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Introduction

The problem of the classification of vector bundles on algebraic varieties has always been
of huge interest in algebraic geometry. Due to the ampleness of the subject, it has always
been studied focusing on families of bundles defined by specific characteristics. In this
work we will concentrate on the studying of Steiner and Schwarzenberger bundles on the
Grassmannian.
In 1961 (see [Sch61]), Schwarzenberger introduced a family of bundles F of rank n related
to the secant space of rational normal curves and defined by a resolution of the type

0 −→ Os
Pn(−1) −→ Ot

Pn −→ F −→ 0.

Since then, many people have studied such family of bundles, most of the times trying to
find geometrical configurations in the projective space in order to define the bundle, and
also trying to prove Torelli type theorems, i.e. recovering the configuration from a given
bundle. For instance, in 1993 (see [DK93]), Dolgachev and Kapranov, who were the first to
denominate such bundles Steiner, investigate logarithmic bundles on the projective space
defined by 1-differential forms on the union of an arrangement of hyperplanes with normal
crossing. In their paper, they define the families of Steiner and Schwarzenberger bundles
as subfamilies of the logarithmic one, and they prove results that concern the relations
among the three considered sets of bundles. In particular they prove that a logarithmic
bundle can be described as either Steiner or Schwarzenberger under specific hypothesis for
the arrangement of hyperplanes.
In 2000 (see [Val00b]), Vallès proves a more general result that characterizes when a Steiner
bundle F can be described also as a Schwarzenberger. He focuses on a particular family of
hyperplanes {Hi}, which satisfy the condition h0(F∨

Hi
) 6= 0 and which are called unstable

hyperplanes, and proves that such hyperplanes, seen as points in the dual projective space,
always belong to a rational normal curve and this allows to state that the bundle F is
Schwarzenberger in the sense of [DK93].

11



12 Introduction

In 2001(see [AO01]), Ancona and Ottaviani reinforce the importance of the set of the un-
stable hyperplanes for a Steiner bundle F , proving that if we have a sufficient number of
independent ones, the bundle F is also logarithmic.
The property of stability for rank n Steiner bundles over Pn was proved by Bohnhorst and
Splinder, see [BS92], and Brambilla, see [Bra08], proved the stability of exceptional Steiner
vector bundles. Moreover, in her PhD thesis (see [Bra04]), she characterizes simple and
exceptional general Steiner vector bundles over the projective space.
In [Val00a], Vallès proposes a first generalization of logarithmic and Schwarzenberger bun-
dles of higher rank. However, the first full generalization of Schwarzenberger bundles to
arbitrary rank in projective spaces appears in [Arr10a]. In his paper, Arrondo basically
generalizes two notions: the one of Schwarzenberger bundle, which he associates to a triple
(X,L,M), where X is a projective variety and L,M two globally generated vector bundles
over X, and the one of unstable hyperplane for a Steiner bundle F , which he denominates
jumping hyperplane. Studying the locus of the jumping pairs, Arrondo manages to classify
the Steiner bundles, whose locus has maximal dimension, and describe them as Schwarzen-
berger.
The study of Steiner bundles over varieties different from the projective space was given
by Miró-Roig and Soares. First, in [Soa07] Soares defines Steiner vector bundles over the
smooth hyperquadric Qn ⊂ Pn+1, with n ≥ 3. Moreover, she characterizes exceptional
and simple Steiner bundles on the smooth hyperquadric and she proves that exceptional-
ity in this case implies stability. In [MRS09] and [Soa08], Miró-Roig and Soares give the
definition of Steiner bundle on any algebraic variety and they prove homological charac-
terizations for such bundles. The proposed definition depends on the choice of a strongly
exceptional pair of vector bundles over a projective variety.
In this thesis we obtain the results of Arrondo when choosing the definition of Steiner bun-
dle on Grassmannians which has the most geometric meaning. We can state the problems
we will solve in the following list.
Problem 1 Finding the most natural and geometric definition of Schwarzenberger bundle

for Grassmannians.

Problem 2 Generalizing the definition of jumping pair and give a description of their locus

for Steiner bundles on Grassmannians.

Problem 3 Describing Steiner bundles on G(k, n) with jumping locus of maximal dimen-

sion as Schwarzenberger bundles and giving a classification for such case.

In chapter 1 we will give the necessary preliminaries, recalling the definition and properties
of the Grassmannians. We will also give an introduction on Schubert calculus.
In chapter 2 we will state the general definition of a Steiner bundle for Grassmannians,
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that fits the one given by Miró-Roig and Soares and it is the natural generalization of the
one stated by Arrondo.

Definition 1. Let S, T be two vector spaces over K, respectively s and t-dimensional.

We will call an (s, t)-Steiner bundle, over G(k, n), the vector bundle defined by the resolu-

tion

0 −→ S ⊗ U −→ T ⊗OG −→ F −→ 0,

where OG = OG(k,n) is the trivial bundle and U → G(k, n) is the universal bundle of rank

k + 1.

This is equivalent to fix a linear application

T ∗ ϕ
−→ S∗ ⊗H0(U∨) = Hom(H0(U∨)∗, S∗)

such that, for every u1, . . . , uk+1 ∈ H
0(U∨)∗ linearly independent and for every v1, . . . , vk+1 ∈

S∗, there exists an f ∈ Hom(H0(U∨)∗, S∗) such that f ∈ Imϕ and f(uj) = vj for each

j = 1, . . . , k + 1.

If ϕ is injective F is said to be reduced or else we will call F0 the reduced summand of F

associated to the linear injective map

ϕ(T ∗) = T ∗
0 →֒S∗ ⊗H0(U∨).

After showing a geometrical interpretation of the definition, we will then give a lower
bound for the possible ranks of the bundles just defined, indeed we will prove the following
result.

Theorem 2. Let F be a Steiner bundle over G(k, n); then it will have rank

rkF ≥ min((k + 1)(n − k), (n − k) dimS).

In order to solve Problem 1, in chapter 3 we will give the definition of Schwarzenberger
bundle, generalizing the one given in [Arr10a].

Definition 3. Let us consider two globally generated vector bundles L,M over a projec-

tive variety X, with h0(M) = n + 1 and with the identification Pn = P(H0(M)∗). The

Schwarzenberger bundle on G(k, n) associated to the triple (X,L,M) will be the bundle

defined by the resolution

0 −→ H0(L)⊗ U −→ H0(L⊗M)⊗OG −→ F −→ 0.
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Observe that the injectivity of the first morphism of the resolution holds under specific
conditions on a particular restriction of the multiplication map

H0(L)⊗H0(M) −→ H0(L⊗M),

as we will see better in Definition 3.1.1.
As in the case of the projective space, the most significant examples of Schwarzenberger
bundle will be when L has rank one and M has rank k + 1.
We will then give the definition of jumping pair for a Steiner bundle and also give an
algebraic structure to the set of all of them. We will bound the dimension of its locus
through the description of its tangent space, which will give us information of the jumping
locus as a projective variety.
Considering the bundle given by the triple (X,L,M), we notice that from a point x ∈ X

the image of H0(L⊗M)∗ through the dual of the multiplication map (which is the map ϕ
in this case) restricted to the fiber of x has the particular form H0(Lx)

∗ ⊗H0(Mx)
∗, i.e.

it is the tensor product of two vector subspaces. This observation will lead us to define
a similar object for Steiner bundles and the locus of such objects will give us information
that will allow us to construct a Schwarzenberger bundle triple, starting from a Steiner
bundle.

Definition 4. Let F be a Steiner bundle over G(k, n). A pair (a,Γ), with dim a = 1 and

dimΓ = k+1, such that a⊗ Γ ⊂ S∗ ⊗H0(U∨), is called a jumping pair if, considering the

map T ∗ ϕ
−→ S∗ ⊗H0(U∨), the tensor product a⊗ Γ belongs to Imϕ.

In order to solve Problem 3, our goal is to describe and study the locus of the jumping
pairs associated to a Steiner bundle F , we will denote such locus by J̃(F ) (by abuse of
notation we will use J̃(F ) both for the vector space locus and for the projective locus).
This will allow us to use the following result to classify Steiner bundles.

Theorem 5. Let A,B,Q be the universal bundles of ranks respectively 1, k + 1 and k + 1

over G(1, S∗), G(k + 1,H0(U∨)) and G(k + 1, T ∗
0 ).

Notice we have two natural projections

J̃(F )
π1−→ G(1, S∗)

J̃(F )
π2−→ G(k + 1,H0(U∨))
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and that J̃(F ) ⊂ G(k + 1, T ∗
0 ). Assume that the natural maps

α : H0(G(1, S∗),A) −→ H0(J̃(F ), π∗1A)

β : H0(G(k + 1,H0(U∨)),B) −→ H0(J̃(F ), π∗2B)

γ : H0(G(k + 1, T ∗
0 ),Q) −→ H0(J̃(F ),Q|J̃(F ))

are all isomorphisms. Then the Steiner bundle F0, reduced summand of F , is a Schwarzen-

berger bundle given by the triple

(J̃(F ), π∗1A, π
∗
2B).

