) 

Reference 

Bacteria Bac357-F 16S 

rRNA 

550-585 Favia et al. 

2007 Bac907-R 

Hydrogen-producing 

bacteria (HPB) 

hydF1 hydA 700 Xing et al. 

2008 hydH 

Acetogens fhs1 fhs 250 Xu et al. 

2009 FTHFS-r 

Sulphate-reducing 

bacteria (SRB) 

Drs1+-F dsrA 221 Kondo et al. 

2004 Dsr-R 

Archaea Arch 931-F 16S 

rRNA 

169 Einen et al. 

2008 ArchM1100-R 

Methanosarcinales 

(MSL) 

Msl812-F 16S 

rRNA 

354 Yu et al. 

2005 Msl1159-R 

Table 2. Real time PCR primer sets used in this study. 

 

All PCR reactions were performed using as template dilutions corresponding to 5 µl of  

the DNA extracted from H and 1 µl of the DNA extracted from  M and MM (100 ng). 

DGGE gels were prepared with a gradient maker (BioRad, Milan, Italy) according to 

the manufacturer’s instructions. The PCR products (10 µl) were loaded onto 7% 

polyacrylamide gels containing a denaturant gradient of 30-70% or 40-60% for Bacteria 

and Archaea, respectively (100% denaturant contained 7 M urea and 40% v/v 

formamide). Electrophoresis was run at 90 V for 17 h in 1 × TAE buffer at a constant 

temperature of 60°C using a D-Code electrophoresis system (BioRad). Gels were 

stained with SYBR(R) Green I Nucleic A (Invitrogen) and documented with the GelDoc 

2000 apparatus (BioRad) by using the Diversity Database software (BioRad). DNA 

bands of interest were excised from the gels, transferred to 50 µl of Tris-HCl 10 mM 

and incubated at 37°C for 4 hours. Eluted DNA (5 l aliquots) were re-amplified by 

standard PCR conditions using DGGE primer set without GC clamp. The obtained 

sequences (Macrogen, Seoul, Korea) were compared with the sequences deposited in 

the National Center for Biotechnology Information (NCBI) database by using BLAST 

program. Sequence alignment and maximum likelihood phylogenetic tree construction 

were carried out using the MEGA software, version 5.0 (Tamura et al., 2011). 

DGGE gel images were analyzed using the Quantity One software (Biorad). Lane 

background was subtracted by the “rolling disk” tool. Bands were detected 

automatically and matched manually. DGGE-based molecular parameters, namely 

dynamycs (Dy), richness (Rr) and community organization (Co), were calculated as 

previously described (Mertens et al., 2005, Marzorati et al., 2008). Briefly, Dy was 

calculated from the similarity matrix (100-%similarity); Rr was the total number of 

bands multiplied by the percentage of denaturing gradient used; Co was the percentage 
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of Gini coefficient, a value describing the degree of evenness within a community by 

measuring the normalized area between the Lorenz curve and the perfect evenness line.  

 

2.4 Real-time PCR analysis 

 

Quantitative PCR assays were performed using primer set reported in Table 2. 

Considering that in anaerobic reactor most Archaea are methanogens (Yu et al., 2005), 

an archaeal PCR real time assay was used to estimate quantitatively methanogens. PCR 

SYBR green reactions were prepared by using the “Brilliant SYBR Green QPCR 

Master Mix” kit (M-Medical) and carried out in 96-well plates on the I-Cycler (Biorad). 

The reaction mix (25 µl) contained: 1 Brilliant SYBR Green (2.5 mM MgCl2), 0.12 

M of each primer, and 5 µl of  the DNA extracted from H and 1 µl of  the DNA 

extracted from M and MM. For each sample, a real time assay was carried out (one 

amplification per extracted DNA). In the case of primer set Msl812-F/ Msl1159-R extra 

MgCl2 was added to a final concentration of 4.0 mM. The thermal cycling program 

consisted of 10 min at 95°C, followed by 40 cycles of 30 s at 95°C, 1 min at X°C (X = 

58°C for Bac357-F/Bac907-R, 49°C for hyd-F1/hyd-H, 55°C for fhs1-F/THFS-R, 59°C 

for Drs1+-F/Dsr-R, 64°C for Arch 931-F/ArchM1100-R, 60°C for Msl812-F/Msl1159-

R) and 1 min at 72°C. Finally, a melting curve analysis was performed for verifying the 

specificity of PCR products. The program was as follows: denaturation of 1 min at 

95°C, cooling of 1 min at 55°C and then 95°C again, at a rate of +0.5°C per cycle 81 

cycles, 10 s/cycle. At the end of the cycling, Cycle threshold (Ct) values were 

calculated using the Biorad real-time software (version 3.0a) according to the 

manufacturer’s instructions. Standard curves were generated by tenfold diluting the 

standard plasmids to obtain a series of concentrations ranging from 10 to 10
8
 copies of 

plasmid DNA per 5 L volume. The standard plasmids were prepared by cloning into 

pGEM T-Easy vector (Promega, Milan, Italy) or pCRII-TOPO vector (Invitrogen) the 

amplicons obtained by PCR amplification of the target genes (Table 2) using as 

template genomic DNA from Asaia sp. (AM404260) in the case of Bacteria (Favia et 

al., 2007) or DNA isolated from an anaerobic batch digester in the case of other target 

groups. The cloned gene fragments were: Methanobrevibacter sp. (DQ402034) with 

98% similarity for Archaea; Methanosarcina mazeii LM5 (DQ987528) with 98% 

similarity for Methanosarcinales; Desulfobacterium autotrophicum (CP001087) with 

98% similarity for sulfate-reducing bacteria; Clostridium beijerinckii (CP000721) with 

76% similarity for acetogens; uncultured bacterium (EU828435) with 75% similarity 

for hydrogen-producing bacteria. Plasmid DNA was extracted and purified from E. coli 

using the QIAprep Spin Miniprep kit (Qiagen, Milan, Italy). DNA concentration was 

determined by UV260 absorption on a SmartSpec 3000 spectrophotometer (Biorad) and 

its purity checked on the basis of 260/280 nm absorption ratio. Conversion of 16S rRNA 

gene copy numbers, determined by real-time PCR analysis, to cell number was done 

considering the average 16S rRNA gene copy numbers of bacteria (4/cell) and 

methanogens (2.5 copies/cell) reported in the Ribosomal RNA Database (rrnDB, Lee et 

al, 2009). In the case of real-time PCR targeting functional genes, it was assumed that 

copy number was equivalent to cell number based on the premise that the majority of 
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known bacteria in the database have a single copy of the functional gene  (Kondo et al, 

2004, Xu et al, 2009). 

