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Introduction

Constant mean curvature (CMC) hypersurfaces appear as critical points
of a natural geometric variational problem: to minimize the area with or
without a volume constraint (the unconstrained case corresponds to zero
mean curvature, i.e. to minimal hypersurfaces). A fundamental problem
of this discipline is the geometric study and classification of CMC surfaces
under global hypotheses like compactness, completeness, properness or em-
beddedness.
Important results in this field are the so-called Jellet-Liebmann theorem and
the Alexandrov theorem. In 1853 Jellet in [43] showed that a star-shaped
compact hypersurface immersed into Euclidean space with constant mean
curvature is a round hypersphere. However a related and much weaker result
published in 1899 by Liebmann [45], was very much recalled. Liebmann’s
theorem stated that the only compact convex hypersurfaces of Euclidean
space with constant mean curvature were the round hyperspheres. Further,
in a series of papers between 1956 and 1962, Alexandrov [5],[6] obtained a
fundamental result in this theory. He showed that a compact CMC hyper-
surface embedded into R3 must be a hypersphere. Later on, in [63], Ros,
exploiting an idea of Reilly, was able to obtain an Alexandrov theorem for
compact hypersurfaces embedded into the Euclidean space with constant
scalar curvature.
The natural generalization of mean and scalar curvature for an n-dimensional
hypersurface are the k-mean curvatures Hk, k = 1, . . . , n, that are defined
via the elementary symmetric functions of the principal curvatures of the
immersion. In fact, H1 is just the mean curvature and H2 defines a geomet-
ric quantity which is related to the scalar curvature, as we will see later in
Section 1.1. Therefore it is natural to try to extend those characterization
results to the case of constant higher order mean curvature. A natural ques-
tion is then to ask if the sphere is the only compact hypersurface (embedded
or immersed) in the Euclidean space with constant higher order mean cur-
vature Hk, for some k = 1, . . . , n. In [40], Hsiung showed that this is true,
provided that the hypersurface is star-shaped. Further, in [62] and [51], Ros
and Montiel proved the validity of the Alexandrov theorem for every com-
pact hypersurface immersed in the Euclidean space with constant higher
order mean curvature Hk for some k = 1, . . . , n. Moreover, this method
equally works for hypersurfaces in the Hyperbolic space.
The next step is to try to extend this uniqueness results to hypersurfaces
immersed in more general ambient spaces with non-constant sectional curva-
ture. Toward this aim we need to consider as ambient spaces manifolds that
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iv INTRODUCTION

have a large number of constant k-mean curvature compact hypersurfaces in
order to use them as comparison hypersurfaces. A natural class of ambient
manifolds to consider is that of warped products with 1-dimensional basess
I ×ρ Pn (see [54] for more details on warped products). In this case the
leaves of the foliation t→ Pt := {t} × P (that we will call slices) are totally
umbilical hypersurfaces of constant mean curvatures. The first attempt to
generalize uniqueness theorems to hypersurfaces of constant mean curvature
in warped product spaces was made by Montiel in [49], that obtained some
results for compact hypersurfaces of constant mean curvature, under suit-
able assumptions on the Ricci curvature of a standard slice. Afterward, more
results have been obtained by Aĺıas and Dajczer in [10], where they recover
some of Montiel’s main theorems and, under different assumptions, prove
new ones both in the compact and in the complete non-compact case. Our
aim is to extend these uniqueness results to hypersurfaces in warped prod-
ucts with constant k-mean curvature, k = 2, . . . , n, both in the compact and
in the complete non-compact case. We devote Chapter 2 to the study of such
a problem, presenting some results we have proved in [13], while in Chapter
1 we introduce some basic notions and tools that we will need in the rest
of the dissertation. Further, we will use an analytical approach inspired by
[10], reducing our problem to the study of certain differential equations that
arise in this context. For what concern the compact case, the study of these
equation is based, firstly, on the well-known property that any C2 function
u on a compact Riemannian manifold attains its maximum and minimum
values at some points pmax and pmin respectively. Moreover, the gradient of
the function is zero on these values and the Hessian is respectively negative
or positive definite. These latter fact implies that if L is any semi-elliptic
operator, then it satisfies

Lu(pmax) ≤ 0, resp. Lu(pmin) ≥ 0.

Further, another important tool is the so-called classical maximum princi-
ple, that asserts that, given any semi-elliptic operator L on a Riemannian
manifold Σ, such that Lu only contains terms involving the second and the
first derivatives of the function u, if

Lu ≤ 0, resp. Lu ≥ 0

and u attains its maximum (resp. minimum) in the interior of Σ, then it has
to be constant (see [33, Theorem 3.5]).

Using these facts we will be able to prove, for instance, the following
theorems. Here H will denote the mean curvature of the slices and the angle
function Θ is defined as the scalar product between the vector field normal
to Σ and that normal to the slices.

Theorem (Theorems 2.13,2.14). Let f : Σn → I ×ρ Pn be a compact hyper-
surface such that either

(i) the 2-mean curvature H2 is a positive constant or
(ii) the k-mean curvature Hk is constant and there exists an elliptic

point on Σ.
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If H′(t) ≥ 0 and the angle function Θ does not change sign, then Pn is
necessarily compact and f(Σn) is a slice.

Theorem (Theorem 2.25). Let f : Σn → Mn+1 = I ×ρ Pn be a compact
hypersurface of constant k-mean curvature, 2 ≤ k ≤ n and suppose that H
does not vanish. Assume that

KP ≥ sup
I
{ρ′2 − ρ′′ρ},

KP being the sectional curvature of Pn, and that the angle function Θ does
not change sign. Then either f(Σn) is a slice over a compact Pn or Mn+1

has constant sectional curvature and Σn is a geodesic hypersphere. The latter
case cannot occur if the above inequality is strict.

In the complete case, it is not true in general that a continuous function
admits a maximum or a minimum. Nevertheless, as explained in Section 1.3,
when the Omori-Yau maximum principle for semi-elliptic operators holds,
it is possible for any function u ∈ C2(Σ) with u∗ = supΣ u < +∞ or u∗ =
infΣ u > −∞, to find sequences {pj}j∈N ⊂ Σ and {qj}j∈N ⊂ Σ with the
properties

lim
j→+∞

u(pj) = u∗, ‖∇u(pj)‖ <
1

j
, Lu(pj) <

1

j
,

and, respectively,

lim
j→+∞

u(qj) = u∗, ‖∇u(qj)‖ <
1

j
, Lu(qj) > −

1

j
.

The general version of the Omori-Yau maximum principle illustrated above
allows us to obtain, among others, the next

Theorem (Theorems 2.17, 2.18). Let f : Σn → I ×ρ Pn be a complete
hypersurface such that either

(i) the 2-mean curvature H2 is a positive constant or
(ii) the k-mean curvature Hk is constant and there exists an elliptic

point on Σ

and suppose that

Krad
Σ ≥ −G(r).

Here G is a smooth function on [0,+∞) which is even at the origin and sat-
isfying conditions (i)–(iv) listed in Theorem 1.12. Assume that supΣ |H1| <
+∞ and that Σ is contained in a slab, that is,

f(Σn) ⊂ [t1, t2]× Pn,
where t1, t2 ∈ I are finite. If H′(t) > 0 almost everywhere and the angle
function Θ does not change sign, then f(Σn) is a slice.

As we will clarify in Section 1.3, the condition on the sectional curvature
of the hypersurfaces is assumed in order to guarantee the validity of the
general version of the Omori-Yau maximum principle.

A generalization of the classical maximum principle in the complete non-
compact case is the property of a manifold to be parabolic, that is it does
not admit any non-constant C1 subharmonic (resp. superharmonic) function
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bounded from above (resp. bounded from below). More generally, we say
that a manifold is parabolic with respect to a semi-elliptic operator L if it
does not exist any C1 non-constant bounded above (resp. below) function
u satisfying

Lu ≥ 0, (resp. Lu ≤ 0).

Under an appropriate assumption on the growth of the volumes of geodesic
spheres we can guarantee that the hypersurface is parabolic with respect to
a suitable semi-elliptic operator and thus we are able to extend the second
main theorem of the compact case as follows

Theorem (Theorem 3.20). Let Mn+1 = I ×ρ Pn be a warped product space
and assume that Pn has constant sectional curvature κ satisfying

κ > sup
I
{ρ′2 − ρ′′ρ}.

Let f : Σn → I ×ρ Pn be a complete hypersurface with supΣ |H1| < +∞ and
satisfying condition (

sup
∂Bt

Hk−1vol(∂Bt)
)−1

/∈ L1(+∞),

where Bt denotes the geodesic ball of radius t. Suppose that f has constant
k-mean curvature, 2 ≤ k ≤ n, and

f(Σn) ⊂ [t1, t2]× Pn,

where t1, t2 are finite. Assume that either k = 2 and H2 is positive or k ≥ 3
and there exists an elliptic point p ∈ Σn. If H(h) and the angle function Θ
do not change sign, then f(Σn) is a slice.

In the seventies, with the works of Calabi [22], Cheng and Yau [24],
Brill and Flaherty [20], Choquet-Bruhat [26], [27] and, later on, with the
works of some other authors, began the mathematical interest for the study
of spacelike CMC hypersurfaces in Lorentzian manifolds. This interest is
also motivated by their relevance from a physical point of view (see for in-
stance [47] for more details). By then, a lot of problems on hypersurfaces in
Riemannian manifolds have been transposed to the Lorentzian setting. In
particular, the problem of classifying CMC and, later on, constant higher
order mean curvature spacelike hypersurfaces in certain spacetimes has been
intensively studied also in this area. Many works have appeared where it is
studied the case where the ambient space is a generalized Robertson-Walker
(GRW) spacetimes, which, as we will see later, are nothing but Lorentzian
warped product spaces with one dimensional bases. For instance, in [16]
Aĺıas, Romero and Sánchez studied the problem of uniqueness of spacelike
hypersurfaces in GRW spacetimes in the CMC case. In particular, it is
proved that, when the spacetime obeys the so-called timelike convergence
condition, then every compact CMC spacelike hypersurface must be totally
umbilical and, in most of the cases, it must be a spacelike slice. In [17],
the same authors also observed that these results can be obtained replac-
ing the timelike convergence condition by a weaker one, the so-called null
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convergence condition. Later on, the same problem was considered by Mon-
tiel [50] that classified totally umbilical spacelike CMC hypersurfaces and
proved that the only compact CMC spacelike hypersurfaces in a GRW space-
time obeying the null convergence condition are the spacelike slices, unless
in the case where the spacetime is a de Sitter space and the hypersurface is a
round umbilical hypersphere. Moreover, he also proved a uniqueness result
for hypersurfaces of constant scalar curvature. In this circle of ideas, in [8]
Aĺıas and Colares extended these results to compact spacelike hypersurfaces
of constant k-mean curvature, 2 ≤ k ≤ n, in proper GRW spacetimes (that
is spacetime that cannot be written as trivial products, not even locally)
obeying either the null convergence condition or a condition on the warp-
ing function. For what concern the complete non-compact case, uniqueness
results have been proved by Aĺıas and Montiel in [15] for complete CMC
spacelike hypersurfaces in GRW spacetimes and, later on, by Romero and
Rubio, in [61], and by Caballero, Romero and Rubio, in [21], for CMC sur-
faces in GRW spacetimes. In Chapter 3 we face off this problem for complete
spacelike hypersurfaces of constant k-mean curvature, 2 ≤ k ≤ n. Using the
analytical tools developed for the Riemannian case and assuming a condition
on the warping function we are able to prove the next

Theorem (Theorem 3.17). Let −I×ρPn be a generalized Robertson-Walker
spacetime whose warping function satisfies (log ρ)′′ ≤ 0, with equality only
at isolated points, and suppose that Pn has sectional curvature bounded from
below. Let f : Σn → −I×ρPn be a complete spacelike hypersurface contained
in a slab and assume that either

(i) H2 is a positive constant, or
(ii) Hk is constant (with k ≥ 3) and there exists an elliptic point in Σ.

If supΣ |H1| < +∞, then Σ is a slice.

Moreover, in the case when the GRW spacetime obeys the null conver-
gence condition, we find that the following result holds.

Theorem (Theorem 3.20). Let −I ×ρ Pn be a GRW spacetime and assume
that Pn has constant sectional curvature κ. Let f : Σn → −I×ρPn be a com-
plete spacelike hypersurface of constant k-mean curvature, k ≥ 2, contained
in a slab [t1, t2]× Pn on which ρ′ does not change sign and

κ > max
[t1,t2]

((log ρ)′′ρ2).

Suppose that Σn satisfies condition(
sup
∂Bt

Hk−1vol(∂Bt)
)−1

/∈ L1(+∞)

and either

(i) k = 2 and H2 > 0 or
(ii) k ≥ 3 and there exists an elliptic point p ∈ Σn.

If supΣ |H1| < +∞ and supΣ |Θ| < +∞, then f(Σn) is a slice.

These results and others presented in Chapter 3 are entirely contained
in [14].
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Finally, in the last chapter we will exhibit some results obtained in [41],
where we study the geometry of spacelike hypersurfaces by means of the
analysis of the extrinsic Lorentzian distance function from a point. Under
suitable bounds on the sectional curvature of the ambient space we are able
to obtain, combining the Hessian and Laplacian comparison theorems proved
in Section 1.4, the Omori-Yau maximum principle for the Laplacian and for
more general semi-elliptic operators, lower and upper bounds for the mean
and the higher order mean curvatures of the immersion in terms of the mean
curvatures of the level sets of the distance function. Finally, we restrict
ourselves to the case when the ambient space is a space form and we prove a
characterization of the round spheres as the unique spacelike hypersurfaces
with constant k-mean curvature which are bounded by a level set of the
Lorentzian distance function.



CHAPTER 1

Preliminaries

1.1. Geometry of the Newton operators: the Riemannian setting

Let Σn be a connected oriented Riemannian n-manifold and let f : Σn →
Mn+1 be an isometric immersion of Σn into an orientable Riemannian (n+1)-
manifold Mn+1. We will denote by A the linear operator associated to the
second fundamental form of the immersion and by N the unit normal vector
field globally defined on Σn. Let p ∈ Σ. Since Ap : TpΣ→ TpΣ is symmetric,
there exists an orthonormal basis of eigenvectors {E1, ..., En} of TpΣ with
real eigenvalues k1, ..., kn. We call these eigenvectors the principal directions
and the corresponding eigenvalues the principal curvatures of the immersion.
Denote by Sk the k-th symmetric function of the principal curvatures, defined
as

S0 =1,

Sk =
∑

i1<...<ik

ki1 · · · kik , 1 ≤ k ≤ n,

Sk =0, k > n.

We can then define the k-mean curvature of f by

Sk =

(
n

k

)
Hk.

Thus H1 = H is the mean curvature, Hn is the Gauss-Kronecker curva-
ture and H2 is an intrinsic quantity related to the scalar curvature of the
hypersurface. Indeed, as a consequence of Gauss equation 1

Ric(X,Y ) = Ric(X,Y )−
〈
R(N,X)Y,N

〉
− 〈AX,AY 〉+ nH1 〈AX,Y 〉

and

S = Tr(Ric) = S − 2Ric(N,N) + n(n− 1)H2.

Hence, if for instance, M has constant sectional curvature c, then S =
n(n− 1)(H2 + c). More generally, if M is an Einstein manifold, then H2 is
a multiple of the scalar curvature modulo a constant.
Associated with the higher order mean curvatures there is a family of opera-
tors, the so-called Newton transformations, which are related to the second
fundamental form A and are inductively defined as

P0 =I,

Pk =SkI −APk−1, 1 ≤ k ≤ n.

1We are using the convention R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

1



2 1. PRELIMINARIES

Observe that the Newton transformations Pk are self-adjoint operators which
commute with the second fundamental form A. Moreover, if {E1, . . . , En}
is an orthonormal frame in TpΣ that diagonalizes Ap, then

(Pk)pEi = µi,k(p)Ei,

where

µi,k =
∑

i1<···<ik,ij 6=i
ki1 . . . kik =

∂Sk+1

∂ki
.

Performing some simple algebraic computations it is easy to prove the fol-
lowing

Proposition 1.1. The following properties hold:

(1) Tr(Pk) = ckHk,

(2) Tr(APk) = ckHk+1,

(3) Tr(A2Pk) =
(
n
k+1

)
(nH1Hk+1 − (n− k − 1)Hk+2),

where ck = (n− k)
(
n
k

)
= (k + 1)

(
n
k+1

)
.

We refer to [18] for a detailed proof.
Associated to each Newton transformation Pk of an immersion f : Σn →

Mn+1, there is a second order differential operator Lk : C∞(Σ) → C∞(Σ)
defined by

Lku = Tr(Pk ◦ hessu),

u ∈ C∞(Σ), where by hessu : TΣ→ TΣ we denote the symmetric operator
given by hessu(X) = ∇X∇u for every X ∈ TΣ, and by Hessu : TΣ×TΣ→
C∞(Σ) the metrically equivalent bilinear form given by

Hessu(X,Y ) = 〈hessu(X), Y 〉 .

When the ambient space has constant sectional curvature, as a conse-
quence of the Codazzi equation, the operator Lk can be written in divergence
form

Lku = div(Pk∇u).

This can be seen as a particular case in the following discussion. In general

(1.1) div(Pk∇u) = Lku+ 〈divPk,∇u〉

where

〈divPk, X〉 =

n∑
i=1

〈(∇EiPk)Ei, X〉 =

n∑
i=1

〈(∇EiPk)X,Ei〉

for any X ∈ TΣ and any local orthonormal frame {E1, . . . , En} on TΣ. The
last term in (1.1) is strictly related to the curvature of the ambient space,
as shown in the following
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Proposition 1.2. Let Σn →Mn+1 be an isometric immersion. Let E1, ..., En
be a local orthonormal frame on TΣ and N be the (local) unit normal. Then

(1.2)

n∑
i=1

〈(∇EiPk)X,Ei〉 =

k−1∑
j=0

n∑
i=1

(−1)k−1−j
〈

R(Ei, A
k−1−jX)N,PjEi

〉
,

for every X ∈ TΣ.

Proof. We will prove Equation (1.2) by induction on k, 1 ≤ k ≤ n− 1.
Using Codazzi equation

(R(X,Y )N)T = (∇YA)X − (∇XA)Y

and the definition of P1 it is not difficult to prove that Equation (1.2) holds
for k = 1. Assume then that the equation holds for k − 1. Using again
Codazzi equation and the definition of covariant derivative, we get
n∑
i=1

〈(∇EiPk)X,Ei〉 =−
n∑
i=1

〈(∇EiPk−1)AX,Ei〉+
n∑
i=1

〈
R(Ei, X)N,Pk−1Ei

〉
+X(Sk)−

n∑
i=1

〈Pk−1(∇XA)Ei, Ei〉

=

k−1∑
j=0

n∑
i=1

(−1)k−1−j
〈

R(Ei, A
k−1−jX)N,PjEi

〉
+X(Sk)−

n∑
i=1

〈Pk−1(∇XA)Ei, Ei〉 .

We claim that

X(Sk) =
n∑
i=1

〈Pk−1(∇XA)Ei, Ei〉 .

Indeed, assume that the basis {E1, · · · , En} diagonalizes A. Then it diago-
nalizes simultaneously Pk−1 and

n∑
i=1

〈Pk−1(∇XA)Ei, Ei〉 =
n∑
i=1

〈Pk−1∇XAEi, Ei〉 −
n∑
i=1

〈Pk−1A(∇XEi), Ei〉

=
n∑
i=1

µi,k−1X(ki)

=
n∑
i=1

∂Sk
∂ki

X(ki)

=X(Sk).

For further details see also [11], paying attention to the different con-
vention for the sign of the curvature tensor R. �

In the next chapters we will prove some uniqueness results for hypersur-
faces of constant k-mean curvature, 2 ≤ k ≤ n, immersed in some suitable
ambient manifolds. In order to do that we will compute some basic partial
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differential equation by applying the operators Lk to appropriate functions.
As already said in the Introduction, the main tools to prove our theorems
will be then either the classical maximum principle, if the hypersurface is
compact, or, in the complete non-compact case, a generalized version of the
Omori-Yau maximum principle that we will introduce in the next section.
Since in both cases we will consider the operators Lk to be elliptic, we state
now two propositions where geometric conditions are found in order to guar-
antee this property.

Proposition 1.3 (Lemma 3.10 in [28]). Let Σn → Mn+1 be an isomet-
ric immersion. If H2 > 0 on Σ, then L1 is an elliptic operator (for an
appropriate choice of the Gauss map N).

Proof. Observe that, it follows from the Cauchy-Schwarz inequality
and by the assumption on H2 that

H2
1 ≥ H2 > 0.

Hence H1 never vanishes and we can choose the orientation so that H1 > 0.
Moreover, since ‖A‖2 = n2H2

1 − n(n− 1)H2,

k1 + . . .+ kn = nH1 > ‖A‖ =
√
k2

1 + . . .+ k2
n ≥ |ki| ≥ ki

for all 1 ≤ i ≤ n. Hence

µi,1 =
∑
j,j 6=i

kj > 0,

proving the positive definitness of P1. �

The next proposition follows directly from the proof of Proposition 3.2
in [18], nevertheless we derive it here for the sake of completeness. One of
the main ingredients of the proof are the so-called Garding inequalities [32],
that is

(1.3) H1 ≥ H1/2
2 ≥ · · · ≥ H1/n

n

with equality only at umbilical points. Garding inequalities hold whenever
the functions Hj are strictly positive and can be derived as an application
of the well-known Newton inequalities (see [38] for a detailed proof)

Hj−1Hj+1 ≤ H2
j .

Recall that a point p ∈ Σ is said to be elliptic if the second fundamental
form is positive definite at p.

Proposition 1.4. Let Σn → Mn+1 be an isometric immersion. If there
exists an elliptic point of Σ, with respect to an appropriate choice of the
Gauss map N , and Hk > 0 on Σ for some 3 ≤ k ≤ n, then the operators Lj
are elliptic for all 1 ≤ j ≤ k − 1.

Proof. Observe that proving that the operators Lj are elliptic for all
1 ≤ j ≤ k − 1 is equivalent to show that each µi,j is positive for all 1 ≤ j ≤
k − 1, 1 ≤ i ≤ n.
The existence of an elliptic point implies that all the principal curvatures
are positive at p and hence, by continuity, they are positive in an open
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neighbourhood U centered at p. Moreover, the functions Hj , Sj and µi,j are
also positive in U for all 1 ≤ i ≤ n, 1 ≤ j ≤ k − 1. Denote by Kj the set
consisting of the points of Σ where the functions µi,j are positive. Then,
for each j, U ⊂ Kj and Kj is an open set. Denote by Gj the connected
component of Kj containing U . It is not difficult to prove that, for each j,
Gj+1 ⊂ Gj (see Lemma 3.3 in [18] for a detailed proof).
Let us show that Gk−1 is closed. Consider a point q ∈ ∂Gk−1. Then, by
continuity, µi,k−1 is non-negative at q for each 1 ≤ i ≤ n. Then, since
Gk−1 ⊂ Gj also µi,j is non–negative at q for each 1 ≤ j ≤ k − 2. Observe
that, for each i,

Sk = kiµi,k−1 + µi,k.

If µi,k−1 = 0 at q, then Sk > 0 implies that µi,k > 0. Since the µi,j can
be viewed as symmetric functions of k1, . . . , ki−1, ki+1, . . . kj , we can apply
(1.3) and obtain that

0 < µi,k ≤
(
n− 1

k

)(
n− 1

k − 1

) k
k−1

µ
k

k−1

i,k−1 = 0,

leading to a contradiction. This shows that µi,k−1 6= 0 at q for each i and
hence the point q has to belong to the interior of Gk−1. This proves that
Gk−1 is closed and, since Σ is connected, it must coincide with Σ. Using
again the fact that Gk−1 ⊂ Gj we conclude that Gj ≡ M and hence µi,j > 0
for all 1 ≤ j ≤ k − 1, 1 ≤ i ≤ n. �

Remark 1.5. We conclude this section giving a motivation for the intro-
duction of the operators Lk.
It is well known that immersions of constant mean curvature are critical
points for the variational problem of minimizing the area functional for com-
pactly supported volume-preserving variations. When the ambient space has
constant sectional curvature c, also the higher order mean curvatures come
out from a variational problem (see [59], [64] or [18] for more details).
Namely, let us consider the functional

Ak−1 =

∫
Σ
Fk−1(S1, ..., Sk−1)dΣ,

for compactly supported volume-preserving variations, where the functions
Fk are defined by

F0 =1,

F1 =S1,

Fk =Sk + c
n− k + 1

k − 1
Fk−2, 2 ≤ k ≤ n− 1.

It is not difficult to see, calculating the first variation formula, that constant
k-mean curvature hypersurfaces are critical points of Ak−1. Furthermore,
if one is interested in studying when this critical points are also minima of
the functional, calculating the second variational formula one sees that they
must satisfy

(1.4) −
∫

Σ
f(Lk−1f + (S1Sk − (k + 1)Sk+1f + c(n− k + 1)Sk−1f)dΣ ≥ 0,
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where f is any differentiable function such that∫
Σ
fdΣ = 0.

Immersions satisfying condition (1.4) are said to be (k − 1)-stable (see also
[4], [18], [28] and [42] for more details on (k − 1)-stable hypersurfaces).
Thus, the operators Lk naturally appear in this context.

1.2. Geometry of the Newton operators: the Lorentzian setting

Let f : Σn → Mn+1 be a spacelike hypersurface isometrically immersed
into a spacetime M . We recall that a hypersurface is said to be spacelike if
the induced metric is positive definite (that is, it is a Riemannian manifold
with respect to the induced metric). Since M is time-oriented, there exists
a unique future-directed timelike unit normal field N globally defined on Σ.
We will refer to that normal field as the future-pointing Gauss map of the
hypersurface. As in the Riemannian case, we let A : TΣ → TΣ denote the
second fundamental form of the immersion and we denote by k1, ..., kn its
eigenvalues, which are the principal curvatures of the hypersurface. Their
elementary symmetric functions

S0 =1,

Sk =
∑

i1<...<ik

ki1 · · · kik , k = 1, ..., n

Sk =0, k > n

define the k-mean curvatures Hk of the immersion via the formula(
n

k

)
Hk = (−1)kSk.

In particular, when k = 1,

H1 = − 1

n

n∑
i=1

ki = − 1

n
Tr(A) = H

is the mean curvature of Σ. The choice of the sign (−1)k in our definition of
Hk is motivated by the fact that in that case the mean curvature vector is
given by H = HN . Therefore H(p) > 0 at a point p ∈ Σ if and only if H(p)
is in the same orientation as N(p).
When k = 2, H2 defines an intrinsic geometric quantity which is related to
the scalar curvature of the hypersurface. Indeed, it follows by the Gauss
equation 2 that

Ric(X,Y ) = Ric(X,Y ) +
〈
R(X,N)Y,N

〉
− Tr(A) 〈AX,Y 〉+ 〈AX,AY 〉

for X,Y ∈ TΣ. Hence the scalar curvature S of of the hypersurface is

S = Tr(Ric) = S + 2Ric(N,N)− n(n− 1)H2

2We are using the convention R(X,Y )Z = −∇X∇Y Z +∇Y∇XZ +∇[X,Y ]Z
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and, if the ambient space M has constant sectional curvature c we obtain
that

S = n(n− 1)(c−H2),

that is, the scalar curvature is a multiple of H2 modulo a constant. The same
is true under the more general assumption of M being Einsten. Even more,
when k is even, it follows from the Gauss equation that Hk is a geometric
quantity which is related to the intrinsic curvature of Σn.
Notice also that, analogously to the Riemannian case, spacelike hypersur-
faces of constant higher order mean curvature in Lorentzian spaceforms are
critical points of some area functionals for volume preserving variations (see
[19] or [23] for more details).
We introduce the Newton operators Pk : TΣ → TΣ which are inductively
defined by

P0 =I,

Pk =

(
n

k

)
HkI +APk−1, k = 1, . . . , n.

We observe that the characteristic polynomial of A can be written in terms
of the Hk as

det(tI −A) =
n∑
k=0

(
n

k

)
Hkt

n−k.

By the Cayley-Hamilton Theorem, it follows that Pn = 0. We also re-

mark that Pk = (−1)kP̃k, where with P̃k we denote the Riemannian Newton
transformations defined in the previous section. Then, as a direct applica-
tion of this relationship, we can derive most of the properties that we stated
for the Riemannian Newton tensors. For instance, the Newton operators
commute with the second fundamental form and they are simultaneously
diagonalizable. In particular, if {E1, . . . , En} is a local orthonormal basis
that diagonalizes A, the corresponding eigenvalues of Pk are

µi,k = (−1)kµ̃i,k =
∂Sk
∂ki

.

Moreover, using again the relationship Pk = (−1)kP̃k and applying Propo-
sition 1.1, it is not difficult to obtain the next

Proposition 1.6. The following properties hold:

(1) Tr(Pk) = ckHk,

(2) Tr(APk) = −ckHk+1,

(3) Tr(A2Pk) =
(
n
k+1

)
(nH1Hk+1 − (n− k − 1)Hk+2),

where ck = (n− k)
(
n
k

)
= (k + 1)

(
n
k+1

)
.

Using the Newton operators we can define the second order linear differ-
ential operators Lk : C∞(Σ)→ C∞(Σ) associated to Pk by

Lkf = Tr(Pk ◦ hess f).
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Notice that, when k = 0, L0 = ∆ is in divergence form. Moreover, the next
proposition holds

Proposition 1.7 (Lemma 3.1, [7]). Let Σn be a spacelike hypersurface iso-
metrically immersed into an (n+1)-dimensional spacetime and let {E1, ..., En}
be a local orthonormal frame on TΣ. Then

(1.5) div(Pk∇u) = Lku+

k−1∑
j=0

n∑
i=1

〈
R(Ei, A

k−1−j∇u)N,PjEi

〉
,

for every u ∈ C∞(Σ).