We will manage to give a geometrical description to this locus, seeing it as a projective
variety. In fact, if we consider the generalized Segre map

ν : P(S) × G(k,P(H0(U∨))∗) −→ G(k,P(S ⊗H0(U∨)∗))

P(l) , P(Λ) 7→ P(l ⊗ Λ)

then it will be possible to define

J̃(F ) = Im ν ∩G(k,P(T0))

where, as usual, T ∗
0 = ϕ(T ∗), vector space associated to the reduced summand of F .

Our goal is to study the dimension of such variety. Observe that a lower bound is given
computing the expected dimension of the intersection, getting

dim J̃(F ) ≥ (k + 1)(t− k − sn− s+ n) + s− 1.

To get an upper bound we will study the tangent space of J̃(F ) at a point Λ representing
a jumping pair.
After giving a description of the tangent space of the generalized Segre variety at the point
Λ through linear algebra, we will prove a technical result of linear algebra that will give
us the requested bound.

Theorem 6. Let F be a Steiner bundle over G(k, n) and J̃(F ) its jumping pair locus;

then, considering Λ ∈ J̃(F ), we obtain

dim J̃(F ) ≤ dimTΛJ̃(F ) ≤ (k + 1)(t− (k + 1)(s + n− k − 1)− k).

In chapter 4, we will classify the Steiner bundles whose jumping locus has maximal
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dimension.
We observe that given an (s, t)−Steiner bundle F on G(k, n), which we suppose to be
reduced, with jumping locus of maximal dimension, if we fix a jumping pair s0⊗Γ = ϕ(Λ)

then we can induce a (s − 1, t − k − 1)- Steiner bundle F ′ on G(k, n), that may not be
reduced, with jumping locus also of maximal dimension. Such induction is consequence of
the following commutative diagram

T ∗ � � ϕ//

����

S∗ ⊗H0(U∨)

����
T ∗

Λ

ϕ′
// S∗

<s0>
⊗H0(U∨)

Given a Steiner bundle on the Grassmannian, we will induce Steiner bundles for as many
steps as we need to get to the most basic case s = k+2, which is classified by the following
result.

Theorem 7. Let F be a reduced Steiner bundle over G(k, n), with dimS = k + 2, then

F can be seen as the Schwarzenberger bundle given by the triple (Pk+1,OPk+1(1), E∨(−1)),

where E is the vector bundle defined as the kernel of the surjective morphism

H0(U∨)⊗OP(S)(−1) −→
S∗ ⊗H0(U∨)

T ∗
⊗OP(S).

Then, looking at the constructed diagram, we will sort the possible cases and through-
out Theorem 5 we will manage to find the triple that describes the bundle as Schwarzen-
berger. We will get the following classification.

Theorem 8. Let F be a reduced Steiner bundle on G(k, n) for which dim J̃(F ) is maximal;

then we are in one of the following cases:

(i) F is the Schwarzenberger bundle given by the triple (P1,OP1(s − 1),OP1(n)). In this

case k = 0 and t = n+ s.

(ii) F is the Schwarzenberger bundle given by the triple (P1, E(−1),OP1(1)), where

E = ⊕t−s
i=1OP1(ai) with ai ≥ 1. In this case k = 0 and n = 1.

(iii) F is the Schwarzenberger bundle given by the triple (Pk+1,OPk+1(1), E∨(−1)) defined

in Theorem 7. In this case s = k + 2.

(iv) F is the Schwarzenberger bundle given by the triple (P2,OP2(1),OP2(1)). In this case

k = 0, n = 2, s = 3 and t = 6.



Chapter 1

Preliminaries

In this chapter we will show the notions we will need throughout this work. We will
introduce the concept of Grassmannian and we will prove that it is a projective variety.
We will define its canonical bundles, which will be necessary for the concept of Steiner
bundle. Moreover, we will investigate its subvarieties and their intersection, using the
theory of the Schubert calculus.

1.1 The Grassmannian

Let V be a (n + 1)-dimensional vector space over an algebraically closed field K of char-
acteristic zero and let the projective space Pn = P(V ) be constructed as the set of the
equivalence classes of hyperplanes in V , or equivalently of lines of V ∗. We will denote by
P (V ∗) the projectivization given by the equivalence classes of lines in V ∗.
We will now give the definition of Grassmannian, accordingly with the notation we have
fixed.

Definition 1.1.1. We will denote by G(k, n) = G(k,Pn) the variety, which we will call

Grassmannian, consisting of the k-dimensional linear subspaces of Pn.

Notice that each element of the Grassmannian is in correspondence with a (k + 1)-
dimensional vector subspace of V ∗, or equivalently with an (n − k)-dimensional subspace
of V , and we will denote the Grassmannian in the vectorial case by G(k + 1, V ∗). More-
over it is possible to construct a canonical isomorphism G(k,Pn) ≃ G(n − k − 1, (Pn)∗),
associating of course each linear subspace to its orthogonal.

17



18 Chapter 1. Preliminaries

Proposition 1.1.2. There exists a canonical embedding

ρ : G(k, n) −→ P(
n+1
k
)−1,

called the Plücker embedding, whose coordinates of the arrival space are called Plücker coor-

dinates. Moreover, the image of G(k, n) through ρ is a projective variety in the considered

ambient projective space.

Proof. We can give a further description of the Grassmannian considering (k+1)-dimensional
linear subspaces W ⊂ V ∗, spanned by the vectors v0, . . . , vk and the associated multivector

ω = v0 ∧ . . . ∧ vk ∈
k∧

(V ∗).

Observe that the multivector is determined up to scalar multiplication by elements of
the field K, such scalar multiplication depending on the basis we have chosen to describe
the vector space. This fact suggests us that the object we have considered must be in
correspondence with a projective object. We get the following morphism

ρ : G(k + 1, V ∗) −→ P

(
k∧

V ∗

)

.

Notice that the given morphism is an inclusion, which is called Plücker embedding, because
for each element [ω] in the image of ρ we can recover its unique preimage, given by all

v ∈ V ∗ such that v∧ω = 0 ∈
∧k+1 V . The coordinates of the projective space P

(
∧k V ∗

)

are called Plücker coordinates.
An explicit way to see such objects is considering the (k + 1) × (n+ 1) matrix associated
to W , constructed considering the coordinates in V ∗ of k+1 independent points that span
the subspace, i.e. where the i-th row is given by the coordinates of the vector vi; the
k-minors of the matrix are our Plücker coordinates, that we will denote by pi0,...,ik with
the subindex depending by the k + 1 colums we have chosen to get the minor.
Once managed to see our Grassmannian as a subset of the projective space P

(
∧k V ∗

)

,
we would like now to give a description of it as a projective subvariety. Observe that the
elements of the Grassmannian in the wedge product are the totally decomposable elements,
i.e. every element can be represented as a combination ω = v0 ∧ . . . ∧ vk. We can notice
that an element v ∈ V ∗ is one of the elements in the wedge combination, which describes
ω, if and only if v ∧ ω = 0, so the elements totally decomposable are the ones for which
we can find k + 1 independent vectors with such property. That means that an element
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belongs to the Grassmannian if and only if the rank of the map

τ(ω) : V ∗ −→
∧k+2 V ∗

v 7→ ω ∧ v

is n− k, which gives us that we can find exactly k + 1 independent vectors in the kernel.
If we consider the matrix associated to the map

k+1∧

V ∗ −→ Hom(V ∗,
k+2∧

V ∗)

that sends an element ω to the morphism constructed before, we have that the Grassman-
nian is defined by the vanishing of particular minors of the matrix associated to the map;
this gives us the description as a subvariety.

We would like to give to such variety an appropriate "canonical" covering by open sets.
In order to do so let us consider the Plücker matrix we described before, that is the matrix
whose rows are a set of k + 1 independent points that span the element Γ ∈ G(k, n). As
we have already noticed, this description is not unique because it depends by the basis we
choose for the vector space, so after multiplying by a matrix belonging to GL(k + 1,K),
which represents the base change, we can suppose that the Plücker matrix has the following
form 







1 0 · · · 0 y0,k+1 · · · y0,n
0 1 · · · 0 y1,k+1 · · · y1,n
...

. . .
...

...
...

0 · · · 0 1 yk,k+1 · · · yk,n









We notice straightforwardly that we are considering the sets of all matrices such that the
minor given by the first k + 1 rows and columns is not zero, and remembering that we
also defined the Plücker coordinates as the k + 1 minors of the matrix, it means we are
considering the points which belong to the open subset described as {p1,...,k+1 6= 0}. The
other open subsets will be of course of type {pi0,...,ik 6= 0}1≤i0<...<ik≤n+1.
Observe that dimG(k, n) = (k + 1)(n − k), which is the number of free coordinates we
have in on open subset of the variety.
Let us give an example that will help us to understand the definitions we have given.