 

 

3. Results 
 

3.1 Operation performance of anaerobic bioreactors  

 

The two-stage hydrogen-methane and the single-stage methane anaerobic digestion 

processes were monitored for 2 and 1 month, respectively. In the acidogenic reactor (H) 

the content of hydrogen in biogas had an average value of  46% (± 6.4) v/v, ranging 

from a minimum of 28% to a maximum of 55%; methane was detected from 25 day to 

50 day of operation in proportion of 1-5% to the total biogas. Hydrogen production was 

discontinuous with a range of production rate of 0.27-3.09 LH2/L d and an average 

hydrogen yield of 95 LH2/KgVS added. Low hydrogen production rate was registered 

during the days of deficient feeding, whereas high yield, with the exception of day 46, 

was recorded afterwards with a maximum at day 38. In the methanogenic reactor of 

two-stage process (M), methane production rate varied from a minimum of 0.11 L/L d 

to a maximum of 0.64 L/L d, with an average rate of 0.48 LCH4/L d. The methane 

content in biogas was 66.8 (± 4.3) v/v. In the methanogenic reactor of single-stage 

process (MM) the methane production rate was 0.53 LCH4/L d with a methane content of 

54.3 (± 3) v/v.  

VS removal rate was 31% for H and 67% for the overall process, whereas the single-

stage process showed a 69% VS removal. In H carboxylic acids represented 

approximately almost 50% of the total volatile organic compounds (VOCs) in liquid 

digestate phase. The major acidogenic byproduct was hexanoic acid, representing 61% 

of total VFAs, followed by acetate and secondarily butyrate and propionate. Total VFAs 

concentration was of about 4000 mg acetate/L and acetate accumulated with an average 

value of about 3400 mg acetate/L. In M the concentration of acetate decreased 

drastically – it was 1518 mg acetate/L in the feeding source - and remained at low level 

(< 300 mg acetate/L) indicating the activity of acetotrophic methanogens. Butyrate was 

completely degraded and, because it cannot be directly used by methanogens, the 

complete degradation suggested the presence of actively sintrophic bacteria in the 

microbial consortia. At day 59, a partial accumulation of VFA (1045 mg acetate/L) and 

consequently inhibition of the process occurred (1890 mg acetate/L at day 66). In MM 

the total VFAs were detected at concentrations (763-1056 mg acetate/L) about 

two/three-fold higher than M with acetate as the major product and butyrate under the 

limit of detection. For both processes organic nitrogen mineralization was over 70% 

with average ammonium concentrations (1.5 g/kg) not inhibitory to the methanogenic 

Archaea.  pH attested at average values of 5.4 (± 0.2) for H and 7.5 (± 0.07) and 7.75 (± 

0.15) for M and MM, respectively. Whereas in M and MM pH was always stable, in H a 

significant of decrease of pH from 5.0 to 5.5 was observed after approx. day 51. 
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Figure 1. Bacterial (A, B, C) and archaeal DGGE (A', B', C') profiles of the 16S rRNA gene PCR products amplified from DNA extracted from samples obtained 

from acidogenic (A, A') and methanogenic (B, B') two-stage process reactors and from single-stage process reactor (C, C'). Lanes  are labeled with the sampled 

time of the reactor (days), lane F indicate the DGGE profile of the feeding source. Dots and numbers indicate the bands sequenced. 
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3.2. Microbial community characterization of hydrogenogenic 

acidogenic process 

 

3.2.1. Qualitative analysis 

 

The dynamics of the bacterial community structure were studied by PCR-DGGE over a 

65 days period (Fig. 1A). The variations were particularly marked during about the first 

month of the operation; after the starvation period, a quite stable, more even and low 

diversity community was established Fig. 4). 

The major bands were retrieved for sequence identification. The sequences affiliations 

and the phylogenetic relationships of identified sequences with reference strains are 

shown in Table 3 and Figure 2. Most bands were not closely related to known species. 

All the 11 identified bands were assigned to the phylum of Firmicutes; 9 fell into the 

Clostridiales order (2 Clostridium sensu stricto) and 2 into the Thermoanaerobacterales 

order. Band H1, already identified at the steady-state (Tenca et al., under submission) as 

strictly related to an uncultured species from an hydrogen fermentor (Lee et al., 2010), 

was detected throughout the entire time-course process. According to the intensity of 

this band this bacterium had a high population density appearing as a predominant 

microorganism. Several other bands, namely H2, H11, H14, H15, H39, mainly detected 

from day 9 to day 15, were also found to be closely related (99-100%  similarity) to 

uncultured bacteria detected by the same authors. 

Species relative to bands H1, H5, H6 and H8 were assigned (99% according to RDP 

classifier, confidence threshold of 80%) to the family of Ruminococcaceae, and showed 

94% similarity to Clostridium sp. BS-1, a newly sludge isolate which ferments D-

galactitol producing H2, acetate, butyrate and hexanoic acid (Jeon et al., 2010), and 93% 

similarity to Clostridium sp. strain Z6, isolated from paper mill wastewater, and 

Clostridium sporosphaeroides, capable to produce hydrogen (and acetate) from 

glutamate. Bands H2 and H3 were assigned to unclassified Lachnospiraceae; they were 

closely related to an uncultured bacterium clone found in the hydrogen digester of Lee 

et al. (2010) and showed >96% similarity to uncultured Clostridium clones involved in 

the cellulosic and lignocellulosic waste digestion (Shiratori et al., 2006; Yan et al, 

unpublished).  Bands H9 and H10, present with high intensity mostly after 36 day of 

operation and at stable hydrogen production, felt into the Clostridiaceae cluster I and 

were identified with 100% similarity to many uncultured bacteria associated to swine 

and human feces, and anaerobic reactors treating swine manure (Perkins et al., 

unpublished; Talbot et al., unpublished). Band H7, present with only at the beginning of 

the process, matched (99.4%) with Clostridium cellulosi, a thermophilic cellulolytic 

bacterium previously detected in several hydrogen-producing microflora (Ueno et al., 

2001a; Fang et al., 2002). Band H4, detected at days 11-15, fully matched with an 

uncultured Thermoanaerobacterium from an hydrogen reactor treating food waste 

(Wang Phd thesis, 2008). H4 was also closely related (99.1%) to 

Thermoanaerobacterium thermosaccharolyticum, a thermophilic saccharolytic 

microorganism involved in acetate/butyrate fermentation from complex carbohydrate 

with production of large hydrogen amount (Ueno et al., 2001a, b).
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Band Closest Relative Accession 

number. 