Proof. Notice that

div(Pk∇u) =

n∑
i=1

〈∇EiPk∇u,Ei〉

=

n∑
i=1

〈(∇EiPk)∇u,Ei〉+

n∑
i=1

〈Pk∇Ei∇u,Ei〉 .

Hence we we are done if we prove that

(1.6)
n∑
i=1

〈(∇EiPk)X,Ei〉 =
k−1∑
j=0

n∑
i=1

〈
R(Ei, A

k−1−jX)N,PjEi

〉
,

for every X ∈ TΣ. We will prove the latter equation by induction on k,
1 ≤ k ≤ n − 1. It is straightforward to prove that this is true for k = 1.
Assume that the equation holds for k − 1. Then, using Codazzi equation

(∇XA)Y − (∇YA)X = (R(X,Y )N)T ,

we get
n∑
i=1

〈(∇EiPk)X,Ei〉 =(−1)kX(Sk) +

n∑
i=1

〈(∇EiPk−1)AX,Ei〉

+

n∑
i=1

〈Pk−1(∇XA)Ei, Ei〉+

n∑
i=1

〈
R(Ei, X)N,Pk−1Ei

〉
.

We claim that

(−1)k−1X(Sk) =
n∑
i=1

〈Pk−1(∇XA)Ei, Ei〉 .

Indeed, assume that the basis {E1, ..., En} diagonalizes A. Let ki and µi,k−1

be the eigenvalues of A and Pk−1 respectively corresponding to the eigen-
vector Ei. Then

n∑
i=1

〈Pk−1(∇XA)Ei, Ei〉 =

n∑
i=1

µi,k−1X(ki)

=(−1)k−1
n∑
i=1

∂Sk
∂ki

X(ki)

=(−1)k−1X(Sk).
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Thus
n∑
i=1

〈(∇EiPk)X,Ei〉 =
n∑
i=1

〈(∇EiPk−1)AX,Ei〉+
n∑
i=1

〈
R(Ei, X)N,Pk−1Ei

〉
=

k−2∑
j=0

n∑
i=1

〈
R(Ei, A

k−1−jX)N,PjEi

〉
+

n∑
i=1

〈
R(Ei, X)N,Pk−1Ei

〉
=
k−1∑
j=0

n∑
i=1

〈
R(Ei, A

k−1−jX)N,PjEi

〉
.

�

The previous proposition thus shows that the operator Lk can be writ-
ten in divergence form, for any k, when the ambient spacetime has constant
sectional curvature. Moreover, it follows by the definition that Lk is elliptic
if and only if Pk is positive definite. As a direct application of the relation-
ship between the definition of the Newton operators in the Riemannian and
the Lorentzian case and of Propositions 1.3 and 1.4, we can state the two
following propositions in which geometric conditions are given in order to
guarantee the ellipticity of Lk when k ≥ 1 (Note that L0 = ∆ is always
elliptic).

Proposition 1.8. Let Σ be a spacelike hypersurface isometrically immersed
into a spacetime. If H2 > 0 on Σ, then L1 is an elliptic operator (for an
appropriate choice of the Gauss map N).

We point out that in the Lorentzian case by elliptic point we will mean
a point in Σ where the second fundamental form is negative definite.

Proposition 1.9. Let Σn be a spacelike hypersurface isometrically immersed
into a (n + 1)-dimensional spacetime. If there exists an elliptic point of Σ,
with respect to an appropriate choice of the Gauss map N , and Hk > 0 on
Σ, 3 ≤ k ≤ n, then for all 1 ≤ j ≤ k the operators Lj are elliptic.

1.3. The Omori-Yau maximum principle for trace-type
semi-elliptic operators

In this section we introduce an analytical tool that will be fundamental
for the proofs of our uniqueness results, the Omori-Yau maximum principle.

It is well known that, given a compact Riemannian manifold Σ without
boundary, for any u ∈ C2(Σ), there exists x0 ∈ Σ such that

(i) u∗ = u(x0), (ii) ‖∇u(x0)‖ = 0, (iii) ∆u(x0) ≤ 0.

More generally, condition (iii) can be replaced by the stronger condition

(i) u∗ = u(x0), (ii) ‖∇u(x0)‖ = 0, (iii) Hessu(x0) ≤ 0,
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where the above inequality has to be interpreted in the sense of quadratic
forms, that is

Hessu(x0)(v, v) ≤ 0, ∀v ∈ Tx0Σ.

Furthermore, in [53] Omori proved that if Σ is a complete non-compact
Riemannian manifold with sectional curvature bounded from below, then
there exists a sequence of points {xj}j∈N ∈ Σ satisfying

(i) u(pj) > u∗ − 1

j
, (ii) ‖∇u(pj)‖ <

1

j
, (iii) Hessu(pj) <

1

j
.

Later on, Yau in [66] extended these results to complete non-compact Rie-
mannian manifolds with Ricci curvature bounded from below, replacing con-
dition (iii) by the weaker

∆u(pj) <
1

j
.

For this reason, following the terminology introduced by Pigola, Rigoli and
Setti in [57], we introduce the following

Definition 1.10. The Omori-Yau maximum principle is said to hold on an
n-dimensional Riemannian manifold Σ if, for any function u ∈ C2(Σ) with
u∗ = supΣ u < +∞ there exists a sequence of points {pj}j∈N in Σ satisfying
the properties

(i) u(pj) > u∗ − 1

j
, (ii) ‖∇u(pj)‖ <

1

j
, (iii) ∆u(pj) <

1

j

for every j ∈ N. Equivalently, for any function u ∈ C2(Σ) with u∗ =
infΣ u > −∞, there exists a sequence {qj}j∈N ⊂ Σ with the properties

(i) u(qj) < u∗ +
1

j
, (ii) ‖∇u(qj)‖ <

1

j
, (iii) ∆u(qj) > −

1

j

for every j ∈ N.

Notice that, as shown in [57], despite what have been proved by Omori
and Yau, the validity of this principle does not depend on curvature bounds
as one would expect. Indeed, it has been proved in [57, Theorem 1.9] that
the Omori-Yau maximum principle holds on every Riemannian manifold
admitting a non-negative C2 function γ satisfying the following requirements

γ(x)→ +∞ as x→∞,(1.7)

∃A > 0 such that ‖∇γ‖ ≤ Aγ
1
2 off a compact set,(1.8)

∃B > 0 such that ∆γ ≤ Bγ
1
2G(γ

1
2 )

1
2 off a compact set,(1.9)

where G is a smooth function on [0,+∞) satisfying:

(1.10)
(i) G(0) > 0, (ii) G′(t) ≥ 0 on [0,+∞),

(iii) G(t)−
1
2 6∈ L1(+∞), (iv) lim supt→∞

tG(t
1
2 )

G(t) < +∞.

For a proof of this result see the proof of Theorem 1.9 in [57].
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Motivated by these facts, in [13] we extended this results to a suitable
family of second order semi-elliptic operators, that is, the family of differen-
tial operators of the form

(1.11) L = Tr(P ◦ hess),

where P : TΣ→ TΣ is a positive semi-definite symmetric operator satisfying
supΣ TrP < +∞. Using the same terminology of definition 1.10, we state
the next

Definition 1.11. Let Σ be a Riemannian manifold and let L be an operator
as in (1.11). The Omori-Yau maximum principle is said to hold on Σ for the
operator L if, for any function u ∈ C2(Σ) with u∗ = supΣ u < +∞, there
exists a sequence {pj}j∈N ⊂ Σ with the properties

(i) u(pj) > u∗ − 1

j
, (ii) ‖∇u(pj)‖ <

1

j
, (iii) Lu(pj) <

1

j

for every j ∈ N. Equivalently, for any function u ∈ C2(Σ) with u∗ = infΣ u >
−∞, there exists a sequence {qj}j∈N ⊂ Σ with the properties

(i) u(qj) < u∗ +
1

j
, (ii) ‖∇u(qj)‖ <

1

j
, (iii) Lu(qj) > −

1

j

for every j ∈ N.

Moreover, in the spirit of Theorem 1.9 in [57], we prove the following

Theorem 1.12 (Theorem 1 in [13]). Let Σ be a Riemannian manifold and
let L be as in (1.11). Assume that there exists a non-negative C2 function
γ satisfying conditions (1.7), (1.8) and such that

(1.12) ∃B > 0 such that Lγ ≤ Bγ
1
2G(γ

1
2 )

1
2 off a compact set,

where G is a smooth function on [0,+∞) satisfying (1.10). Then, given
any function u ∈ C2(Σ) with u∗ = supΣ u < +∞, there exists a sequence
{pj}j∈N ⊂ Σ with the properties

(1.13) (i) u(pj) > u∗ − 1

j
, (ii) ‖∇u(pj)‖ <

1

j
, (iii) Lu(pj) <

1

j
.

Proof. Define the function

ϕ(t) = e
∫ t
0 G(s)−

1
2 ds.

Note that ϕ(t) is a well defined, smooth, positive function and it satisfies
ϕ(t)→ +∞ as t→ +∞. Moreover we record for future use that

ϕ′(t) = G(t)−
1
2ϕ(t) and ϕ′′(t) =

(
G(t)−1 − 1

2
G(t)−

3
2G′(t)

)
ϕ(t),

and therefore

(1.14)
(ϕ′(t)
ϕ(t)

)2
− ϕ′′(t)

ϕ(t)
=

1

2
G(t)−

3
2G′(t) ≥ 0.

Besides, using assumption (1.10),(iv) we also have that

(1.15)
ϕ′(t)

ϕ(t)
≤ c(tG(t

1
2 ))−

1
2 ,
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for some constant c > 0.
Fix now a point p ∈ Σ and, for all j ∈ N define

fj(x) =
u(x)− u(p) + 1

ϕ(γ(x))
1
j

.

Then fj(p) = 1/ϕ(γ(p))1/j > 0. Moreover, since u∗ < +∞ and ϕ(γ(x)) →
+∞ as x → +∞, we have lim supx→+∞ fj(x) ≤ 0. Thus, fj attains a
positive absolute maximum at pj ∈ Σ. Iterating this procedure, we produce
a sequence {pj}j∈N ⊂ Σ. Reasoning as in [57], let us show first that

(1.16) lim sup
j→+∞

u(pj) = u∗.

Assume by contradiction that there exists p̂ ∈ Σ such that

u(p̂) > u(pj) + δ

for some δ > 0 and for each j ≥ j0 sufficiently large. Consider first the case
when pj remains on a compact set. Then, up to passing a subsequence, one
can find p ∈ Σ such that pj → p and

u(p̂) ≥ u(p) + δ.

Since fj(pj) ≥ fj(p̂) for every j we deduce that

u(p)− u(p) + 1 = lim
j→+∞

fj(pj) ≥ lim
j→+∞

fj(p̂) = u(p̂)− u(p) + 1

and hence
u(p) ≥ u(p̂),

which is a contradiction. On the other hand, if γ(pj) → +∞ as j → +∞,
on a subsequence, for each j such that γ(pj) > γ(p̂) we have

fj(p̂) =
u(p̂)− u(p) + 1

ϕ(γ(p̂))1/j
>
u(pj)− u(p) + 1 + δ

ϕ(γ(pj))1/j
> fj(pj)

contradicting the definition of pj .
This proves (1.16) and, up to passing to a subsequence if necessary, we may
assume that

lim
j→+∞

u(pj) = u∗.

Let us prove now (1.13),(ii) and (1.13),(iii). Again, if pj remains in
a compact set, then pj → p ∈ Σ as j → +∞ and u attains its absolute
maximum. Hence we have

u(p) = u∗, ‖∇u(p)‖ = 0, Hessu(p) ≤ 0.

In particular, since P is positive semi-definite it holds that Lu(p) ≤ 0. Hence
the sequence yj = p, for each j, satisfies all the requirements. Consider now
the case when pj diverges off a compact set, so that, according to (1.7),
γ(pj)→ +∞. Since fj attains a positive maximum at pj we have

(i)(∇ log fj)(pj) = 0, (ii) Hess log fj(pj) ≤ 0.

A simple computation then gives

∇u(pj) =
1

j
(u(pj)− u(p) + 1)

ϕ′(γ(pj))

ϕ(γ(pj))
∇γ(pj)
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and

Hessu(pj)(v, v) ≤1

j
(u(pj)− u(p) + 1)

{ϕ′(γ(pj))

ϕ(γ(pj))
Hess γ(pj)(v, v)

+
[(1

j
− 1
)(ϕ′(γ(pj))

ϕ(γ(pj))

)2
+
ϕ′′(γ(pj))

ϕ(γ(pj))

]
〈∇γ, v〉2

}
≤1

j
(u(pj)− u(p) + 1)

{ϕ′(γ(pj))

ϕ(γ(pj))
Hess γ(pj)(v, v)

+
1

j

(ϕ′(γ(pj))

ϕ(γ(pj))

)2
〈∇γ, v〉2

}
,

for every v ∈ TpjΣ, where in the last inequality we have used (1.14). Let
{E1, . . . , En} ⊂ TpjΣ be an orthonormal basis of eigenvectors of Ppj cor-

responding to the eigenvalues µi(pj) =
〈
PpjEi, Ei

〉
≥ 0. Then, for every

1 ≤ i ≤ n, we have

〈P hessu(pj)Ei, Ei〉 =µi(pj) Hessu(pj)(Ei, Ei)

≤1

j
(u(pj)− u(p) + 1)

{ϕ′(γ(pj))

ϕ(γ(pj))
〈P hess γ(pj)Ei, Ei〉

+
1

j

(ϕ′(γ(pj))

ϕ(γ(pj))

)2
µi(pj) 〈∇γ,Ei〉2

}
.

Taking traces here and using the fact that

〈P∇γ,∇γ〉 =

n∑
i=1

µi 〈∇γ,Ei〉2 ≤ TrP‖∇γ‖2,

we obtain that

Lu(pj) ≤
1

j
(u(pj)− u(p) + 1)

{ϕ′(γ(pj))

ϕ(γ(pj))
Lγ(pj)

+
1

j

(ϕ′(γ(pj))

ϕ(γ(pj))

)2
〈P∇γ(pj),∇γ(pj)〉

}
≤1

j
(u(pj)− u(p) + 1)

{ϕ′(γ(pj))

ϕ(γ(pj))
Lγ(pj)

+
1

j

(ϕ′(γ(pj))

ϕ(γ(pj))

)2
TrP‖∇γ(pj)‖2

}
.

Since (1.8) and (1.12) hold, they hold at pj for sufficiently large j and then

‖∇u(pj)‖ =
1

j
(u(pj)− u(p) + 1)

ϕ′(γ(pj))

ϕ(γ(pj))
‖∇γ(pj)‖

≤c0A

j
(u(pj)− u(p) + 1)

γ(pj)
1/2

γ(pj)1/2G
(
γ(pj)1/2

)1/2
≤c0A

j
(u(pj)− u(p) + 1)

1

G
(
γ(pj)1/2

)1/2
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for some constant c0 > 0, and the right hand side tends to zero as j → +∞.
Moreover, using (1.15) and letting supΣ TrP = C,

Lu(pj) ≤
1

j
(u(pj)− u(p) + 1)

{
Bc+

1

j
c2A2CG(γ(pj)

1
2 )−1

}
≤c1

u∗ − u(p) + 1

j

for a positive constant c1. Since the right hand side tends to zero as j → +∞,
this proves condition (iii) in (1.13). �

Remark 1.13. We observe that in Theorem 1.12 we do not assume the
geodesic completeness of the manifold Σ. Actually, as pointed out in [57],
it is not difficult to prove that assumptions (1.7) and (1.8) imply it. Indeed,
reasoning as in [25], we consider a divergent path σ : [0, l) → Σ, that is a
path that eventually lies outside any compact subset of Σ parametrized by
arc-length. Set h(t) = γ(σ(t)) on [t0, l), where t0 is such that σ(t) /∈ K for
all t0 ≤ t ≤ l, and K is any compact set of Σ. Then, by assumption (1.8)

2|
√
h(t)−

√
h(t0)| =

∣∣∣ ∫ t

t0

h′(u)√
h(u)

du
∣∣∣ =

∣∣∣ ∫ t

t0

〈∇γ(σ(u)), σ′(u)〉√
h(u)

du
∣∣∣

≤
∣∣∣ ∫ t

t0

|∇γ(σ(u))|√
γ(σ(u))

du
∣∣∣ ≤ A(t− t0),

for every t ∈ [t0, l). Since σ is divergent σ(t) → +∞ as t → l− and hence,
by assumption (1.7), h(t) → +∞ as t → l−. Therefore, letting t → l− in
the inequality above, we conclude that l = +∞. This shows that divergent
paths in Σ have infinite length, that is, Σ is geodesically complete.

Remark 1.14. The proof of the previous theorem shows that one needs
the function γ to be C2 only in a neighbourhood of pj . When γ is the
square of the Riemannian distance from a fixed reference point o (see the
examples below), this is the case if pj does not belong to the cut locus of o.
Nevertheless, using a trick of Calabi [22], one may assume that γ is always
C2 in a neighbourhood of pj .

We point out that the function theoretic approach to the generalized
Omori-Yau maximum principle given in Theorem 1.12 allows us to apply
it in different situations, where the choice of the functions γ and G are
suggested by the geometric setting. The next are two significant and useful
examples of intrinsic and extrinsic nature, respectively.

Example 1.15. Let Σ be a complete non-compact n–dimensional Riemann-
ian manifold and let o ∈ Σ be a reference point. Denote by r(x) the distance
function from o and set γ(x) = r(x)2. Then γ satisfies assumptions (1.7)
and (1.8) of the previous theorem. Furthermore, γ is smooth within the cut
locus of o. Let G be a smooth function on [0,+∞) even at the origin, i.e.

G(2k+1)(0) = 0 for each k = 0, 1, ..., and satisfying the conditions listed in
(1.10). Assume that the radial sectional curvature of Σ, that is, the sectional
curvature of the 2-planes containing ∇r, satisfies

(1.17) Krad
Σ ≥ −G(r).
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Then assumption (1.12) is satisfied. Namely, assuming that (1.17) holds, by
the Hessian comparison theorem (see the next section for further details)
within the cut locus of o, one has

(1.18) Hess r(p)(v, v) ≤ φ′(r(p))

φ(r(p))
(‖v‖2 − 〈∇r(p), v〉2)

for every v ∈ TpΣ, where φ(t) is the (positive) solution of the initial value
problem {

φ′′ −Gφ = 0,
φ(0) = 0, φ′(0) = 1.

Now let

ψ(t) =
1√
G(0)

(
e
∫ t
0

√
G(s)ds − 1

)
.

Then ψ(0) = 0, ψ′(0) = 1 and

ψ′′(t)−G(t)ψ(t) =
1√
G(0)

(
G(t) +

G′(t)

2
√
G(t)

e
∫ t
0

√
G(s)ds

)
≥ 0.

Hence, by the Sturm comparison theorem (see Lemma 1.24 in the next sec-
tion)

(1.19)
φ′(t)

φ(t)
≤ ψ′(t)

ψ(t)
=
√
G(t)

e
∫ t
0

√
G(s)ds

e
∫ t
0

√
G(s)ds − 1

≤ c
√
G(t)

where the last inequality holds for a constant c > 0 and t sufficiently large.
Therefore, if r is sufficiently large

Hess r ≤ c
√
G(r)(〈, 〉 − dr ⊗ dr).

Since Hess γ = 2rHess r + 2dr ⊗ dr, we obtain from here that

(1.20) Hess γ ≤ c
√
γG(
√
γ) 〈, 〉

for a constant c and γ sufficiently large. Then, since P is positive semi-
definite

Lγ ≤ ncTrP
√
γG(
√
γ).

As a consequence, we get the following

Corollary 1.16. Let (Σ, 〈, 〉) be a complete, non-compact Riemannian man-
ifold whose radial sectional curvature satisfies condition (1.17). Then, the
Omori-Yau maximum principle holds on Σ for any semi-elliptic operator L
of the form (1.11).

Example 1.17. Consider Pn a complete, non-compact, Riemannian mani-
fold, let o ∈ Pn be a reference point and denote by r̂ the distance function
from o. We will assume that the radial sectional curvature of Pn satisfies the
condition

(1.21) Krad
P ≥ −G(r̂),
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where G is a smooth function on [0,+∞) even at the origin and satisfying the
conditions listed in (1.10). Let f : Σn →Mn+1 = I×ρ Pn be a hypersurface,
where I ×ρ Pn is the product I × Pn endowed with the metric

〈, 〉 = π∗I (dt
2) + ρ2(πI)π

∗
P(〈, 〉P),

where ρ : I → R+ is a smooth function. Observe that if Σ is compact then
every immersion f : Σn → I ×ρ Pn is proper and contained in a slab, and
the Omori-Yau maximum principle trivially holds on Σ for any semi-elliptic
operator. Assume then that Σ is non-compact and let f : Σn → I ×ρ Pn
be a properly immersed hypersurface which is contained in a slab, that is,
f(Σ) ⊂ [t1, t2]× Pn.

Let γ̂ : Pn → R be the function given by γ̂(x) = r̂(x)2 for every x ∈ Pn,
and set γ : Σ→ R for the associated function, defined as

γ(p) = γ̃(f(p)) = γ̂(x(p)) = r̂(x(p))2

for every p ∈ Σ, where γ̃(t, x) = γ̂(x) and f(p) = (h(p), x(p)). Since f is
proper, if p→ +∞ in Σ then f(p)→∞ in I×ρPn , but being f contained in a
slab, this means that x(p)→∞ in Pn. It follows that γ(p) = r̂(x(p))2 → +∞
as p→ +∞ in Σ, and γ satisfies condition (1.7) in Theorem 1.12.

Let us denote by ∇̃, ∇̂ and ∇ the Levi-Civita connection (and the gra-
dient operators) in Mn+1, Pn and Σn, respectively. Since γ = γ̃ ◦ f , along
the immersion f we have

(1.22) ∇̃γ̃ = ∇γ +
〈
∇̃γ̃, N

〉
N

where N is a (local) smooth unit normal field along f . On the other hand,
from γ̃(t, x) = γ̂(x) we have 〈

∇̃γ̃, T
〉

= 0,

where T stands for the lift of ∂t to the product I × Pn, and〈
∇̃γ̃, V

〉
=
〈
∇̂γ̂, V

〉
P

for every V , where V denotes the lift of a vector field V ∈ TP to I × Pn.
Since 〈

∇̃γ̃, V
〉

= ρ2
〈
∇̃γ̃, V

〉
P
,

we conclude from here that

(1.23) ∇̃γ̃ =
1

ρ2
∇̂γ̂ =

2r̂

ρ2
∇̂r̂.

Therefore, since
∥∥∥∇̂r̂∥∥∥ = ρ

∥∥∥∇̂r̂∥∥∥
P

= ρ and ρ(h) ≥ min[t1,t2] ρ(t) > 0, along

the immersion we have

(1.24) ‖∇γ‖ ≤
∥∥∥∇̃γ̃∥∥∥ =

2
√
γ

ρ(h)
≤ c√γ

for a positive constant c. Thus, γ also satisfies condition (1.8) in Theorem
1.12. In particular Σ is complete (see Remark 1.13).
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Now, we will prove that, under appropriate extrinsic restrictions, condi-
tion (1.12) in Theorem 1.12 is also satisfied. It follows from (1.22) that

Hess γ(X,X) = Hess γ̃(X,X) +
〈
∇̃γ̃, N

〉
〈AX,X〉

for every tangent vector field X ∈ TΣ. From (1.23)

(1.25) ∇̃T ∇̃γ̃ = − ρ
′

ρ3
∇̂γ̂ = −H∇̃γ̃,

where H(t) = ρ′(t)/ρ(t). In particular, Hess γ̃(T, T ) = 0. Then, writing
X = X∗ + 〈X,T 〉T , where X∗ = πP∗X, we have

Hess γ̃(X,X) = Hess γ̃(X∗, X∗) + 2 〈X,T 〉Hess γ̃(X∗, T ).

It follows from (1.25) that

Hess γ̃(X∗, T ) = −H(h)
〈
∇̃γ̃, X

〉
= −H(h) 〈∇γ,X〉 .

On the other hand, using

∇̃X∗∇̃γ̃ =
1

ρ2
∇̂X∗∇̂γ̂ −

ρ′

ρ3

〈
∇̂γ̂, X∗

〉
T

we also have

Hess γ̃(X∗, X∗) =
1

ρ2

〈
∇̂X∗∇̂γ̂, X∗

〉
=
〈
∇̂X∗∇̂γ̂, X∗

〉
P

= Hess γ̂(X∗, X∗).

Summing up,

Hess γ(X,X) = Hess γ̂(X∗, X∗)− 2H(h) 〈∇γ,X〉 〈T,X〉(1.26)

+
〈
∇̃γ̃, N

〉
〈AX,X〉

for every tangent vector field X ∈ TΣ.
Observe that, using (1.24),

|H(h) 〈∇γ,X〉 〈T,X〉| ≤ |H(h)| ‖∇γ‖‖X‖2 ≤ c√γ‖X‖2.
for a constant c > 0, since |H(h)| ≤ max[t1,t2] |H(t)|. On the other hand,
reasoning as we did before in deriving (1.20), it follows from condition (1.21)
and using the Hessian comparison theorem for Pn that, if γ is sufficiently
large, then

Hess γ̂(X∗, X∗) ≤ c
√
γG(
√
γ)‖X‖2

for a certain positive constant c, where we are using the fact that

‖X∗‖P ≤
1

infΣ ρ(h)
‖X‖ ≤ 1

min[t1,t2] ρ(t)
‖X‖.

Therefore, since limt→+∞G(t) = +∞ we conclude from (1.26) that

(1.27) Hess γ(X,X) ≤ c
√
γG(
√
γ)‖X‖2 +

〈
∇̃γ̃, N

〉
〈AX,X〉

for every tangent vector field X ∈ TΣ, outside a compact subset of Σ.
Assume now that supΣ |H1| < +∞. Tracing (1.27) we obtain

∆γ ≤ nc
√
γG(
√
γ) + nH1

〈
∇̃γ̃, N

〉
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outside a compact set, where by (1.24)

|H1

〈
∇̃γ̃, N

〉
| ≤ sup

Σ
|H1|

∥∥∥∇̃γ̃∥∥∥ ≤ c1
√
γ ≤ c2

√
γG(
√
γ)

for some constants c1, c2 > 0. Thus, we conclude that, outside a compact
subset of Σ,

∆γ ≤ c
√
γG(
√
γ),

for some constant c > 0, which means that condition (1.9) is fulfilled for the
Laplacian. Therefore, the Omori-Yau maximum principle holds on Σ for the
Laplacian.

On the other hand, if we assume instead that supΣ ‖A‖2 < +∞ then,
using again (1.24), we have

|
〈
∇̃γ̃, N

〉
〈AX,X〉 | ≤

∥∥∥∇̃γ̃∥∥∥‖A‖‖X‖2 ≤ c√γG(
√
γ)‖X‖2

for a positive constant c, if γ is sufficiently large. From (1.27) we therefore
obtain

(1.28) Hess γ(X,X) ≤ c
√
γG(
√
γ)‖X‖2,

for every tangent vector field X ∈ TΣ, outside a compact subset of Σ. Thus,
if L is as in (1.11), we conclude from here that

Lγ ≤ nc sup
Σ

TrP
√
γG(
√
γ)

if γ is sufficiently large, which means that condition (1.12) in Theorem 1.12
is fulfilled for the operator L. Therefore the Omori-Yau maximum principle
holds on Σ for L. We summarize the above discussion in the following:

Corollary 1.18. Let Pn be a complete, non-compact, Riemannian manifold
whose radial sectional curvature satisfies condition (1.21). Let f : Σn →
I ×ρ Pn be a properly immersed hypersurface contained in a slab.

(1) If supΣ |H1| < +∞, then Σ is complete and the Omori-Yau maxi-
mum principle holds on Σ for the Laplacian.

(2) If supΣ ‖A‖ < +∞, then Σ is complete and the Omori-Yau max-
imum principle holds on Σ for any semi-elliptic operator L as in
(1.11).

Remark 1.19. From

‖A‖2 = n2H2
1 − n(n− 1)H2

it follows that, under the assumption infΣH2 > −∞, the condition supΣ ‖A‖
2 <

+∞ is equivalent to supΣH1 < +∞.

1.4. Hessian and Laplacian comparison theorems in Lorentzian
geometry

Riemannian comparison geometry was first developed in the thirties,
through the work of Hopf, Morse, Schoenberg, Myers, and Synge and got to
the top in the fifties with the pioneering work of Rauch and the foundational
work of Alexandrov, Toponogov and Bishop. The core idea is to compare the
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geometry of an arbitrary Riemannian manifold with that of a model space in
order to conclude that the manifold retains particular geometric properties of
the model. In particular, comparing the geometry of the manifolds will mean
to compare their sectional or sometimes Ricci curvatures. Typically, model
spaces are spaces of constant sectional curvature. They can be represented
as the products

Mn+1
c = [0, rc)× Sn,

equipped with the rotationally symmetric metric

〈, 〉 = dr2 + h2
c(r)dϑ

2,

where dϑ2 is the round metric on the sphere and
(1.29)

(i) rc =

{
+∞ if c ≤ 0
π/
√
c if c > 0

, (ii) hc(r) =


1√
−c sinh(

√
−cr) if c < 0

r if c = 0
1√
c

sin(
√
cr) if c > 0

More generally, having fixed a smooth even function G, as observed by
Greene and Wu in [34], the definition of model spaces can be extended to
Riemannian manifolds of sectional radial curvature −G(r) of the form

Mn+1
−G = [0, r−G)× Sn,

endowed with rotationally symmetric metrics

〈, 〉 = dr2 + h2(r)dϑ2,

where h : R→ R is the unique solution of the Cauchy problem

(1.30)

{
h′′ −Gh = 0
h(0) = 0, h′(0) = 1

and r−G is the first zero of h in the interval (0,+∞). It is easy to see that
when G(r) is constant, the function h has the explicit expression given in
(1.29), (ii).