Example 1.1.3. Let us consider the variety G(1, 3) ⊂ P5. Each line in P3 can be repre-
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sented by two independent points spanning it and so the matrix associated will be

(

a0 a1 a2 a3
b0 b1 b2 b3

)

where ai and bj are the coordinates of the two points. In this case the six Plücker coordi-
nates will be given by

p0,1 =

∣
∣
∣
∣
∣

a0 a1
b0 b1

∣
∣
∣
∣
∣
p0,2 =

∣
∣
∣
∣
∣

a0 a2
b0 b2

∣
∣
∣
∣
∣
p0,3 =

∣
∣
∣
∣
∣

a0 a3
b0 b3

∣
∣
∣
∣
∣

p1,2 =

∣
∣
∣
∣
∣

a1 a2
b1 b2

∣
∣
∣
∣
∣
p1,3 =

∣
∣
∣
∣
∣

a1 a3
b1 b3

∣
∣
∣
∣
∣
p2,3 =

∣
∣
∣
∣
∣

a2 a3
b2 b3

∣
∣
∣
∣
∣

The vanishing of the determinant of the matrix








a0 a1 a2 a3
b0 b1 b2 b3
a0 a1 a2 a3
b0 b1 b2 b3








allows us to write the equation that defines the Grassmannian, seen as embedded in P5,
which is

p0,1p2,3 − p0,2p1,3 + p0,3p1,2 = 0.

1.1.1 Projective and Grassmann bundles

Definition 1.1.4. Given a vector bundle F
π

−→ X, of rank r we will call the projective

bundle of F the variety P (F )
q

−→ X defined as follows: consider the covering X =
⋃
Ui,

such that for every open subset Ui we have a commutative diagram

π−1(Ui)
≃ //

##●
●●

●●
●●

●●
Ui ×Kr

{{✇✇
✇✇
✇✇
✇✇
✇

Ui

given by the definition of vector bundle.

For the projective bundle we take q−1(Ui) ≃ Ui×P (K
r) and we manage to glue Ui×P (K

r)

with Uj × P (Kr), when Ui ∩ Uj 6= 0, using the transition matrices of the bundle F .
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Example 1.1.5. We would like to study the particular commutative diagram

q∗(F ) //

��

F

π

��
P (F )

q // X

Consider the incidence variety U = {(p, v)|v ∈ ~p} ⊂ Pn×Kn+1 and let us write the previous
diagram locally in this particular case, observing that we can add a specific line bundle,
induced by the incidence variety, with a natural inclusion

Ui × Pr−1 ×K
⊂ //

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
Ui × Pr−1 ×Kr

��

// Ui ×Kr

��
Ui × Pn // Ui

Observe that the pieces Ui × Pr−1 × K can be glued together in order to form a line
subbundle of q∗F . We will denote such vector bundle as OF (−1) →֒ q∗F . Notice that if L
is a line bundle on X we have P (F ⊗ L) = P (F ) and we obtain

OF⊗L(−1) = OF (−1)⊗ q∗L ⊂ q∗(F ⊗ L).

In the same way we are going to give the following definition.

Definition 1.1.6. Given a vector bundle F
π

−→ X, of rank r we will call the Grassmann

bundle of F the space G(k, F )
q

−→ X defined as follows: consider the covering

X =
⋃
Ui, we take q−1(Ui) ≃ Ui ×G(k, P (Kr)) and we manage to glue Ui × G(k, P (Kr))

with Uj ×G(k, P (Kr)), when Ui ∩ Uj 6= 0 using the transition matrices of the bundle F .

Remark 1.1.7. Notice that the Grassmann bundle G(k, F ) we just defined is differ-
ent from the Grassmannian G(k, P (F )) constructed taking the k-linear subspaces of the
projective variety P (F ). Indeed, in G(k, F ) we consider the k-linear subspaces of the
projectivization of the fiber of the bundle for each point of the base.

1.1.2 The universal bundles

Let us consider a vector bundle, over the Grassmannian G(k, n), defined in the following
way: U ⊂ G(k, n)⊗ (Kn+1)∗ where U is given by the incidence variety U = {(Λ, v)|v ∈ ~Λ},
with ~Λ representing the (k + 1)-dimensional vector subspace associated to Λ. Denoting
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by π the map defining the bundle U
π

−→ G(k, n), we have that the fiber over a point
is π−1(Λ) = ~Λ. If we consider the covering of the Grassmannian given by the Plücker
coordinates, then we will get that π−1({pio,...,ik 6= 0}) ≃ {pio,...,ik 6= 0} ×Kk+1. We have a
rank k + 1 bundle over G(k, n). We can obtain an exact sequence

0 −→ F −→ G(k, n)×Kn+1 −→ U∨ −→ 0

where rkF = n − k. In the case k = 0 it can be proved that F = ΩPn ⊗ U∨, from which
we get F ⊗ U = ΩPn . For every k we thus obtain ΩG(k,n) = F ⊗ U . We will call U the
universal bundle and Q = F∨ the universal quotient bundle.

Let us observe that the dual bundle U∨ π∗

−→ G(k, n) has fibers of type (π∗)−1(Λ) = ~Λ∗,
consisting of the linear forms that vanish on Λ.
In an analogous way, considering G(k, n) × Sd(Kn+1)∗ −→ SdU∨, we are considering the
forms of degree d which vanish on Λ.
Let us prove that the canonical bundles U and Q give us strongly exceptional pairs for the
Grassmannian, which we will need to define a Steiner bundle. We will denote by OG the
line trivial bundle on G(k, n). Let us start recalling the definition.

Definition 1.1.8. Let X be a smooth algebraic variety. A coherent sheaf E on X is simple

if

Hom(E,E) ≃ K.

If E is simple and, furthermore, is satisfies

Exti(E,E) = 0, for all i ≥ 1

then E is exceptional.

An ordered collection (E1, . . . , Em) of coherent sheaves on a smooth algebraic variety X is

an exceptional collection if all sheaves Ei are exceptional and

Extp(Ei, Ej) = 0 for all i > j and p ≥ 0.

If, in addition,

Extp(Ej , Ei) = 0 for all j ≤ i and p 6= 0,

the collection (E1, . . . , Em) is a strongly exceptional collection.

Proposition 1.1.9. The two pairs (U ,OG) and (OG,Q) of vector bundles over G(k, n)

are strongly exceptional.
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Proof. In order to prove the proposition we have to verify that

hp(U) = hp(Q∨) = 0 for all p ≥ 0,

hp(U∨) = hp(Q) = hp(U ⊗ U∨) = hp(Q⊗Q∨) = 0 for all p > 0,

where hp(E) denotes the dimension of Hp(F ) for the vector bundle F .
Let us compute the cohomology of the bundles U and Q, or at least their dimension.
Consider I = {(P,Λ) ∈ Pn×G(k, n)|P ∈ Λ} and its two natural projections I

p
−→ Pn and

I
q

−→ G(k, n). Remembering the definition given for the universal bundle U ⊂ G(k, n) ×

Kn+1, we recover that I = P (U), the projective bundle, and OU (−1) = p∗OPn(−1).
Notice the fiber of p over x ∈ Pn is p−1(x) = {Λ ∈ G(k, n)|Λ ∋ x} which is isomorphic to
G(k − 1, n − 1).
In order to calculate the cohomology we will use the following lemmas; for a complete
reference, see for example [Har77].

Lemma 1.1.10. Let f : X −→ Y be a morphism between projective varieties and let F be

a vector bundle over X. If Rif∗(F ) = 0, for each i > 0, where R denotes the derived right

functor, then

H i(X,F ) ≃ H i(Y, f∗F ) for each i ≥ 0.

Lemma 1.1.11. Let Y a projective variety and F a rank n + 1 vector bundle on it, with

n ≥ 1. Consider X = P (F ), with the bundle OF (1) and the projection π : X −→ Y ; then

π∗(OF (l)) ≃ S l(F∨), for l ≥ 0, π∗(OF (l)) = 0, for l < 0; Riπ∗(OF (l)) = 0 for 0 < i < n

and all l ∈ Z and Rnπ∗(O(l)) = 0 for l > −n− 1.

In our case, noticing that p∗(OU (1)) = p∗(p
∗(OPn(1))), the previous lemmas allow us

to state that
H i(G(k, n),U∨) ≃ H i(Pn,OPn(1)).

From the duality of Grassmannians, G(k, n) ≃ G(n − k − 1, n), we manage to state the
lemma.

Lemma 1.1.12. On the Grassmannian G(k, n), the following holds

hi(U∨) = hi(Q) =

{

n+ 1 for i = 0,

0 otherwise,
and hi(U) = hi(Q∨) = 0 for each i.

Moreover, it is also possible to prove the following results.
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Lemma 1.1.13. On the Grassmannian G(k, n), the following holds

hi(U ⊗Q) =

{ (
n+1
2

)
for i = 0, k = n− 1,

0 otherwise.

hi(U∨ ⊗Q∨) =

{ (
n+1
2

)
for i = 0, k = 0,

0 otherwise.

Lemma 1.1.14. On the Grassmannian G(k, n), the following holds

hi(U ⊗ U∨) = hi(Q⊗Q∨) =

{

1 for i = 0,

0 otherwise.

For a complete proof, see for example [Ott87].

1.1.3 Schubert subvarieties

We will introduce a way to describe particular subvarieties of the Grassmannian and then
we will focus on some special examples.

Definition 1.1.15. Let us fix a non empty flag of Pn made of k + 1 linear subspaces

Λ0 ( Λ1 ( · · · ( Λk. We call the Schubert variety associated to the flag the set

Ω(Λ0, . . . ,Λk) = {Λ ∈ G(k, n) | dim(Λ ∩ Λi) ≥ i for i = 0, . . . , k} .