Identity 

(%) 

F1 Uncultured bacterium clone B55-K-B-C04 

Clostridium sp. F-02 

DQ887963 

AB504377 

99.8 

96.7 

H1, M3 Uncultured bacterium clone VKW-TB-3.3 

Uncultured Clostridia bacterium clone S44 

GQ849504 

EU887963 

99.8 

98.0 

H2 Uncultured bacterium clone VKW-TB-7 

Uncultured bacterium clone EBR-02E-0436 

Uncultured Lachnospiraceae bacterium clone 670 

GQ849508 

AB221356 

JN173113 

99.4 

97.2 

95.4 

H3 Uncultured bacterium clone VKW-TB-7 

Uncultured bacterium clone EBR-02E-0436 

Clostridia bacterium enrichment culture clone 40D01 

GQ849508 

AB221356 

FJ796699 

100 

97.8 

95.9 

H4 Uncultured bacterium clone TKW-HPB-6 

Uncultured Thermoanaerobacteriaceae bacterium clone 

THPB-7 

Thermoanaerobacterium thermosaccharolyticum strain 

D120-7 

GQ505063 

AM408569 

 

AF247003 

100 

99.7 

 

99.1 

H5, M7 Uncultured bacterium clone VKW-TB-3.3 

Uncultured Clostridia bacterium clone S44 

GQ849504 

EU887963 

100 

98.2 

H6, M8 Uncultured bacterium clone VKW-TB-9 

Uncultured Clostridia bacterium clone S39 

GQ849510 

EU887964 

99.8 

97.9 

H7, M1 Clostridium cellulosi strain D3 FJ465164 99.4 

H8 Uncultured bacterium clone VKW-TB-9 

Uncultured Clostridia bacterium clone S39 

GQ849510 

EU887964 

99.4 

97.6 

H9 Uncultured Clostridium sp. clone BBC516 GQ868438 100 

H10 Uncultured bacterium clone GP_1aaa01g02 

Uncultured bacterium clone 17s-53 

EU473328 

HM036018 

100 

100 

M2 Uncultured Thermotogae bacterium clone QEEA3DA10 

Petrotoga mobilis strain SJ95 

CU918794 

NR027612 

99.8 

90.4 

M4 Uncultured bacterium clone CFB-1 

Uncultured Clostridiales bacterium clone IAFpp8j31 

AB274490 

GU214161 

99.8 

98.0 

M5 Uncultured bacterium clone HAW-R60-B-727d-T 

Clostridium sp. 6-31 

FN436062 

FJ808611 

99.8 

93.2 

M6 Uncultured Firmicutes bacterium clone TG-57 AB451852 99.4 

M9 Uncultured bacterium clone MS14315-B003 

Clostridium caenicola strain EBR596 

Clostridium thermocellum ATCC 27705 

FN994055 

AB221372 

NC009012 

99.8 

95.6 

95.8 

M10 Uncultured Firmicutes bacterium clone SHBZ858 EU639242 99.8 

M11 Uncultured bacterium clone FB  

Clostridium sp. 6-31 39 

AB494315 

FJ808611 

100 

89.0 

MM1 Uncultured bacterium clone SMQ16 

Bacillus infernus strain TH-23 

AM930325 

U20385 

99.1 

96.8 

MM2 Uncultured bacterium clone SMQ9 

Bacillus infernus strain TH-23 

AM930323 

U20385 

100.0 

97.8 

MM3 Uncultured bacterium clone SMQ9 

Bacillus infernus strain TH-23 

AM930323 

U20385 

99.6 

97.4 

MM4 Uncultured Bacteroidetes bacterium clone QEDV3DE11 

Uncultured Porphyromonadaceae bacterium clone 

TCB179x 

CU919667 

DQ647169 

99.6 

90.4 

MM5 Uncultured bacterium clone DC87 

Uncultured Porphyromonadaceae bacterium clone 

TCB179x 

HM107074 

DQ647169 

100.0 

90.7 

MM6 Uncultured Bacteroidetes bacterium clone QEDV3DE11 

Uncultured Porphyromonadaceae bacterium clone 

TCB179x 

CU919667 

DQ647169 

100.0 

90.7 

MM7 Uncultured bacterium clone DC87 

Uncultured Porphyromonadaceae bacterium clone 

TCB179x 

HM107074 

DQ647169 

99.8 

90.6 

MM8 Uncultured Anaerobaculum sp. clone SHBZ995 

Anaerobaculum mobile 16S rRNA gene, type strain NGA 

EU639374 

AJ243189 

99.1 

97.0 

MM9 Uncultured Clostridium sp. clone BBC516 GQ868438 100.0 
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MM10 Uncultured bacterium clone CFB-1 

Clostridium sp. Irt-JG1-73  

AB274490 

AJ295661 

100.0 

95.6 

MM11 Uncultured bacterium clone thermophilic_alkaline-115 

Uncultured bacterium clone 1-1B-02 

GU455355 

JF417893 

99.8 

99.4 

MM12 Uncultured bacterium clone 1-1B-28 

Clostridia bacterium enrichment culture clone WSC-8 

JF417919 

HM635205 

97.5 

90.5 

MM13 Uncultured bacterium clone A55_D21_H_B_E12 

Uncultured Thermacetogenium sp. clone De217 

EF559057 

HQ183800 

100.0 

98.5 

MM14 Uncultured bacterium clone 2-1B-14 

Clostridium sp. F-02 

Tepidanaerobacter syntrophicus 

JF417959 

AB504377 

AB106354 

99.8 

96.7 

96.7 

Table 3. Closest relatives of bacterial 16S rRNA gene sequences of DGGE bands from feeding source (F) 

and thermophilic acidogenic (H), methanogenic two-stage (M) and single-stage (MM) anaerobic 

digestion processes. 

Band Closest relative Accession 

number. 

Identity 

(%) 