Among others, we will focus on comparison theorems for the Hessian
and the Laplacian of the distance function. In that regard, in [34], Hessian
and Laplacian comparison theorems are proved using a geometric approach
based on the use of Jacobi fields and the second variation of arc length.
There the authors compare the radial sectional curvatures (respectively the
radial Ricci curvatures) of manifolds that posses a pole and establish a com-
parison between the Hessians (respectively the Laplacians) of their distance
functions. Later on, in [55] Petersen recovered some of these results using
an analytical approach which is essentially based on the use of comparison
results for ODE’s. Later on, inspired by Petersen’s approach, Pigola, Rigoli
and Setti generalized these results in [58], where they proved that a lower
(resp. upper) bound on the radial sectional curvature of the form

KM (Π) ≥ −G(r) (resp. KM (Π) ≤ −G(r))
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implies an upper (resp. lower) estimate for the Hessian of the distance
function r of the type

Hess r ≤ h′(r)

h(r)
(〈, 〉 − dr ⊗ dr) (resp. Hess r ≥ h′(r)

h(r)
(〈, 〉 − dr ⊗ dr)),

where the function h is a solution of the Cauchy problem (1.30).
It is not difficult to prove (see [55, Chapter 3]) that the quantity h′(r)/h(r)
is precisely the Hessian of the distance function on the model manifold M−G.
Hence the Hessian comparison theorem tells us that comparing the radial
sectional curvature of a Riemannian manifold with that of a model allows
us to compare their Hessians. Note that, taking traces it is easy to obtain
corresponding estimates for the Laplacian under the assumptions on the
radial sectional curvature. Nevertheless, an upper estimate for the Laplacian
can be also obtained under the weaker condition of a lower bound for the
radial Ricci curvature.

Our goal is to obtain similar results for Lorentzian manifolds with sec-
tional curvature of timelike planes bounded by a function of the Lorentzian
distance, improving in this way on classical results. We will use these the-
orems in Chapter 4, where we will give some applications to the study of
spacelike hypersurfaces. Before exhibiting the main results of this section
let us recall some basic notions.
LetMn+1 be an (n+1)-dimensional spacetime, that is, an (n+1)-dimensional
time-oriented Lorentzian manifold, and let p, q ∈ M . Using the standard
terminology and notation in Lorentzian geometry, we say that q is in the
chronological future of p, written p � q, if there exists a future-directed
timelike curve from p to q. Similarly, we say that q is in the causal future of
p, written p ≤ q, if there exists a future-directed causal (that is nonspacelike)
curve from p to q. For a subset S ⊂ M , we define the chronological future
of S as

I+(S) = {q ∈M |p� q for some p ∈ S},
and the causal future of S as

J+(S) = {q ∈M |p ≤ q for some p ∈ S},

where p ≤ q means that either p < q or p = q. In particular, the chronological
and the causal future of a point p ∈M are, respectively

I+(p) = {q ∈M |p� q}, J+(p) = {q ∈M |p ≤ q}.

In a dual way, we denote by

I−(S) = {q ∈M |q � p for some p ∈ S},

and

J−(S) = {q ∈M |q ≤ p for some p ∈ S},
the chronological and the causal past of S.
It is well known that I+(p) is always open, while J+(p) is neither open nor
closed in general. Given q ∈ J+(p), the Lorentzian distance d(p, q) is defined
as the supremum of the Lorentzian lengths of all the future-directed causal
curves from p to q. If q 6∈ J+(p), then d(p, q) = 0 by definition. Moreover,
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d(p, q) > 0 if and only if q ∈ J+(p). Given a point p ∈M one can define the
Lorentzian distance function dp : M → [0,+∞) with respect to p by

dp(q) = d(p, q).

Let

T−1M|p = {v ∈ TpM |v is a future-directed timelike unit vector}

be the fiber of the unit future observer bundle of Mn+1 at p. Define the
function

sp : T−1M|p → [0,+∞), sp(v) = sup{t ≥ 0 | dp(γv(t)) = t},

where γv : [0, a)→M is the future timelike geodesic with γv(0) = p, γ′v(0) =
v. The future timelike cut-locus Γ+(p) of p in TpM is defined as

Γ+(p) = {sp(v)v | v ∈ T−1M|p and 0 < sp(v) < +∞}

and the future timelike cut-locus C+
t (p) of p in M is C+

t (p) = expp(Γ
+(p))

wherever the exponential map expp at p is defined on Γ+(p).
It is well known that the Lorentzian distance function on arbitrary space-
times may fail in general to be continuous and finite valued. It is also known
that this is true for globally hyperbolic spacetimes. Recall that a spacetime
M is said to be globally hyperbolic if it is strongly causal and it satisfies
the condition that J+(p) ∩ J−(q) is compact for all p, q ∈ M . Moreover, a
Lorentzian manifold M is said to be strongly causal at a point p ∈M if for
any neighborhood U of p there exists no timelike curve that passes through
U more than once. In general, in order to guarantee the smoothness of the
distance function we need to restrict it on certain special subsets of M . Let

Ĩ+(p) = {tv | v ∈ T−1M|p and 0 < t < sp(v)},
and define

I+(p) = exp(int(Ĩ+(p))) ⊂ I+(p).

Since
expp : int(Ĩ+(p))→ I+(p)

is a diffeomorphism, I+(p) is an open subset of M . In the lemma below we
summarize the main properties of the Lorentzian distance function.

Lemma 1.20 ([29], Section 3.1). Let M be a spacetime and p ∈M .

(1) If M is strongly causal at p, then sp(v) > 0 ∀v ∈ T−1M|p and

I+(p) 6= ∅,

(2) If I+(p) 6= ∅, then the Lorentzian distance function dp is smooth

on I+(p) and ∇dp is a past-directed timelike (geodesic) unit vector
field on I+(p).

Remark 1.21. If M is a globally hyperbolic spacetime and Γ+(p) = ∅, then
I+(p) = I+(p) and hence the Lorentzian distance function dp with respect
to p is smooth on I+(p) for each p ∈M .
We also observe that if M is a Lorentzian space form, then it is globally
hyperbolic and geodesically complete. Moreover, every timelike geodesic
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realizes the distance between its points. Hence Γ+(p) = ∅ and we conclude
again that the Lorentzian distance function dp is smooth on I+(p) for each
p ∈M .

We are now ready to exhibit the estimates for the Hessian and the Lapla-
cian of the Lorentzian distance function in Lorentzian manifolds with sec-
tional or Ricci curvature bounded by a radial function. The case constant
bounds on sectional or Ricci curvature was investigated for the first time in
[31], and later on in [12]. In particular, in [12] the authors, inspired by the
approach of Greene and Wu in [34] based on the use of the second variation
formula for the arc length and Jacobi fields, proved the comparison described
in Propositions 1.22 and 1.23.

Consider, for every c ∈ R, the function fc(s) defined as

fc(t) =


√
c coth(

√
ct) if c > 0 and t > 0

1
t if c = 0 and t > 0√
−c cot(

√
−ct) if c < 0 and 0 < t < π/

√
−c

and let ∇, Hess and ∆ respectively the Levi-Civita connection, the Hessian
and the Laplacian on the spacetime M . Then the following proposition
holds.

Proposition 1.22 (Lemmas 3.1 and 3.2 in [12]). Let Mn+1 be an (n+ 1)-
dimensional spacetime such that that KM (Π) ≤ c, c ∈ R, for all timelike
planes Π. Assume that there exists a point p ∈ M such that I+(p) 6= ∅ and
let q ∈ I+(p) (with r(q) < π/

√
−c if c < 0, r(·) = dp(·) being the Lorentzian

distance function from p). Then

Hessr(X,X) ≥ −fc(r(q)) 〈X,X〉
for every spacelike X ∈ TqM . Analogously, if KM (Π) ≥ c, c ∈ R, for all
timelike planes Π and r(q) < π/

√
−c if c < 0, then

Hessr(X,X) ≤ −fc(r(q)) 〈X,X〉
for every spacelike X ∈ TqM .

Moreover, under the weaker hypothesis

RicM (Z,Z) ≥ −nc
for every unit timelike vector Z, the following Laplacian comparison result
holds.

Proposition 1.23 (Lemma 3.3 in [12]). Let Mn+1 be an (n+1)-dimensional
spacetime such that such that RicM (Z,Z) ≥ −nc, c ∈ R, for every unit
timelike vector Z. Assume that there exists a point p ∈M such that I+(p) 6=
∅ and let q ∈ I+(p) (with r(q) < π/

√
−c if c < 0, r(·) = dp(·) being the

Lorentzian distance function from p). Then

∆r(q) ≥ −nfc(r(q)).

Inspired by these works, we aim at extending the previous comparison
results to the more general cases

KM (Π) ≥ G(r), KM (Π) ≤ G(r),
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for all timelike planes Π, and

RicM (∇r,∇r) ≥ −nG(r),

where G is a smooth even function on R. In order to do that we will use an
analytical approach which makes use of a comparison result for solutions of
Riccati inequalities. First of all we need the following

Lemma 1.24 (Sturm comparison Theorem). Let G be a continuous func-
tion on [0,+∞) and let φ, ψ ∈ C1([0,+∞)) with φ′, ψ′ ∈ AC([0,+∞)) be
solutions of the problems{
φ′′ −Gφ ≤ 0 a.e. in (0,+∞)
φ(0) = 0

,

{
ψ′′ −Gψ ≥ 0 a.e. in (0,+∞)
ψ(0) = 0, ψ′(0) > 0

If φ(r) > 0 for r ∈ (0, T ) and ψ′(0) ≥ φ′(0), then ψ(r) > 0 in (0, T ) and

φ′

φ
≤ ψ′

ψ
and ψ ≥ φ on (0, T ).

For a proof of the lemma see [58]. Using the above lemma we are able
to obtain the desired comparison result for solutions of Riccati inequalities
with appropriate asymptotic behaviour.

Corollary 1.25 (Corollary 4 in [41]). Let G be a continuous function on
[0,+∞) and let gi ∈ AC((0, Ti)) be solutions of the Riccati differential in-
equalities

g′1 −
g2

1

α
+ αG ≥ 0, (resp. ≤ 0) g′2 +

g2
2

α
− αG ≥ 0, (resp. ≤ 0)

a.e. in (0, Ti), satisfying the asymptotic conditions

gi(t) =
α

t
+ o(t) as t→ 0+,

for some α > 0. Then T1 ≤ T2 (resp. T1 ≥ T2) and −g1(t) ≤ g2(t) in (0, T1)
(resp. −g2(t) ≤ g1(t) in (0, T2)).

Proof. Since g̃i = α−1gi satisfies the conditions in the statement with
α = 1, without loss on generality we may assume that α = 1. Notice that
gi(s)− 1

s is bounded and integrable in a neighbourhood of s = 0. Hence the

same is true for the function −g1(s)− 1
s . Indeed

−
(
g1(s) +

1

s

)
< −

(
g1(s)− 1

s

)
≤
∣∣∣g1(s)− 1

s

∣∣∣ ≤ C,
for some constant C > 0. Now let φi ∈ C1([0, Ti)) be the positive functions
defined by

φ1(t) = t exp
(
−
∫ t

0

(
g1(s) +

1

s

)
ds
)
, φ2(t) = t exp

(∫ t

0

(
g2(s)− 1

s

)
ds
)
.

Then φi(0) = 0, φ′i ∈ AC((0, Ti)), φ
′
i(0) = 1 and

φ′1(t) = −g1(t)φ1(t), φ′2(t) = g2(t)φ2(t)

Hence

φ′′1 ≤ Gφ1, φ′′2 ≥ Gφ2 (resp. φ′′1 ≥ Gφ1, φ′′2 ≤ Gφ2).
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Then, it follows by Lemma 1.24 that T1 ≤ T2 (resp. T1 ≥ T2) and

−g1(t) =
φ′1(t)

φ1(t)
≤ φ′2(t)

φ2(t)
= g2(t) (resp.− g2(t) =

φ′2(t)

φ2(t)
≤ φ′1(t)

φ1(t)
= g1(t)).

�

Remark 1.26. The proof of the previous Corollary, as well as those of
the Hessian and Laplacian comparison theorems, are deeply inspired by the
proofs given in [58, Chapter 2].

We are now ready to prove the Hessian and Laplacian comparison theo-
rems.

Theorem 1.27 (Hessian Comparison Theorem, Theorem 5 in [41]). Let
Mn+1 be an (n+1)-dimensional spacetime. Assume that there exists a point
p ∈ M such that I+(p) 6= ∅ and let r(·) = dp(·) be the Lorentzian distance
function from p. Given a smooth even function G on R, let h be a solution
of the Cauchy problem {

h′′ −Gh = 0
h(0) = 0, h′(0) = 1

and let I = [0, rG) ⊂ [0,+∞) be the maximal interval where h is positive
and q ∈ I+(p) ∩B+(p, rG), where

B+(p, rG) = {q ∈ I+(p)|dp(q) < rG}.

If

(1.31) KM (Π) ≤ G(r)

for all timelike planes Π, then

Hessr(X,X) ≥ −h
′

h
(r(q)) 〈X,X〉

for every spacelike X ∈ TqM which is orthogonal to ∇r(q). Analogously, if

(1.32) KM (Π) ≥ G(r)

for all timelike planes Π, then

Hessr(X,X) ≤ −h
′

h
(r(q)) 〈X,X〉

for every spacelike X ∈ TqM which is orthogonal to ∇r(q).

Proof. Let v ∈ exp−1
p (q) ∈ int(Ĩ+(p)) and let γ(t) = expp(tv), 0 ≤

t ≤ sp(v), be the radial future directed unit timelike geodesic with γ(0) =

p, γ(s) = q, s = r(q). Recall that γ′(s) = −∇r(q) and ∇∇r∇r(q) = 0.

Since ∇r satisfies the timelike eikonal inequality, Hessr is diagonalizable
(see Chapter 6 in [31] or [30] for more details) and TqM has an orthonormal

basis consisting of eigenvectors of Hessr. Let us denote by λmax(q) and
λmin(q) respectively its greatest and smallest eigenvalues in the orthogonal
complement of ∇r(q). Notice that the theorem is proved once one shows
that
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(a) if (1.31) holds, then

λmin(q) ≥ −h
′

h
(r(q)).

(b) if (1.32) holds, then

λmax(q) ≤ −h
′

h
(r(q)).

Let us prove claim (a) first. We claim that if (1.31) holds, then λmin satisfies

(1.33)

{
d
dt(λmin ◦ γ)− (λmin ◦ γ)2 ≥ −G for a.e. t > 0
λmin ◦ γ = 1

t + o(t) as t→ 0+

Namely, by the definition of covariant derivative

(∇Xhessu)(Y ) = ∇X(hessu(Y ))− hessu(∇XY ).

Hence, recalling the definition of the curvature tensor we find

(∇Y hessu)(X)− (∇Xhessu)(Y ) = R(X,Y )∇u.

Choose u = r, X = ∇r. For every spacelike unit vector Y ∈ TqM , Y is
orthogonal to γ′(s) and we can define a vector field Y orthogonal to γ′ by
parallel translation along γ. Then

∇γ′(s)(hessr(Y )) =(∇γ′(s)hessr)(Y ) + hessr(∇γ′(s)Y )

=− (∇∇rhessr)(Y )

=− (∇Y hessr)(∇r) + R(∇r, Y )∇r
=hessr(∇Y∇r) + R(∇r, Y )∇r.

On the other hand, since Y is parallel

d

dt

〈
hessr(Y ), Y

〉 ∣∣∣
s

=
〈
∇γ′(s)hessr(Y ), Y

〉
.

Hence

d

dt
Hessr(γ)(Y, Y )−

〈
hessr(γ)(Y ), hessr(γ)(Y )

〉
= −KM (Y ∧ γ′)

Notice that

Hessr(X,X) ≥ λmin

for every spacelike unit vector field X⊥∇r. Let us choose Y so that at s

Hessr(γ)(Y, Y ) = λmin(γ(s)).

Then, the function Hess r(γ)(Y, Y )−λmin◦γ attains its minimum at s. Hence

d

dt
Hessr(γ)(Y, Y )

∣∣∣
s

=
d

dt
(λmin ◦ γ)

∣∣∣
s

and we have proved that λmin satisfies the first equation in (1.33), since
KM (Y ∧ γ′) ≤ G. The asymptotic behaviour follows from the expression

(1.34) Hessr =
1

r
(〈, 〉+ dr ⊗ dr) + o(1)
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that can be proved using normal coordinates around p. Now, if we set φ = h′

h ,
we find that φ satisfies{

φ′ + φ2 = G on (0, rG)
φ = 1

t + o(t) as t→ 0+

Then, using Corollary 1.25 with g1 = λmin, g2 = φ and α = 1 we conclude
that

λmin(q) ≥ −h
′

h
(r(q))

and this concludes the proof of (a).
Finally, for what concerns claim (b), we observe that reasoning as in the
proof of claim (a) and choosing Y so that at s

Hessr(γ)(Y, Y ) = λmax(γ(s))

we can prove that, if (1.32) holds, λmax satisfies{
d
dt(λmax ◦ γ)− (λmax ◦ γ)2 ≤ −G for a.e. t > 0
λmax ◦ γ = 1

t + o(t) as t→ 0+

In this case, setting again φ = h′

h , we find that φ satisfies{
φ′ + φ2 = G on (0, rG)
φ = 1

t + o(t) as t→ 0+

Then, we can conclude again using Corollary 1.25 with g1 = λmax, g2 = φ
and α = 1. �

Notice that in case G(r) ≡ c, c ∈ R, then the function h has the expres-
sion

(1.35) h(s) =


1√
c

sinh(
√
cs) if c > 0

s if c = 0
1√
−c sin(

√
−cs) if c < 0

and

rG =

{
+∞ if c ≥ 0
π/
√
−c if c < 0

It is then easy to see that h′/h(s) = fc(s), showing that our theorem extends
Proposition 1.22.

Furthermore, observe that, as in the Riemannian case, we can introduce
the model manifold

MG = −I ×Hn, 〈, 〉 = −dr2 + h2(r)dϑ2,

where h is a solution of (1.30), I = (0, rG) and rG is the first zero of h.
Using the relationship between the curvature tensor of a warped product

and the curvature tensor of its base and fibre (see for instance Proposition
42 in [54]) one has

R(U, V )W = RP(U∗, V ∗)W ∗ + ((log ρ)′)2(πI)(〈U,W 〉V − 〈V,W 〉U)

+ (log ρ)′′(πI) 〈W,T 〉 (〈V, T 〉U − 〈U, T 〉V )(1.36)

− (log ρ)′′(πI)(〈U,W 〉 〈V, T 〉 − 〈V,W 〉 〈U, T 〉)T,
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where X∗ = πP∗X for every X ∈ TM . A straightforward calculation based
on the above formula permits to conclude then that the function G is the
radial sectional curvature of the model manifold MG.
Under the weaker assumption of radial Ricci curvature bounded from below
we obtain the following

Theorem 1.28 (Laplacian Comparison Theorem, Theorem 6 in [41]). Let
Mn+1

be an (n+1)- dimensional spacetime. Assume that there exists a point p ∈M
such that I+(p) 6= ∅ and let q ∈ I+(p). Let r(·) = dp(·) be the Lorentzian
distance function from p. Given a smooth even function G on R, let h be a
solution of the Cauchy problem{

h′′ −Gh ≥ 0
h(0) = 0, h′(0) = 1

and let I = [0, rG) ⊂ [0,+∞) be the maximal interval where h is positive. If

(1.37) RicM (∇r,∇r) ≥ −nG(r),

then

∆r ≥ −nh
′

h
(r)

holds pointwise on I+(p) ∩B+(p, rG).

Proof. Let v ∈ exp−1
p (q) ∈ int(Ĩ+(p)) and let γ(t) = expp(tv), 0 ≤ t ≤

sp(v), be the radial future directed unit timelike geodesic with γ(0) = p,

γ(s) = q, s = r(q). Recall that γ′(s) = −∇r(q) and ∇∇r∇r(q) = 0. Define

ϕ(t) = ∆r ◦ γ(t), t ∈ (0, s].

Then tracing Equation (1.34)

ϕ(t) =
n

t
+ o(t) as t→ 0+.

Let f ∈ C∞(M). The following Bochner formula holds

1

2
∆
〈
∇f,∇f

〉
=
∥∥hessf

∥∥2
+ RicM (∇f,∇f) +

〈
∇∆f,∇f

〉
.

See [31] for more details. Since
∥∥∇r∥∥2

= −1, it follows that

0 =
∥∥hessr

∥∥2
+ RicM (∇r,∇r) +

〈
∇∆r,∇r

〉
.

Since
∥∥hessr

∥∥2 ≥ (∆r)2

n and RicM (∇r,∇r) ≥ −nG(r), we have

1

n
(∆r)2 +

〈
∇∆r,∇r

〉
≤ nG(r).

Computing along γ

ϕ′(t) =
d

dt
(∆r(γ(t)))

∣∣∣
s

=
〈
∇∆r(γ(t)), γ′(t)

〉 ∣∣∣
s

= −
〈
∇∆r,∇r

〉
.

Hence the function ϕ satisfies{
ϕ′(t)− ϕ2(t)

n ≥ −nG
ϕ(t) = n

t + o(t) as t→ 0+
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Set φ = nh
′

h . Then φ satisfies{
φ′(t) + φ2(t)

n ≥ nG on (0, rG)
φ(t) = n

t + o(t) as t→ 0+

Hence we conclude again using Corollary 1.25. �

Notice as above that, in case G(r) ≡ c, we recover Proposition 1.23.



CHAPTER 2

Hypersurfaces of constant k-mean curvature in
warped products

The aim of this chapter is to state and prove uniqueness results for hy-
persurfaces of constant higher order mean curvature immersed in suitable
ambient manifolds. To do that, in the spirit of the Alexandrov Theorem, we
will consider manifolds with a large class of embedded umbilical hypersur-
faces of constant mean curvatures. We will then look for geometric condition
that force an immersed complete hypersurface of constant k-mean curvature,
2 ≤ k ≤ n, to be one of those already classified. As pointed out by Montiel
in [49], a natural class of ambient manifolds to consider is that of warped
products Mn+1 := R×ρPn, where Pn is a complete n-dimensional Riemann-
ian manifold, ρ : R → R+ is a smooth function and the product manifold
R× Pn is endowed with the complete Riemannian metric

〈, 〉 = π∗R(dt2) + ρ2(πR)π∗P(〈, 〉P).

Here πR and πP denote the projections onto the corresponding factors and
〈, 〉P is the Riemannian metric on Pn. Each leaf Pt = {t}×Pn of the foliation
t → Pt of Mn+1 by complete hypersurfaces is totally umbilical and has
constant k-mean curvature

Hk(t) =
(ρ′(t)
ρ(t)

)k
, 0 ≤ k ≤ n,

with respect to −T = −∂/∂t.
Observe that it is not difficult to check that the vector field T = ρT is a
closed conformal vector field on M , that is it satisfies

∇XT = ϕX, for anyX ∈ TM, ϕ ∈ C∞(M),

with ϕ(t) = ρ′(t). Actually, it can be proved (see [49] for more details) that
any complete Riemannian manifold carrying a closed conformal vector field
can be constructed from a warped product with one dimensional base.
Space forms are a typical example of manifolds that support a closed con-
formal vector field.

Example 2.1. The Euclidean space Rn+1 carries many nontrivial closed (in
fact exacts) conformal vector fields. One of them is the costant vector field

T (p) = c, ∀c ∈ Rn+1, p ∈ Rn+1.

This vector field generates a foliation of the space by means of parallel hy-
perplanes and can be represented as the product R × Rn (i.e. the warping
function ρ is constantly equal to 1).

29
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Further, let us fix an origin a ∈ Rn+1. Then it is not difficult to check that
the position vector field

T (p) = p− a, p ∈ Rn+1,

is again a closed conformal vector field that generates a foliation of the space
by means of concentric round hyperspheres centered at a. This corresponds
to the representation of Rn+1 as warped product with base I = R+, fiber
Pn = Sn and warping function ρ(t) = t.

Example 2.2. Round spheres Sn+1 admit also exact conformal vector fields.
Indeed, once we fix an origin a ∈ Sn+1, we can verify that the vector field

X(p) = a− 〈a, p〉 p, p ∈ Sn+1

is closed and conformal and foliates the hypersphere by means of umbilical
hyperspheres Sn parallel to the equator orthogonal to a. The corresponding
representation as warped product space is then (0, π)×sin t Sn.

Example 2.3. Finally, let us consider the Hyperbolic space Hn+1 viewed as
a hypersphere in the Lorentz-Minkowski space, that is a connected compo-
nent of the hyperquadric

{p ∈ Rn+2
1 | 〈p, p〉 = −1}.

Fix a ∈ Rn+2
1 and consider the closed conformal vector field

T (p) = a+ 〈a, p〉 p, p ∈ Hn+1.

Depending on the causal character of a we have different foliations of Hn+1

and hence different descriptions of it as warped product space. Namely, if a
is timelike, Hn+1 is foliated by spheres and can be described as the warped
product R+×sinh tSn; if a is lightlike the foliation is by means of horospheres
and the space can be viewed as R×et Rn; finally, if a is spacelike, the vector
field T generates a foliation of Hn+1 by means of totally geodesic hyperbolic
hyperplanes and it can be represented as the warped product with base
R×cosh t Hn.

Consider now f : Σn → I ×ρ Pn, I ⊂ R, being an isometric immersion
of an n-dimensional Riemannian manifold Σn. Our aim is to show that,
under suitable geometric conditions, every hypersurface Σ of constant k-
mean curvature, 2 ≤ k ≤ n, has to be a slice. The case of constant mean
curvature has already been studied in [49] and [9].
Given f : Σn → I ×ρ Pn, we define the height function h ∈ C∞(Σ) as
h = πR ◦ f . In this context and following the terminology introduced in [9],
we will say that the hypersurface is contained in a slab if f(Σ) lies between
two leaves of the foliation, Pt1 ,Pt2 with t1 < t2.
In what follows, we will assume that the immersion is two-sided, which holds
always true at least locally. Recall that a submanifold f : Σn → I ×ρ
Pn is called two-sided if its normal bundle is trivial, i.e. there exists a
globally defined unit normal vector field. For instance, every hypersurface
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with nonzero constant mean curvature is trivially two sided.
We can then define the angle function Θ : Σn → [−1, 1] by

Θ(p) = 〈N(p), T (f(p)〉 ,
where N denotes the global normal unit vector field and T = ∂/∂t.

2.1. Curvature estimates for hypersurfaces in warped products

In this section we will derive some estimates for the mean and the higher
order mean curvatures of a hypersurface in a slab of a warped product space.
The idea is that, under suitable geometric conditions, it is possible to com-
pare the (higher order) mean curvature of the hypersurface with that of a
slice.

Similar results have been proved for the mean curvature in [9] for sur-
faces in warped product spaces R ×ρ P2, where P2 is a complete surface
of non-negative Gaussian curvature. The technique there used exploits the
parabolicity of the surface, which is guaranteed by the hypothesis on the
curvature of P2. Unfortunately, the fact that the latter assumption imply
the parabolicity of the immersed surface holds only in case n = 2. Thus it
is necessary to work out a different proof to extend these results to the case
of arbitrary n. It is not surprising that the right tool turns out to be the
Omori-Yau maximum principle.

To prove our estimates we will need the following computational result

Proposition 2.4. Let f : Σn → I ×ρ Pn be an isometric immersion. If

σ(t) =

∫ t

t0

ρ(u)du,

then

(2.1) Lk−1h = H(h)(ck−1Hk−1 − 〈Pk−1∇h,∇h〉) + ck−1ΘHk

and

(2.2) Lk−1σ(h) = ck−1ρ(h)(H(h)Hk−1 + ΘHk),

where ck−1 = (n− k + 1)
(
n
k−1

)
= k

(
n
k

)
.

Proof. The gradient of πR ∈ C∞(M) is ∇πR = T , hence

∇h = (∇πR)T = T − 〈T,N〉N = T −ΘN.

Recall that the Levi-Civita connection of a warped product satisfies (see [54]
for more details)

∇XT = H(X − 〈X,T 〉T ), for any X ∈ TM.

Thus
∇X∇h = H(h)(X − 〈X,T 〉T )−X(Θ)N + ΘAX,

for any X ∈ TΣ. Then

(2.3) hess(h)(X) = ∇X∇h = H(h)(X − 〈X,∇h〉∇h) + ΘAX.

Composing with Pk−1 and taking the trace

Lk−1h = H(h)(Tr(Pk−1)− 〈Pk−1∇h,∇h〉) + ΘTr(Pk−1A).
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On the other hand, since ∇σ(h) = ρ(h)∇h, we have

hess(σ(h))(X) = ρ′(h) 〈∇h,X〉∇h+ ρ(h) hess(h)(X).

Again, composing with Pk−1 and taking the trace

Lk−1σ(h) =ρ′(h) 〈Pk−1∇h,∇h〉+ ρ(h)H(h)
(
TrPk−1 − 〈Pk−1∇h,∇h〉

)
+ ρ(h)ΘTr(Pk−1A)

and we conclude using the expressions of the traces of Pk−1 and Pk−1A. �

As a first application of the computations above, we derive the following:

Theorem 2.5 (Theorem 7 in [13]). Let f : Σn → I ×ρ Pn be an immersed
hypersurface. If the Omori-Yau maximum principle holds on Σ for the Lapla-
cian and if h∗ = supΣ h < +∞, then

sup
Σ
|H1| ≥ inf

Σ
H(h).

In other words, there is no properly immersed hypersurface contained in a
slab [t1, t2]× Pn with

sup
Σ
|H1| < inf

Σ
H(h).