Let us now consider some particular examples.

Example 1.1.16. Suppose that we have an inclusion W ⊂ V , this leads to an inclusion

G(k + 1,W ) →֒ G(k + 1, V );

in the same way if we have a quotient V −→ V/U , where dimU = l, then we get an
inclusion of type

G(k + 1− l, V/U) →֒ G(k + 1, V ).

If we consider W ⊂ V and hyperplane, the subgrassmannian can be seen as the vanishing
locus of a global section of the dual of the universal bundle U∨.

It is possible to prove that such subvarieties in the projective space P (
∧k V ∗) are

constructed considering the intersection of the original Grassmannian, embedded in the
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projective space, with properly chosen linear subpaces.
We can also take a look to another particular subspace of the Grassmannian: if we fix a
linear subspace of Pn, we can consider all the elements of G(k, n) that have non empty
intersection with the fixed one; we could also ask for those ones whose intersection has a
specific dimension.

Example 1.1.17. Consider the set of k-planes meeting a given m-dimensional linear
subspace Λ′ ⊂ Pn. We can describe this set, which we denote Σ(Λ′), by

Σ(Λ′) = {[ω] : ω ∧ v1 ∧ · · · ∧ vm+1 = 0 ∀ v1, . . . , vm+1 ∈ Λ′}.

Such sets are very important when we investigate the structure of the Grassmannians, as
we will see in the next section.
If we consider a point p ∈ Pn, then Σ(p) can be seen as the vanishing locus of a global
section of the universal quotient bundle Q.

Notice that also in the Grassmannian context we have projection maps as we have for
projective spaces. Indeed, consider W an l-dimensional subspace of V . If k + 1 ≤ l, then
we are able to construct a map

π : U −→ G(k + 1, V/W ),

which is only defined in the open subset U ⊂ G(k + 1, V ), of all (k + 1)-linear spaces
meeting W only at the (0), by taking their image; if k + 1 ≥ l, we get a map

τ : U ′ −→ G(k + 1− l,W )

defined, in the open subset U ′ of planes transverse to W , by taking the intersection.
Such projections can also be seen as restriction of projections in the ambient space P (

∧k+1 V )

given by the Plücker embedding. For example, the map π is nothing but the restriction of
the projection

P (

k+1∧

V ) −→ P (

k+1∧

(V/W )),

induced by the projection V −→ V/W between the two vector spaces.
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1.1.4 Vector bundles and projective morphisms

Theorem 1.1.18. Let F be a vector bundle of rank r over X and let

V ⊂ H0(X,F ) that generates F , then there exists a map

ϕV : X −→ G(r − 1,dim V − 1)

such that ϕ∗
V U

∨ = F and H0(G(r − 1,dim V − 1),U∨) = V .

Proof. The fact that F is globally generated by V means that the morphism

evV : X × V −→ F

(x, s) 7→ s(x)

is surjective. We consider the dual morphism ev∗V : F∨ −→ X × V ∗ which is injective,
that means is injective in each fiber. Therefore, for every x ∈ X we get F ∗

x →֒ V ∗, vector
subspace of dimension r. We define

ϕV (x) = P (F ∗
x ) ⊂ P (V ∗) = PdimV−1.

Let us see such association explicitly choosing coordinates: let s1, . . . , sn be a basis for V
and let λ1, . . . , λn the coordinates with respect to such basis. For every x ∈ X consider an
open subset U ⊂ X with U ∋ x such that the bundle is trivial in the open subset, i.e.

F|U ≃ U ×Kr

U

si|U

EE
(f1,...,fr)

YY

Because of the isomorphism, giving a section is equivalent to giving r regular functions
fi1 , . . . , fir . We will have then

evV |U : U × V −→ U ×Kr




x′,






λ1
...
λn









 7→




x′,






f11(x
′) · · · f1n(x

′)
...

...
fr1(x

′) · · · frn(x
′)




 ·






λ1
...
λn











We pass to the dual map and we notice that in the dual basis the map ev∗V restricted to
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U is given by the transposed matrix






f11(x
′) · · · fr1(x

′)
...

...
f1n(x

′) · · · frn(x
′)




 .

This means that ϕV (x′) is the vector subspace generated by the points whose coordinates
are the columns of the matrix and the Plücker coordinates of the subspace are the minors
of order r of the matrix, which are also regular functions on U .
Let us recall that the pullback of a bundle is by definition

ϕ∗
V (U

∨) = {(x, v) | v ∈ U∨
ϕ(x)};

in order to prove that ϕ∗
V U

∨ = F we apply the definition and prove the equality for the
dual bundles. Remember that we have defined the universal bundle as the incidence variety

U = {(Λ, v) | v ∈ ~Λ} ⊂ G(r − 1, n − 1)× V ∗

and consider the fiber of the pulback

ϕ∗
V (U)x = {(x, v) | v ∈ ~ϕV (x) = F ∗

x} ⊂ X × V ∗;

we observe that we have the same fibers, so we can identify the bundles. Moreover, we
know that H0(G(r − 1,dim V − 1),U∨) is the space of linear forms of P (V ∗), i.e. V .

Proposition 1.1.19. Given a Λ′ ⊂ Pn of dimension k′ the set

Ω = {Λ ∈ G(k, n) | dim(Λ ∩ Λ′) ≥ l}

has codimension (n− k − k′ + l)(l + 1).

Observe that this is a particular case of a special Schubert cycle, which we will study
in the next section.

Proof. Let us consider the incidence variety

I = {(Λ,Λ′′) ∈ G(k, n)×G(l, k′) | Λ′′ ⊂ Λ} ⊂ G(k, n)×G(l, k′),

where of course G(l, k′) represents the l-subspaces Λ′′ ⊂ Λ′. We have two projections
I

p1
−→ G(k, n) and I

p2
−→ G(l, k′). Observe that the morphism p2 is surjective and that
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Im p1 = Ω because such image is exactly the set of Λ’s such that there exists Λ′′ ⊂ Λ∩Λ′.
We expect the dimension of Ω to be equal to the dimension of I, because p1 is a finite
morphism. We know, being p2 surjective, that the dimension of I is equal to the dimension
of the base plus the dimension of the fiber, i.e. dim I = dimG(l, k′) + dim fiber, where
dimG(l, k′) = (l + 1)(k′ − l). The wanted fiber is isomorphic to G(k − 1 − l, n − 1 − l);
indeed, having dimΛ′′ = l, we manage to find a linear subspace Pn−1−l ⊂ Pn disjoint
from Λ′′ and, in order to raise the dimension till the wanted one k = dimΛ, we need to
consider a subspace S ⊂ Pn−1−l, such that dimS = k− 1− l, and consider the linear span
< Λ′′, S >, which has the requested dimension.
This tells us that dim I = (l + 1)(k′ − l) + (k − l)(n − k) and moreover Ω = p1(I) is
irreducible because I irreducible, being all the fibers of p2 irreducible. Observing that

(k + 1)(n − k)− (n− k − k′ + l)(l + 1) = (l + 1)(k′ − l) + (k − l)(n− k),

the expected codimension is equal to the computed one, and we have proved the proposi-
tion.

With the last two results we are able to prove the following theorem.

Theorem 1.1.20. Let F be a vector bundle of rank r globally generated by V ⊂ H0(X,F )

and given s1, . . . , sm global sections (which correspond to a bundle morphism X×Km ϕ
→ F ),

the set

Xk = {x ∈ X | rk(s1(x), . . . , sm(x)) ≤ k} = {x ∈ X | rkϕx ≤ k}

has codimension (m− k)(r − k).

Proof. Considering the map

ϕV : X −→ G(r − 1,dimV − 1),

we can see s1, . . . , sm as sections of U∨ and we can rewrite

Xk = ϕ−1
(
{Λ ∈ G(r − 1,dim V − 1) | dim(Λ ∩ Λ′) ≥ r − 1− k}

)
,

where Λ′ = V (s1, . . . , sm). Let us consider the incidence variety

I = {(x,Λ′) | dim(ϕV (x) ∩ Λ′) ≥ r − 1− k} ⊂ X ×G(k′,dim V − 1)

with its natural projections I
p1
→ X and I

p2
→ G(k′,dimV − 1); we will rewrite the theorem

in terms of this diagram, because the general sets Xk are exactly the fibers of p2.
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We need to compute the dimension of I and we would like it to be

dim I = dimG(k′,dim V − 1) + dimX − (m− k)(r − k),

where dimX − (m − k)(r − k) is the wanted dimension for the fiber. We thus have to
study the other projection computing dim I = dimX + dim p−1

1 (x), but we already know
that dim p−1

1 (x) = dimG(k′,dimV − 1)− (r − k)(dim V − 1 + r − 1− k), see Proposition
1.1.19, which concludes the proof.