F1 Uncultured archaeon clone F776O8Q02CA0E0 

Methanoculleus sp. MAB1 

GU856162 

AF107103 

100 

99.1 

F2 Methanoculleus sp. 22 

Methanoculleus palmolei strain DSM 4273 

EF112188 

NR_028253 

98.6 

98.2 

H1 Uncultured archaeon clone F776O8Q02B5DGG 

Uncultured Methanosaeta sp. clone Pav-sed-103 

GU840733 

GU135461 

98,5 

98,5 

H2 Uncultured Methanosarcinales clone QEEG1BH021 

Methanosaeta concilii strain Opfikon, DSM 2139 

CU916707 

NR_028242 

97,3 

96.9 

H3 Methanothermobacter thermautotrophicus 

Methanothermobacter marburgensis strain Marburg 

HM228400 

CP001710 

97,7 

97,7 

H4 Uncultured archaeon clone F776O8Q02CKVTD 

Methanosarcina siciliae strain C2J 

GU868593 

U89773 

98.0 

97,0 

H5 Uncultured Methanosarcinaceae archaeon 

Methanosarcina mazeii strain LM5 

GU734641 

DQ987528 

97.0 

96,5 

H6 Uncultured archaeon clone F776O8Q02B98NU 

Uncultured Methanogenium sp. isolate PSW32 

GU880656 

EF043533 

100 

98.8 

H7 Uncultured archaeon clone F776O8Q02B1HCR 

Uncultured Methanogenium sp. isolate PSW32 

GU837997 

EF043533 

99.1 

98.0 

M4 Uncultured archaeon clone F776O8Q02CCQ51 

Methnosarcina siciliae strain C2J 

GU861598 

U89773 

98.2 

97.7 

M1, 

MM1 

Methanosarcina mazei strain sk0808-2 

Methanosarcina siciliae strain C2J 

FJ155845 

U89773 

98.6 

98.2 

M2, 

MM2 

Uncultured archaeon clone K09-30-17 

Methanosarcina mazei strain sk0808-2 

AB541940 

FJ155845 

100 

99.5 

M3, 

MM3 

Methanosarcina mazei strain sk0808-2 

Methanosarcina siciliae strain C2J 

FJ155845 

U89773 

99.1 

98.6 

M5, 

MM7 

Methanothermobacter wolfeii strain KZ24a 

Methanothermobacter thermautotrophicus strain KHT-2 

DQ657904 

AB020530 

99.4 

99.4 

M6, 

MM8 

Methanothermobacter thermautotrophicus strain AM1 

Methanothermobacter marburgensis str. Marburg 

HM228400 

CP001710 

98.9 

98.9 

MM4 Uncultured Methanosarcinaceae archaeon band 028 

Methanosarcina mazeii strain LM5 

GU734641 

DQ987528 

99.0 

97.7 

MM5 Uncultured Methanosarcinales archaeon clone A6 

Uncultured Methanosaetaceae archaeon band 013 

EU586063 

GU734639 

100 

99.4 

MM6 Uncultured archaeon clone F776O8Q02CBY77 

Methanosarcina siciliae strain C2J 

GU870909 

U89773 

98.3 

97.7 

MM9 Methanosarcina mazeii strain LM5 

Methanosarcina lacustris strain MS 

DQ987528 

AY260431 

99.5 

99.5 

MM10 Methanosarcina mazeii strain LM5 

Methanosarcina lacustris strain MS 

DQ987528 

AY260431 

97.3 

97.3 

Table 4. Closest relatives of archaeal 16S rRNA gene sequences of DGGE bands. Feeding source, F; 

acidogenic reactor, H; methanogenic reactor of two-stage process, M; single stage (MM).  
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Figure 2. Phylogenetic tree showing the phylogenetic relationships of bacterial 16S rRNA sequences with reference 

sequences deposited at the GenBank database. The tree was construct using the Maximum Likelihood algorithm and the 

Tamura Nei parameter correction and was bootstrapped 2000 times. 
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Figure 3. Phylogenetic tree showing the phylogenetic relationships of archaeal 16S rRNA sequences 

with reference sequences deposited at the GenBank database. The tree was construct using the Maximum 

Likelihood algorithm and the Tamura Nei parameter correction and was bootstrapped 2000 times. 
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Thermoanaerobacterium spp., mostly T. thermosaccharolyticum species, has been 

previously detected in other thermophylic acidogenic process fed with organic waste 

(Ueno et al., 2006; Shin et al., 2004; Lee et al., 2010; Chu et al., 2010). In order to 

account for the methane production (< 5% of produced biogas) recorded at days 25-50 

of operation, a PCR-DGGE analysis was carried out on Archaea. Phylogenetic 

affiliation of sequences is reported in Table 4 and a phylogenetic tree is shown in Fig. 3. 

Results evidenced initially the presence of a dominant band (band 2) affiliated to 

Methanosaeta, and after approximately 1 operational month a strong change with the 

occurrence of uncultured archaeons strictly affiliated to Metanogenium sp. (band6 and 

band7), potential candidate accountable for the detected methane.  

 

3.2.2. Quantitative analysis  

 

Quantitative measurements used to monitor the abundance and variations of bacterial 

populations present in the acidogenic reactor are shown in Fig. 5. Bacteria were present 

at high concentrations, in the order of magnitude of 10
8
 up to 10

9
 bacteria per ml. 

Within Bacteria, the group of hydrogen-producing bacteria represented a minimal 

proportion to total Bacteria, varying within percentage ranges of 0.05-1.4% (average 

value of 0.4%), whereas the acetogens were determined at percentage ranges of 0.6-

6.2% to total Bacteria. Number of hydrogen-producing bacteria remained almost 

constant during the process (10
6
 bacteria per ml), though a decrease was observed from 

day 36 to day 50 with a ratio hydrogen-producing bacteria to total Bacteria of about 

0.05%. The acetogens, present in the first ten days of hydrogen production at the same 

level of hydrogen-producing bacteria, in the following days of operation were 

enumerated one order magnitude higher than hydrogen-producing bacteria. The sulfate-

reducing bacteria (SRB) were typically enumerated one order magnitude lower than 

hydrogen-producing bacteria (about 10
5 

bacteria per ml); a slight increase was observed 

at day 43 in correspondence of a declining trend of hydrogen-producing bacteria and 

also of an increase of Bacteria. Quantitative PCR on Archaea showed a drastic 

abatement of this group after heat shock treatment (10
4
 bacteria/ml). Their number, 

reasonably showing a lowering trend during the period of deficient feeding, was 2 or 3 

order of magnitude lower than Bacteria. Within Archaea, Methanosarcinales 

represented approx. 1% of total Archaea, declining to 0.1% at day 64. In the influent, 

Methanosarcinales were detected at low concentration too (7%). 

 

3.3. Microbial community characterization of methanogenic processes 

 

3.3.1. Qualitative analysis 

 

The bacterial and archaeal methanogenic species developed along the time in the 

methanogenic reactors from two-stage (M) were investigated and compared with those 

of single-stage process (MM) (Fig.1). DGGE analysis carried out on Bacteria evidenced 

in M, like in H, a bacterial community dominated by Firmicutes (Table 4 and Figure 3).



 

 

 

 

 

 

Figure 4. (a) Dynamics (Dy), (b) richness (Rr) and (c) community organization (Co) parameters from bacterial (A, B, C) and archaeal (A', B', C') DGGE profiles of acidogenic (A, A') and 

methanogenic (B, B') two-stage process reactors and from single-stage process reactor (C, C'). Dy (blue lines) is expressed as %, Rr (red lines) and Co (green lines) are dimensionless. 



 

  

Figure 5. Concentrations of microorganisms (A, B, C) and biogas production (A', B', C') in acidogenic (A, A') and methanogenic (B, B')  two-stage process reactors and in single-stage 

process reactor (C, C'). A,B,C: Bacteria (purple lines), hydrogen-producing bacteria (red lines), sulfate-reducing bacteria (yellow lines), acetogens (orange lines), Archaea (blue lines) and 

Methanosarcinales (green lines). A’: hydrogen (blue line), methane (red line); B’ and C’: methane (blue line). 
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The bacterial community partially changed during the time course of the process, with 

only some bacteria present throughout the process (M11, M10, M9, M3, M2). The 

highest changes were observed at 36 day, after the starvation period, and at day 50, prior 

the partial accumulation of VFA (acetate and propionate) in the reactor (data not 

shown). The community was characterized by a higher richness (average value of 55%) 

than H (32), with  several intense bands and a large number of bands of lesser intensity. 