In particular, as an application of Corollary 1.18, we deduce the following
result, which generalizes Theorem 2 in [9].

Corollary 2.6. Let Pn be a complete, non-compact, Riemannian manifold
whose radial sectional curvature satisfies condition (1.21), that is

Krad
P ≥ −G(r̂),

where r̂ is the distance from a reference point in P = n and G is a smooth
function on [0,+∞), even at the origin and satisfying the conditions listed
in (1.10). If f : Σn → I×ρPn is a properly immersed hypersurface contained
in a slab, then

(2.4) sup
Σ
|H1| ≥ inf

Σ
H(h).

In other words, there is no properly immersed hypersurface contained in a
slab [t1, t2]× Pn with

sup
Σ
|H1| < inf

[t1,t2]
H(t).

For the proof of Corollary 2.6, observe that, if supΣ |H1| = +∞, then the
inequality (2.8) trivially holds. On the other hand, if supΣ |H1| < +∞ then
by Corollary 1.18 we know that the Omori-Yau maximum principle holds on
Σ and the result follows from Theorem 2.5.

Proof of Theorem 2.5. Since h is bounded from above, we may find
a sequence {pj} ⊂ Σn such that

lim
j→+∞

h(pj) = h∗ := suph,

‖∇h(pj)‖2 = 1−Θ2(pj) <
(1

j

)2
,

∆h(pj) = H(h(pj))(n− ‖∇h(pj)‖2) + nH1(pj)Θ(pj) <
1

j
.
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Then
1

j
> ∆h(pj) ≥ H(h(pj))(n− ‖∇h(pj)‖2)− n sup

Σ
|H1|.

Making j → +∞ we get

0 ≥ H(h∗)− sup
Σ
|H1|,

so that

sup
Σ
|H1| ≥ H(h∗) ≥ inf

Σ
H(h).

�

Using the Omori-Yau maximum principle for elliptic operators of the
form (1.11) and assuming some extra assumption it is not difficult to extend
the previous estimate to the k-mean curvature, 2 ≤ k ≤ n.

Assume that Hk > 0, 2 ≤ k ≤ n. Then we normalize the operators Pk−1

to the following

P̂k =
1

Hk
Pk.

Observe that

Tr(P̂k) = ck,

so that the operators P̂k always have trace bounded from above. Moreover,

we will denote by L̂k the corresponding differential operator, that is

L̂k = Tr(P̂k ◦ hess).

In case k = 2 we obtain the next

Theorem 2.7 (Theorem 10 in [13]). Let f : Σn → I ×ρ Pn be an immersed
hypersurface with H2 > 0. If the Omori-Yau maximum principle holds on Σ

for L̂1 and h∗ = supΣ h < +∞, then

sup
Σ
H

1/2
2 ≥ inf

Σ
H(h).

Proof. We may assume without loss of generality that supΣH2 < +∞
and infΣH(h) ≥ 0. Otherwise the inequality trivially holds. Since |H1| ≥√
H2, the mean curvature H1 never vanishes and we can choose the orien-

tation on Σ so that H1 > 0. Then L̂1 is a well defined elliptic operator.
Moreover, since h is bounded from above and σ(t) is an increasing function,
supΣ σ(h) = σ(h∗) < +∞ and we may find a sequence {pj} ⊂ Σn such that

lim
j→+∞

h(pj) = h∗,

‖∇h(pj)‖2 = 1−Θ2(pj) <
(1

j

)2
,

L̂1h(pj) <
1

j
.
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Then,

1

j
>L̂1(σ ◦ h)(pj) = n(n− 1)ρ(h(pj))

(
H(h(pj)) + Θ(pj)

H2

H1
(pj)

)
≥n(n− 1)ρ(h(pj))

(
H(h(pj))−

H2

H1
(pj)

)
≥n(n− 1)ρ(h(pj))

(
H(h(pj))−

√
H2(pj)

)
.

Taking into account that supΣ Tr(P̂1) < +∞ and taking j → +∞, up to
passing to a subsequence we get

0 ≥ H(h∗)− sup
Σ

√
H2

and this concludes the proof. �

As a consequence of the previous theorem and Corollary 1.18 we also
have

Corollary 2.8. Let Pn be a complete, non-compact, Riemannian manifold
whose radial sectional curvature satisfies condition (1.21). If f : Σn →
I ×ρ Pn is a properly immersed hypersurface with supΣ |H1| < +∞ which is
contained in a slab, then

sup
Σ
H

1/2
2 ≥ inf

Σ
H(h).

In other words, there is no properly immersed hypersurface with H2 > 0 and
supΣ |H1| < +∞ contained in a slab [t1, t2]× Pn with

sup
Σ
H

1/2
2 < inf

[t1,t2]
H(t).

The previous results can be extended to the case 3 ≤ k ≤ n once we

guarantee the ellipticity of the operator L̂k−1. Using Proposition 1.4 one
obtains the next

Theorem 2.9 (Theorem 12 in [13]). Let f : Σn → I ×ρ Pn be an immersed
hypersurface having an elliptic point and satisfying Hk > 0. If the Omori-

Yau maximum principle holds on Σ for L̂k−1, with 3 ≤ k ≤ n, and h∗ < +∞
then

sup
Σ
H

1/k
k ≥ inf

Σ
H(h).

The proof proceeds as in the previous theorem taking into account that
by Garding inequalities

Hk−1 ≥ H
(k−1)/k
k .

Observe that Proposition 1.4 also implies that each Hj is positive for any
1 ≤ j ≤ k−1. In particularH2 is positive and hence, keeping in mind Remark
1.19, the condition supΣ |H1| < +∞, together with the assumption of Σ
being properly immersed, suffice to guarantee the validity of the Omori-Yau

maximum principle for L̂k−1. Hence the next corollary is straightforward.
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Corollary 2.10. Let Pn be a complete, non-compact, Riemannian manifold
whose radial sectional curvature satisfies condition (1.21). Assume that f :
Σn → I ×ρ Pn is a properly immersed hypersurface having an elliptic point
satisfying Hk > 0 and supΣ |H1| < +∞. If f(Σ) is contained in a slab, then

sup
Σ
H

1/k
k ≥ inf

Σ
H(h)

for every 3 ≤ k ≤ n. In other words, there is no properly immersed hyper-
surface having an elliptic point and contained in a slab [t1, t2]× Pn with

sup
Σ
H

1/k
k < inf

[t1,t2]
H(t).

2.2. Uniqueness of hypersurfaces: compact case

The computational results found in Proposition 2.4 can be used also to
prove uniqueness results for hypersurfaces with either constant mean curva-
ture H1 or constant k-mean curvature Hk, 2 ≤ k ≤ n immersed in warped
product spaces. The idea is that, since the geometry of these spaces is
completely determined by the warping function and by the geometry of the
fiber, appropriate conditions on them force the hypersurface to be a slice. In
this section we will concentrate on uniqueness results obtained by imposing
conditions on the warping function. Similar results with conditions on the
geometry of a standard slice are obtained in Section 2.4.

Let us consider first the case of constant mean curvature hypersurfaces.
In [10] it has been obtained the following result.

Theorem 2.11 (Theorem 2.4 in [10]). Let f : Σn → I ×ρ Pn be a compact
two-sided hypersurface of constant mean curvature H1. Assume that H′ ≥ 0
and that the angle function Θ does not change sign. Then Pn is compact and
f(Σn) is a slice.

Observe that, since H(t) = ρ′

ρ (t) = (log ρ)′(t), the assumption on H(h)

being non-decreasing is equivalent to (log ρ)′′(h) being convex. Concerning
the assumption that the angle function does not change sign, notice that,
if the immersion f is locally a graph, then either Θ < 0 or Θ > 0 along
Σ. Hence, by requiring that Θ does not change on Σ we are relaxing the
hypothesis of f being a local graph.

The proof of the previous theorem is essentially based on the use of the
classical maximum principle applied to some basic partial differential equa-
tions (more precisely equations (2.1) and (2.2) in case k = 0). Our aim is to
extend this result to compact hypersurfaces of constant higher order mean
curvature. The idea is to find the right partial differential equation and to
use again the classical maximum principle that holds for every semi-elliptic
operator on a compact Riemannian manifold. Looking at Proposition 2.4 it
seems natural, once we assume that the k-mean curvature Hk is constant,
2 ≤ k ≤ n, to try to perform the same computations as in Theorem 2.11 sim-
ply replacing the Laplacian operator by the operator Lk−1. Unfortunately,
Equations (2.1) and (2.2) involve both the k−1 and k mean curvatures and,
since in general we don’t know much on the first one, it is not possible to
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reach the desired conclusion. The idea is then to find a suitable family of
semi-elliptic operators, which will turn out to be a combination of the Lk’s,
that make things work.
Let us start with the simpler case k = 2. In this case we will assume H2 a
positive constant, so that the operator L1 is elliptic if we choose the normal
unit vector N on Σ such that H1 > 0.

Let σ(t) =
∫ t
t0
ρ(u)du. By Proposition 2.4 we know that

∆σ(h) = nρ(h)(H(h) + ΘH1),

L1σ(h) = n(n− 1)ρ(h)(H(h)H1 + ΘH2).(2.5)

Therefore, if we define

L1 = (n− 1)H(h)∆−ΘL1 = Tr(P1 ◦ hess),

with
P1 = (n− 1)H(h)I −ΘP1.

a straightforward computation shows that

(2.6) L1σ(h) = n(n− 1)ρ(h)(H(h)2 −Θ2H2),

Hence, if we assume that the angle function Θ does not change sign, since
we need the operator L1 (respectively the operator −L1) to be semi-elliptc,
we would like to have

H(h) ≥ 0 when Θ ≤ 0 (resp. H(h) ≤ 0 when Θ ≥ 0).

This is guaranteed by the following

Lemma 2.12. Let f : Σn → I ×ρ Pn be a compact hypersurface with non-
vanishing mean curvature. Assume that the angle function Θ does not change
sign and that H′ ≥ 0. Then

(i) if Θ ≤ 0, then H(h) ≥ 0,

(ii) if Θ ≥ 0, then H(h) ≤ 0.

Proof. Choose the orientation so that H1 > 0. Since Σ is compact,
there exist points pmin, pmax where the height function h attains its minimum
and maximum values respectively. Moreover, set

h := min
Σ
h = h(pmin),

h := max
Σ

h = h(pmax).

Then
∇h(pmin) = ∇h(pmax) = 0

and
Θ(pmin) = Θ(pmax) = ±1.

Moreover

0 ≤ ∆h(pmin) = nH(h) + nΘ(pmin)H1(pmin)

0 ≥ ∆h(pmax) = nH(h) + nΘ(pmax)H1(pmax)

Assume Θ ≤ 0. Then Θ(pmin) = −1 and

0 ≤ nH(h)− nH1(pmin) ≤ H(h).
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Hence, since H′ ≥ 0
H(h) ≥ H(h) ≥ 0.

On the other hand, if Θ ≥ 0, Θ(pmax) = 1 and

0 ≥ nH(h) + nH1(pmax) ≥ H(h)

and we conclude as above. �

We can now state the first main result of this section, which extends
Theorem 2.11 to the case of constant 2-mean curvature H2.

Theorem 2.13 (Theorem 15 in [13]). Let f : Σn → I ×ρ Pn be a compact
hypersurface of constant positive 2-mean curvature H2. If H′(h) ≥ 0 and the
angle function Θ does not change sign, then Pn is necessarily compact and
f(Σn) is a slice.

Proof. As above, we choose the orientation of Σ so that H1 > 0. We
may apply Lemma 2.12 and consider first the case Θ ≤ 0, for whichH(h) ≥ 0.
In this case the operator P1 is positive semi-definite or, equivalently, L1 is
semi-elliptic.

Since Σ is compact, there exist points pmax, pmin ∈ Σ such that

h(pmax) = h = max
Σ

h and h(pmin) = h = min
Σ
h.

Therefore, ‖∇h(pmax)‖ = ‖∇h(pmin)‖ = 0, which yields

Θ(pmax) = Θ(pmin) = −1.

Observe that
max

Σ
(σ ◦ h) = σ(h) = σ(h(pmax))

and
min

Σ
(σ ◦ h) = σ(h) = σ(h(pmin)),

because σ(t) is strictly increasing. In particular,

Hessσ(h)(pmax) ≤ 0 and Hessσ(h)(pmin) ≥ 0.

Taking into account that P1 is positive semi-definite, this yields

L1σ(h)(pmax) = n(n− 1)ρ(h)(H(h)2 −H2) ≤ 0

and
L1σ(h)(pmin) = n(n− 1)ρ(h)(H(h)2 −H2) ≥ 0.

Then, since H(h) ≥ 0 on Σ, we obtain

H(h) ≥ H1/2
2 ≥ H(h).

On the other hand, by H′ ≥ 0 we also have H(h) ≤ H(h). Thus, we deduce

the validity of the equality H(h) = H(h) and H(h) = H
1/2
2 is constant on Σ.

By (2.5), using the basic inequality H1 ≥ H
1/2
2 and the fact that Θ ≥ −1,

we obtain that

L1σ(h) = n(n− 1)ρ(h)H
1/2
2 (H1 + ΘH

1/2
2 )

≥ n(n− 1)ρ(h)H
1/2
2 (H1 −H1/2

2 )

≥ 0.
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That is, L1σ(h) ≥ 0 on the compact manifold Σ. Thus, by the maximum
principle applied to the elliptic operator L1 we conclude that σ(h), and hence
h, is constant.

Finally, in the case where Θ ≥ 0 we know from Lemma 2.12 that H(h) ≤
0 on Σ, so that the operator −L1 is semi-elliptic. The proof then follows as
in the case Θ ≤ 0, working with −L1 instead. �

In order to extend our previous results to the case of higher order mean
curvatures, we introduce a family of operators that generalize L1. For 1 ≤
k ≤ n, let us consider the operator

Lk−1 = Tr
([ k−1∑

j=0

(−1)j
ck−1

cj
H(h)k−1−jΘjPj

]
◦ hess

)
= Tr(Pk−1 ◦ hess),

where

(2.7) Pk−1 =

k−1∑
j=0

(−1)j
ck−1

cj
H(h)k−1−jΘjPj .

We claim that

Lk−1σ(h) = ck−1ρ(h)(H(h)k + (−1)k−1ΘkHk).

We can prove the claim by induction. We have already seen in (2.6) that
the equation above holds when k = 2 . For k ≥ 3, observe that

Pk−1 =
ck−1

ck−2
H(h)Pk−2 + (−1)k−1Θk−1Pk−1

and

Lk−1 =
ck−1

ck−2
H(h)Lk−2 + (−1)k−1Θk−1Lk−1

Therefore, if k ≥ 3 and we assume that the claim is true for Lk−2, then using
(2.2) we conclude that

Lk−1σ(h) =
ck−1

ck−2
H(h)Lk−2σ(h) + (−1)k−1Θk−1Lk−1σ(h)

=ck−1ρ(h)(H(h)k + (−1)k−2H(h)Θk−1Hk−1

+ (−1)k−1H(h)Θk−1Hk−1 + (−1)k−1ΘkHk)

=ck−1ρ(h)(H(h)k + (−1)k−1ΘkHk).

Using the operators Lk−1 and the the maximum principle on the compact
manifold Σ we are able to give the following extension of Theorem 2.13.

Theorem 2.14 (Theorem 20 in [13]). Let f : Σn → I ×ρ Pn be a compact
hypersurface with constant k-mean curvature Hk, with 3 ≤ k ≤ n. Assume
that there exists an elliptic point in Σ. If H′(t) ≥ 0 and the angle function
Θ does not change sign, then Pn is necessarily compact and f(Σn) is a slice.

Proof. Choose the orientation of Σ so that H1 > 0. Let us apply
Lemma 2.12 considering first the case Θ ≤ 0. In this case H(h) ≥ 0 and,
since by Lemma 1.4 all the Pj are positive definite, 1 ≤ j ≤ k − 1, the
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operator Pk−1 is positive semi-definite or, equivalently, Lk−1 is semi-elliptic.
Reasoning now as in the proof of Theorem 2.13, we obtain

Lk−1σ(h)(pmax) = ck−1ρ(h)(H(h)k −Hk) ≤ 0

and
Lk−1σ(h)(pmin) = ck−1ρ(h)(H(h)k −Hk) ≥ 0.

Then, since H(h) ≥ 0 on Σ,

H(h) ≥ H1/k
k ≥ H(h).

Again, the assumption on H′(h) implies that H(h) = H
1/k
k is constant on

Σ. Therefore, by the Garding inequality Hk−1 ≥ H
(k−1)/k
k and the fact that

Θ ≥ −1, we obtain that

Lk−1σ(h) = ck−1ρ(h)H
1/k
k (Hk−1 + ΘH

(k−1)/k
k )

≥ ck−1ρ(h)H
1/k
k (Hk−1 −H

(k−1)/k
k ) ≥ 0.

That is, Lk−1σ(h) ≥ 0 on the compact manifold Σ. Therefore, by the maxi-
mum principle applied to the elliptic operator Lk−1 we conclude that σ(h),
and hence h, must be constant.

Finally, when Θ ≥ 0 we can apply again Lemma 2.12 in order to conclude
that H(h) ≤ 0 on Σ. Consider then the operator

Lk−1 = Tr
([ k−1∑

j=0

(−1)k−1−j ck−1

cj
H(h)k−1−jΘjPj

]
◦ hess

)
= Tr(Pk−1 ◦ hess),

where

(2.8) Pk−1 =
k−1∑
j=0

(−1)k−1−j ck−1

cj
H(h)k−1−jΘjPj .

which is semi-elliptic. Furthermore, it is not difficult to prove using induction
on k that

Lk−1σ(h) = ck−1ρ(h)((−1)k−1H(h))k + ΘkHk).

The proof then follows as in the case Θ ≤ 0. �

2.3. Uniqueness of hypersurfaces: complete non-compact case

We consider now the case when the immersed hypersurface is complete
non-compact and we try to extend in this context the results proved in the
previous section. Again, for what concern the mean curvature case, the
desired uniqueness result has already been proved in [10] and it reads as
follows

Theorem 2.15 (Theorem 2.9 in [10]). Let f : Σn → I ×ρ Pn be a complete
two-sided hypersurface of constant mean curvature H1, with Ricci curvature
bounded from below and

f(Σn) ⊂ [t1, t2]× Pn,
where t1, t2 ∈ R are finite. Assume that H′ ≥ 0 and that the angle function
Θ does not change sign. Then f(Σn) is a slice.



40 2. HYPERSURFACES OF CONSTANT k-MEAN CURVATURE IN WARP. PROD.

For the proof, one proceeds just as in the compact case, using the Omori-
Yau maximum principle for the Laplacian rather than the classical maximum
principle. This result can be extended to the case of complete constant k-
mean curvature hypersurfaces, 2 ≤ k ≤ n, by means of the family of opera-
tors Lk−1. Since, as we will see, these operators belong to the family (1.11)
introduced in Section 1.3, the proof of the uniqueness results is straightfor-
ward once one guarantees the conditions for the validity of the Omori-Yau
maximum principle for semi-elliptic operators of the form (1.11). In this
regard, let us introduce the following

Lemma 2.16. Let f : Σn → I ×ρ Pn be a hypersurface with non-vanishing
mean curvature which is contained in a slab. Assume that H′ > 0 and that
the angle function Θ does not change sign. If the Omori-Yau maximum
principle holds on Σ, then

(i) if Θ ≤ 0, then H(h) ≥ 0,

(ii) if Θ ≥ 0, then H(h) ≤ 0.

Proof. Choose on Σ the orientation so that H1 > 0. Since h is bounded
from below and the Omori-Yau maximum principle holds on Σ, we can find
a sequence {qj}j∈N ⊂ Σn such that

lim
j→+∞

h(qj) = h∗,

‖∇h(qj)‖2 = 1−Θ2(qj) <
(1

j

)2
,

∆h(qj) = H(h(qj))(n− ‖∇h(qj)‖2) + nH1(qj)Θ(qj) > −
1

j
.

Then

(2.9) − nH1(qj)Θ(qj) <
1

j
+H(h(qj))(n− ‖∇h(qj)‖2).

Similarly, since h is bounded from above, we can also find a sequence {pj} ⊂
Σn such that

lim
j→+∞

h(pj) = h∗,

‖∇h(pj)‖2 = 1−Θ2(pj) <
(1

j

)2
,

∆h(pj) = H(h(pj))(n− ‖∇h(pj)‖2) + nH1(pj)Θ(pj) <
1

j
.

Then

(2.10) − nH1(pj)Θ(pj) > −
1

j
+H(h(pj))(n− ‖∇h(pj)‖2).

Assume first that Θ ≤ 0. Since limj→+∞−Θ(qj) = − sgn(Θ) = 1 > 0,
then −Θ(qj) > 0 for j sufficiently large. Since H1(qj) > 0, it then follows
from (2.9) that

0 ≤ lim inf
j→+∞

H1(qj) ≤ lim inf
j→+∞

(
−H1(qj)Θ(qj)

)
≤ H(h∗).
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Therefore H(h∗) ≥ 0 and, by H′ ≥ 0, we conclude that

H(h) ≥ H(h∗) ≥ 0.

On the other hand, if Θ ≥ 0 then limj→+∞Θ(pj) = sgn(Θ) = 1 > 0, so that
Θ(pj) > 0 for j sufficiently large. Therefore, since H1(pj) > 0, from (2.10)
we have that

0 ≤ lim inf
j→+∞

H1(pj) ≤ lim inf
j→+∞

(
H1(pj)Θ(pj)

)
≤ −H(h∗).

Therefore H(h∗) ≤ 0 and

H(h) ≤ H(h∗) ≤ 0.

This concludes the proof. �

Using the previous lemma and under some additional assumption guar-
anteeing the validity the Omori-Yau maximum principle for semi-elliptic
trace-type differential operators (see Corollary 1.16), we are able to extend
Theorem 2.13 to the complete case. The uniqueness result we obtain reads
as follows.

Theorem 2.17 (Theorem 16 in [13]). Let f : Σn → I ×ρ Pn be a complete
hypersurface of constant positive 2-mean curvature H2 such that

(2.11) Krad
Σ ≥ −G(r).

Here G is a smooth function on [0,+∞) which is even at the origin and sat-
isfying conditions (i)–(iv) listed in Theorem 1.12. Assume that supΣ |H1| <
+∞ and that Σ is contained in a slab. If H′(h) > 0 almost everywhere and
the angle function Θ does not change sign, then f(Σn) is a slice.

Proof. Choose the orientation of Σ so that H1 > 0. By Corollary
1.16 we know that the Omori-Yau maximum principle holds on Σ for the
Laplacian operator, so that we may apply Lemma 2.16.

In the case where Θ ≤ 0, we have H(h) ≥ 0, and therefore the operator
P1 is positive semi-definite. Furthermore

TrP1 = n(n− 1)H(h)− n(n− 1)H1Θ ≤ n(n− 1)(H(h∗) +H∗1 ),

where h∗ = supΣ h < +∞ and H∗1 = supΣH1 < +∞. Hence, since Corollary
1.16 implies the validity of the Omori-Yau for any semi-elliptic operator as
in (1.11), we conclude that we can apply it for the operator L1.

Since supΣ σ(h) = σ(h∗) < +∞, there exists a sequence {pj}j∈N ⊂ Σ
such that

(i) lim
i→+∞

σ(h(pi)) = sup
Σ
σ(h) = σ(h∗),

(ii) ‖∇(σ ◦ h)(pi)‖ = ρ(h(pi))‖∇h(pi)‖ <
1

i
,

(iii) L1(σ ◦ h)(pi) <
1

i
.
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Observe that condition (i) implies that limi→+∞ h(pi) = h∗, because σ(t) is
strictly increasing. By condition (ii) we also have limi→+∞ ‖∇h(pi)‖ = 0.
Moreover

L1σ(h)(pi) = n(n− 1)ρ(h(pi))(H(h(pi))
2 −Θ2(pi)H2) <

1

i
,

and taking the limit for i→ +∞ and observing that Θ2(pi) = 1−‖∇h(pi)‖2 →
1 as i→ +∞, we find

H(h∗)2 −H2 ≤ 0.

On the other hand, since h∗ = infΣ h > −∞, then infΣ σ(h) = σ(h∗) >
−∞. Thus, we can find a sequence {qi}i∈N ⊂ Σ such that

(i) lim
i→+∞

σ(h(qi)) = inf
Σ
σ(h) = σ(h∗),

(ii) ‖∇(σ ◦ h)(qi)‖ = ρ(h(qi))‖∇h(qi)‖ <
1

i
,

(iii) L1(σ ◦ h)(qi) > −
1

i
.

Proceeding as above and using

L1σ(h)(qi) = n(n− 1)ρ(h(qi))(H(h(qi))
2 −Θ2(qi)H2) > −1

i
,

we obtain

H(h∗)
2 −H2 ≥ 0.

Thus H(h∗)
2 ≥ H(h∗)2 and, taking into account that H(h∗),H(h∗) ≥ 0, this

gives H(h∗) ≥ H(h∗). Therefore, since H(h) is an increasing function we
conclude that h∗ = h∗.

Finally, let us consider the case where Θ ≥ 0. By Lemma 2.16 H(h) ≤ 0
and then the operator −L1 is semi-elliptic. Moreover

Tr(−P1) = −n(n− 1)H(h) + n(n− 1)H1Θ ≤ n(n− 1)(−H(h∗) +H∗1 ).

Hence the trace of −P1 is bounded from above and by Corollary 1.16 the
Omori-Yau maximum principle holds for the operator −L1. Proceeding as
above we get the two inequalities

H2 −H(h∗)
2 ≥ 0 and H2 −H(h∗)2 ≤ 0.

Thus H(h∗)
2 ≤ H(h∗)2. Since H(h∗),H(h∗) ≤ 0, this implies H(h∗) ≥

H(h∗). But H(t) being increasing, this gives h∗ = h∗ and this concludes the
proof. �

Analogously to the compact case, Theorem 2.17 can be generalized to
higher order mean curvatures as follows.

Theorem 2.18 (Theorem 23 in [13]). Let f : Σn → R×ρPn, n ≥ 3, be a two-
sided complete hypersurface of constant k-mean curvature Hk, 3 ≤ k ≤ n,
satisfying (2.11) and such that supΣH1 < +∞. Assume that there exists
an elliptic point p ∈ Σn, that H′ > 0 almost everywhere and that the angle
function Θ does not change sign. Then f(Σn) is a slice.
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Proof. By Corollary 1.16 the Omori-Yau maximum principle holds on
Σ for any semi-elliptic operator as in (1.11) and hence, in particular, it holds
for the Laplacian. We may then apply Lemma 2.16. Thus, in the case Θ ≤ 0
we have H(h) ≥ 0 and therefore

(−1)jH(h)k−1−jΘj ≥ 0

for all 0 ≤ j ≤ k − 1. Since the operators Pj are positive definite, Pk−1

is positive semi-definite or, in other words, the differential operator Lk−1 is
semi-elliptic. Furthermore, since 0 ≤ −Θ ≤ 1,

Tr(Pk−1) = ck−1

k−1∑
j=0

(−1)jH(h)k−1−jΘjHj ≤ ck−1

k−1∑
j=0

H(h∗)k−1−jH∗j ,

where H∗j = supΣHj ≤ (supΣH1)j < +∞ by (1.3). Hence the trace of Pk−1

is bounded from above and we can apply the Omori-Yau maximum principle
for the operator Lk−1. Proceeding as in the proof of Theorem 2.17, we may
find two sequences {pi}i∈N ⊂ Σ and {qi}i∈N ⊂ Σ satisfying

lim
i→+∞

h(pi) = h∗, and lim
i→+∞

h(qi) = h∗,

lim
i→+∞

Θ(pi) = lim
i→+∞

Θ(qi) = −1,

Lk−1σ(h)(pi) = ck−1ρ(h(pi))(H(h(pi))
k + (−1)k−1Θk(pi)Hk) <

1

i
,

and

Lk−1σ(h)(qi) = ck−1ρ(h(qi))(H(h(qi))
k + (−1)k−1Θk(qi)Hk) <

1

i
.

Letting i→ +∞ in the inequalities above, we obtain that

H(h∗)k ≤ Hk ≤ H(h∗)
k,

which implies that h∗ = h∗, as in the proof of Theorem 2.17.
Finally, in the case where Θ ≥ 0 we proceed as above with

Lk−1 = Tr
([ k−1∑

j=0

(−1)k−1−j ck−1

cj
H(h)k−1−jΘjPj

]
◦ hess

)
= Tr(Pk−1 ◦ hess),

which is a semi-elliptic trace-type operator with Tr(Pk−1) bounded from
above. �

Observe that Theorems 2.17 and 2.18 remain true if we replace condition
(2.11) by the stronger condition of Σn having (radial) sectional curvature
bounded from below by a constant. This happens, for instance, when the
sectional curvature of Pn is bounded from below, as proved in the following

Lemma 2.19. Let Pn be a Riemannian manifold with sectional curvature
bounded from below and let f : Σn → I ×ρ Pn be an immersed hypersurface.
Assume that supΣ ‖A‖2 < +∞ and that Σ is contained in a slab. Then the
sectional curvature of Σ is bounded from below.
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Proof of Lemma 2.19. Recall that the Gauss equation for a hyper-
surface f : Σn →Mn+1 is given by

〈R(X,Y )Z, V 〉 =
〈
R(X,Y )Z, V

〉
− 〈AY, V 〉 〈AX,Z〉+ 〈AX,V 〉 〈AY,Z〉 ,

for X,Y, Z, V ∈ TΣ, where R and R are the curvature tensors of Σn and
Mn+1, respectively. Then, if {X,Y } is an orthonormal basis for an arbitrary
2-plane tangent to Σ, we have

KΣ(X,Y ) =K(X,Y ) + 〈AX,X〉 〈AY, Y 〉 − 〈AX,Y 〉2

≥K(X,Y )− ‖AX‖‖AY ‖ − ‖AX‖2(2.12)

≥K(X,Y )− 2‖A‖2,

where the last inequality follows from the fact that

‖AX‖2 ≤ Tr(A2)‖X‖2 = ‖A‖2

for every unit vectorX tangent to Σ. Since we are assuming that supΣ ‖A‖2 <
+∞, it suffices to have K(X,Y ) bounded from below in order to conclude.