Let us now consider a vector bundle M of rank k + 1 over a projective variety X and
the associate Grassmannian G(k,P(H0(M))). Moreover, we will consider the hyperplane
sections of the Grassmannian and show that a special family of them has preimage divisors
of X. Recall that there exist particular hyperplanes HA of the Grassmannian which can
be described as the set of all the elements Γ ∈ G(k,P(H0(M))) that have non empty
intersection with a fixed subspace A ⊂ P(H0(M)) of codimension k + 1. The subspace
A can be seen as the zero locus of k + 1 independent sections of the bundle U∨, hence
the hyperplane HA can be seen as the locus of points for which the bundle morphism
Ok+1

G −→ U∨ has not maximal rank. We can apply the pullback to this construction on
the variety X, obtaining

Ok+1
X

!!❉
❉❉

❉❉
❉❉

❉
//M

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

X

The locus of points in X for which the map has not maximal rank is a divisor D ⊂ X,
whose image is exactly the considered hyperplane. Notice that such divisor is the locus of
points whose restriction of the bundle morphism

OX

  ❆
❆❆

❆❆
❆❆

❆
//
∧k+1M

{{✇✇
✇✇
✇✇
✇✇
✇

X

vanishes.

1.1.5 Chern classes

In this section we recall the notation and the basic properties of the Chern classes; for a
full reference, see for example [Har77].
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Consider a projective variety X of dimension n and its Chow ring A(X) =
⊕n

i=0A
i, where

Ai is spanned by all the irreducible subvarieties of X of codimension i. The main properties
of the Chern classes are recalled in the following proposition.

Proposition 1.1.21.

• If L is a line bundle, c1(L) is the class of any divisor associated to it.

• Any vector bundle of rank r on X has Chern classes ci(F ) ∈ Ai(F ), for i =

1, . . . ,min{r, n}. We will call cy(F ) = 1 + c1(F )y + . . . cr(F )y
r the Chern poly-

nomial of F , using the convention c0(F ) = 1 and ci(F ) = 0 for i > r or i > n.

• For any exact sequence 0 → F ′ → F → F ′′ → 0, we have cy(F ) = cy(F
′)cy(F

′′).

• If F is a rank r vector bundle over X with a section which vanishes in a subvariety

Z ⊂ X of codimension r, then cr(F ) = [Z], i.e. the maximal Chern class is equal to

the class of the subvariety in the Chow ring.

1.1.6 The tangent bundle

Let us conclude this section with an interpretation of the tangent space at a point Λ of
the Grassmannian. We have already noticed that the tangent bundle on G(k, n) can be
described as TG ≃ U∨ ⊗ Q. Observe that a further way to construct an open cover for
G(k, n) is the following: take any (n − k)-plane Γ ⊂ Kn+1 and obtain the open set UΓ,
defined as the subset of all linear spaces Λ ⊂ Kn+1 complementary to Γ. Such open subsets
are isomorphic to the affine space A(k+1)(n−k) in the following way: fixing any subspace
Λ ∈ UΓ, any other subspace Λ′ ∈ UΓ is the graph of a homomorphism ϕ : Λ −→ Γ, so that

UΓ = Hom(Λ,Γ)

and such isomorphism induces the one between the tangent spaces

TΛ(G(k, n)) = Hom(Λ,Γ).

Notice that this is equivalent to define the tangent space as

TΛ(G(k, n)) = Hom(Λ,Kn+1/Λ),
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which is exactly the fiber of TG over a point Λ ∈ G(k, n).

1.2 Schubert calculus

We recall the main results of the Schubert calculus, which is the instrument that allows us
to know the behavior of the intersections in the Grassmannian. An introduction to such
argument can be found in [GH78]. We will define the Schubert cycles, which we will see
they are a special subset of the elements of the Grassmannians, and we will discover how
such cycles generate the Chow ring of the Grassmannian. Let us start with the following
definition.

Definition 1.2.1. Let Ω(Λ0, . . . ,Λk) be a Schubert variety. We will call a Schubert cycle

the equivalence class of a Schubert variety under projectivities. We will denote a Schubert

cycle by Ω(l0, . . . , lk), where li is the dimension of the linear space Λi of the flag which

defines the Schubert variety.

It is possible to prove that dimΩ(l0, . . . , lk) =
∑k

i=0(li − i).

Let us give a look to a particular family of Schubert cycles.

Definition 1.2.2. We will define a special Schubert cycle as

σa = Ω(n− k − a, n − k + 1, . . . , n).

Notice that it is the cycle that represents the k-dimensional linear subspaces which have

non empty intersection with a fixed linear space of dimension n− k−a, for 0 ≤ a ≤ n− k.

Example 1.2.3. Let us consider the example of the G(1, 3), that we have studied in the
previous section, and explicit the Schubert division of the variety through its cycle; the
cycles taken will give us a cellular decomposition of the variety. Consider the first open
subset covering the variety, given by p0,1 6= 0, and we obtain a four dimensional cell of
points that can be represented by a Plücker matrix of type

(

1 0 a b

0 1 c d

)

,

where a, b, c and d represent the free entries of the matrix; if we fix such values, then we
will have a point of the open subset. We now want to look for the points that do not
belong to the cell we just considered. Denoting by (x0 : x1 : x2 : x3) the coordinates of P3,
we can state that such points are the ones whose correspondent line in the projective space
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space has non empty intersection with the subvariety W := {x0 = x1 = 0}. We want to
cover with cells the points we have just underlined. Let us consider a three dimensional cell
representing the lines in P3 that intersect W in a point different from P = (0 : 0 : 0 : 1) and
that are not entirely contained in the plane Y := {x0 = 0}. Such lines can be represented
by the Plücker matrix (

1 a 0 b

0 0 1 c

)

,

where, as before, a, b, c represents the free entries of the matrix, giving us the dimension
of the cell. We need to consider now the lines that either pass through P or which are
contained in Y . Let us notice that the lines, satisfying the first request but not the second
one, can be represented by the matrix

(

1 a b 0

0 0 0 1

)

and these are the lines passing through P but not contained in Y . On the other hand the
lines contained in Y , but not passing through P , can be represented by

(

0 1 0 a

0 0 1 b

)

.

Observe that this last two cells are 2-dimensional. We now need to get the lines satisfying
both conditions; such lines can be represented by the matrix

(

0 1 a 0

0 0 0 1

)

.

We can conclude considering the line W , in correspondence with the matrix

(

0 0 1 0

0 0 0 1

)

.

We have thus completed the study of the cellular decomposition of the Grassmannian
G(1, 3), given by Schubert cycles: we have a 4-cell which is Ω(2, 3), one 3-cell which is
σ1 = Ω(1, 3), two 2-cells which are σ2 = Ω(0, 3) and Ω(1, 2), one 1-cell which is Ω(0, 2) and
finally the 0-cell given by Ω(0, 1) =W .

We will now state some results concerning the intersection between Schubert cycles



Chapter 1. Preliminaries 33

and their role in the Chow ring of G(k, n), that we will denote by A(G) = ⊕Ai(G), where
Ai(G) represents the cycles of codimension i (see [Arr96]).

Theorem 1.2.4. For any i = 0, . . . , (k + 1)(n − k), the group Ai(G(k, n)) is freely gen-

erated by all Schubert cycles Ω(l0, . . . , lk) such that the dimension is the expected one, i.e.
∑k

j=0(lj − j) = (k + 1)(n − k)− i.

Theorem 1.2.5 (Pieri’s formula). The intersection product between a Schubert cycle and

a special Schubert cycle is given by the following formula:

Ω(l0, . . . , lk).σa =
∑

Ω(m0, . . . ,mk),

where the sum is taken over all the mi verifying the conditions li−1 ≤ mi ≤ li and
∑
mi =

∑
li − a.

Knowing the intersection structure of the cycles we can state the following result.

Theorem 1.2.6. The Chow ring of a Grassmannian variety is generated by its special

Schubert cycles.

Let us consider our usual example, using the cellular decomposition of the Grass-
mannian G(1, 3) we have already discribed. In this case we have three special Schu-
bert cycles: σ0 = Ω(2, 3), σ1 = Ω(1, 3) and σ2 = Ω(0, 3). Observe that we obtain
σ21 = Ω(0, 3) + Ω(1, 2) = σ2 + Ω(1, 2), σ22 = Ω(0, 1), σ1.σ2 = Ω(0, 2), and, remember-
ing the given decomposition, it is natural to think and possible to prove that

A0(G) = Zσ0
A1(G) = Zσ1
A2(G) = Zσ2 ⊕ Zσ21
A3(G) = Z(σ1.σ2)

A4(G) = Zσ22

Notice that Pieri’s formula allowed us to have the result of one intersection with a special
Schubert cycle. We wonder what we can say about multiple intersections, concentrating
on the particular case when we consider only special Schubert cycles.

Theorem 1.2.7. The multi-intersection of special Schubert cycles σa1 .σa2 . . . . .σas , with

s ≥ 1 has always non negative coefficients. Moreover if the codimension given by the

intersection does not exceed the dimension of the Grassmannian, there always exists at

least one positive coefficient.
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Proof. Recall that a special Schubert cycle σi can be defined as

σi = Ω(n− k − i, n − k + 1, . . . , n− 1, n),

where
Ω(α1, . . . , αk) =

{
Λ|dim(Λ ∩ Λ′

j) ≥ j, with dimΛ′
j = αj

}
,

taking Λ and the Λ′
j ’s linear subspaces of Pn, with dimΛ = k.