In M was found C. cellulosi (M1) and several other microorganisms (bands M3, M7, 

M8) already identified in H (H5, H2, H14) and assigned to unclassified 

Ruminococcaceae. Also belonging to Ruminococcaceae family was the persistent band 

M9, present throughout the operation, and closely related (99.2-99.8%) to several 

uncultured bacteria from anaerobic solid waste digester (Sasaki et al., 2007; Sasaki et 

al., 2011; Goberna et al., 2009; Tang et al., 2011) and, more distantly (95-96%) to the 

cellulose/cellobiose-digesting bacteria Clostridium thermocellum (Ait et al, 1979) and 

Clostridium caenicola (Shiratori et al., 2009). Bands M11 and M10 belonged (99-100% 

similarity) to a unknown cluster named DAD cluster 3 (Tang et al., 2011) or MSW 

cluster 1 (Tang et al., 2004) which mainly consists of microorganisms isolated from 

thermophilic solid waste digesting reactors (Tang et al., 2004; Tang et al., 2011; 

Goberna et al., 2009; Sasaki et al., 2011). It might be speculated that could play 

potential roles in VFA degradation though further investigation is needed to explain the 

function of these bacteria. Similarly, band M5 was closely related (99.8% similarity) 

mainly to clones from thermophilic reactors (Goberna et al., 2009; Tang et al., 2004) 

and clustered close to the Veillonellaceae family. Band M2, observed only in the first 15 

days of operation, was phylogenetically correlated (99.8% similarity) to an uncultured 

bacterium belonging to Thermotogae phylum. The single family of this phylum, the 

Thermotogaceae, is constituted by anaerobic hyperthermophilic bacteria capable of 

utilizing a great variety of carbohydrates, including xylan and cellulose, and generating 

hydrogen (Gupta and Bhandari, 2011; Eriksen et al., 2010). Also observed only the first 

days of operation were bands M19 and M33. Band M4 grouped into Clostridiaceae 

cluster I and was closely related (99.8-99.2%) to clones from thermophilic digesters 

degrading cellulose and starch (Sasaki et al., 2007; Shiratori 2006). Also Band M6 was 

related (>99% similarity) to several clones from thermophilic digesters (Kudo et al., 

unpublished; Satke, unpublished), though classification for this microorganism by RDP 

database was limited to the phylum level. 

In MM the bacterial community changed deeply compared to the beginning (rate 72%) 

and was always characterized by a high (average value of 84) microbial diversity (Fig. 

4). Initially, the community was dominated by Firmicutes bacteria belonging to both 

Clostridia and Bacilli classes. After the day 15, bands affiliated to Bacilli (MM1, MM2, 

MM3) disappeared or became less intense, whereas microorganisms related to 

Bacteroidetes appeared with high intensity (MM4, MM5, MM6, MM7). A 

microorganism stably detected throughout the process was Anaerobaculum (band 

MM8), fermenting organic acids and a limited number of carbohydrates to acetate, 

hydrogen and CO2 and also peptide-fermenting (Menes and Muxì, 2002). Bands MM1, 

MM2 and MM3 were all affiliated with high similarity (99.1-100%) to uncultured 

bacteria and to the species Bacillus infernus (96.8-97.8%). B. infernus is the only 
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anaerobic species in the genus able to ferment glucose and utilize formate and lactate 

for growth (Boone et al., 1995).The spore-forming, facultative anaerobe Bacillus genus 

it has been often detected in mixed cultures in anaerobic reactors (Shin et al., 2004; 

Ueno et al., 2006; Kim et al., 2006). It is able to produce hydrogen (Nandi and 

Sengupta, 1998) with the maximum hydrogen production rate determined in 2,28 mol 

H2/mol glucose for Bacillus coagulans (Kotay and Das, 2007). Bands MM4, MM5, 

MM6 and MM7 were assigned, according to the RDP Classifier, to unclassified 

Porphyromonadaceae. This family consists of acidogenic bacteria capable of producing 

various VFA from carbohydrates or proteins and its detection in anaerobic digesters is 

frequently reported (Ziganshin et al 2011, Li et al. 2009). Band MM10, as shown for 

M4 of M, grouped into the Clostridiaceae cluster I. Band MM11, present with high 

intensity, could not be assigned to any known family and showed more than 99% 

sequence similarity to clones from thermophilic anaerobic reactors (Zhang et al., 2010, 

Tang et al., 2011). Band MM12, as previously observed in M (bands M10 and M11), 

clustered with  bacteria from thermophilic reactors. Band MM13 resulted strictly 

correlated (98.5% similarity) to Thermacetogenium, a thermophilic syntrophic acetate-

oxidizing bacterium capable to form methane in association with hydrogenotrophic 

methanogens (Hattori et al., 2000). Band MM14 was closely related (99.8%) to 

uncultured bacterium from thermophilic bioreactor and (96.7%) to the syntrophic 

acetate-oxidizing Tepidanaerobacter genus (Sekiguchi et al., 2006). 

DGGE images performed on Archaea are showed in Fig. 1. Phylogenetic affiliation of 

sequenced bands and the relative phylogenetic tree are reported in Table 4 and Fig. 3. In 

particular, the DGGE profiles from H showed a constant archaeal community 

throughout the process (dynamics rate < 10%) with a modest change observed only at 

64 day in correspondence to a partial accumulation of VFAs (>1500 mg acetate/L). The 

community was characterized by three strong  intensity bands (M1, M2, M3), closely 

related (98.6-100%) to each other and to Methanosarcina mazeii  and a number of weak 

bands. Also M4, a band of less intensity, showing high similarity (98.2%) to an 

uncultured archaeon, grouped into the Methanosarcinaceae cluster. Bands M5 and M6 

appeared the last day of sampling and were closely related (99.4% to 98.9%) to 

Methanothermobacter genus though it was not possible a precise affiliation of the 

sequences. The taxonomy of thermophilic Methanothermobacter genus is complex and 

has been varied several times. According to a recent revision, it comprises six species 

with more than ten Methanothermobacter strains identified from several environments, 

including anaerobic digesters (Boone, 2000). All Methanothermobacter species depend 

entirely on H2/CO2 as substrates for energy and carbon sources; their growth is 

unusually highly exothermic, with a low biomass yield (Schill et al., 1999). 

In MM, on the contrary of M, the community structure changed with time. Initially, the 

archaeal community was identical to that of H because of the use of the same inoculum 

sludge for the starting up of the two processes. After two weeks, the community was 

drastically shifted (rate of 84%) (Fig. 4), whereas thereafter it changed moderately 

becoming at the last sampling day a merge between the new and the initial sludge 

communities (Fig.1). The community was richer than that determined in M and, like in 

M, became more uneven during the process. The establishment of the new community 
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clashed with a quite stable methane production. Bands belonged mainly to the 

Methanosarcinales family (Table 4 and Fiugure 3). Bands MM4 and MM6, which 

showed highest similarities with uncultured archaeon, were closely (>97.7 similarity) 

related to Methanosarcina spp. Bands MM10 and MM9 both matched with high 

similarity, 97.3% and 99.5% respectively, with two Methanosarcina species, 

Methanosarcina mazeii and Methanosarcina lacustris. Band M5, which appeared with 

strong intensity at 15 day, already identified (Tenca et al. under submission) as a 

Methanosaeta-like organism, was found to group with Methanosaeta concilii. Bands 

MM7 and MM8 were identified as belonging to Methanothermobacter genus with high 

similarity (>98.0). 