The curvature tensor of Mn+1 expressed in terms of the curvature tensor
of Pn is

R(U, V )W = RP(U∗, V ∗)W ∗ −H2(πI)(〈V,W 〉U − 〈U,W 〉V )

+H′(πI) 〈W,T 〉 (〈U, T 〉V − 〈V, T 〉U)(2.13)

−H′(πI)(〈V,W 〉 〈U, T 〉 − 〈U,W 〉 〈V, T 〉)T,

for every U, V,W ∈ TM , where T = ∂t and we are using the notation U∗ to
denote πP∗U for an arbitrary U ∈ TM . Then, since {X,Y } is orthonormal,
we find that

K(X,Y ) =
1

ρ2(h)
KP(X∗, Y ∗)‖X∗ ∧ Y ∗‖2

−H2(h)−H′(h)(〈X,∇h〉2 + 〈Y,∇h〉2)(2.14)

≥ 1

ρ2(h)
KP(X∗, Y ∗)‖X∗ ∧ Y ∗‖2 −H2(h)− 2|H′(h)|,

since

〈X,∇h〉2 + 〈Y,∇h〉2 ≤ 2‖∇h‖2 ≤ 2.

On the other hand, observe that

‖X∗ ∧ Y ∗‖2 = ‖X∗‖2‖Y ∗‖2 − 〈X∗, Y ∗〉2

= 1− 〈X,T 〉2 − 〈Y, T 〉2 ≤ 1.

Therefore, if KP ≥ c for some constant c, we deduce

(2.15)
1

ρ2(h)
KP(X∗, Y ∗)‖X∗ ∧ Y ∗‖2 ≥ − |c|

ρ2(h)
.

Finally, since the hypersurface is contained in a slab, h is a bounded function
and we conclude from (2.12), (2.14) and (2.15) that the sectional curvature
KΣ(X,Y ) is bounded from below by a constant. �
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Taking into account the equality

‖A‖2 = Tr(A2) = n2H2
1 − n(n− 1)H2

it follows by Proposition 1.4 that, if Hk is positive and, in case k ≥ 3, we
assume also that there exists an elliptic point on Σ, then each Hj is positive,
1 ≤ j ≤ k − 1 and

sup
Σ
‖A‖2 ≤ n2(sup

Σ
H1)2 − n(n− 1)H2 < n2(sup

Σ
H1)2.

Thus, if supΣ |H1| < +∞, the previous lemma implies that the sectional
curvature of Σ is bounded from below by a constant.

Then the following corollaries are straightforward.

Corollary 2.20. Let Pn be a complete Riemannian manifold with sectional
curvature bounded from below and let f : Σn → I ×ρ Pn be a complete hyper-
surface of constant positive 2-mean curvature H2. Assume that supΣ |H1| <
+∞ and that Σ is contained in a slab. If H′(t) > 0 almost everywhere and
the angle function Θ does not change sign, then f(Σn) is a slice.

Corollary 2.21. Let Pn be a complete Riemannian manifold with sectional
curvature bounded from below and let f : Σn → I ×ρ Pn be a complete
hypersurface with constant k-mean curvature Hk, 3 ≤ k ≤ n. Assume that
there exists an elliptic point in Σ, supΣ |H1| < +∞ and Σ is contained in
a slab. If H′(t) > 0 almost everywhere and the angle function Θ does not
change sign, then f(Σn) is a slice.

Finally, we observe that condition (2.11) has been used in the proof of
Theorems 2.17 and 2.18 only to guarantee that the Omori-Yau maximum
principle holds on Σ for the Laplacian and for the semi-elliptic operator Lk
(or −Lk), 1 ≤ k ≤ n − 1. Therefore, the theorems remain true under any
other hypothesis guaranteing this latter fact. Thus, and as a consequence of
Corollary 1.18, we can also state the following:

Theorem 2.22. Let Pn be a complete, non-compact, Riemannian manifold
whose radial sectional curvature satisfies condition (1.21). Let f : Σn →
I ×ρ Pn be a properly immersed hypersurface of constant positive 2-mean
curvature H2. Assume that supΣ |H1| < +∞ and that Σ is contained in
a slab. If H′(t) > 0 almost everywhere and the angle function Θ does not
change sign, then f(Σn) is a slice.

Theorem 2.23. Let Pn be a complete, non-compact, Riemannian manifold
whose radial sectional curvature satisfies condition (1.21). Let f : Σn →
I ×ρ Pn be a properly immersed hypersurface of constant k-mean curvature,
3 ≤ k ≤ n. Assume that there exists an elliptic point in Σ, supΣ |H1| < +∞
and that Σ is contained in a slab. If H′(t) > 0 almost everywhere and the
angle function Θ does not change sign, then f(Σn) is a slice.
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2.4. Further results for hypersurfaces of constant higher order
mean curvatures

We are now going to prove further uniqueness results for constant k-
mean curvature hypersurfaces both in the compact and in the complete non-
compact case under assumptions on the geometry of the fiber Pn, whichtake
the form of a control on its Ricci or sectional curvature. As we will see, this
conditions allow to prove the desired results exploiting the subharmonicity of
a certain function involving the height function h. The technique we will use
to conclude is no longer the classical or the Omori-Yau maximum principle,
but the parabolicity (in some sense that we will clarify later on) of the
hypersurface, which is authomatic in case the last one is compact but need
to be guaranteed by some extra assumption in the complete non-compact
case (see Remark 2.29 for more details).

Again, the case Σ compact of constant mean curvature as already been
treated (see [10] or [49]) and the following uniqueness result holds.

Theorem 2.24 (Theorem 2.4 in[10], Corollary 7 in [49]). Let f : Σn →
I ×ρ Pn be a compact two sided hypersurface of constant mean curvature.
Assume that

(2.16) RicP ≥ sup
I
{ρ′2 − ρ′′ρ},

RicP being the Ricci curvature of Pn, and that the angle function Θ does not
change sign. Then either f(Σn) is a slice over a compact Pn or Mn+1 has
constant sectional curvature and Σn is a geodesic hypersphere. The latter
case cannot occur if the inequality (2.16) is strict.

There are several way to prove the latter theorem. Among the others,
we will illustrate the proof given in [10] since, as we will see, it is easier to
extend it to the complete non-compact constant mean curvature case and
also to the constant higher order mean curvature case, both in the compact
and complete non-compact settings. Namely, in [10], the authors introduce
the function

φ = σ(h)H + ρ(h)Θ

which, assuming the validity of (2.16), ends up to be a subharmonic function.
Then, using the classical maximum principle, one concludes that the function
φ has to be constant and hence it is trivially a harmonic function. An analysis
of the terms that appear in the equation ∆φ = 0 leads then to the desired
conclusion.

Following this approach it is not difficult to extend Theorem 2.24 to the
case of hypersurfaces with constant higher order mean curvature. The result
we obtain is the following.

Theorem 2.25 (Theorem 24 in [13]). Let f : Σn → I ×ρ Pn be a compact
hypersurface of constant k-mean curvature, 2 ≤ k ≤ n and suppose that H
does not vanish. Assume that

(2.17) KP ≥ sup
I
{ρ′2 − ρ′′ρ},
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KP being the sectional curvature of Pn, and that the angle function Θ does
not change sign. Then either f(Σn) is a slice over a compact Pn or I ×ρ Pn
has constant sectional curvature and Σn is a geodesic hypersphere. The latter
case cannot occur if the inequality (2.17) is strict.

To the proof we need the next computational result.

Lemma 2.26. Let Σn be a hypersurface immersed into a warped product

space I ×ρ Pn, with angle function Θ and height function h. Let Θ̂ = ρ(h)Θ.
Then, for every 1 ≤ k ≤ n we have

Lk−1Θ̂ =−
(
n

k

)
ρ(h) 〈∇h,∇Hk〉 − ρ′(h)ck−1Hk

− Θ̂H′(h)(‖∇h‖2ck−1Hk−1 − 〈Pk−1∇h,∇h〉)−
Θ̂

ρ(h)2
βk−1

− Θ̂

(
n

k

)
(nH1Hk − (n− k)Hk+1),

where

βk−1 =
n∑
i=1

µi,k−1KP(E∗i ∧N∗)‖E∗i ∧N∗‖
2.

Here µi,k−1 stand for the eigenvalues of Pk−1 and {E1, . . . , En} is a local
orthonormal frame on Σ diagonalizing A.

Proof. Since ρ(t)T is a conformal vector field

∇Θ̂ = −ρ(h)A∇h.

Therefore, using Equation (2.3) we find

∇X∇Θ̂ = −ρ(h)(∇XA)∇h− ρ′(h)AX − Θ̂A2X.

Hence

Lk−1Θ̂ =− ρ(h)

n∑
i=1

〈Pk−1(∇EiA)∇h,Ei〉

− ρ′(h)ck−1Hk −
(
n

k

)
Θ̂(H1Hk − (n− k)Hk+1).

Using the expression of the covariant derivative of a tensor field we get

−Pk−1(∇EiA)∇h =(∇EiPk−1)A∇h− (∇EiPk−1A)∇h
=(∇EiPk−1)A∇h+ (∇EiPk)∇h− Ei(Sk)∇h.
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Equation (1.2) implies that

−
n∑
i=1

〈Pk−1(∇EiA)∇h,Ei〉 =

n∑
i=1

〈(∇EiPk−1)A∇h,Ei〉

+

n∑
i=1

〈(∇EiPk)∇h,Ei〉 − ∇h(Sk)

=
n∑
i=1

〈
R(Ei,∇h)N,Pk−1Ei

〉
−∇h(Sk).

Since ∇h = T −ΘN , we can write

R(Ei,∇h)N = R(Ei, T )N −ΘR(Ei, N)N.

Using Equation (2.13) and observing that T ∗ = 0 we get

R(Ei, T )N = −(H(h)2 +H′(h))ΘEi = −ρ
′′(h)

ρ(h)
ΘEi,

which implies
n∑
i=1

〈
R(Ei, T )N,Pk−1Ei

〉
= −ρ

′′(h)

ρ(h)
Θck−1Hk−1.

Again by (2.13)

R(Ei, N)N = RP(E∗i , N
∗)N∗ −H(h)2Ei

+H′(h)Θ(〈Ei,∇h〉N −ΘEi)−H′(h) 〈Ei,∇h〉T.
Assume that the orthonormal basis {Ei}n1 diagonalizes A and hence Pk−1,
that is Pk−1Ei = µi,k−1Ei. Then

n∑
i=1

〈
R(Ei, N)N,Pk−1Ei

〉
=

1

ρ(h)2

n∑
i=1

µi,k−1KP(E∗i ∧N∗)‖E∗i ∧N∗‖
2

− ρ′′(h)

ρ(h)
ck−1Hk−1

+H′(h)(‖∇h‖2ck−1Hk−1 − 〈Pk−1∇h,∇h〉).
Then
n∑
i=1

〈
R(Ei,∇h)N,Pk−1Ei

〉
=

n∑
i=1

〈
R(Ei, T )N,Pk−1Ei

〉
−Θ

n∑
i=1

〈
R(Ei, N)N,Pk−1Ei

〉
=− Θ

ρ(h)2

n∑
i=1

µi,k−1KP(E∗i ∧N∗)‖E∗i ∧N∗‖
2

−ΘH′(h)(‖∇h‖2ck−1Hk−1 − 〈Pk−1∇h,∇h〉)
and this concludes the proof of the lemma. �

In case Pn has constant sectional curvature we obtain the following
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Corollary 2.27. Let Σn be a hypersurface immersed into a warped product
space I ×ρ Pn, with angle function Θ and height function h. Assume that

Pn has constant sectional curvature κ and let Θ̂ = ρ(h)Θ. Then, for every
1 ≤ k ≤ n we have

Lk−1Θ̂ =−
(
n

k

)
ρ(h) 〈∇h,∇Hk〉 − ρ′(h)ck−1Hk

− Θ̂
( κ

ρ2(h)
+H′(h)

)
(‖∇h‖2ck−1Hk−1 − 〈Pk−1∇h,∇h〉)

− Θ̂

(
n

k

)
(nH1Hk − (n− k)Hk+1).

Proof. The corollary follows immediately by Lemma 2.26 once one
writes explicitly the term

Θ̂

ρ(h)2
βk−1,

where

βk−1 =
n∑
i=1

µi,k−1KP(E∗i ∧N∗)‖E∗i ∧N∗‖
2.

Recall that

‖E∗i ∧N∗‖
2 = ‖E∗i ‖

2‖N∗‖2 − 〈E∗i , N∗〉
2 .

Moreover

E∗i = Ei − 〈Ei,∇h〉T, N∗ = N −ΘT,

hence

‖E∗i ‖
2 = 1− 〈E1,∇h〉2 ,

‖N∗‖2 = 1−Θ2 = ‖∇h‖2,
〈E∗i , N∗〉 = −Θ 〈Ei,∇h〉 ,

and

‖E∗i ∧N∗‖
2 = ‖∇h‖2−〈E1,∇h〉2 ‖∇h‖2−Θ2 〈E1,∇h〉2 = ‖∇h‖2−〈E1,∇h〉2 .

Then
n∑
i=1

µi,k−1‖E∗i ∧N∗‖
2 =

n∑
i=1

µi,k−1‖∇h‖2 −
n∑
i=1

µi,k−1 〈E1,∇h〉2

= Tr(Pk−1)‖∇h‖2 − 〈Pk−1∇h,∇h〉 .

Using the expression of the trace of Pk−1 we obtain

n∑
i=1

µi,k−1‖E∗i ∧N∗‖
2 = ck−1Hk−1‖∇h‖2 − 〈Pk−1∇h,∇h〉

and this concludes the proof. �

We are now ready to give the
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Proof of Theorem 2.25. We may assume without loss of generality
that H(h) > 0 on Σ. Since Σn is compact, there exists a point pmax ∈
Σ where the height function attains its maximum. Then ∇h(pmax) = 0,
Θ(pmax) = ±1 and, by (2.3),

Hessh(pmax)(v, v) = H(h∗) 〈v, v〉+ Θ(pmax) 〈Av, v〉 (pmax) ≤ 0.

If Θ(pmax) = −1, then

〈Av, v〉 (pmax) ≥ H(h∗) 〈v, v〉 > 0,

for any v 6= 0. Thus pmax is an elliptic point, Hk is a positive constant and
by Garding inequalities

H1 ≥ H
1
2
2 ≥ · · · ≥ H

1
k
k > 0

with equality only at umbilical points. In particular Σ is two-sided and
Θ ≤ 0. If Θ(pmax) = 1, changing the orientation of Σ we reach the same
conclusion.

Consider the function

φ = σ(h)H
1
k
k + ρ(h)Θ.

Let us prove that Lk−1φ ≥ 0. Since Hk is constant we have

Lk−1φ =H
1
k
k Lk−1σ(h) + Lk−1Θ̂

=ck−1H
1
k
k (ρ′(h)Hk−1 + Θ̂Hk)

− Θ̂H′(h)
(
‖∇h‖2ck−1Hk−1 − 〈Pk−1∇h,∇h〉

)
− Θ̂

(
n

k

)
(nH1Hk − (n− k)Hk+1)− ρ′(h)ck−1Hk

− Θ̂

ρ(h)2

n∑
i=1

µi,k−1KP(E∗i ∧N∗)‖E∗i ∧N∗‖
2

=A+B + C,

where

A = −Θ̂

(
n

k

)
(nH1Hk − (n− k)Hk+1 − kH

k+1
k

k ),

B = ck−1ρ
′(h)(Hk−1H

1
k
k −Hk)

and

C =− Θ̂H′(h)(‖∇h‖2ck−1Hk−1 − 〈Pk−1∇h,∇h〉)

− Θ̂

ρ(h)2

n∑
i=1

µi,k−1KP(E∗i ∧N∗)‖E∗i ∧N∗‖
2.

Then by Garding inequalities

Hk−1H
1
k
k −Hk = H

1
k
k (Hk−1 −H

k−1
k

k ) ≥ 0.

Moreover

nH1Hk − kH
k+1
k

k ≥ nH
k+1
k

k − kH
k+1
k

k = (n− k)H
k+1
k

k ,
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hence

nH1Hk − kH
k+1
k

k − (n− k)Hk+1 ≥ (n− k)(H
k+1
k

k −Hk+1) ≥ 0.

Finally, let α := supI{ρ′
2 − ρ′′ρ}. Since

‖E∗i ∧N∗‖
2 = ‖∇h‖2 − 〈Ei,∇h〉2 ,

and taking into account that the µi,k−1 are positive and the proof of Corollary
2.27, we have

n∑
i=1

µi,k−1KP(E∗i ∧N∗)‖E∗i ∧N∗‖
2

≥ α
n∑
i=1

µi,k−1‖E∗i ∧N∗‖
2

= α(ck−1Hk−1‖∇h‖2 − 〈Pk−1∇h,∇h〉).
Hence

1

ρ(h)2

n∑
i=1

µi,k−1KP(E∗i ∧N∗)‖E∗i ∧N∗‖
2

+H′(h)(‖∇h‖2ck−1Hk−1 − 〈Pk−1∇h,∇h〉)

≥
( α

(ρ)2(h)
+H′(h)

)
(‖∇h‖2ck−1Hk−1 − 〈Pk−1∇h,∇h〉) ≥ 0,

where the last inequality follows from α = supI{−ρ2H′} and from the posi-
tive definitness of Pk−1. Hence Lk−1φ ≥ 0 and we conclude by the maximum
principle that φ must be constant. In particular, Lk−1φ = 0 and the three
terms A, B and C must vanish on Σ. Notice that B = 0 implies that Σ is
a totally umbilical hypersurface. Moreover, since Hk is a positive constant
and Σ is totally umbilical, all the higher order mean curvatures are constant.
Hence H1 is constant and the conclusion follows by Theorem 2.24. �

Let us focus now on the complete non-compact case. Observe first that
Theorem 2.24 can be extended to the complete non-compact case once one
guarantees the parabolicity of Σ. In that case it is straightforward to prove
the next

Theorem 2.28. Let I ×ρ Pn be a warped product space and assume that the
Ricci curvature of Pn satisfies

RicP > sup
I
{ρ′2 − ρ′′ρ}.

Let f : Σn → I ×ρ Pn be a complete parabolic two-sided hypersurface with
constant mean curvature contained in a slab. If the angle function Θ does
not change sign, then f(Σn) is a slice.

For the proof, observe that, since the function φ = Hσ(h)+Θ̂ is subhar-
monic and bounded from above and Σ is parabolic, then φ must be constant.
In particular, ∆φ = 0 and by

∆φ = −Θ̂{‖A‖2 − nH2
1 + (n− 1) RicP(N∗, N∗) +H′(h)‖∇h‖2}
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we conclude that h has to be constant, because of the strict inequality in
(2.16).

Remark 2.29. The problem of establishing whether a Riemannian man-
ifold is parabolic or not has been intensively studied. This is due in part
by the connection of this property with the recurrence properties of the
Brownian motion in a Riemannian manifold (see the survey paper [37] for
a background on this subject). Indeed, this connection encouraged the un-
derstanding of parabolicity from a potential-theoretic point of view and the
attempt to find geometric conditions on the manifold guaranteeing this prop-
erty. In particular, it turned out that parabolicity is strictly related to the
volume growth of geodesic balls. Namely, it was proved in [24] that in a
complete Riemannian manifold, if the volume of the geodesic balls grows at
most like a quadratic polynomial, then there are no non-constant positive
superharmonic functions defined on it. Thereafter, Karp [44] and, later on,
Varopoulos [65] and Grigor’yan [35], [36] proved that a sufficient condition
for parabolicity is the following

(2.18)
r

volBr
/∈ L1(+∞),

where Br denotes the geodesic ball of radius r. Notice that condition (2.18) is
satisfied if the the geodesic balls have at most quadratic polinomial growth.
However, condition (2.18) is far away from being necessary, as shown by
a counterexample of Greene quoted in [65]. On the other hand, another
sufficient condition is the following

(2.19)
(
vol∂Br

)−1
/∈ L1(+∞).

This was proved by Ahlfors [1] and Nevanlinna [52] for Riemannian sur-
faces and later on by Lyons and Sullivan [46] and by Grygor’yan [35], [36].
Moreover, this condition turns out to be also necessary when the Riemannian
manifold is a geodesically complete model manifold. We also observe that
(2.19) is always implied by (2.18). Further, as observed in [60], it is easy to
construct examples of manifolds of exponential volume growth where (2.19)
holds while (2.18) obviously does not. One shall therefore concentrate on
conditions involving vol∂Br as in (2.19) rather than volBr itself.

Finally, using condition (2.19), it is easy to see that, between the space
forms, the Euclidean space Rn is parabolic only when n ≤ 2 since the bound-
ary of a geodesic ball ∂Br grows as rn−1, while the Hyperbolic space is not
parabolic since the geodesic spheres have exponential growth.

From the above circle of ideas one obtains the following Corollary to
Theorem 2.28.

Corollary 2.30. Let I ×ρ Pn be a warped product space and assume that
the Ricci curvature of Pn satisfies (2.16). Let f : Σn → I ×ρ Pn be a com-
plete two-sided hypersurface with constant mean curvature satisfying condi-
tion (2.19) and contained in a slab. If the angle function Θ does not change
sign, then f(Σn) is a slice.
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Concerning the case when Σ has constant higher order mean curvature,
as one can see from the proof of Theorem 2.25, the same result can be
extended to the complete non-compact case if the hypersurface is parabolic
in an appropriate sense. Our goal is then to find geometric conditions that
guarantee this parabolicity. This is done for a general class of divergence
form operators in [56] but for simplicity we will focus only on the following
divergence form operator, that belongs to that family. More precisely, we
will consider

Lk−1f = div(Pk−1∇f),

where f ∈ C∞(Σ). Notice that

Lk−1f = 〈divPk−1,∇f〉+ Lk−1f.

As a consequence of Proposition 1.2, we obtain the following lemma, in which
the expression of the divergence of Pk−1 is given in the case when the fiber
Pn has constant sectional curvature.

Lemma 2.31. Let Σn → I ×ρ Pn be an isometric immersion and assume
that Pn has constant sectional curvature κ. Then

(2.20) divPk−1 = −(n− k + 1)Θ
( κ

ρ2(h)
+H′(h)

)
Pk−2∇h.

Proof. Let E1, ..., En be a local orthonormal frame on Σn and recall
that

〈divPk−1, X〉 =
n∑
i=1

〈(∇EiPk−1)X,Ei〉

for every vector field X ∈ TΣ. For any 0 ≤ j ≤ k − 2 we have that

n∑
i=1

〈
R(Ei, A

k−2−jX)N,PjEi

〉
=

n∑
i=1

〈
RP(E∗i , (A

k−2−jX)∗)N∗, PjEi

〉
+ ΘH′(h)

( 〈
Pj∇h,Ak−2−jX

〉
− cjHj

〈
∇h,Ak−2−jX

〉 )
.

Since Pn has constant sectional curvature κ it follows that

RP(Y,Z)W = κ(〈Z,W 〉P Y − 〈Y,W 〉P Z).

Hence a direct calculation shows that
n∑
i=1

〈
RP(E∗i , (A

k−2−jX)∗)N∗, PjEi

〉
=

κ

ρ2(h)
Θ
( 〈
Pj∇h,Ak−2−jX

〉
− cjHj

〈
∇h,Ak−2−jX

〉 )
.

We claim that

Bk−1 :=

k−2∑
j=0

(−1)k−j−2(PjA
k−2−j − cjHjA

k−2−j) = −(n− k + 1)Pk−2.
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In this case the conclusion of the corollary follows immediately by Proposi-
tion 1.2. Let us prove the claim by induction on k, k = 1, ..., n. The case
k = 1 is trivial, so assume that we the equation holds for k − 2. Then

Bk−1 =Pk−2 − ck−2Hk−2I −Bk−2 ◦A
=Pk−2 − ck−2Hk−2I + (n− k + 2)Pk−3A

=− (n− k + 1)Pk−2.

�

Since, in general, the divergence of Pk−1 has an expression that can not
be dealt with unless, as we have just seen, in the case when Pn has constant
sectional curvature, we will restrict to this case.

Following the terminology introduced in [56], we present the next

Definition 2.32. We will say that the manifold Σn ↪→ I ×ρ Pn is Lk−1-
parabolic if the only bounded above C1 solutions of the inequality

Lk−1f ≥ 0

are constant.

The next theorem gives some geometric conditions that guarantee the
Lk−1-parabolicity. We present here a direct proof of the theorem in order to
make the exposition self-contained, although the result it can be obtained
as a Corollary of the more general Theorem 2.6 in [57], .

Theorem 2.33. Let Σn ↪→ I ×ρ Pn be a complete Riemannian manifold. If

(2.21)
(

sup
∂Bt

Hk−1vol(∂Bt)
)−1

/∈ L1(+∞),

where ∂Bt is a geodesic sphere of radius t, then Σn is Lk−1-parabolic.

Proof. Let f be a bounded above C1 solution of the inequality

Lk−1f ≥ 0.

We claim that

(2.22)
(

sup
∂Bt

Hk−1

∫
∂Bt

eσf
)−1

/∈ L1(+∞),

for some σ > 0. Indeed, since f∗ = supΣ f < +∞, then eσf ≤ eσf
∗

and

1

sup∂Bt
Hk−1

∫
∂Bt

eσf
≥ 1

sup∂Bt
Hk−1

∫
∂Bt

eσf∗
≥ C

sup∂Bt
Hk−1vol(∂Bt)

and hence, condition (2.21) implies (2.22).
Assume now by contradiction that f is not constant and consider the

vector field

Z = eσfPk−1∇f.
An easy calculation gives

divZ = σeσf 〈Pk−1∇f,∇f〉+ eσfLk−1f ≥ σeσfµmin,k−1‖∇f‖2.
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Applying the divergence theorem we get∫
∂Bt

〈Z,∇r〉 =

∫
Bt

divZ ≥ σ inf
Bt

µmin,k−1

∫
Bt

eσf‖∇f‖2.

On the other heand, using the Cauchy-Schwarz inequality and the Hölder
inequality with conjugate exponents p = q = 2, we have that∫

∂Bt

〈Z,∇r〉 ≤
∫
∂Bt

‖Z‖ =

∫
∂Bt

eσf‖Pk−1‖‖∇f‖

≤
(∫

∂Bt

eσf‖Pk−1‖2
)1/2(∫

∂Bt

eσf‖∇f‖2
)1/2

≤
(
ck−1 sup

∂Bt

Hk−1

∫
∂Bt

eσf
)1/2(∫

∂Bt

eσf‖∇f‖2
)1/2

.

Set

G(t) =

∫
Bt

eσf‖∇f‖2.

Then

G′(t) =

∫
∂Bt

eσf‖∇f‖2

and, combining the previous inequalities,

G−2(t)G′(t) ≥ C
(

sup
∂Bt

Hk−1

∫
∂Bt

eσf
)−1

.

Integrating for t ∈ (R, r),

G−1(R) ≥ G−1(R)−G−1(r) ≥ C
∫ r

R

(
sup
∂Bt

Hk−1

∫
∂Bt

eσf
)−1

dt,

that is ∫
BR

eσf‖∇f‖2 ≤ C ′∫ r
R(sup∂Bt

Hk−1

∫
∂Bt

eσf )−1dt
.

Letting r → +∞ and using assumption (2.22), we conclude that f must be
constant, reaching in this way a contradiction. �

We are then ready to state our last result of this section, that extends
Theorem 2.25 to complete non-compact hypersurfaces in warped product
spaces I ×ρ Pn, at least when the fiber Pn has constant sectional curvature.

Theorem 2.34 (Theorem 32 in [13]). Let I×ρPn be a warped product space
and assume that Pn has constant sectional curvature κ satisfying

(2.23) κ > sup
I
{ρ′2 − ρ′′ρ}.

Let f : Σn → I ×ρ Pn be a complete hypersurface with supΣ |H1| < +∞ and
satisfying condition (2.21). Suppose that f has constant k-mean curvature,
2 ≤ k ≤ n, and that f(Σn) is contained in a slab. Assume that either k = 2
and H2 is positive or k ≥ 3 and there exists an elliptic point p ∈ Σn. If H(h)
and the angle function Θ do not change sign, then f(Σn) is a slice.
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Remark 2.35. Comparing with Theorem 2.25 we have relaxed the condition
on H but we are requiring, as it will be clear from the proof, the existence
of an elliptic point. That, on a compact manifold was guaranteed by the
assumption H(h) 6= 0. Moreover, we observe that the angle function is
indeed well defined because Σ is two-sided. For k = 2, this follows from the
positivity of H2 since H2

1 ≥ H2 > 0. In the remaining cases we obtain this
from the Garding inequalities, as in the compact case. In any case we choose
the orientation so that H1 > 0.

Proof. It follows from the hypotheses that supΣ ‖A‖ < +∞ and there-
fore, by Lemma 2.19, the sectional curvature of Σn is bounded from below.
We deduce then the validity of the Omori-Yau maximum principle for any
semi-elliptic operator as in (1.11) and hence, in particular, for the Laplacian.
Assume that H(h) ≥ 0. Applying the Omori-Yau maximum principle for the
Laplacian and using equation (2.1) we find that

− sgn(Θ) lim inf
j→+∞

H1(qj) ≥ H(h∗) ≥ 0.