Let us see what happens if we intersect two special Schubert cycles σa and σj .
If a+ j ≤ n−k, then we know that we have at least one element in the intersection, which
happens because in this case σa+j ∈ σa.σj.
If a+ j > n− k, we can use the following algorithm. Let us suppose that n− k < a+ j ≤

2(n − k) and a + j = n − k + β, where of course β ≤ n − k. In this case we have that
Ω(0, n − k + 1− β, n − k + 2, . . . , n) ∈ σa.σj and we get a non empty intersection.
If a+ j > 2(n − k), we look for more general bounds

p(n− k) < a+ j ≤ (p + 1)(n − k)

with a+ j = p(n− k) + β and in this case we have that

Ω(0, 1, . . . , p, n− k + p+ 1− β, . . . , n) ∈ σa.σj ,

so we always get a non empty intersection as long as we do not go further than the
dimension of the Grassmannian.
For the next step we use the same technique. We are going to take the result of our
previous general intersection Ω(0, 1, . . . , p, n− k + p+ 1− β, . . . , n) and intersect it again
with another special Schubert cycle σq. We only need to check the bounds of β + q and
iterate the process we have explained before.
We have a finite number of steps (in the longest case we have as many steps as the dimension
of the Grassmannian), until we arrive to the cycle Ω(0, 1, 2, . . . , k).
We have thus proved that all the coefficients of subscript less or equal than the dimension
of the Grassmannian must be positive, as the result of several intersections, and that they
are zero if we exceed the dimension of the Grassmannian with the codimension of the cycle
given by the intersection.

Corollary 1.2.8. Let Q be the universal quotient bundle on G(k, n). Every coefficient of
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the polynomial cy(Q)s is non negative and it is of the form

αq =
∑

σβ1p1 . . . σ
βs
ps ,

with
∑s

i=1 piβi = q and
∑s

i=1 βi = s for q ≤ (k + 1) dimS. Moreover, if q ≤ dimG(k, n),

the αq are all not zero and hence positive.

Proof. Notice that we can write

cy(Q)s =
(

1 + σ1y + σ2y
2 + . . .+ σn−ky

n−k
)s

,

The coefficients of the polynomial are given by multi-intersection of special Schubert cycles,
hence we can conclude by Theorem 1.2.7.
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Chapter 2

Steiner bundles on Grassmannians

In this chapter we will first give an introduction of the problem we are studying, listing
the known results, specifically the ones which will be generalized in this work. We will
continue setting the definitions and the notations that we will use for Steiner bundles.

2.1 Historical introduction

In [Sch61] Schwarzenberger introduced a family of bundles F of rank n related to the
secant space of rational normal curves and defined by a resolution of the type

0 −→ Os
Pn(−1) −→ Ot

Pn −→ F −→ 0,

which will be called the family of (s, t)-Steiner bundles on the projective space.
In [DK93], Dolgachev and Kapranov consider a particular set of hyperplanes in the pro-
jective space in order to construct a family of vector bundles. In fact, they consider
H = (H1, . . . ,Hm) an arrangement of hyperplanes in Pn, in general position, such that the
divisor

⋃
Hi has normal crossing. They call the sheaf Ω1

Pn(logH) of the differential 1-forms,
with logarithmic poles along H, a logarithmic bundle, which they denote by F (H). In the
second section of this work, after introducing the concept of Steiner bundle, the authors
give a criterion which allows us to relate Steiner and logarithmic bundles ([DK93]-3.5).

Theorem 2.1.1. Let H be an arrangement of m hyperplanes in general position in Pn. If

m ≥ n+ 2, then the logarithmic bundle F (H) is a Steiner bundle over Pn.

The authors also prove a result which gives a lower bound for the possible ranks of a
Steiner vector bundle over the projective space ([DK93]-3.9).

37
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Proposition 2.1.2. The rank of a non-trivial Steiner bundle on Pn is greater or equal

than n.

Let us recall the classical definition of a Schwarzenberger bundle (see [Sch61], [DK93]
and [Val00b]), which is associated to a rational normal curve Cn ⊂ (Pn)∗. Consider a two
dimensional vector space U on K. Denote by Si = SymiU the symmetric powers of U , by
(X0, . . . ,Xn) the coordinates of Pn = P(S∗

n) and by Cn ⊂ (Pn)∗ = P(S∗
n)

∗ the image of
P(S1) given by the Veronese embedding.

Definition 2.1.3. For each integer m, with m ≥ n, the Steiner bundle Fm(Cn) defined by

the following resolution

0 −→ Sm−n ⊗OPn(−1)
M
−→ Sm ⊗OPn −→ Fm(Cn) −→ 0

where the transpose of M is given by

M t =












X0 X1 · · · Xn 0 · · · · · · 0

0 X0 X1 · · · Xn 0
...

... 0 X0 X1 · · · Xn
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · · · · 0 X0 X1 · · · Xn












is called a Schwarzenberger bundle associated to the rational normal curve Cn.

Dolgachev and Kapranov prove then a list of results that, in the same spirit of Theo-
rem 2.1.1, link different families of vector bundles. Some of the following results will be
generalized in this thesis; indeed, we will be concerned with investigating the relations
between the two families of Steiner and Schwarzenberger bundles, but in the much more
general case of bundles over Grassmannians.

Theorem 2.1.4. Let H = (H1, . . . ,Hm) be an arrangement of m hyperplanes of Pn in

general position. Suppose that all Hi, considered as points of (Pn)∗, lie in a rational

normal curve of the dual projective space, then the logarithmic bundle F (H) is also a

Schwarzenberger bundle.

Theorem 2.1.5. Any Steiner bundle F on Pn, of rank n and with s = 2, is a Schwarzen-

berger bundle.

Moreover, Dolgachev and Kapranov prove a Torelli type theorem ([DK93]-7.2) where,
under specific hypothesis, it is possible to recover the rational normal curve from the given
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logarithmic bundle. In [Val00b], Vallès generalizes this last result, proving the following
theorem ([Val00b]-3.1).

Theorem 2.1.6. Let F be a Steiner bundle over Pn, with rkF = n, and H1, . . . ,Hn+s+2

distinct hyperplanes, such that, for each i, h0(F∨
Hi
) 6= 0. Then it exists a rational normal

curve Cn ⊂ (Pn)∗ such that Hi ∈ Cn, for i = 1, . . . , n+s+2, and F is the Schwarzenberger

bundle associated to the rational normal curve.

In [AO01] , Ancona and Ottaviani reinforce the importance of the particular family of
hyperplanes W (F ) = {H ∈ (Pn)∗|h0(F∨

H) 6= 0}, which Vallés already considered and which
is called the family of unstable hyperplanes, proving the following result ([AO01]-5.11).

Theorem 2.1.7. Let F be a rank n Steiner bundle over Pn. If W (F ) contains at least

n+ s+1 hyperplanes, then for every subset H ⊂W (F ) consisting of n+ s+1 hyperplanes

F ≃ Ω(logH), i.e. F is also a logarithmic bundle.

Notice that all the results stated are given under the hypothesis that the rank of the
Steiner bundle, over Pn, is equal to n.
In [Arr10a], Arrondo gives the generalization of the definition of Schwarzenberger bundle,
which we will recall in Section 3.1. Moreover, he introduces new objects, called jumping

pairs and jumping hyperplanes, which are meant to substitute the idea of unstable hy-
perplane considered in the previous works. Through the study of the locus of such pairs,
Arrondo gives the classification of the Steiner bundles (with arbitrary rank) which have
jumping locus of maximal dimension. The classification is listed in the following result
([Arr10a]-3.7).

Theorem 2.1.8. Let F be a Steiner bundle over Pn with s ≥ 2 and such that the locus of

the jumping pairs has maximal dimension; then F is a Schwarzenberger bundle, defined by

the choice of one of the following triples:

• (P1,OP1(s− 1),OP1(n)),

• (P1, E(−1),OP1(1)), where E = ⊕t−s
i=1OP1(ai) with all ai ≥ 1 and

∑t−s
i=1 ai = s,

• (P1,OP1(1), E′(−1)), where E′ = ⊕t−n−1
i=1 OP1(ai) with all ai ≥ 1 and

∑t−n−1
i=1 ai = n+ 1,



40 Chapter 2. Steiner bundles on Grassmannians

• (P2,OP2(1),OP2(1)).

Arrondo’s article represents the starting point of our research; in fact, we will try to
generalize the constructions he presented, passing from projective spaces to Grassmanni-
ans. We will always be careful to recover his results from the general statements we will
present.
The most general definition of a Steiner bundle has been given in [Soa08] and [MRS09]
by Rosa Maria Miró-Roig and Helena Soares. They consider the following setting (recall
Definition 1.1.8).

Definition 2.1.9. A vector bundle E on a smooth irreducible algebraic variety X is called

a Steiner vector bundle if it is defined by an exact sequence of the form

0 −→ F s0 −→ F t1 −→ E −→ 0,

where s, t ≥ 1 and (F0, F1) is an ordered pair of vector bundles satisfying the two following

conditions:

(i) (F0, F1) is strongly exceptional;

(ii) F∨
0 ⊗ F1 is generated by its global sections.