 

3.3.2. Quantitative analysis 

 

In M the variations among the bacterial populations levels was less marked than those 

observed for H and the abundance of the different populations remained almost constant 

during the process (Fig. 5). Archaea and Bacteria were present at not very dissimilar 

concentration levels. The number of Archaea methanogens was higher than the value 

measured in H, attesting at concentrations of 10
7
-10

8
 bacteria per ml, a range of values 

quantified in several anaerobic digesters (Yu et al, 2005, Lee et al, 2008). Among 

Archaea methanogens, the dominant group were the Methanosarcinales which 

constituted approx. the 50% of the total archaeal concentration, in agreement with 

DGGE data analysis indicating a high abundance of Methanosarcina. Archaea and 

Methanosarcinales showed the same trend along the operation. The number of 

Methanosarcinales decreased at day 64 of operation, in accordance with DGGE data 

detecting at this sampling time bands related to the hydrogenotrophic 

Methanothermobacter. The SRB, potential competitors of methanogens at high 

concentration of sulfate, were enumerated four order magnitude lower than Archaea 

(10
3
 bacteria per ml), confirming the good performance of the anaerobic process. The 

acetogens and the hydrogen-producing bacteria remained relatively stable during all the 

operation (average values of 2 × 10
7 

and
 
5 × 10

6 
bacteria per ml, respectively); 

interestingly the slightly variations observed in bacterial concentrations were 

diametrically opposed underling the competitive relationship between these two 

functional groups. 

Quantitative measurements of microbial populations resident in reactor MM were 

similar to those determined in M (Fig. 5) Total Bacteria, acetogens, SRB and HPB were 

present in the two reactors at concentration of the same order of magnitude. On the 

contrary, both total Archaea and Methanosarcinales showed a lower bacterial density 

than M, Archaea not getting up to 10
7 

bacteria per ml. It is likely that the different 

metabolic configuration of the two reactors accounts for this diversity. Within Archaea, 

the number of Methanosarcinales decreased with the changing of the community 

structure, dropping to only 20% to total Archaea at day 15 and increasing again to 40% 

at day 29. 
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4. Discussion  
 

In this this study the dynamics of microbial populations in a two-stage and a single-

stage reactors have been investigated and compared during approximately two-month 

operation. As models were used I-CTSR reactors operating with the same working 

conditions (inoculums of methanogenic reactors,  feeding source, T, pH not controlled), 

though specific parameters, which are known to favor the microbiology of the two 

diverse anaerobic process configurations (HRT, loading rate, heat-shock treatment), 

were designed. The diversity and structural shift in microbial community were 

monitored along with the changes in the hydrogen/methane production and the 

concentration of intermediate metabolites.  

The data obtained in the acidogenic reactor showed that in this study most bacteria were 

related to Clostridiales order and, more specifically, to the Clostridium genus. This 

genus comprises a great number of species which can be isolated from nearly every 

environment. The genus do not form a monophyletic group and includes, besides 

species sharing a common ancestry to the type species Clostridium butyricum 

(Clostridium sensu stricto or Clostridiaceae cluster I), many species phylogenetically 

related to other taxonomic clusters into Clostridiales (Ludwig et al. 2009). Clostridium 

spp. are well known  for evolving  hydrogen during anaerobic fermentation (Kataoka et 

al. 1997; McTavish 1998). They are capable of fermenting various types of 

carbohydrates to acetate, butyrate, hydrogen, carbon dioxide and other fermentations 

products including, lactate, ethanol. Among Clostridium spp. known to produce 

hydrogen are included the mesophilic pasteurianum, butyricum, butylicum, 

acetobutylicum, acidosoli, beijerinckii, roseum, kluyvery and the thermophilic 

thermocellum, thermosuccinogenes. Many studies showed that the prevalence of 

Clostridium spp. in anaerobic process generating hydrogen correlated with a stable 

microflora and good hydrogen production, process failures were typically associated 

with shifts versus other specimen (Jo et al., 2007). In our study, however, the majority 

of identified microorganisms were not referable to known species, with the exception of 

C. cellulosi. In this respect, it appeared that heat-treatment of inoculum has been 

efficient in killing vegetative cells and activate the development of spore-forming 

microorganisms. Many of the identified microorganisms were however related to 

microorganisms from other anaerobic reactors. In particular, several microorganisms 

were strictly phylogenetically related to uncultured bacteria found in thermophilic 

acidogenic anaerobic reactors fed with vegetable kitchen waste (Lee et al., 2010, Chu et 

al., 2010) and, more distantly, to Clostridium species falling into the Ruminococcaceae 

cluster (Clostridium sp. BS-1, Clostridium sp. Z6). In particular, the presence in the 

digester of species with degrading ability similar to that of  Clostridium sp. BS-1 may 

account for the high detection of hexanoic acid in the reactor (36% of VFAs in the 

liquid phase). Bioavailable D-galactitol, a reduced form of D-galactose, is in fact 

contained in many fruits and vegetables that were used as feeding source. The 

occurrence of uncultured bacteria affiliated to Clostridium sp. Z6 has been previously 

reported. Chu et al. (2010)  showed the dominance of microorganisms related with 93% 

similarity to Clostridium sp. strain Z6 and representing the 70% of a 16s rRNA gene 
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clone library. Similarly, Lee et al. (2010) showed that bacterial clones affiliated to 

Clostridium sp. strain Z6 accounted for 35% of the total sequence retrieved. Since in 

both studies the digesters operated at 55°C treating food waste without heat treatment of 

inoculum, it may be possible that the selection and growth of these microorganisms 

might be favored by a combination of various operational parameters (T, feeding source, 

reactor type, TS, pH, HRT). Both studies also showed the prevalence of 

Thermoanaerobacterium thermosaccharoliticum (Thermoanaerobacterales). This 

microorganism is characterized by high versatility conditions for H2 production (O-

Thong et al., 2008) and shows a rate of hydrogen yield nearly equivalent to that of C. 

butyricum, for which hydrogen rate production was calculated in 2.4 mol-H2/mol-

hexose (Ueno et al. 2001b). In our study, Thermoanaerobacterium, as well as 

Clostridium cellulosi, and other bacteria affiliated to Lachnospiraceae and most likely 

involved in the cellulose degradation, were detected in the reactor discontinuously and 

in the initial days of operation. 