Therefore for the chosen orientation, sgn Θ = −1 and Θ ≤ 0 on Σ. Consider
the operator

Lk−1u = div(Pk−1∇u)

and the function

φ = H
1
k
k σ(h) + Θ̂,

where, we recall, Θ̂ = ρ(h)Θ. Since Pn has constant sectional curvature κ,
it follows by Equation (2.20) that

Lk−1φ =− (n− k + 1)Θ
( κ

ρ2(h)
+H′(h)

)
〈Pk−2∇h,∇φ〉+ Lk−1φ

=− (n− k + 1)Θ̂
( κ

ρ2(h)
+H′(h)

)
〈Pk−2∇h,∇h〉H

1
k
k

+ (n− k + 1)Θ̂
( κ

ρ2(h)
+H′(h)

)
〈Pk−2A∇h,∇h〉

+H
1
k
k Lk−1σ(h) + Lk−1Θ̂.

Using Equation (2.2) and Corollary 2.27 we find

Lk−1φ =ck−1ρ
′(h)H

1
k
k (Hk−1 −H

k−1
k

k )

−
(
n

k

)
Θ̂

(
nH1Hk − (n− k)Hk+1 − kH

k+1
k

k

)
− (n− k)Θ̂

( κ

ρ2(h)
+H′(h)

)
〈Pk−1∇h,∇h〉(2.24)

− (n− k + 1)Θ̂H
1
k
k

( κ

ρ2(h)
+H′(h)

)
〈Pk−2∇h,∇h〉 .

Then using Garding inequalities as in Theorem 2.25, it is easy to prove that
the first and the second terms are non-negative. By the fact that each Pj is
an elliptic operator, j = 0, ..., k − 1, and by Equation (2.17) it follows that
also all the remaining terms in the previous equation are non-negative and
hence Lk−1φ ≥ 0. Since, by assumption (2.21), Σn is Lk−1-parabolic, we
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conclude that φ has to be constant. In particular, Lk−1φ = 0 and the four
terms on the right-hand side of Equation (2.24) vanish. Let us prove that
U = {p ∈ Σn : Θ(p) = 0} has empty interior. Indeed, assume the contrary

and let V 6= ∅ be an open subset of U . On V the function φ = σ(h)H
1/k
k is

constant. Hence, since Hk 6= 0, then σ(h) and, consequently h, is constant

on V. But this is not possible since ‖∇h‖2 = 1 − Θ2 = 1 on V. Therefore,
since the third term on the right-hand of (2.24) vanishes identically, Σn is
totally umbilical and

〈Pj∇h,∇h〉 = 0, j = k − 2, k − 1

Since the Pj ’s are positive definite, this means that h has to be constant and
this concludes the proof. �





CHAPTER 3

Spacelike hypersurfaces of constant k-mean
curvature in generalized Robertson-Walker

spacetimes

In this chapter we want to study uniqueness of spacelike hypersurfaces
of constant higher order mean curvature in Lorentzian manifolds, in the case
when the ambient space has a large number of totally umbilical hypersur-
faces of constant mean curvature (and hence of constant higher order mean
curvatures). For what concerns hypersurfaces of constant mean curvature,
as already said in the Introduction, several papers have appeared where the
same problem has been studied and it turned out that a natural class of am-
bient spaces to consider is that of conformally stationary-closed spacetimes.
A conformally stationary-closed spacetime M is a time-orientable spacetime
equipped with a globally defined timelike closed conformal vector field T . It
is a well-known fact that the distribution on the spacetime orthogonal to T
provides a foliation of M by means of umbilical leaves so that the geometry
of a standard leaf, toghether with the conformal function, determines the
geometry of the whole M . A special family of conformally stationary-closed
spacetimes is that of generalized Robertson-Walker spacetimes, which is the
one we will focus on. Following the terminology used in [16], by a gener-
alized Robertson-Walker spacetime (GRW) we mean a Lorentzian warped
product −I ×ρ Pn with 1-dimensional base I ⊆ R and Riemannian fibre Pn,
endowed with the Lorentzian metric

〈, 〉 = −πI(dt2) + ρ2(πI)πP(〈, 〉P).

In a GRW spacetime, the vector field given by T (t, x) = ρ(t)(∂/∂t)(t,x) is a
globally defined timelike closed conformal field. In fact, a kind of converse
also holds. Indeed, as observed by Montiel in [50], every conformally station-
ary spacetime admitting a timelike closed conformal vector field is locally
isometric to a GRW spacetime. For a global analogue of this assertion, under
the assumption of timelike geodesic completeness, see [50], Proposition 2.

Here are some significant examples.

Example 3.1. The first and easiest example of a spacetime admitting a
timelike closed conformal vector field, and hence admitting a warped product
representation, is the Lorentz-Minkowski space Rn+1

1 . In fact, Rn+1
1 admits

many timelike closed (actually exact) conformal vector fields and hence many
representations as warped product space. A first (trivial) example is, for each
timelike vector a ∈ Rn+1

1 the constant field

T (p) = a for all p ∈ Rn+1
1 .

59
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The vector field T generates a foliation of Rn+1
1 by means of parallel space-

like hyperplanes. This corresponds to the representation of the Lorentz-
Minkowski spacetime as the (trivial) warped product−R×ρRn with ρ(t) = 1.

Another timelike closed conformal vector field is the following

T (p) = p for p ∈ C+,

C+ denoting the future directed lightcone of the origin, which generates a
foliation of Rn+1

1 by hyperquadrics of equation ‖p‖2 = −τ2, τ > 0, which
are umbilical spacelike hypersurfaces isometric to the hyperbolic spaces Hn

of negative constant sectional curvature −1/τ . This corresponds to the rep-
resentation −R+ ×ρ Hn with ρ(t) = t.

Example 3.2. Another important example of spacetime admitting a time-
like closed conformal vector field is the de Sitter space Sn+1

1 . We recall that
the de Sitter space can be viewed as the hyperquadric

Sn+1
1 = {p ∈ Rn+2

1 |‖p‖2 = 1}

and is a model of spacetime of positive constant sectional curvature. For
any a ∈ Rn+1

1 let us consider on Sn+1
1 the closed conformal vector field

T (p) = a− 〈a, p〉 p, p ∈ Sn+1
1 .

It is not difficult to see that T is a timelike vector field if we restrict on
certain subsets of Sn+1 and it generates different foliations depending on the
causal character of a.

If a is a unit timelike vector, then T is timelike on the whole Sn+1
1 and

foliates the de Sitter space by means of umbilical round spheres of radii√
1 + τ2 and described by the equation 〈p, a〉 = τ , τ ∈ R (see [48, Example

1] for more details). On the other hand, if a is a null vector, the closed
conformal vector field T is timelike on the open set

{p ∈ Sn+1
1 | 〈p, a〉 6= 0}.

Consider the connected component of this set characterized by 〈p, a〉 > 0. In
this case the corresponding foliation has as leaves the spacelike hypersurfaces
described by the equation 〈a, p〉 = τ , τ ∈ R, which are isometric to Euclidean
spaces Rn for any τ ∈ R. Finally, if a is a unit spacelike vector, the vector
field T has a timelike character only on the open set

{p ∈ Sn+1
1 | 〈p, a〉2 > 1}.

If we restrict ourselves to the component with 〈p, a〉 > 1 it can be seen
that the leaves of the corresponding foliation are the spacelike hypersurfaces
of equation 〈p, a〉 = τ , τ > 1 which are isometric to Hyperbolic spaces
Hn of negative constant sectional curvature −1/(τ2 − 1). Moreover, the

case ‖a‖2 = −1 corresponds to the representation of the de Sitter space
as −R ×ρ Sn, where ρ(t) = cosh t, the case ‖a‖ = 0 corresponds to the
representation −R×ρ Rn, where ρ(t) = et (the so called steady state space)

and, finally, the case ‖a‖2 = 1 corresponds to−R+×ρHn, where ρ(t) = sinh t.
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Example 3.3. The last significative example we want to illustrate is that
of the anti-de Sitter spacetime Hn+1

1 . Similarly to the de Sitter space, it can
be viewed as the hyperquadric

Hn+1
1 = {p ∈ Rn+2

1 |‖p‖2 = −1}
and is a model of spacetime of negative constant sectional curvature. Fixed
any a ∈ Rn+1

2 , its causal character determines a closed conformal vector field

T (p) = a+ 〈a, p〉 p, p ∈ Hn+1
1

Since
‖T (p)‖2 = ‖a‖2 + 〈a, p〉2 ,

it is easy to see that T is timelike only when a is itself timelike. Moreover,
if this is the case, then T is timelike on the two components of the open
set consisting of the points p ∈ Hn+1

1 satisfying 〈a, p〉2 < 1, it generates
a foliation by means of umbilical spacelike hypersurfaces isometric to two
copies of Hn and each of the two components can be described as the warped
product −(−π/2, π/2)×ρ Hn, ρ(t) = cos t.

Consider now a spacelike hypersurface f : Σn → Mn+1 := −I ×ρ Pn.

In this case, since T := ∂
∂t is a timelike unit vector field globally defined on

−I×ρPn, there exists a unique timelike unit normal field N globally defined
on Σ with the same orientation as T . We will refer to that normal field N
as the future-pointing Gauss map of the hypersurface. Moreover, the angle
function

Θ(p) := 〈N(p), T (f(p))〉
is globally defined and it satisfies

Θ(p) ≤ −1 < 0.

3.1. The operator Lk acting on the height and the angle functions

We devote this section to some computational results that will be fun-
damental to recover the main theorems of the chapter. Let us start with the
following

Proposition 3.4. Let f : Σn → −I ×ρ Pn be a spacelike hypersurface and
let

σ(t) =

∫ t

t0

ρ(u)du.

Then

Lk−1h =− (log ρ)′(h)(ck−1Hk−1 + 〈Pk−1∇h,∇h〉)−Θck−1Hk, ,(3.1)

Lk−1σ(h) =− ck−1(ρ′(h)Hk−1 + Θρ(h)Hk).,(3.2)

where ck = (n− k + 1)
(
n
k−1

)
= k

(
n
k

)
Proof. Observe that the gradient of πR ∈ C∞(M) is∇πR = −T . Hence

∇h = (∇πR)T = −T −ΘN.

Moreover
∇σ(h) = ρ(h)∇h = −ρ(h)T − ρ(h)ΘN.
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Since ρ(t)T is a non-vanishing closed conformal vector field on −I×ρPn with
conformal function ρ′(t), we have

∇Z(ρ(t)T ) = ρ′(t)Z,

for every vector Z tangent to −I ×ρ Pn. Hence

∇X∇σ(h) = −ρ′(h)X + ρ(h)ΘAX −X(ρ(h)Θ)N

and

(3.3) ∇X∇σ(h) = (∇Xσ(h))T = −ρ′(h)X + ρ(h)ΘAX.

Then

Lk−1σ(h) =Tr(Pk−1 ◦ hess(σ(h)))

=− ck−1ρ(h)Tr(Pk−1) + ρ(h)ΘTr(Pk−1A)

=− ck−1(ρ′(h)Hk−1 + ρ(h)ΘHk).

Moreover

∇X∇h = −ρ
′(h)

ρ(h)
〈X,∇h〉∇h+

1

ρ(h)
∇Xσ(h)

and therefore

Lk−1h =− (log ρ)′(h) 〈Pk−1∇h,∇h〉+
1

ρ(h)
Lk−1σ(h)

=− (log ρ)′(h)(〈Pk−1∇h,∇h〉 − ck−1Hk−1)− ck−1ρ(h)ΘHk).

�

Before proving the second useful computational result, we need the fol-
lowing

Lemma 3.5. Let Σn be a spacelike hypersurface immersed into a GRW

spacetime −I ×ρ Pn, with angle function Θ and height function h. Let Θ̂ =
ρ(h)Θ and let {E1, ..., En} be an arbitrary local orthonormal frame on Σ.
Then, for every k = 1 . . . n we have

ρ(h)
n∑
i=1

〈
R(Ei,∇h)N,Pk−1Ei

〉
=

Θ̂

ρ2(h)

n∑
i=1

µi,k−1KP(N∗ ∧ E∗i )‖N∗ ∧ E∗i ‖
2

− Θ̂(log ρ)′′(h)(ck−1Hk−1‖∇h‖2

− 〈Pk−1∇h,∇h〉),

where we set N∗ = πP∗N , E∗i = πP∗Ei.

Proof. Observe that, using the decomposition

∇h = −T −ΘN,

we can write

R(X,∇h)N = −R(X,T )N + ΘR(N,X)N
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Moreover, using the relationship between the curvature tensor of a warped
product and the curvature tensor of its base and fiber (1.36) and the fact
that T ∗ = 0, we get

R(X,T )N = −ρ
′′(h)

ρ(h)
Θ̂X.

Finally, using again Equation (1.36) we find

R(N,X)N = RP(N∗, X∗)N∗ − (((log ρ)′)2(h) + (log ρ)′′(h)Θ2)X

+ (log ρ)′′(h) 〈X,T 〉T + (log ρ)′′(h)Θ 〈X,T 〉N.

and the conclusion follows observing that

Θ̂

n∑
i=1

〈RP(N∗, E∗i )N∗, Pk−1Ei〉 =Θ̂ρ2(h)

n∑
i=1

µi,k−1 〈RP(N∗, E∗i )N∗, Ei〉P

=
Θ̂

ρ2(h)

n∑
i=1

µi,k−1KP(N∗ ∧ E∗i )‖N∗ ∧ Ei‖2

�

We are now ready to prove the following

Lemma 3.6 (Corollary 8.5 in [8]). Let Σn be a spacelike hypersurface im-
mersed into a GRW spacetime −I ×ρ Pn, with angle function Θ and height

function h. Let Θ̂ = ρ(h)Θ. Then, for every k = 1 . . . n we have

Lk−1Θ̂ =

(
n

k

)
ρ(h) 〈∇h,∇Hk〉 − Θ̂(log ρ)′′(h)(‖∇h‖2ck−1Hk−1

− 〈Pk−1∇h,∇h〉) + Θ̂

(
n

k

)
(nH1Hk − (n− k)Hk+1)(3.4)

+ ρ′(h)ck−1Hk +
Θ̂

ρ(h)2

n∑
i=1

µi,k−1KP(E∗i ∧N∗)‖E∗i ∧N∗‖
2.

Proof. Since T = ρ(t)T is a timelike closed conformal vector field, it
follows that

XΘ̂ = X 〈N, ρ(h)T 〉 = −ρ(h) 〈AX,T 〉+ ρ′(h) 〈N,X〉 = ρ(h) 〈AX,∇h〉 ,

for every X ∈ TΣ, so that

∇Θ̂ = ρ(h)A∇h = A∇σ(h).

Therefore, using the Codazzi Equation and Equation (3.3) we obtain

∇X∇Θ̂ =(∇XA)∇σ(h) +A∇X∇σ(h)

=ρ(h)(∇∇hA)(X) + ρ(h)(R(X,∇h)N)T − ρ′(h)AX + Θ̂A2(X).
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Then, if we denote by {E1, · · · , En} an arbitrary local orthonormal frame,
we get

Lk−1Θ̂ =ρ(h)Tr((∇∇hA) ◦ Pk−1) + ρ(h)
n∑
i=1

〈
R(Ei,∇h)N,Pk−1Ei

〉
− ρ′(h)Tr(A ◦ Pk−1) + Θ̂Tr(A2 ◦ Pk−1)

=−
(
n

k

)
ρ(h) 〈∇Hk,∇h〉+ ρ(h)

n∑
i=1

〈
R(Ei,∇h)N,Pk−1Ei

〉
− ρ′(h)Tr(A ◦ Pk−1) + Θ̂Tr(A2 ◦ Pk−1),

where we used

Tr(∇XA ◦ Pk−1) = Tr(Pk−1 ◦ ∇XA) = −
(
n

k

)
〈∇Hk, X〉 .

The conclusion then follows using Proposition 1.6 and Lemma 3.5. �

Finally, if we assume that the sectional curvature of the fiber Pn is con-
stant, a straightforward computation gives the following

Corollary 3.7. Let Σn be a spacelike hypersurface immersed into a GRW
spacetime −I ×ρ Pn, with angle function Θ and height function h. Assume

that Pn has constant sectional curvature κ and let Θ̂ = ρ(h)Θ. Then, for
every k = 1, ..., n we have

Lk−1Θ̂ =

(
n

k

)
ρ(h) 〈∇h,∇Hk〉+ ρ′(h)ck−1Hk

+ Θ̂
( κ

ρ2(h)
− (log ρ)′′(h)

)
(‖∇h‖2ck−1Hk−1 − 〈Pk−1∇h,∇h〉)(3.5)

+ Θ̂

(
n

k

)
(nH1Hk − (n− k)Hk+1).

3.2. Uniqueness of spacelike hypersurfaces: compact case

We are now ready to state and prove some uniqueness results for com-
pact spacelike hypersurfaces of constant k-mean curvature, 2 ≤ k ≤ n, in
GRW spacetimes. The results are very similar to the ones obtained in the
Riemannian setting, but with slightly different assumptions. In fact, rather
than the convexity of (log ρ)(h), in the Lorentzian case one requires the con-
vexity of the function −(log ρ)(h). Moreover, unlike the Riemannian case, in
the case of spacelike hypersurfaces in GRW spacetimes no requirements on
the sign of the angle function are needed. Indeed, as seen in the preliminary
discussion of this chapter, the function Θ never vanishes and its sign only
depends on the chosen orientation.

We will start exhibiting some of the results proved in [8] for compact
spacelike hypersurfaces of constant k-mean curvature, 2 ≤ k ≤ n. Before
stating these theorems we recall from Proposition 3.2 in [16] that if a GRW
spacetime admits a compact spacelike hypersurface, then the Riemannian
fiber Pn is necessarily compact. In that case, we say that Mn+1 is a spatially
closed GRW spacetime. The first result obtained in [8] is the following.
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Theorem 3.8 (Corollary 5.2 in [8]). Let −I ×ρ Pn be a spatially closed
GRW spacetime with warping function satisfying (log ρ)′′ ≤ 0. Let f : Σn →
R ×ρ Pn be a compact spacelike hypersurface with H2 > 0, H2

H1
= constant.

Then f(Σn) is a slice.

The proof uses of the constancy of H2/H1 and the fact that, by compact-
ness, there exist two points pmax and pmin where the height function h (and
hence its primitive σ(h)) attains its maximum and its minimum, in order to
obtain the inequalities

H2

H1
=
H2

H1
(pmax) ≤ (log ρ)′(h(pmax)),

H2

H1
=
H2

H1
(pmin) ≥ (log ρ)′(h(pmin)).

Exploiting then the convexity of −(log ρ)(h) it follows that the function
(log ρ)′(h) is constantly equal to H2/H1. Inserting this expression into Equa-
tion (3.2) it is easy to see that the function σ(h) is subharmonic and then
one concludes by applying the classical maximum principle.

The previous theorem can be easily generalized to hypersurfaces of con-
stant k-mean curvature, 3 ≤ k ≤ n. In order to do that we need the operators
Lj , 1 ≤ j ≤ k − 1, to be elliptic. As stated in Proposition 1.9, in order to
guarantee this we need the existence of an elliptic point p ∈ Σ. In the com-
pact case, the following technical lemma gives a geometric condition that
implies the existence of such a point.

Lemma 3.9 (Lemma 5.3, [8]). Let f : Σn → −I×ρPn be a compact spacelike
hypersurface immersed into a spatially closed GRW spacetime, and assume
that ρ′(h) does not vanish on Σ (equivalently, f(Σ) is contained in a slab
[t1, t2]× Pn on which ρ′ does not vanish).

(i) if ρ′(h) > 0 on Σ (equivalently, ρ′ > 0 on [t1, t2]), then there exists
an elliptic point on Σ with respect to its future-pointing Gauss map.

(ii) if ρ′(h) < 0 on Σ (equivalently, ρ′ < 0 on [t1, t2]), then there exists
an elliptic point on Σ with respect to its past-pointing Gauss map.

Since Proposition 1.9 asserts that the existence of an elliptic point, jointly
with the assumption Hk > 0, imply that any Lj , 0 ≤ j ≤ k−1, is elliptic and,
in particular, that any Hj is positive. Theorem 3.8 can then be generalized
as follows

Theorem 3.10 (Corollary 5.4 in [8]). Let −I ×ρ Pn be a spatially closed
GRW spacetime with warping function satisfying (log ρ)′′ ≤ 0.
Let f : Σn → R×ρ Pn, n ≥ 3, be a compact spacelike hypersurface contained
in a slab [t1, t2] × Pn on which ρ′ does not vanish. If Hk > 0 on Σ and

some of the quotients
Hj

Hj−1
is constant for some 3 ≤ j ≤ k, then f(Σn) is

necessarily an embedded slice {t0} × Pn, with t0 ∈ (t1, t2).

The proof proceed exactly as in the previous theorem with the operator
L1 replaced by Lj−1, 2 ≤ j ≤ k.
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Following the ideas of Chapter 2 and introducing a suitable family of
elliptic operators, it is not difficult to prove the next

Theorem 3.11. Let −I ×ρ Pn be a spatially closed GRW spacetime with
warping function satisfying (log ρ)′′ ≤ 0. Let f : Σn → R×ρ Pn be a compact
spacelike hypersurface of constant positive 2-mean curvature H2. Then f(Σn)
is a slice.

Proof. It follows from the basic inequality H2
1 ≥ H2 > 0 that |H1| 6= 0.

We may then choose the orientation so that H1 > 0. Assume that Θ < 0
with respect to the chosen orientation and recall that (3.1) gives

∆h = −(log ρ)′(h)(n+ ‖∇h‖2)− nΘH1.

As already observed, the compactness of Σ implies the existence of two points
pmax and pmin where the height function attains its maximum and minimum
values respectively. Then ∇h(pmax) = ∇h(pmin) = 0 and, since Θ < 0,
Θ(pmax) = −1. Moreover

0 ≥ ∆h(pmax) = −n(log ρ)′(h) + nH1(pmax) > −n(log ρ)′(h),

which together with the assumption (log ρ)′′ ≤ 0 implies

(log ρ)′(h) ≥ (log ρ)′(h) > 0.

Hence the operator

L̃1 =
c1

c0
((log ρ(h))′)∆−ΘL1

=Tr(P̃1 ◦ hess),

where
P̃1 = (n− 1)((log ρ(h))′)I −ΘP1.

is elliptic. A simple computation using Equation (3.2) gives

L̃1σ(h) = −c1ρ(h)(((log ρ)′(h))2 −Θ2H2).

Proceeding as in Theorem 2.13 we obtain the inequalities

(log ρ)′(h) ≥ H1/2
2 ≥ (log ρ)′(h).

The convexity of −(log ρ)(h) implies then that (log ρ)′(h) = (log ρ)′(h) and

hence H
1/2
2 is constantly equal to (log ρ)(h). Then

L̃1σ(h) = −c1ρ(h)(((log ρ)′(h))2 −Θ2H2)

= −c1ρ(h)H2(1−Θ2)

≥ 0

and we reach the desired conclusion using the classical maximum principle.
On the other hand, if Θ > 0 with respect to the chosen orientation, then
Θ(pmin) = 1 and

0 ≤ ∆h(pmin) = −n(log ρ)′(h)− nH1(pmin) < −n(log ρ)′(h),

and we deduce that

(log ρ)′(h) ≤ (log ρ)′(h) < 0.
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Then the proof proceeds as above using the elliptic operator −L̃1 instead of

L̃1. �

In the case 3 ≤ k ≤ n, we introduce the family of operators

L̃k−1 =Tr
([ k−1∑

i=0

(−1)i
ck−1

ci
((log ρ)′(h))k−1−iΘiPi

]
◦ hess

)
=

k−1∑
i=0

(−1)i
ck−1

ci
((log ρ)′(h))k−1−iΘiLi.

We claim that

(3.6) L̃k−1σ(h) = −ck−1ρ(h)(((log ρ)′(h))k + (−1)k−1ΘkHk).

We can prove the claim by induction. It is straightforward to prove that
Equation (3.13) holds true for k = 1. Hence, assume that it holds for k − 2
and observe that

L̃k−1σ(h) =
ck−1

ck−2
(log ρ)′(h)

k−2∑
i=0

(−1)i
ck−2

ci
((log ρ)′(h))k−2−iΘiLiσ(h)

+ (−1)k−1Θk−1Lk−1σ(h)

=− ck−1ρ(h)(((log ρ)′(h))k − (−1)k−1(log ρ)′(h)Θk−1Hk−1

+ (−1)k−1(log ρ)′(h)Θk−1Hk−1 + (−1)k−1ΘkHk)

=− ck−1ρ(h)(((log ρ)′(h))k + (−1)k−1ΘkHk).

Then, reasoning as in the previous theorem, we can establish the next

Theorem 3.12 (Theorem 3.1 in [14]). Let −I ×ρ Pn be a spatially closed
GRW spacetime with warping function satisfying (log ρ)′′ ≤ 0. Let f : Σn →
R ×ρ Pn, n ≥ 3, be a compact spacelike hypersurface of constant k-mean
curvature Hk, 3 ≤ k ≤ n, contained in a slab on which ρ′ does not vanish.
Then f(Σn) is a slice.

The proof proceeds exactly as in Theorem 3.11 once one observes that,
since ρ′(h) does not vanish, there exists an elliptic point on Σ and hence, by
Proposition 1.9, all the Lj ’s are elliptic, 1 ≤ j ≤ k − 1. Thus the operator

L̃k−1 is elliptic and the conclusion follows as in the previous theorem.
Notice that all the previous theorems have been obtained assuming the

concavity condition

(log ρ)′′ ≤ 0.

As observed by Montiel in [50], this is a reasonably weak condition on the
warping function which is sufficient to obtain the desired uniqueness results.
Recall that a spacetime obeys the timelike convergence condition (TCC) if its
Ricci curvature is non-negative on timelike directions. A direct computation
using Equation (1.36) implies that a GRW spacetime −I ×ρ Pn obeys the
TCC if and only if

(3.7) RicP ≥ (n− 1) sup
I

((log ρ)′′ρ2) 〈, 〉P ,
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and

(3.8) ρ′′ ≤ 0,

where RicP and 〈, 〉P are respectively the Ricci and metric tensors of the
Riemannian manifold P.

As observed in [50], any of the two conditions above implies separately
that spacelike slices are the only compact spacelike hypersurfaces of constant
mean curvature in −I ×ρ Pn. In particular, the sole hypothesis (3.8) suffices
to guarantee uniqueness, without any other restriction on the curvature of
P. Even more, the more general condition (log ρ)′′ ≤ 0 is sufficient to obtain
the uniqueness. Another geometric condition that is relevant from a phys-
ical point of view is the so-called null convergence condition. Recall that
a spacetime obeys the null convergence condition if its Ricci curvature is
non-negative on null (lightlike) directions (see [39] for more details on this
physical conditions).
Using again formula (1.36), it is easy to see that a GRW spacetime obeys the
null convergence condition if and only if (3.7) holds. Using this condition
Montiel has obtained in [50] the following uniqueness result for hypersurfaces
of constant mean curvature.

Theorem 3.13 (Theorem 6 in [50]). Let −I×ρPn be a spatially closed GRW
spacetime obeying the null convergence condition. Then the only compact
spacelike hypersurfaces immersed in −I ×ρ Pn with constant mean curvature
are the embedded slices {t} × Pn, t ∈ I, unless in the case where −I ×ρ Pn
is isometric to the de Sitter spacetime in a neighbourhood of Σ, which must
be a round umbilical hypersphere. The latter case cannot occur if we assume
that the inequality (3.7) is strict.

The main tools that Montiel used to prove this theorem are the Minkowski
integral formulas. However this method can be applied neither in the case
of constant higher mean curvature, unless one assumes that the fibre Pn has
constant sectional curvature, nor in the complete non-compact case. Nev-
ertheless, as observed by Aĺıas and Colares in [8], the same result can be
obtained using the formulas for the Laplacian acting on the function σ and

on the function Θ̂ and applying the classical maximum principle. This ob-
servations allowed the two authors to extend Montiel’s theorem to compact
hypersurfaces of constant higher order mean curvature. In order to do that,
one need to impose on −I ×ρ Pn the stronger condition

(3.9) KP ≥ sup
I
{ρ2(log ρ)′′}.

We will refer to (3.9) as the strong null convergence condition. Then we can
state the following

Theorem 3.14 (Theorem 9.2 in [8]). Let −I ×ρ Pn, n ≥ 3, be a spatially
closed GRW spacetime and assume that the sectional curvature of Pn satisfy
the strong null convergence condition. Let f : Σn → −I ×ρ Pn be a compact
hypersurface of constant k-mean curvature, 2 ≤ k ≤ n, contained in a slab
on wich ρ′ does not vanish. Then f(Σn) is totally umbilical. Moreover, Σ
must be a slice {t0} × Pn (necessarily with ρ′(t0) 6= 0), unless in the case
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where −I ×ρ Pn has positive constant sectional curvature and Σ is a round
umbilical hypersphere. The latter case cannot occur if we assume that the
inequality in (3.9) is strict.

Proof. Let us choose on Σ the future-pointing Gauss map and assume
that ρ′(h) > 0 on Σ. Then, Lemma 3.9 guarantees the existence of an elliptic
point p0 ∈ Σ. In particular, since Hk is constant, it has to be positive.
Morever, using Garding inequalities we get

(3.10) H1 ≥ H1/2
2 ≥ · · · ≥ H1/k

k > 0,

with equality only at umbilical points. Consider now the function

φ = H
1/k
k σ(h) + Θ̂.

Using Equations (3.2) and (3.4), we find

Lk−1φ =ck−1ρ
′(h)(Hk −H

1/k
k Hk−1)

+

(
n

k

)
Θ̂(nH1Hk − (n− k)Hk+1 − kH

(k+1)/k
k )

+
Θ̂

ρ(h)2

n∑
i=1

µi,k−1KP(E∗i ∧N∗)‖E∗i ∧N∗‖
2(3.11)

− (log ρ)′′(h)(ck−1Hk−1‖∇h‖2 − 〈Pk−1∇h,∇h〉).