Let us remark the importance of the choice of the strongly exceptional pair (F0, F1),
which is not unique for a fixed algebraic variety X.

2.2 Definitions and first properties

In this section, we will set the notation that will be used throughout the rest of this
chapter and we will continue by giving the notions that we will take as definitions and the
properties that we need.
Let K be an algebraically closed field with charK = 0 and let V be a vector space over
K. Let us construct the projective space Pn = P(V ) as the equivalence classes of the
hyperplanes of V , or equivalently the equivalence classes of the lines of the dual vector
space V ∗. So our projective Grassmannian will be given as

G(k,P(V )) = G(k, n) = G(k + 1, V ∗),

the set of the (k + 1)-dimensional linear subspaces of V ∗.
Throughout this work, a morphism between vector bundles, when not specified, will always
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refer to a bundle map.
Recalling Definition 2.1.9 we notice that in order to have a Steiner bundle we need to find
a strongly exceptional pair on the Grassmannian. We have already proved in Proposition
1.1.9 that the ordered pair (U ,OG), where OG = OG(k,n) is the trivial bundle and
U → G(k, n) is the universal bundle of rank k + 1, and the ordered pair (OG,Q), where
Q → G(k, n) is the universal quotient bundle of rank n− k, are strongly exceptional pairs.
Moreover, U∨ and Q are globally generated by their global sections, so the two pairs define
a Steiner bundle. We will take as our definition the bundle defined by the first pair, since
it is the natural generalization of the classical Steiner bundles on the projective space;
however sometimes we will also use the second pair. We are ready to present one of our
main definitions.

Definition 2.2.1. Let S, T be two vector spaces over K, respectively s and t-dimensional.

We will call an (s, t)-Steiner bundle, over G(k, n), the vector bundle defined by the resolu-

tion

0 −→ S ⊗ U −→ T ⊗OG −→ F −→ 0.

It is trivial to determine the rank of a Steiner bundle, which is

rkF = t− s(k + 1).

We will discuss later in Section 2.3 the problem of the possible ranks of a Steiner bundle.

Geometrical interpretation of Steiner bundles

An injective morphism
U −→ T ⊗OG

is equivalent to fix a (n + 1)-codimensional space in P(T ). Indeed we have a surjective
morphism

T ∗ ⊗OG −→ U∨

and the induced map on the global sections is

T ∗ f
−→ Kn+1

which we suppose to be also surjective.
So ker f has codimension n + 1, which gives us the requested subspace Λ ⊂ P(T ) of
codimension n+ 1 in the projective space.



42 Chapter 2. Steiner bundles on Grassmannians

The hyperplanes of P(T ) that contain Λ are in a one-to-one correspondence with the points
of a linear subspace of maximal dimension, disjoint from Λ and that generates with Λ all
P(T ). Due to the codimension we can build a one-to-one correspondence between such
hyperplanes and the ambient space Pn.
In the same way each injective map

S ⊗ U −→ T ⊗OG

defines s subspaces Λ1, . . . ,Λs ⊂ P(T ) of codimension n+1. As before we can build several
correspondences in order to have

P(T )∗Λi
:= {hyperplanes of P(T ) that contain Λi} ≃ Pn,

for each i from 1 to s. In order to describe the projectivization of a fiber of F we need to
fix a point Γ ∈ G(k, n). Let us observe that every fixed point Γ gives us a subspace, one
for each i, of codimension k+1 in P(T ), that contains Λi and described by the intersection
of the k + 1 hyperplanes of P(T )∗Λi

given by the k + 1 independent points that span the
vector subspace in correspondence with Γ.
As a consequence of what discussed previously, we have the following equivalences

Ai = {subspaces of codimension k + 1 in P(T ) that contains Λi} ≃ G(k, n),

for every i = 1, . . . , s.
For every Γ ∈ G(k, n) we have s linear subspaces, one for each Ai. The projectivization
of the fiber FΓ is given by the intersection of such s spaces. We notice that even if we are
considering linear subspace whose intersection may be empty, we can assure that we have
a non empty space for each fiber due to the fact that we are starting with a bundle.

Example 2.2.2. Let us consider the case k = 0, n = 1 and t = s + 1. This gives us the
following resolution

0 −→ Os
P1(−1) −→ Os+1

P1 −→ F −→ 0.

In this case we have that the projectivization of a fiber is given by the intersection of s
hyperplanes in Ps and for every point such fiber is non empty. Considering all the points
and the respective fibers we get the rational normal curve Cs ⊂ Ps, indeed, F = OP1(s).
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Some properties of Steiner bundles

A very useful tool in the study of Steiner bundles is represented by the following lemma,
which gives us an equivalent definition that only concerns linear algebra. In this work,
when we will consider Steiner bundles, we will refer to any of the two proposed definitions.

Lemma 2.2.3. Given S and T two vector spaces over K, the followings are equivalent:

(i) a Steiner bundle F on G(k, n) given by the resolution

0 −→ S ⊗ U −→ T ⊗OG −→ F −→ 0

(ii) a linear application

T ∗ ϕ
−→ S∗ ⊗H0(U∨) = Hom(H0(U∨)∗, S∗)

such that, for every u1, . . . , uk+1 ∈ H0(U∨)∗ linearly independent and for every

v1, . . . , vk+1 ∈ S∗ (no further hypothesis), there exists an f ∈ Hom(H0(U∨)∗, S∗)

such that f ∈ Imϕ and f(uj) = vj for each j = 1, . . . , k + 1.

Proof. Let us consider the map

S ⊗ U −→ T ⊗OG

and its dual one
ψ : T ∗ ⊗OG −→ S∗ ⊗ U∨ = Hom(U , S∗ ⊗OG)

that gives us the induced map on the global sections

ϕ : T ∗ −→ S∗ ⊗H0(U∨) = Hom(H0(U∨)∗, S∗).

We need to characterize ϕ in order to have the map ψ surjective, that is equivalent to ask
for ψ to be surjective in each fiber.
A point Γ ∈ G(k, n) is in correspondence with k + 1 independent vectors u1, . . . , uk+1 in
H0(U∨)∗, so that the bundle morphism in the fiber associated to Γ corresponds to the
restriction of ϕ of the type

ϕ̃ : T ∗ −→ Hom(< u1, . . . , uk + 1 >,S∗).

The requested characterization will be exactly the one stated in point (ii), because ϕ̃ is
surjective for every fiber if and only if for every k + 1 independent vectors of H0(U∨)∗,
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related with the fixed point in the Grassmannian, and k + 1 vectors of S∗, that can be
chosen as image of the previous set, there exists f ∈ Hom(H0(U∨)∗, S∗) with f ∈ Imϕ

such that f(uj) = vj for every j from 1 to k + 1.

2.2.1 Steiner bundles and linear algebra

In this paragraph we will prove some general results of linear algebra, that, because of
what we proved in Lemma 2.2.3, we will be able to apply to our specific setting of Steiner
bundles. Let us introduce the notation we need.
Let U and V be two vector spaces, of dimension respectively r and s.
Let W ⊂ Hom(U, V ) be the vector subspace characterized by the following property,
which we will denote Pk: for every k + 1 independent vectors ũ1, . . . , ũk+1 ∈ U and for
every ṽ1, . . . , ṽk+1 ∈ V there exists an element f ∈ W such that f(ũj) = ṽj , for every
j = 1, . . . , k + 1. This is equivalent to ask that for every vector subspace U ′ ⊂ U with
dimU ′ = k + 1, we have a diagram

W

α

((PP
PP

PP
PP

PP
PP

P� _

��
Hom(U, V ) // // Hom(U ′, V )

where the induced map α will always be surjective.
We can immediately prove the following lemma.

Lemma 2.2.4. Let W ⊂ Hom(U, V ) be a vector subspace that satisfies the property Pk. If

dimV = k + 1, then the map W −→ Hom(U, V ) is also surjective.

Proof. Consider an element in U∗ ⊗ V , that we can also write as a linear combination
∑
λi,ju

∗
i ⊗ vj, given by the choice of a basis for each of the vector spaces U∗ and V .

Collect all the elements of the combination using the basis of V , in order to write the
combination as

ũ1
∗ ⊗ v1 + . . .+ ũ∗k+1 ⊗ vk+1.

Notice that having at most k + 1 independent ũi∗ and completing a basis of U∗ with
independent vectors that must vanish because the rank of the chosen element is determined,
we can see the previous sum as an element of W .

We can apply the previous lemma to prove the following result
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Lemma 2.2.5. Let W ⊂ Hom(U, V ) be a vector subspace that satisfies the property Pk.

Then, considering the induced map

W −→ Hom(V ∗, U∗),

we have that for every k + 1 independent vectors ṽ∗1, . . . , ṽ
∗
k+1 ∈ V

∗ and for every

ũ∗1, . . . , ũ
∗
k+1 ∈ U

∗ there exists an element f̄ ∈W such that f̄(ṽ∗j ) = ũ∗j , for every

j = 1, . . . , k + 1. We say that W also satisfy the reciprocal of the property Pk.