Changes and high diversity of community were evident in the first operational month as 

a consequence of process start-up instability and then starvation. During the second 

month of operation, the established bacterial community showed low microbial 

diversity, being essentially composed by only three microorganisms, in accordance with 

previous investigations on acidogenic thermophilic bioreactors (Lapara et al., 2000, 

Shin et al., 2004). Together with a putative D-galactitol degrading bacterium dominant 

throughout the process, two Clostridium, originating from the pig intestinal microbiota 

and consequently with a relevant role in the degradation of organic matter, were 

detected. The establishment of such a simple community suggests that it is likely that 

exists a form of cooperation between these bacteria that might result in a more efficient 

degradation of organic matter, therefore promoting the hydrogen production. Jeon et al. 

(2010) reported that production of butyric and hexanoic acids by Clostridium sp. BS-1 

was enhanced in coculture with other Clostridium producing acetate. Considering that 

acetate was the major by-product in the system, present at concentrations of approx. 

2000 mg acetate/L, it cannot be excluded that a similar situation occurred. Such a 

combination, improving the utilization of D-galactitol, might have promoted the 

hydrogen production. In this respect, several studies showed that coculture of specific 

bacteria allowed to obtain high yields of hydrogen production in comparison with single 

cultivation (Hsiao et al., 2009; Zidan and Niel, 2009; Levin et al., 2009). For example, 

Hsiao et al. (2009), using molasses as substrate, reported a 12-220% increase in 

hydrogen yield when a coculture of C. pasteurianum or C. tyrobutyricum with C. 

sporosphaeroides was employed. An explanation for this improved hydrogen yield 

might be the utilization of glutamate for hydrogen production by C. sporosphaeroides.  

The hydrogen production rate was characterized by a great discontinuity which could be 

explained by the changes and fluctuations of the microbial community along the time. 

In particular, the general starvation of the microbial community was responsible for the 

low hydrogen production (about 1 LH2/Lday) recorded during this operational period 

(Fig. 5). Starvation showed a direct impact on the significant decrease of Archaea and 

Methanosarcinales no more fluxing in from the influent (Fig. 5). In addition, this 

declining trend of Methanosarcinales, evident throughout the process, together with the 
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results of DGGE analysis, suggest that the responsible for the recorded methane in the 

biogas were the hydrogenotrophic Metanogenium species. Another significant 

quantitative population variation measured in the process was the one order magnitude 

H2-producing bacteria decrease observed from day 36 to day 50. This decrease, due 

most likely to a drop in temperature, may account for the fall in the hydrogen 

production detected at day 46. During this period also a qualitative fluctuation of 

community was detected. Interestingly, the occurrence of community fluctuation around 

the average community as a response to a disturbance, and hence, the resilience to 

perturbations, has been recently evidenced as a relevant characteristic of a functional 

community (Werner et al., 2011 PNAS). 

The quantitative determinations of principal functional groups involved in the process 

suggest that the major competitors of hydrogen producing bacteria were acetogens. This 

vast group of microorganisms, phylogenetically and metabolically very diverse, is 

unified by the ability of catalyze the reductive synthesis of acetate from CO2 by using 

the acetyl-CoA. Generally speaking, they compete with primary fermenters, such as 

Clostridium spp., for monomeric substrates and with secondary fermenters for typical 

fermentation products such as lactate, ethanol and H2. On the other hand, they can 

cooperate with syntrophic acetogenic bacteria for H2 or with acetoclastic methanogens 

for acetate pathway (Drake et al., 2002). At low nitrate and sulfate concentrations, 

methanogenesis and acetogenesis may compete with hydrogen production (Weijma et 

al., 2002). Though methanogenesis is more thermodynamically favored than 

acetogenesis, since affinity of methanogens for H2 is 10-100 times higher than the 

affinity of the reductive homoacetogens (Liu and Whitman, 2008), acetogens 

outcompete with methanogens in particular conditions. Hence, their abundance in the 

reactor could have been favored by the low pH, the accumulation of H2 and possibly by 

a favorable spatial position proximal to hydrogen-producing cells (Drake et al., 2002). 

Their number in the reactor, ranging from 10
7
-10

8
 FTHFS genes per gram dry weight, 

was in accordance with Xu et al. (2009) who reported that abundance of acetogens is at 

least 10
7
 copies FTHFS (formyltetrahydrofolate synthetase) genes per gram dry weight 

sample in anoxic environments, increasing up to 10
8
-10

9
 copies genes per gram dry 

weight in enrichment conditions of H2/CO2. Thus, it is reasonable they contributed to 

acetate production in the system. The occurrence of acetogenesis during hydrogen 

production was previously observed in studies using mixed culture and operating in 

continuous (Hussy et al., 2003; Kim et al., 2006). In these studies typically, the 

increased acetate levels where not accompanied by increasing hydrogen yields, or 

increasing butyrate production. A similar situation with a low butyrate/acetate molar 

ratio and a slight decrease of pH was observed in our study especially at the end of the 

operation (B/A 0.15 and pH 5 at day 60). In this regard, whereas heat-treatment of seed 

is adequate for methanogen control,  it is not useful to control spore-forming H2-

consuming bacteria and for this reason considered unnecessary by some authors 

(Kraemer and Bagley, 2007rev).  

In both methanogenic reactors was observed, though at different titers, the dominance of 

Methanosarcinales (average value of 70% and 58% to total Archaea in M and MM, 

respectively), suggesting  that acetoclastic methanogenesis was the major pathway of 
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methane production. In M, Methanosarcinales were up to 90% of methanogens and 

were represented by the only genus Methanosarcina. The community was unchanged 

for quite the entire sampling period, with slightly quantitative fluctuations during the 

process, in accordance with produced methane yields attesting at average value of 0.5 

L/L d. The decreasing trend in methane production recorded from day 49 of operation 

agrees with the observed quantitative and qualitative changes in methanogen population 

detected in the last days of sampling. In particular, the one order magnitude 

methanogens decrease and the decreased proportion of acetotrophic methanogens (50%) 

may be explained by the accumulation of acetate and propionate (370 and 325 mg/L, 

respectively, at day 59) in the digester. This accumulation may also account for the 

appearance in the methanogen population of Methanothermobacter species, less 

sensitive than acetoclastic methanogens to an increase in VFAs concentration (Hori et 

al., 2006). However, the buffering capacity of system was maintained and the increase 

in VFAs did not led to a change in pH.  