Notice that, by Equation (3.10), the first and the second terms in Equation
(3.11) above are non-positive, with equality only at umbilical points. More-
over, since Pk−1 is elliptic, its eigenvalues are strictly positive and, taking
into account the strong null convergence condition

µi,k−1KP(N∗ ∧ E∗i )‖N∗ ∧ E∗i ‖
2 ≥ µi,k−1γ‖N∗ ∧ E∗i ‖

2,

where γ = supI{(log ρ)′′ρ2}. Taking into account the decompositions

N = N∗ −ΘT, Ei = E∗i − 〈Ei, T 〉T, T = −∇h−ΘN,

a straightforward computation gives

‖N∗ ∧ E∗i ‖
2 = ‖∇h‖2 − 〈Ei,∇h〉2 .

Therefore
n∑
i=1

µi,k−1KP(N∗ ∧ E∗i )‖N∗ ∧ E∗i ‖
2 ≥γ(ck−1Hk−1‖∇h‖2 − 〈Pk−1∇h,∇h〉)

≥ρ2(h)(log ρ)′′(h)(ck−1Hk−1‖∇h‖2

− 〈Pk−1∇h,∇h〉).
Summarizing, Lk−1φ ≤ 0. Since Lk−1 is an elliptic operator and Σ is com-
pact, we conclude by the maximum principle that φ has to be constant.
Hence Lk−1φ = 0 and all the terms in (3.11) vanish identically. In par-
ticular, Σ is a totally umbilical hypersurface and, since Hk is a positive
constant, all the higher order mean curvatures are constant. In particular,
the mean curvature is constant and the conclusion follows applying Montiel’s
theorem. �
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3.3. Uniqueness of spacelike hypersurfaces: complete
non-compact case

Our aim now is to give a characterization of spacelike slices in the com-
plete non-compact case by means of the Omori-Yau maximum principle for
semi-elliptic operators of the form (1.11), Recall that in order to guarantee
the the validity of the generalized Omori-Yau maximum principle it suffices
to assume that

(3.12) KΣ(∇r,X) ≥ −G(r),

where r(·) is the distance function from a reference point o ∈ Σ and X is
any vector field in TΣ. Moreover, in order to guarantee (3.12), recall the
Gauss equation

R(X,Y )Z = (R(X,Y )Z)T − 〈AX,Z〉AY + 〈AY,Z〉AX,

for all vector fields X, Y, Z tangent to Σ. Without loss on generality we
will assume that X is a unitary vector field orthogonal to ∇r. Then

KΣ(∇r,X) =K(∇r,X)− 〈AX,X〉 〈A∇r,∇r〉+ 〈AX,∇r〉2

≥K(∇r,X)− 〈AX,X〉 〈A∇r,∇r〉 .

Notice that ∣∣∣ 〈A∇r,∇r〉 ∣∣∣ ≤‖A∇r‖‖∇r‖
≤‖A‖‖∇r‖2

≤nH1‖∇r‖2.

Analogously ∣∣∣ 〈AX,X〉 ∣∣∣ ≤ nH1‖X‖2,

hence

KΣ(∇r,X) ≥ K(∇r,X)− n2H2
1 .

Thus, if we assume that supΣ |H1| < +∞, the last term in the previous
inequality is bounded from below. Moreover, using Equation (1.36) we get

K(∇r,X) =
1

ρ2(h)
KP(πP∗∇r, πP∗X)‖πP∗∇r ∧ πP∗X‖2

+ ((log ρ)′)2(h)(〈∇r,∇r〉 〈X,X〉 − 〈∇r,X〉2)

+ (log ρ)′′(h) 〈∇r,∇h〉 (〈X,∇h〉 〈∇r,X〉 − 〈∇r,∇h〉 〈X,X〉)
− (log ρ)′′(h)(〈∇r,∇r〉 〈X,∇h〉 − 〈∇r,∇h〉 〈X,∇r〉) 〈X,∇h〉

≥ 1

ρ2(h)
KP(πP∗∇r, πP∗X)‖πP∗∇r ∧ πP∗X‖2

+ (log ρ)′′(h)(2 〈∇r,∇h〉 〈X,∇h〉 〈∇r,X〉

− 〈∇r,∇h〉2 − 〈X,∇h〉2).

Since by the Cauchy-Schwarz inequality

〈X,∇r〉 ≤ | 〈X,∇r〉 | ≤ 1
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we find

2 〈∇r,∇h〉 〈X,∇h〉 〈∇r,X〉 − 〈∇r,∇h〉2 − 〈X,∇h〉2

≤2| 〈∇r,∇h〉 〈X,∇h〉 | − 〈X,∇h〉2 − 〈∇r,∇h〉
=− (| 〈X,∇h〉 | − | 〈∇r,∇h〉 |)2

≤0.

Since we will assume that (log ρ)′′ < 0 and that h is a bounded function, if
we suppose that the sectional curvature of Pn is bounded from below, we
find that condition (3.12) is met. Summarizing:

Corollary 3.15. Let Pn be a Riemannian manifold with sectional curvature
bounded from below, and let f : Σn → −I ×ρ Pn be a complete spacelike
hypersurface contained in a slab and satisfying supΣ |H1| < +∞. Then the
sectional curvature of Σ is bounded from below and the Omori-Yau maximum
principle holds on Σ for any semi-elliptic operator of the form (1.11).

Our first result is the extension of Theorem 3.8 to the complete case

Theorem 3.16 (Theorem 4.5 in [13]). Let −I ×ρ Pn be a GRW spacetime
whose warping function satisfies (log ρ)′′ ≤ 0, with equality only at isolated
points, and suppose that Pn has sectional curvature bounded from below. Let
f : Σn → −I ×ρ Pn be a complete spacelike hypersurface contained in a

slab with Hk > 0, for some 2 ≤ k ≤ n, and Hi+1

Hi
= constant for some

1 ≤ i ≤ k− 1. Assume that supΣH1 < +∞ and, for k ≥ 3, that there exists
an elliptic point in Σ. Then, f(Σn) is a slice.

Proof. We consider first the case k = 2. By the basic inequality H2
1 ≥

H2 > 0, it follows that we the mean curvature H1 never vanishes and we
can orient the hypersurface so that H1 > 0 on Σ. We define the operator

L̂1 = Tr(P̂1 ◦ hess) with P̂1 = 1
H1
P1. Note that Tr(P̂1) = c1 and therefore,

by Corollary 3.15, we can apply the Omori-Yau maximum principle for the

operator L̂1. We let {pj} and {qj} be two sequences such that

(i) lim
j→+∞

σ(h(pj)) = sup
Σ
σ(h),

(ii) ‖∇σ(h)(pj)‖ = ρ(h(pj))‖∇h(pj)‖ <
1

j
,

(iii) L̂1σ(h)(pj) <
1

j
,

and

(i) lim
j→+∞

σ(h(qj)) = inf
Σ
σ(h),

(ii) ‖∇σ(h)(qj)‖ = ρ(h(qj))‖∇h(qj)‖ <
1

j
,

(iii) L̂1σ(h)(qj) > −
1

j
,

Observe that condition (i) implies that limj→+∞ h(pj) = h∗ = supΣ h and
limj→+∞ h(qj) = h∗ = infΣ h, because σ(t) is strictly increasing. Thus
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by condition (ii) we also have limj→+∞ ‖∇h(pj)‖ = limj→+∞ ‖∇h(qj)‖ =
0, and limj→+∞Θ(pj) = limj→+∞Θ(qj) = sgn Θ. Therefore, using the
equation

L̂1σ(h) = −c1

(
ρ′(h) + Θρ(h)

H2

H1

)
and taking j → +∞ we obtain

(log ρ)′(h∗) ≤ − sgn Θ
H2

H1
≤ (log ρ)′(h∗).

The assumption (log ρ)′′ ≤ 0 with equality only at isolated points, allows us
to conclude that h must be constant.

For the general case k ≥ 3, first observe that the existence of an elliptic
point together with Hk > 0 imply that Hi > 0 and the operators Pi are
positive definite for all 1 ≤ i ≤ k − 1. Choose i as in the statement of

the Theorem, so that Hi+1/Hi is constant and consider the operator L̂i =

Tr(P̂i ◦ hess) with P̂i = 1
Hi
Pi. Note that Tr(P̂i) = ci and therefore, by

Corollary 3.15, we can apply the Omori-Yau maximum principle for the

operator L̂i. We conclude then as in the case k = 2 with the aid of the
equation

L̂iσ(h) = −ci
(
ρ′(h) + Θρ(h)

Hi+1

Hi

)
.

�

Under the same hypotheses guaranteeing the validity of the Omori-Yau
maximum principle we obtain the following result in case Σ has constant
k-mean curvature, 2 ≤ k ≤ n, extending Theorems 3.11 and 3.12.

Theorem 3.17 (Theorem 4.6 in [14]). Let −I ×ρ Pn be a GRW spacetime
whose warping function satisfies (log ρ)′′ ≤ 0, with equality only at isolated
points, and suppose that Pn has sectional curvature bounded from below. Let
f : Σn → −I ×ρ Pn be a complete spacelike hypersurface contained in a slab
and assume that either

(i) H2 is a positive constant, or
(ii) Hk is constant (with k ≥ 3) and there exists an elliptic point in Σ.

If supΣ |H1| < +∞, then Σ is a slice.

Proof. Using Proposition 1.8 in case (i) and 1.9 in case (ii), it is easy
to see that each Pi, 1 ≤ i ≤ k − 1, is positive definite. Hence, in particular,
P1 is positive definite and H1 > 0 for an appropriate choice of the Gauss
map. Assume first that Θ < 0 with respect to this choice and let us show
that ρ′(h) > 0. To do that, we apply the Omori-Yau maximum principle to
the Laplacian to assure the existence of a sequence {pj} with the following
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properties

(i) lim
j→+∞

h(pj) = h∗,

(ii) ‖∇h(pj)‖ <
1

j
,

(iii) ∆h(pj) <
1

j
.

Therefore, making j → +∞ in the following inequality

1

j
> ∆h(pj) = −(log ρ)′(h(pj))(n+ ‖∇h(pj)‖2)− nΘ(pj)H1(pj)

we get
(log ρ)′(h∗) + lim inf

j→+∞
H1(pj) ≥ 0.

Since
lim inf
j→+∞

H1(pj) ≥
√
H2 > 0,

and (log ρ)′(h∗) ≤ (log ρ)′(h), it must be (log ρ)′(h) > 0, which means ρ′(h) >
0 on Σ. On the other hand, if Θ > 0 with respect to the chosen orientation,
then ρ′(h) < 0. Indeed, we can apply the Omori-Yau maximum principle to
the Laplacian to assure the existence of a sequence {qj} with the following
properties

(i) lim
j→+∞

h(qj) = inf
Σ
h = h∗,

(ii) ‖∇h(qj)‖ <
1

j
,

(iii) ∆h(qj) > −
1

j
.

Making j → +∞ in the following inequality

−1

j
< ∆h(qj) = −(log ρ)′(h(qj))(n+ ‖∇h(qj)‖2)− nΘ(qj)H1(qj)

and reasoning exactly as before we conclude that ρ′(h) < 0 on Σ.
Consider now the operator

L̂1 = − 1

Θ

c1

c0
(log ρ)′(h)∆ + L1

=
c1

c0

∣∣∣(log ρ)′(h)

Θ

∣∣∣∆ + L1

= Tr(P̂1 ◦ hess),

where

P̂1 = (n− 1)
∣∣∣(log ρ)′(h)

Θ

∣∣∣I + P1

and ci = (n − i + 1)
(
n
i−1

)
= i

(
n
i

)
. Since Θ(log ρ)′(h) > 0, P̂1 is positive

definite. Moreover, since |1/Θ| ≤ 1,

TrP̂1 = c1

(∣∣∣(log ρ)′(h)

Θ

∣∣∣+H1

)
≤ c1(|(log ρ)′(h)|+ sup

Σ
H1) < +∞,
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where in the last inequality we used the fact that

|(log ρ)′(h)| ≤

{
(log ρ)′(h∗) if (log ρ)′(h) > 0,

−(log ρ)′(h∗) if (log ρ)′(h) < 0.

Hence L̂1 is an elliptic operator and the trace of P̂1 is bounded from
above. By Corollary 3.15 we can then apply the Omori-Yau maximum prin-

ciple for L̂1. Since h∗ < +∞ there exists a sequence {pj} ⊂ Σ such that

lim
j→+∞

(σ ◦ h)(pj) = (σ ◦ h)∗ = σ(h∗),

‖∇(σ ◦ h)(pj)‖ = ρ(h(pj))‖∇h(pj)‖ <
1

j
,

L̂1(σ ◦ h)(pj) <
1

j
.

Moreover, by

L̂1σ(h) =
c1

Θ
ρ(h)((log ρ)′(h)2 −Θ2H2),

taking the limit for j → +∞ we find

0 ≥ sgn Θ((log ρ)′(h∗)2 −H2).

On the other hand, since h is bounded from below, we can find a sequence
{qj} ⊂ Σ such that

lim
j→+∞

(σ ◦ h)(qj) = (σ ◦ h)∗ = σ(h∗),

‖∇(σ ◦ h)(qj)‖ = ρ(h(qj))‖∇h(qj)‖ <
1

j
,

L̂1(σ ◦ h)(qj) > −
1

j

Hence, proceeding as above we find

0 ≤ sgn Θ((log ρ)′(h∗)
2 −H2).

Thus (log ρ)′(h∗) ≤ (log ρ)′(h∗). Since (log ρ)′(h) is a decreasing function we
conclude that h∗ = h∗ and hence h must be constant.
For the general case k ≥ 3, since, as we have observed, each Pi is positive
definite, 1 ≤ i ≤ k − 1, each Hi is positive and, reasoning as in the case
k = 2, one can see that Θ and ρ′(h) have opposite sign with respect to a
chosen orientation. Furthermore, since, by the Newton inequalities

Hi ≤ H i
1 < +∞,

each Hi is bounded from above. Consider the operator

L̂k−1 =Tr
([ k−1∑

i=0

ck−1

ci

∣∣∣(log ρ)′(h)

Θ

∣∣∣k−1−i
Pi

]
◦ hess

)
=
k−1∑
i=0

ck−1

ci

∣∣∣(log ρ)′(h)

Θ

∣∣∣k−1−i
Li

=Tr(P̂k−1 ◦ hess).
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Since L̂k−1 is a positive linear combination of the Li’s, it is elliptic. Moreover

Tr(P̂k−1) =ck−1

k−1∑
i=0

∣∣∣(log ρ)′(h)

Θ

∣∣∣k−1−i
Hi

≤ck−1

k−1∑
i=0

|(log ρ)′(h)|k−1−iH i
1

≤ck−1

k−1∑
i=0

|(log ρ)′(h)|k−1−i sup
Σ
H i

1

<+∞.

It is easy to prove by induction on k that

(3.13) L̂k−1σ(h) = ck−1
sgn Θ

|Θ|k−1
ρ(h)(|(log ρ)′(h)|k − |Θ|kHk).

We can then apply the Omori-Yau maximum principle to the operator L̂k−1.
Since h∗ < +∞ there exists a sequence {pj} ⊂ Σ such that

lim
j→+∞

(σ ◦ h)(pj) = (σ ◦ h)∗ = σ(h∗),

‖∇(σ ◦ h)(pj)‖ = ρ(h(pj))‖∇h(pj)‖ <
1

j
,

L̂k−1(σ ◦ h)(pj) <
1

j
.

Hence, taking the limit in (3.13) for j → +∞ and observing that |Θ|(pj)→ 1
as j → +∞, we find

0 ≥ sgn Θ(|(log ρ)′(h∗)|k −Hk).

On the other hand, since h is bounded from below, we can find a sequence
{qj} ⊂ Σ such that

lim
j→+∞

(σ ◦ h)(qj) = (σ ◦ h)∗ = σ(h∗),

‖∇(σ ◦ h)(qj)‖ = ρ(h(qj))‖∇h(qj)‖ <
1

j
,

L̂k−1(σ ◦ h)(qj) > −
1

j

Hence, proceeding as above,

0 ≤ sgn Θ(|(log ρ)′(h∗)|k −Hk).

Thus (log ρ)′(h∗) ≤ (log ρ)′(h∗) and we conclude as in case k = 2. �

In the rest of the section we prove some uniqueness results for complete
spacelike hypersurfaces of constant mean and higher order mean curvatures
obeying the null convergence condition. For what concerns the mean curva-
ture, it is clear from the proof (see Theorem 9.1 in [8]) that the generalization
is straightforward if the hypersurface is parabolic, which is always true in
the compact case. We can then state the next
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Theorem 3.18 (Therorem 5.1 in [13]). Let −I ×ρ Pn be a GRW spacetime
obeying the strict null convergence condition, that is, satisfying

(3.14) RicP > (n− 1) sup
I

((log ρ)′′ρ2) 〈, 〉P .

Let f : Σn → −I ×ρ Pn be a complete spacelike hypersurface of constant
mean curvature contained in a slab. Suppose that Σn is parabolic and that
supΣ |Θ| < +∞. Then f(Σn) is a slice.

Proof. Let us choose on Σ the orientation such that Θ < 0 and consider
the function φ = H1σ(h) + Θ̂. Since the mean curvature is constant, by
Equations (3.2) and (3.4) we have

∆φ = Θ̂(n(n− 1)(H2
1 −H2) + RicP(N∗, N∗)− (n− 1)(log ρ)′′(h)‖∇h‖2).

Reasoning as in the proof of Theorem 9.1 in [8], it follows from the hypothe-
ses that ∆φ ≤ 0 on Σ. Since supΣ |Θ| < +∞ and Σ is contained in a slab,
φ is bounded from below. Moreover, Σ being parabolic implies that φ must
be constant and ∆φ = 0. In particular

RicP(N∗, N∗)− (n− 1)(log ρ)′′(h)‖∇h‖2 = 0.

Observe that

‖∇h‖2 = ‖N∗‖2 = ρ2(h) 〈N∗, N∗〉P
and therefore the validity of (3.14) implies ∇h = 0. �

Keeping in mind Remark 2.29, it is straightforward to obtain the follow-
ing

Corollary 3.19. Let −I ×ρ Pn be a GRW spacetime obeying the strict null
convergence condition (3.14) and let f : Σn → −I ×ρ Pn be a complete
spacelike hypersurface of constant mean curvature contained in a slab and
satisfying (

vol∂Bt
)−1

/∈ L1(+∞).

Moreover, suppose that supΣ |Θ| < +∞. Then f(Σn) is a slice.

To extend Theorem 3.14 to the complete case we need to restrict our-
selves to spacelike hypersurfaces immersed in Robertson-Walker spacetimes
(RW). We recall that a RW spacetime is a GRW spacetime whose fibre Pn
is a Riemannian spaceform. These spacetimes are very important from a
physical point of view. Indeed they are the only spatially homogeneous
spacetime and are taken as realistic models for the universe. Notice that, in
case −I ×ρ Pn is a RW spacetime and we denote by κ the constant sectional
curvature of the fiber Pn, the null convergence condition reads as

κ ≥ sup
I
{ρ2(log ρ)′′}.

Consider now the operator

L̂k−1f = div(Pk−1∇f).
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It follows by Proposition 1.7 that

L̂k−1u = 〈divPk−1,∇u〉+ Lk−1u

=
k−2∑
j=0

n∑
i=1

(−1)k−2−j
〈

R(Ei, A
k−2−j∇u)N,PjEi

〉
+ Lk−1u

Using the Gauss equation, the expression for the Riemannian tensor for a
manifold of constant sectional curvature and Equation (1.36), it follows that,

whenever Pn has constant sectional curvature κ, the operator L̂k−1 has the
expression

(3.15) L̂k−1u = (n− k+ 1)Θ
( κ

ρ2(h)
− (log ρ)′′(h)

)
〈Pk−2∇h,∇u〉+Lk−1u.

As in the Riemannian case, we say that the hypersurface Σn ↪→ −I ×ρ Pn

is L̂k−1-parabolic if the only bounded above C1 solutions of the differential
inequality

L̂k−1u ≥ 0

are constant. Equivalently, we can say that Σ is L̂k−1-parabolic if the only
bounded below C1 solutions of

L̂k−1v ≤ 0

are constant.
It is not difficult to see that Theorem 2.33 applies in this case and we

conclude again that (2.21) is a sufficient condition for L̂k−1-parabolicity.
We are now able to establish the following result, which extends Theorem

3.14 to the complete case, at least when Pn has constant sectional curvature.

Theorem 3.20 (Theorem 5.6 in [14]). Let −I×ρPn be a RW spacetime and
denote by κ the constant sectional curvature of Pn. Let f : Σn → −I ×ρ Pn
be a complete spacelike hypersurface of constant k-mean curvature, k ≥ 2,
contained in a slab [t1, t2]× Pn on which ρ′ does not change sign and

(3.16) κ > max
[t1,t2]

((log ρ)′′ρ2).

Suppose that Σn satisfies condition (2.21) and either

(i) k = 2 and H2 > 0 or
(ii) k ≥ 3 and there exists an elliptic point p ∈ Σn.

If supΣ |H1| < +∞ and supΣ |Θ| < +∞, then f(Σn) is a slice.

Proof. Assume that ρ′(h) ≥ 0. Proceeding as in the proof of Theorem
3.17 we realize that Hk > 0 for the orientation with Θ < 0 and the Newton
tensors Pj are positive definite for any 1 ≤ j ≤ k − 1. Note that in order to
determine the sign of Θ we need to apply the Omori-Yau maximum principle
for the Laplacian, as in the proof of Theorem 3.17. This is possible because
of the assumption on H1 (see Corollary 3.15).
Next we consider the function

φ = H
1
k
k σ(h) + Θ̂,
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where Θ̂ = ρ(h)Θ. Since Pn has constant sectional curvature κ, it follows by
Equation (3.15) that

L̂k−1φ =(n− k + 1)Θ
( κ

ρ2(h)
− (log ρ)′′(h)

)
〈Pk−2∇h,∇φ〉+ Lk−1φ

=(n− k + 1)Θ̂
( κ

ρ2(h)
− (log ρ)′′(h)

)
〈Pk−2∇h,∇h〉

+ (n− k + 1)Θ̂
( κ

ρ2(h)
− (log ρ)′′(h)

)
〈Pk−2A∇h,∇h〉

+H
1
k
k Lk−1σ(h) + Lk−1Θ̂.

Using Equation (3.2) and Corollary 2.27 we can write

L̂k−1φ =− ck−1ρ
′(h)H

1
k
k (Hk−1 −H

k−1
k

k )(3.17)

+ (n− k + 1)Θ̂
( κ

ρ2(h)
− (log ρ)′′(h)

)
H

1
k
k 〈Pk−2∇h,∇h〉

+ (n− k)Θ̂
( κ

ρ2(h)
− (log ρ)′′(h)

)
〈Pk−1∇h,∇h〉

+ Θ̂

(
n

k

)
(nH1Hk − (n− k)Hk+1 − kH

k+1
k

k ).

Using Garding inequalities it is easy to prove that the first and the last
terms are non-negative. By the fact that each Pj is an elliptic operator,
0 ≤ j ≤ k − 1, and by Equation (3.16) it follows that also all the remaining

terms in the previous equation are non-negative and hence L̂k−1φ ≤ 0. Since
supΣ |Θ| < +∞ and the hypersurface is contained in a slab, φ is bounded

from below. Moreover assumption (2.21) implies that Σ is L̂k−1-parabolic.

Therefore we conclude that φ has to be constant. Thus L̂k−1φ = 0 and each
term of Equation (3.17) must vanish. In particular, the equality

nH1Hk − (n− k)Hk+1 − kH
k+1
k

k = 0

implies that Σ is a totally umbilical hypersurface. Moreover, since each Pj ,
j = 0, ..., k − 1 is an elliptic operator and since (3.16) holds, we conclude
that ∇h = 0 and hence f(Σ) is a slice. �



CHAPTER 4

Curvature estimates for spacelike hypersurfaces
and a Bernstein-type theorem

The aim of this chapter is to study the geometry, and hence the mean cur-
vatures, of spacelike hypersurfaces bounded by a level set of the Lorentzian
distance function from a point.
Estimates for the mean curvature of spacelike hypersurfaces bounded by a
level set of the Lorentzian distance function have recently been obtained in
[12]. There the authors assume the spacetime to have sectional curvature
bounded by a constant, obtaining estimates of the mean curvature of the
hypersurfaces in terms of that of Lorentzian spheres, that can be viewed,
as we will clarify later, as spacelike level sets of the Lorentzian distance
function from a point in spaceforms. For what concerns the higher order
mean curvatures, a priori estimates in this spirit have been established in [2]
and [3]. In the first paper spacelike hypersurfaces in the Lorentz-Minkowski
spacetime are studied assuming they are bounded either by two parallel hy-
perplanes or by an upper Lorentzian sphere. In the second paper the authors
consider spacelike hypersurfaces in the de Sitter space and they are able to
obtain lower estimates for the higher order mean curvatures once they are
contained in certain unbounded regions of the ambient spacetime. In the
first section, assuming that the radial sectional or Ricci curvature of the
spacetime is bounded by a radial function we are going to draw conclusions
by means of an analysis of the Lorentzian distance function restricted to the
hypersurface. In particular, we expect to be able to estimate the k-mean
curvature of the spacelike hypersurface in terms of that of the Lorentzian
spheres, extending in this way the results mentioned before.
Moreover, both in [12] and in [2], Bernstein-type theorems are proved.
Namely, in [12], in the case when the spacetime is a space form and the
spacelike hypersurfaces have constant mean curvature, it is proved a charac-
terization of Lorentzian spheres as the only spacelike hypersurfaces bounded
by a level set of the Lorentzian distance function and with constant mean
curvature. The same characterization is proved in [2] for hypersurfaces of
constant higher order mean curvature in the Lorentz-Minkowski spacetime.
In the last section we will see how, using our estimates, it is possible to extend
this characterization results to hypersurfaces of constant k-mean curvature
in every spaceform.

79
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4.1. Mean curvature estimates for hypersurfaces bounded by a
level set of the Lorentzian distance function from a point

In the following we will consider a spacelike hypersurface f : Σ→Mn+1.
Under suitable bounds on the sectional curvature of M , combining the Hes-
sian and Laplacian comparison theorems established in Chapter 1 and the
Omori-Yau maximum principle, we will be able to establish lower and upper
bounds for the mean curvature of the hypersurface, generalizing the results
in [12].

Let us start with some computational results. SinceM is time-orientable,
there exists a unique future-directed timelike unit normal field N globally
defined on Σ. We will refer to that normal field N as the future-pointing
Gauss map of the hypersurface. Assume that there exists a point p ∈M such
that I+(p) 6= ∅ and that f(Σ) ⊂ I+(p). Let r(·) = dp(·) be the Lorentzian
distance function from p and let u = r ◦ f : Σ→ (0,+∞) be the function r
along the hypersurface, which is a smooth function on Σ. Let us calculate
the Hessian of u on Σ. Notice that

∇r = ∇u−
〈
∇r,N

〉
N.

Thus, since
∥∥∇r∥∥2

= −1 and
〈
∇r,N

〉
> 0, we have〈

∇r,N
〉

=

√
1 + ‖∇u‖2 ≥ 1

and hence

∇r = ∇u−
√

1 + ‖∇u‖2N
Moreover
(4.1)

∇X∇r = ∇X∇u+

√
1 + ‖∇u‖2AX + 〈AX,∇u〉N −X(

√
1 + ‖∇u‖2)N

for every spacelike X ∈ TΣ. Thus

Hessu(X,X) = Hessr(X,X)−
√

1 + ‖∇u‖2 〈AX,X〉

and, tracing the last expression,

∆u = ∆r + Hessr(N,N) + nH1

√
1 + ‖∇u‖2.

Hence, if we assume that RicM (∇r,∇r) ≥ −nG(r), then, by applying The-
orem 1.28 it is not difficult to prove the next

Proposition 4.1. Let Mn+1 be an (n+ 1)-dimensional spacetime. Assume
that there exists a point p ∈ M such that I+(p) 6= ∅ and let r(·) = dp(·) be
the Lorentzian distance function from p. Given a smooth even function G
on R, let h be a solution of the Cauchy problem

(4.2)

{
h′′ −Gh = 0
h(0) = 0, h′(0) = 1

and let I = [0, rG) ⊂ [0,+∞) be the maximal interval where h is positive.
Let f : Σn → Mn+1 be a spacelike hypersurface such that f(Σn) ⊂ I+(p) ∩
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B+(p, rG). If

(4.3) RicM (∇r,∇r) ≥ −nG(r),

then

(4.4) ∆u ≥ −nh
′

h
(u) + Hessr(N,N) + nH1

√
1 + ‖∇u‖2.

On the other hand, if we take into account the decomposition

X = X∗ − 〈X,∇u〉∇r,
where X∗ is the component of X orthogonal to ∇r, then

〈X∗, X∗〉 = 〈X,X〉+ 〈X,∇u〉2 .
and since

∇∇r∇r = 0

we find
Hessr(X,X) = Hessr(X∗, X∗).

Hence, if we assume that KM (Π) ≤ G(r), for all timelike planes Π, Theorem
1.27 implies that

Hessr(X,X) =Hessr(X∗, X∗) ≥ −h
′

h
(u) 〈X∗, X∗〉

=− h′

h
(u)(〈X,X〉+ 〈X,∇u〉2),

where h is a solution of the problem (4.2), for all spacelike X ∈ TqΣ, q ∈
I+(p) ∩B+(p, rG). Therefore

Hessu(X,X) ≥− h′

h
(u)(〈X,X〉+ 〈X,∇u〉2)

−
√

1 + ‖∇u‖2 〈AX,X〉
and, taking the tracing

∆u ≥ −h
′

h
(u)(n+ ‖∇u‖2) + n

√
1 + ‖∇u‖2H1.