Methanosarcina were previously detected as dominant in other thermophilic 

methanogen systems from two-stage processes (Chu et al., 2010, Luo et al., 2011) and 

in general in digesters treating manure (Demirel and Scherer 2008).  Unlike 

Methanosaeta spp., prevailing at low acetate (< 1mmol/L), Methanosarcina spp. are 

dominant at high acetate concentration (Jetten et al, 1992). Hence, their abundance in M 

is justified by the high levels of acetate, the major byproduct of acidogenic fermentation 

after hexanoic acid. Particularly, the identified Methanosarcina-like species were related 

to M. mazei and M. siciliae which are reported to have both acetoclastic and 

hydrogenotrophic activity (Liu et al. 2009;  Lee et al., 2010) being able to utilize 

various substrates other than acetate (methanol, methylamines and also H2/CO2 in the 

case of M. siciliae). However, due to their low affinity for hydrogen, they are not likely 

to be competitive for hydrogen with respect to other hydrogenotrophic methanogens 

(Boone and Castenholz, 2001), another possible explanation for their decrease in the 

later operational period.  

In comparison to M, in MM the archaeal community was more diverse and dynamic. 

The genus Methanosarcina and Methanosaeta were detected simultaneously, though the 

different intensity of the related bands suggest that Methanosaeta prevailed in the first 

operational period and Methanosarcina in the later one, in accordance with the acetate 

concentration detected (data not shown). In addition, similarly to M, the only 

hydrogenotrophic archaea detected was Methanothermobacter. The detection of this 

archaea can account for the finding either in MM (genera Thermacetogenium 

Tepidanaerobacter) and M (Thermotoga) of thermophilic acetate-oxidizing bacteria as 

these bacteria degrade substrate syntrophically with hydrogenotrophic methanogens 

(Hattori, 2008). Overall however, the bacterial community was strongly different in the 

two methanogen reactors as a consequence of the heat-shock treatment, performed only 

in the two-stage process, and of the different reactor configurations, which were 

determining in selecting and enriching of characteristic, substrate-specific species. The 

most evident difference was the dominance of Firmicutes in H-M and of Firmicutes and 

Bacteroidetes in MM, phyla dominant of swine and other mammalian fecal 

communities (Ley et al., 2008). The diversity in bacterial communities together with the 
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different concentration of methanogens in the two processes are most likely the main 

factors responsible for the different performance of the processes. 
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General discussion and conclusions 
 

 

 

The energy needs of our society has always been based on the exploitation of fossil 

fuels reserves, from the industrial revolution until the present days. However, these 

energy sources are non-renewable and will be depleted in the next future. Thus, the need 

to establish new renewable energetic sources in order to replace fossil fuels is urgent 

and can’t be delayed any more. In this context, anaerobic digestion (AD) has recently 

been pointed as an environmentally-friendly, economic valuable alternative. One of the 

most promising possibilities, in particular, is to produce energy through anaerobic 

degradation of wastewater and waste biomasses derived from industrial and agricultural 

productive chains. 

In recent years, scientific research has been focused on the investigation of several 

technological solutions for the AD of a wide range of residues and biomasses. The 

studies were focused mainly on the engineering of the process, with the principal goals 

of (i) evaluating the methane potential of the biomasses tested and (ii) optimizing 

reactor design and operational parameters. Despite this, and the widespread application 

of AD worldwide, few information is available on microbial community diversity and 

dynamics in response to the different organic residues. Also little is known about the 

quantitative changes of key functional bacterial groups found in anaerobic digesters, 

particularly during bioreactor start-up. In this context, there is the need to implement the 

knowledge of the microbiology of the anaerobic process in order to improve the process 

stability, prevent imbalances and carry our corrective measures. 

The recent development and application of molecular biological techniques targeting the 

16S rDNA molecule in the field of microbial ecology have provided an additional and 

valuable tool to the existing culture-based methods for studying the microbial 

communities. The introduction of denaturing gradient gel electrophoresis (DGGE) to 

microbial ecology has established a valuable molecular fingerprinting technique for 

studying the microbial community structure. In addition, statistical tools have allowed 

to analyse molecular fingerprints data helping to better elucidate the structure-to-

function relations inside the microbial consortium. The real time PCR, the most precise 

and sensitive technique to quantify specific nucleic acids, has allowed to quantitatively 

examine the community at order or family taxonomic levels.  

The aim of this PhD thesis was to investigate the structure, the dynamics and the 

interactions of microbial populations, through the use of high-throughput molecular 

techniques, in batch and continuous anaerobic digestion processes. 

The investigation on microbial community structure during anaerobic digestion of agro-

industrial byproducts, described in chapter two and three, showed the important role of 

the seeding sludge in determining the basal microbial community, with some dominant 

archaeal and bacterial taxa detected by DGGE analysis throughout the course of the 
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process. However, definite changes in the microbial community were observed, 

suggesting that quantitative changes in the abundance of some key species occurred as 

response to microbial community adaptation to the different biomasses. In particular, 

compositional features of biomasses or processing (ensiling) seemed to play a role in 

the changes of archaeal microbial communities indicating Archaea as good indicators 

for monitoring AD microbial community dynamics. Finally, a correlation trend was 

identified between archaeal community and bio-methane potential (BMP) indicating 

that more even archaeal community were associated to higher BMP. 

The study of temporal changes in microbial community structure in a two-stage 

anaerobic process, before and after a 15-days starvation period, and the comparison 

with a conventional single-stage process was reported in chapter four. It was shown that  

in the acidogenic reactor microorganisms were mostly related to heat-shock resistant, 

spore-forming bacteria affiliated to the Clostridiales order. In particular, bacteria 

belonging to the genus Clostridium, capable of fermenting various types of 

carbohydrates, were identified as the major responsible for the hydrogen production.  

On the contrary, a more diverse and complex community (Firmicutes, Bacteroidetes, 

Synergistes) was observed in the single-stage process where heat-treatment of inoculum 

had not been performed.  

The changes and fluctuations of the bacterial community observed in the acidogenic 

reactor might account for the great discontinuity of hydrogen production rate over time. 

Changes and high diversity of community were evident in the first operational month as 

a consequence of process start-up instability and then starvation. During the second 

month of operation, the established bacterial community showed low microbial 

diversity, in accordance with previous investigations on acidogenic thermophilic 

bioreactors.  

In both methanogenic reactors was observed, though at different titers, the dominance of 

Methanosarcinales, indicating that acetoclastic methanogenesis was the major pathway 

of methane production. However, in the single-stage process the archaeal community 

was more diverse and dynamic compared to the one of the methanogenic reactor of the 

two-stage process and genus Methanosarcina and Methanosaeta were detected 

simultaneously. In both the reactors, in general, the quantitative changes of the main 

phylogenetic and trophic microbial groups over time were rather limited, with slightly 

quantitative fluctuations during the process that well correlated with biogas data 

performances. In the methanogenic reactor of two-stage process, it was observed a 

decrease of methanogens at the end of the operation that could be explained by an 

accumulation of acetate and propionate in the digester. This accumulation accounted 

also for the appearance in the methanogen population of Methanothermobacter species, 

less sensitive than acetoclastic methanogens to an increase in VFAs concentration.  

Taken together the data suggested that the diversity in bacterial communities, together 

with the different concentration of methanogens in the two processes, were significant 

factors determining the different performance of the two processes. 
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