Summarizing, we have proved the next

Proposition 4.2. Let Mn+1 be an (n+ 1)-dimensional spacetime. Assume
that there exists a point p ∈M such that I+(p) 6= ∅ and let r(·) = dp(·) be the
Lorentzian distance function from p. Given a smooth even function G on R,
let h be a solution of the Cauchy problem (4.2) and let I = [0, rG) ⊂ [0,+∞)
be the maximal interval where h is positive. Let f : Σn → Mn+1 be a
spacelike hypersurface such that f(Σn) ⊂ I+(p) ∩B+(p, rG). If

(4.5) KM (Π) ≤ G(r)

for all timelike planes Π, then

(4.6) ∆u ≥ −h
′

h
(u)(n+ ‖∇u‖2) + n

√
1 + ‖∇u‖2H1.

On the other hand, if we assume that KM (Π) ≥ G(r) for all timelike
planes Π in M , the same computations yield the following
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Proposition 4.3. Let Mn+1 be an (n+ 1)-dimensional spacetime. Assume
that there exists a point p ∈M such that I+(p) 6= ∅ and let r(·) = dp(·) be the
Lorentzian distance function from p. Given a smooth even function G on R,
let h be a solution of the Cauchy problem (4.2) and let I = [0, rG) ⊂ [0,+∞)
be the maximal interval where h is positive. Let f : Σn → Mn+1 be a
spacelike hypersurface such that f(Σn) ⊂ I+(p) ∩B+(p, rG). If

(4.7) KM (Π) ≥ G(r)

for all timelike planes Π, then

(4.8) ∆u ≤ −h
′

h
(u)(n+ ‖∇u‖2) + n

√
1 + ‖∇u‖2H1.

Using the previous results, we can prove the following mean curvature
estimates.

Theorem 4.4 (Theorem 12 in [41]). Let Mn+1 be an (n + 1)-dimensional
spacetime. Assume that there exists a point p ∈ M such that I+(p) 6= ∅
and let r(·) = dp(·) be the Lorentzian distance function from p. Given a
smooth even function G on R, let h be a solution of the Cauchy problem
(4.2) and and let I = [0, rG) ⊂ [0,+∞) be the maximal interval where h is
positive. Let f : Σn → Mn+1 be a spacelike hypersurface such that f(Σn) ⊂
I+(p) ∩B+(p, δ), for some δ ≤ rG. If

(4.9) RicM (∇r,∇r) ≥ −nG(r),

and the Omori-Yau maximum principle holds on Σ then

inf
Σ
H1 ≤

(h′
h

(
sup

Σ
u
))
,

where u denotes the Lorentzian distance dp along the hypersurface.

Proof. Since u∗ = supΣ u < δ and the Omori-Yau maximum principle
for the Laplacian holds, we can find a sequence {pi}i∈N ⊂ Σ such that

(i) u(pi) > u∗ − 1

i
, (ii) ‖∇u(pi)‖ <

1

i
, (iii) ∆u(pi) <

1

i
.

Using Equation (4.6)

∆u(pi) ≥− n
h′

h
(u(pi)) + Hessr(N(pi), N(pi)) + n

√
1 + ‖∇u(pi)‖2H1(pi)

≥h
′

h
(u(pi)) + Hessr(N(pi), N(pi)) + n

√
1 + ‖∇u(pi)‖2 inf

Σ
H1.

By the decomposition

N(pi) = N∗(pi)−
〈
N(pi),∇r(pi)

〉
∇r(pi)

and by the fact that∥∥∇r(pi)∥∥2
= ‖N(pi)‖2 = −1, ∇r(pi) = ∇u(pi)−

〈
∇r(pi), N(pi)

〉
N(pi),

it follows that

‖N∗(pi)‖2 = ‖∇u(pi)‖2
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and hence limi→+∞ ‖N∗(pi)‖ = 0, that is limi→+∞N
∗(pi) = 0.Taking into

account that

Hessr(N(pi), N(pi)) = Hessr(N∗(pi), N
∗(pi))

we observe that limi→+∞Hessr(N(pi), N(pi)) = 0. The conclusion then
follows by taking the limit for i→ +∞ in the inequality above. �

On the other hand, if we assume that the sectional curvature of timelike
planes is bounded from below we obtain

Theorem 4.5 (Theorem 13 in [41]). Let Mn+1 be an (n+ 1)- dimensional
spacetime. Assume that there exists a point p ∈ M such that I+(p) 6= ∅
and let r(·) = dp(·) be the Lorentzian distance function from p. Given a
smooth even function G on R, let h be a solution of the Cauchy problem
(4.2) and let I = [0, rG) ⊂ [0,+∞) be the maximal interval where h is
positive. Let f : Σn → Mn+1 be a spacelike hypersurface such that f(Σn) ⊂
I+(p) ∩B+(p, rG). If

(4.10) KM (Π) ≥ G(r)

for all timelike planes Π and if the Omori-Yau maximum principle holds on
Σ, then

sup
Σ
H1 ≥

(h′
h

(
inf
Σ
u
))
,

where u denotes the Lorentzian distance dp along the hypersurface Σ.

Proof. Since u∗ = infΣ u > 0 and the Omori-Yau maximum principle
for the Laplacian holds, we can find a sequence {qi}i∈N ⊂ Σ such that

(i) u(qi) < u∗ +
1

i
, (ii) ‖∇u(qi)‖ <

1

i
, (iii) ∆u(qi) > −

1

i
.

Using Equation (4.8) and taking the limit for i→ +∞ we then find

0 ≤ −nh
′

h
(inf

Σ
u) + n sup

Σ
H1.

and the conclusion follows. �

Remark 4.6. It is worth pointing out that, for a fixed r, the function h′/h(r)
is the mean curvature of the Lorentzian sphere in the Lorentzian model MG

(see Section 1.4), that is the level set

ΣG(r) = {q ∈ I+(p)|dp(q) = r}.

This can be proved by representing the model space as the warped product
−(0, rG) ×h Hn, where rG is the first zero of the function h. Then the
conclusion follows observing that the level set ΣG(r) is nothing but a slice
{r} ×Hn (see the introduction of Chapter 3 for more details).

In the case of sectional or Ricci curvature bounded by a constant we
recover the estimates in Theorems 4.1 and 4.2 in [12]. Namely, as an appli-
cation of Theorems 4.4 and 4.5 we obtain the following
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Corollary 4.7 (Theorem 4.1 in [12]). Let Mn+1 be an (n+ 1)- dimensional
spacetime, such that RicM (∇r,∇r) ≥ −nc, c ∈ R, for all timelike planes
Π. Assume that there exists a point p ∈ M such that I+(p) 6= ∅ and let f :
Σn →Mn+1 be a spacelike hypersurface such that f(Σn) ⊂ I+(p)∩B+(p, δ)
for some δ > 0 (with δ ≤ π/

√
−c if c < 0). If the Omori-Yau maximum

principle for the Laplacian holds on Σ, then

inf
Σ
H1 ≤ fc

(
sup

Σ
u
)
,

where u denotes the Lorentzian distance dp along the hypersurface.

Corollary 4.8 (Theorem 4.2 in [12]). Let Mn+1 be an (n+ 1)- dimensional
spacetime, such that KM (Π) ≥ c, c ∈ R, for all timelike planes Π. Assume
that there exists a point p ∈M such that I+(p) 6= ∅ and let f : Σn →Mn+1

be a spacelike hypersurface such that f(Σn) ⊂ I+(p). Moreover, suppose
that infΣ u < π/

√
−c if c < 0. If the Omori-Yau maximum principle for the

Laplacian holds on Σ, then

sup
Σ
H1 ≥ fc

(
inf
Σ
u
)
,

where u denotes the Lorentzian distance dp along the hypersurface.

4.2. Higher order mean curvature estimates for hypersurfaces
bounded by a level set of the Lorentzian distance function

from a point

We are now going to extend the previous estimates to the higher order
constant mean curvature, generalizing the results in [2], [3]. We observe
that in the latter works, the estimates are proved by means of the Omori-
Yau maximum principle. In particular, there the authors found estimates
for the principal curvatures of the immersion and then combine them to
estimate the higher order mean curvatures. However, this does not allow,
for instance, to obtain upper bounds in the case of spacelike hypersurfaces
in the de Sitter spacetime. Here we will show how, introducing a family of
elliptic operators and using the general version of the Omori-Yau maximum
principle introduced in Section 1.3, it is possible to recover these results and
to generalize them.
Toward this aim, first observe that, using Equation (4.1), it is easy to see
that

Hessu(X,Pk−1X) = Hessr(X,Pk−1X)−
√

1 + ‖∇u‖2 〈Pk−1AX,X〉

On the other hand, we have the following decompositions

X =X∗ − 〈X,∇u〉∇r
Pk−1X =(Pk−1X)∗ − 〈X,Pk−1∇u〉∇r,

and

〈X∗, (Pk−1X)∗〉 = 〈X,Pk−1X〉+ 〈X,Pk−1∇u〉 〈X,∇u〉 .
Taking into account that

∇∇r∇r = 0
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we find
Hessr(X,Pk−1X) = Hessr(X∗, (Pk−1X)∗).

Hence, if we assume that KM (Π) ≤ G(r) for all timelike planes Π, then

Hessr(X,Pk−1X) =Hessr(X∗, (Pk−1X)∗) ≥ −h
′

h
(u) 〈X∗, (Pk−1X)∗〉

=− h′

h
(u)(〈X,Pk−1X〉+ 〈X,∇u〉 〈X,Pk−1∇u〉),

where h is a solution of the problem (4.2). Therefore

Hessu(X,Pk−1X) ≥− h′

h
(u)(〈X,Pk−1X〉+ 〈X,∇u〉 〈X,Pk−1∇u〉)

−
√

1 + ‖∇u‖2 〈Pk−1AX,X〉 .
and, taking the trace,

Lk−1u ≥ −
h′

h
(u)(ck−1Hk−1 + 〈∇u, Pk−1∇u〉) +

√
1 + ‖∇u‖2ck−1Hk.

Summarizing, we have proved the following

Proposition 4.9. Let Mn+1 be an (n+ 1)-dimensional spacetime. Assume
that there exists a point p ∈M such that I+(p) 6= ∅ and let r(·) = dp(·) be the
Lorentzian distance function from p. Given a smooth even function G on R,
let h be a solution of the Cauchy problem (4.2) and let I = [0, rG) ⊂ [0,+∞)
be the maximal interval where h is positive. Let f : Σn → Mn+1 be a
spacelike hypersurface such that f(Σn) ⊂ I+(p) ∩B+(p, rG). If

(4.11) KM (Π) ≤ G(r)

for all timelike planes Π, then

(4.12) Lk−1u ≥ −
h′

h
(u)(ck−1Hk−1 + 〈∇u, Pk−1∇u〉)+

√
1 + ‖∇u‖2ck−1Hk.

On the other hand, if we assume that KM (Π) ≥ G(r) for all timelike
planes in M , the same computations yield the following

Proposition 4.10. Let Mn+1 be an (n+1)-dimensional spacetime. Assume
that there exists a point p ∈M such that I+(p) 6= ∅ and let r(·) = dp(·) be the
Lorentzian distance function from p. Given a smooth even function G on R,
let h be a solution of the Cauchy problem (4.2) and let I = [0, rG) ⊂ [0,+∞)
be the maximal interval where h is positive. Let f : Σn → Mn+1 be a
spacelike hypersurface such that f(Σn) ⊂ I+(p) ∩B+(p, rG). If

(4.13) KM (Π) ≥ G(r)

for all timelike planes Π, then

(4.14) Lk−1u ≤ −
h′

h
(u)(ck−1Hk−1 + 〈∇u, Pk−1∇u〉)+

√
1 + ‖∇u‖2ck−1Hk.

We are now ready to extend the estimates of the previous section to the
higher order mean curvatures. To do that we will use the Omori-Yau maxi-
mum principle for semi-elliptic operators of the form (1.11). For simplicity,
we will refer to that as the generalized Omori-Yau maximum principle.
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Theorem 4.11 (Theorem 14 in [41]). Let Mn+1 be an (n+ 1)-dimensional
spacetime. Assume that there exists a point p ∈M such that I+(p) 6= ∅ and
let r(·) = dp(·) be the Lorentzian distance function from p. Given a smooth
even function G on R, let h be a solution of the Cauchy problem (4.2) and
let I = [0, rG) ⊂ [0,+∞) be the maximal interval where h is positive. Let f :
Σn →Mn+1 be a spacelike hypersurface such that f(Σn) ⊂ I+(p)∩B+(p, δ,
for some δ ≤ rG. Assume that H2 > 0 and that supΣH1 < +∞. If

(4.15) KM (Π) ≤ G(r)

for all timelike planes Π and if the generalized Omori-Yau maximum prin-
ciple holds on Σ, then

inf
Σ
H

1
2
2 ≤

∣∣∣h′
h

(
sup

Σ
u
)∣∣∣,

where u denotes the Lorentzian distance dp along the hypersurface.

Proof. Consider the operator

L =L1 + (n− 1)
1√

1 + ‖∇u‖2

(∣∣∣h′
h

(u)
∣∣∣)∆

=Tr(P ◦ hess),

where

P = P1 + (n− 1)
1√

1 + ‖∇u‖2

(∣∣∣h′
h

(u)
∣∣∣)I.

Notice that, since H2 > 0, the operator L1 is elliptic and so is L. Since
0 < u < supΣ u < δ, h′/h(u) is bounded. Furthermore, supΣH1 < +∞ and

1/
√

1 + ‖∇u‖2 ≤ 1, hence we can apply the Omori-Yau maximum principle

for the operator L. We can then find a sequence {pi}i∈N ⊂ Σ such that

(i) u(pi) > u∗ − 1

i
, (ii) ‖∇u(pi)‖ <

1

i
, (iii) Lu(pi) <

1

i
.

A simple computation shows that

Lu ≥− (n− 1)
1√

1 + ‖∇u‖2

(h′
h

(u)
)2

(n+ ‖∇u‖2)−

−
(∣∣∣h′
h

(u)
∣∣∣) 〈P1∇u,∇u〉+ n(n− 1)

√
1 + ‖∇u‖2H2.
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Hence

1

i
> Lu(pi) ≥− (n− 1)

1√
1 + ‖∇u(pi)‖2

(h′
h

(u(pi))
)2

(n+ ‖∇u(pi)‖2)−

−
(∣∣∣h′
h

(u(pi))
∣∣∣) 〈P1∇u(pi),∇u(pi)〉

+ n(n− 1)

√
1 + ‖∇u(pi)‖2H2(pi)

≥− (n− 1)
1√

1 + ‖∇u(pi)‖2

(h′
h

(u(pi))
)2

(n+ ‖∇u(pi)‖2)−

−
(∣∣∣h′
h

(u(pi))
∣∣∣) 〈P1∇u(pi),∇u(pi)〉

+ n(n− 1)

√
1 + ‖∇u(pi)‖2 inf

Σ
H2

Taking the limit for i→ +∞ limi→∞H2(pi) ≥ infΣH2, we find

0 ≥ −n(n− 1)
(h′
h

(sup
Σ
u)
)2

+ n(n− 1) inf
Σ
H2.

and the conclusion follows. �

When 3 ≤ k ≤ n we obtain the next

Theorem 4.12 (Theorem 15 in [41]). Let Mn+1 be an (n+1)- dimensional
spacetime, n ≥ 3. Assume that there exists a point p ∈M such that I+(p) 6=
∅ and let r(·) = dp(·) be the Lorentzian distance function from p. Given a
smooth even function G on R, let h be a solution of the Cauchy problem
(4.2) and let I = [0, rG) ⊂ [0,+∞) be the maximal interval where h is
positive. Let f : Σn → Mn+1 be a spacelike hypersurface such that f(Σn) ⊂
I+(p)∩B+(p, δ), for some δ ≤ rG. Assume that there exists an elliptic point
p0 ∈ Σ, that Hk > 0, 3 ≤ k ≤ n, and that supΣH1 < +∞. If

(4.16) KM (Π) ≤ G(r)

for all timelike planes Π and if the generalized Omori-Yau maximum prin-
ciple holds on Σ, then

inf
Σ
H

1
k
k ≤

∣∣∣h′
h

(
sup

Σ
u
)∣∣∣,

where u denotes the Lorentzian distance dp along the hypersurface.

Proof. Consider the operator

L =
k−1∑
j=0

(1 + ‖∇u‖2)−
k−1−j

2

(∣∣∣h′
h

(u)
∣∣∣)k−1−j ck−1

cj
Lj

Notice that, since there exists an elliptic point p0 ∈ Σ and Hk > 0, 3 ≤
k ≤ n, the operators Lj are elliptic for all 1 ≤ j ≤ k − 1. Since 0 < u <

supΣ u < δ, 1/
√

1 + ‖∇u‖2 ≤ 1 and supΣH1 < +∞, we can apply the
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Omori-Yau maximum principle for the operator L. Hence, we can find a
sequence {pi}i∈N ⊂ Σ such that

(i) u(pi) > u∗ − 1

i
, (ii) ‖∇u(pi)‖ <

1

i
, (iii) Lu(pi) <

1

i
.

A straightforward computation using Proposition 4.9 shows that

Lu ≥−
k−1∑
j=1

(1 + ‖∇u‖2)−
k−1−j

2

(∣∣∣h′
h

(u)
∣∣∣)k−j ck−1

cj
〈Pj∇u,∇u〉

− ck−1
1

(1 + ‖∇u‖2)k/2

(∣∣∣h′
h

(u)
∣∣∣)k +

√
1 + ‖∇u‖2ck−1Hk.

Hence

1

i
> Lu(pi) ≥− ck−1

1√
1 + ‖∇u(pi)‖2

k

(∣∣∣h′
h

(u(pi))
∣∣∣)k

−
k−1∑
j=1

(1 + ‖∇u(pi)‖2)−
k−1−j

2

(∣∣∣h′
h

(u(pi))
∣∣∣)k−j ck−1

cj
〈Pj∇u,∇u〉 (pi)

+

√
1 + ‖∇u(pi)‖2ck−1 inf

Σ
Hk.

Taking the limit for i→ +∞ we find

0 ≥ −ck−1

(∣∣∣h′
h

(sup
Σ
u)
∣∣∣)k + ck−1 inf

Σ
Hk.

�

On the other hand, if we assume that the sectional curvature of timelike
planes is bounded from below we find the following estimates

Theorem 4.13 (Theorem 16 in [41]). Let Mn+1 be an (n+ 1)-dimensional
spacetime. Assume that there exists a point p ∈ M such that I+(p) 6= ∅
and let r(·) = dp(·) be the Lorentzian distance function from p. Given a
smooth even function G on R, let h be a solution of the Cauchy problem
(4.2) and let I = [0, rG) ⊂ [0,+∞) be the maximal interval where h is
positive. Let f : Σn → Mn+1 be a spacelike hypersurface such that f(Σn) ⊂
I+(p) ∩B+(p, rG). Assume that H2 > 0 and that supΣH1 < +∞. If

(4.17) KM (Π) ≥ G(r)

for all timelike planes Π and if the generalized Omori-Yau maximum prin-
ciple holds on Σ, then

sup
Σ
H

1
2
2 ≥

(h′
h

(
inf
Σ
u
))
,

where u denotes the Lorentzian distance dp along the hypersurface.

Theorem 4.14 (Theorem 17 in [41]). Let Mn+1 be an (n+1)- dimensional
spacetime, n ≥ 3. Assume that there exists a point p ∈M such that I+(p) 6=
∅ and let r(·) = dp(·) be the Lorentzian distance function from p. Given a
smooth even function G on R, let h be a solution of the Cauchy problem
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(4.2) and let I = [0, rG) ⊂ [0,+∞) be the maximal interval where h is
positive. Let f : Σn → Mn+1 be a spacelike hypersurface such that f(Σn) ⊂
I+(p) ∩ B+(p, rG). Assume that there exists an elliptic point p0 ∈ Σ, that
Hk > 0, 3 ≤ k ≤ n, and that supΣH1 < +∞. If

(4.18) KM (Π) ≥ G(r)

for all timelike planes Π and if the generalized Omori-Yau maximum prin-
ciple holds on Σ, then

sup
Σ
H

1
k
k ≥

(h′
h

(
inf
Σ
u
))
,

where u denotes the Lorentzian distance dp along the hypersurface.

We will only prove Theorem 4.14. The proof of Theorem 4.13 proceed
exactly in the same way.

Proof of Theorem 4.14. If h′/h(infΣ u) ≤ 0, the result is trivial since

h′

h

(
inf
Σ
u
)
≤ 0 < sup

Σ
H

1
k
k .

Conversely, assume h′/h(infΣ u) > 0. Since u ≥ u∗ := infΣ u ≥ 0, we want
to apply the Omori-Yau maximum principle for a suitable elliptic operator
with trace bounded above. Notice that it must be infΣ u > 0. Indeed, if
infΣ u = 0, since lims→0 h

′/h(s) = +∞, it follows by the estimate in Theorem
4.5 that supΣH1 = +∞, which contradicts our assumptions. The operator
that we consider is the following

L̂ =

k−1∑
j=0

(1 + ‖∇u‖2)−
k−j−1

2

(h′
h

(inf
Σ
u)
)k−j−1 ck−1

cj
Lj

=Tr(P̂ ◦ hess),

where

P̂ =
k−1∑
j=0

(1 + ‖∇u‖2)−
k−j−1

2

(h′
h

(inf
Σ
u)
)k−j−1 ck−1

cj
Pj .

Notice that, since there exists an elliptic point p0 ∈ Σ andHk > 0, 3 ≤ k ≤ n,

the operators Lj are elliptic for all 1 ≤ j ≤ k− 1 and so L̂ is elliptic as well.
Furthermore, we observe that

TrP̂ =
k−1∑
j=0

(1 + ‖∇u‖2)−
k−j−1

2

(h′
h

(inf
Σ
u)
)k−j−1 ck−1

cj
Hj .

Since 1/
√

1 + ‖∇u‖2 ≤ 1, h′/h(infΣ u) < +∞ and, by the Newton inequali-

ties

Hj ≤ Hj
1 < +∞

we conclude that P̂ has trace bounded above and we can apply the Omori-

Yau maximum principle for the operator L̂. Hence, we can find a sequence
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{qi}i∈N ⊂ Σ such that

(4.19) (i) u(qi) < u∗ +
1

i
, (ii) ‖∇u(qi)‖ <

1

i
, (iii) Lu(qi) > −

1

i
.

A straightforward computation using Proposition 4.10 shows that

L̂u ≤− h′

h
(u)

k−1∑
j=0

(1 + ‖∇u‖2)−
k−1−j

2

(h′
h

(inf
Σ
u)
)k−j−1 ck−1

cj
〈Pj∇u,∇u〉

− ck−1
h′

h
(u)

1

(1 + ‖∇u‖2)(k−1)/2

(h′
h

(inf
Σ
u)
)k−1

+

√
1 + ‖∇u‖2ck−1Hk

+ ck−1

k−1∑
j=1

(1 + ‖∇u‖2)−
k−1−j

2

(h′
h

(inf
Σ
u)
)k−j−1(h′

h
(inf

Σ
u)− h′

h
(u)
)
Hj .

Evaluating the previous expression at qi, using condition (iii) in (4.19) and
taking the limit for i→ +∞, we find

0 ≤ −ck−1

(h′
h

(inf
Σ
u)
)k

+ ck−1 sup
Σ
Hk

and this concludes the proof. �

In case G(r) ≡ c the previous theorems read as

Corollary 4.15. Let Mn+1 be an (n + 1)- dimensional spacetime, n ≥ 3,
such that KM (Π) ≤ c, c ∈ R, for all timelike planes Π. Assume that there
exists a point p ∈ M such that I+(p) 6= ∅ and let f : Σn → Mn+1 be a
spacelike hypersurface such that f(Σn) ⊂ I+(p) ∩ B+(p, δ) for some δ > 0
(with δ ≤ π/

√
−c if c < 0). Assume that either

(i) k = 2 and H2 is a positive function
or

(ii) Hk is a positive function, 3 ≤ k ≤ n, and there exists an elliptic
point p0 ∈ Σ.

Moreover, suppose that supΣH1 < +∞. If the generalized Omori-Yau max-
imum principle holds on Σ, then

inf
Σ
H

1
k
k ≤ fc

(
sup

Σ
u
)
,

where u denotes the Lorentzian distance dp along the hypersurface.

Corollary 4.16. Let Mn+1 be an (n + 1)- dimensional spacetime, n ≥ 3,
such that KM (Π) ≥ c, c ∈ R, for all timelike planes Π. Assume that there
exists a point p ∈ M such that I+(p) 6= ∅ and let f : Σn → Mn+1 be a
spacelike hypersurface such that f(Σn) ⊂ I+(p). Assume that either

(i) k = 2 and H2 is a positive function
or

(ii) Hk is a positive function, 3 ≤ k ≤ n, and there exists an elliptic
point p0 ∈ Σ.



4.3. BERNSTEIN-TYPE THEOREMS 91

Moreover, suppose that supΣH1 < +∞ and that infΣ u < π/
√
−c if c < 0.

If the generalized Omori-Yau maximum principle holds on Σ, then

sup
Σ
H

1
k
k ≥ fc

(
inf
Σ
u
)
,

where u denotes the Lorentzian distance dp along the hypersurface.

4.3. Bernstein-type theorems

We conclude the chapter proving some Bernstein-type theorems for space-
like hypersurfaces of constant k-mean curvature, 1 ≤ k ≤ n, which are
bounded by a level set of the Lorentzian distance function. Toward this aim
we will focus now on the case where Mn+1 is a Lorentzian space form of con-
stant sectional curvature c. Applying the curvature estimates found in the
previous section we are able to obtain the main results of this section, that
extends Corollary 4.6 in [12] to spacelike hypersurfaces of constant higher
order mean curvature.

The restriction to spacetimes of constant sectional curvature as ambient
spaces is motivated by the next observation.

Using Gauss equation it is straightforward to see that the sectional cur-
vature of Σ satisfies

K(X,Y ) ≥ KM (X,Y )− n2H2
1 ,

where the last term follows by applying the Cauchy-Schwartz inequality. In
particular, if Mn+1 is a Lorentzian space form of constant sectional curvature
c, then

(4.20) K(X,Y ) ≥ c− n2H2
1 .

Hence, if the mean curvature is constant, then the Omori-Yau maximum
principle for the Laplacian holds on Σ. Therefore, using the estimates on
the mean curvature obtained in the previous section it is easy to prove the
following

Theorem 4.17 (Corollary 4.6 in [12]). Let Mn+1
c be a Lorentzian spaceform

of constant sectional curvature c and let p ∈ Mn+1
c . Let Σ be a complete

spacelike hypersurface with constant mean curvature which is contained in
I+(p). If Σ is bounded from above by a level set of the Lorentzian distance
function dp (with dp < π/

√
−c if c < 0), then Σ is necessarily a level set of

dp.

Proof. By hypotheses Σ is contained in I+(p) ∩ B+(p, δ), with δ ≤
π/
√
−c when c < 0. Moreover, since the mean curvature is constant, it fol-

lows by Equation (4.20) that Σ has sectional curvature bounded from below
and thus the Omori-Yau maximum principle holds on Σ for the Laplacian.
Corollaries 4.7 and 4.8 imply then

fc(sup
Σ
u) ≥ H1 ≥ fc(inf

Σ
u).

Hence, since fc is a decreasing function, supΣ u = infΣ u = f−1
c (H1) and Σ

is necessarily the level set dp = f−1
c (H1). �
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More generally, if supΣH1 < +∞ the Omori-Yau maximum principle
holds on Σ for semi-elliptic operators of the form (1.11), where P is any
symmetric operator with trace bounded above. Then, as a direct application
of Corollaries 4.15 and 4.16 we get

Theorem 4.18 (Theorem 20 in [41]). Let Mn+1
c be a Lorentzian spaceform

of constant sectional curvature c, n ≥ 3, and let p ∈ Mn+1
c . Let Σ be a

complete spacelike hypersurface which is contained in I+(p) such that either

(i) k = 2 and H2 is a positive constant
or

(ii) Hk is constant, 3 ≤ k ≤ n, and there exists an elliptic point p0 ∈ Σ.

Moreover, assume that supΣH1 < +∞. If Σ is bounded from above by a
level set of the Lorentzian distance function dp (with dp < π/

√
−c if c < 0),

then Σ is necessarily a level set of dp.

Proof. The proof proceeds exactly as in case k = 1. Indeed, our hy-
potheses imply that Σ is contained in I+(p) ∩ B+(p, δ), with δ ≤ π/

√
−c

when c < 0 and that Σ has sectional curvature bounded from below. Hence
the generalized Omori-Yau maximum principle holds on Σ and we can apply
Corollaries 4.15 and 4.16 to obtain

fc(sup
Σ
u) ≥ H

1
k
k ≥ fc(inf

Σ
u).

As above, since fc is a decreasing function, supΣ u = infΣ u = f−1
c (H

1
k
k ) and

Σ is necessarily the level set dp = f−1
c (H

1
k
k ). �
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2. J. A. Aledo and L. J. Aĺıas, On the curvatures of bounded complete spacelike hypersur-
faces in the Lorentz-Minkowski space, Manuscripta Math. 101 (2000), no. 3, 401–413.

3. , On the curvatures of complete spacelike hypersurfaces in de Sitter space,
Geom. Dedicata 80 (2000), no. 1-3, 51–58.

4. H. Alencar, M. do Carmo, and H. Rosenberg, On the first eigenvalue of the linearized
operator of the rth mean curvature of a hypersurface, Ann. Global Anal. Geom. 11
(1993), no. 4, 387–395.

5. A. D. Alexandrov, Uniqueness theorems for surfaces in the large. VII, Vestnik
Leningrad. Univ. 15 (1960), no. 7, 5–13.

6. , A characteristic property of spheres, Ann. Mat. Pura Appl. (4) 58 (1962),
303–315.
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