Proof. Let us consider an arbitrary (k+ 1)-dimensional quotient Q of the vector space V ,
so we are able to construct the following commutative diagram

W
ϕ //

ϕ′
%%▲▲

▲▲
▲▲

▲▲
▲▲

▲

f

""

g

<<

Hom(U, V ) // // Hom(U,Q)

≃
��

Hom(V ∗, U∗) // // Hom(Q∗, U∗)

We know the map f to be surjective by Lemma 2.2.4, hence we have that for every Q∗ ⊂ V ∗

with dimQ = k + 1 the map g is also surjective. This means that the map ϕ′ makes W
satisfy also the reciprocal of the property Pk, because every morphism induced by ϕ′ given
by the restriction of V ∗ to a (k + 1)-dimensional subspace is surjective.

Let us now apply what we have proved to our particular case.

Remark 2.2.6. By the description of the property Pk, we have that Pk implies Pi, for
each i ≤ k. Moreover, Lemma 2.2.3 and Lemma 2.2.5 tell us that having a Steiner bundle
F on G(k, n) is equivalent to have a Steiner bundle F̃ on G(k,P(S)). Therefore considering
a Steiner bundle actually means considering a family of 2(k + 1) Steiner bundles.

We will now prove a lemma which will allow us to define the concept of reduced Steiner

bundle on G(k, n). Such result represents a generalization of Lemma 1.3 in [Arr10a].

Lemma 2.2.7. With the usual notation, the followings are equivalent:

(i) a linear subspace K ⊂ T ∗ contained in the kernel of ϕ,
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(ii) an epimorphism F −→ K∗ ⊗OG,

(iii) a splitting F = F ′ ⊕ (K∗ ⊗OG).

Proof.

(ii) ⇔ (iii)
Let us observe that F is generated by its global sections (that is because we have a surjective
map from a vector space tensor the canonical bundle to it). Let us consider the following
diagram

0 // S ⊗ U // T ⊗OG
//

&&▼▼
▼▼

▼▼
▼▼

▼▼
F //

f

��

0

K∗ ⊗OG

��
0

The fact that F is generated by its global sections tells us that a basis will be sent to a
basis, so, let us take a basis of H0(F ) and suppose that f is surjective. What we need to
do is to take a basis of K∗⊗OG and take its preimage in F . We can complete the basis and
with the elements added we can generate a vector bundle F ′ that gives us the splitting.
If we already know we have a splitting, of course the map f is surjective.
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(i) ⇒ (ii)

If (i) is true, then, because of the fact that K ⊂ kerϕ, we have a morphism of the form
ϕ̄ : T ∗/K −→ S∗ ⊗ H0(U∨). We know well by now that such morphism is associated
to a Steiner bundle F ′. This gives us the following commutative diagram, that we can
construct starting from the two rows

0

��

0

��
0 // S ⊗ U // (T ∗/K)∗ ⊗OG

//
� _

α

��

F ′ //

β

��

0

0 // S ⊗ U // T ⊗OG

��

// F //

γ

��

0

K∗ ⊗OG

��

K∗ ⊗OG

��
0 0

The morphism α is injective by hypothesis and it gives us that also β is injective. Because
of the commutativity of the diagram, the map γ must be surjective. We thus have (ii).

(ii) ⇒ (i)
By hypothesis we have an epimorphism F −→ K∗⊗OG and taking the resolution of F we
can construct a further surjective morphism g in the following way:

· · · // T ⊗OG
// //

g

&&▼▼
▼▼

▼▼
▼▼

▼▼
F //

����

0

K∗ ⊗OG

Having such surjective morphism g tells us that K ⊂ T ∗ must be a vector subspace.
Starting from the dual of the map g we are able to construct another commutative diagram,
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this time starting from the two columns. We get

0

��

0

��
K ⊗OG

��

K ⊗OG

��
0 // F∨ //

��

T ∗ ⊗OG
ϕ //

��

S∗ ⊗ U∨ // 0

0 // (F ′)∨ //

��

(T ∗/K)⊗OG
//

��

S∗ ⊗ U∨ // 0

0 0

Let us observe that the bundle morphism ϕ : T ∗ ⊗ OG −→ S∗ ⊗ U∨ has a factorization
through (T ∗/K) ⊗ OG. This means that K is contained in the kernel of ϕ and we get
(i).

Remark 2.2.8. The bundle F ′, by Lemma 2.2.3, is the Steiner bundle associated to
the map T ∗/K −→ S∗ ⊗ H0(U∨). If we consider T ∗

0 = Imϕ, we obtain an inclusion
T ∗
0 →֒ S∗ ⊗H0(U∨) associated to a Steiner bundle F0. If we take a look at the long exact

sequence of the dual of the resolution of F0, we get H0(F∨
0 ) = 0 and F = F0⊕(T/T0 ⊗OG).

In particular H0(F∨
0 ) = 0 if and only if ϕ is injective.

All the Steiner bundles satisfying the property stated in the previous remark form a
particular subset.

Definition 2.2.9. Using the usual notation, a Steiner bundle over G(k, n) is said to be

reduced if H0(F∨) = 0. In general, we will denote by F0 the reduced summand of a Steiner

bundle.

2.3 The classification of the case 1 ≤ dimS ≤ k + 1 and the

rank limit

In this section we will prove a classification theorem for (s, t)-Steiner bundles with s ≤ k+1

and then we will show which are the possible ranks for a Steiner bundle over G(k, n). The
solution of this last problem for projective spaces was given by Dolgachev and Kapranov
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in [DK93], see Proposition 2.1.2, where they prove that the rank of a non trivial Steiner
bundle over Pn is at least n.
We have the following result.

Theorem 2.3.1. Let F be an (s, t)-Steiner bundle on G(k, n) as defined in 2.2.1, with

s ≤ k + 1. Then, if F is reduced, it will be of the type F = S ⊗Q; if it is not it will be of

the type F = (S ⊗Q)⊕Op
G for some p > 0.

Proof. From Remark 2.2.8, it is enough to prove the result for reduced Steiner bundles;
and, in this case, we need to show that the injective map T ∗ → S∗ ⊗ H0(U∨) is also
surjective. Consider the following commutative diagram, constructed starting from the
dual of the sequence that defines the bundle,

0

��

0

��
0 // F∨ //

��

T ∗ ⊗OG(k,n)

��

// S∗ ⊗ U∨ //

≃

��

0

0 // S∗ ⊗Q∨

��

// S∗ ⊗H0(U∨)⊗OG(k,n)
//

��

S∗ ⊗ U∨ // 0

S∗⊗H0(U∨)
T ∗ ⊗OG(k,n)

≃ //

��

S∗⊗H0(U∨)
T ∗ ⊗OG(k,n)

��
0 0

Observe that, if T ∗ 6= S∗ ⊗ H0(U∨), the given diagram allows us to have an injective
morphism of type

OG −→ (Q)s ≃ S ⊗Q.

If s ≤ k+1 this is impossible; indeed, as we observed in Example 1.1.17, a global section of
Q vanishes in all Λ ∈ G(k, n) passing through a fixed point of Pn. Considering s sections
of Q means considering all Λ’s passing through s independent points of Pn. If s ≤ k + 1

then we have at least one element with such property. Hence T ∗ = S∗ ⊗H0(U∨), which
completes the proof.

Remark 2.3.2. Observe that, from the previous diagram, the Steiner bundle F can be
also defined considering the strongly exceptional pair (OG,Q). This proves that all the
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theory presented in this work does not depend on the choice of the strongly exceptional
pair, as we pointed out at the beginning of Section 2.2.

Theorem 2.3.3. Let F be a Steiner bundle over G(k, n); then it will have rank

rkF ≥ min((k + 1)(n − k), (n − k) dimS).

Proof. Let us consider the morphism

S ⊗ U −→ T ⊗OG 99K F, (2.1)

and let us write r = rkF . We already know that r = dimT − (k + 1) dimS. We want
to discover for which points of the Grassmannian such morphism is not injective and in
order to do so we will use Porteous’ formula (see for example [ACGH85] for a reference).
The expected codimension of such set, given by the formula, is equal to r + 1, so if we
have dimG(k, n) < r+1 then there will be no points that drop the rank of the morphism
and we can ensure its injectivity. In the case the set is not empty, let us compute the
fundamental class obtained applying Porteous: if the class is empty, we will still ensure
surjectivity and thus have a Steiner bundle, otherwise, we will not.
The fundamental class can be computed as

∆r+1,1 (cy (T ⊗OG − S ⊗ U)) = ∆r+1,1

(

cy

(
1

S ⊗ U

))

= ∆r+1,1 (cy (S ⊗Q)) ,

where cy denotes the Chern polynomial of the bundle and, following the notation of
[ACGH85], the symbol ∆r+1,1 just denotes the coefficient of the term of degree r + 1

in the polynomial.
We thus need to describe the coefficients of

cy(Q)dim S∗
=
(

1 + σ1y + σ2y
2 + . . .+ σn−ky

n−k
)dimS∗

,

where each Chern class ci(Q) is equal to σi, the special Schubert cycle of codimension i

for the Grassmannian G(k, n). Let us observe that, having a power of the polynomial, we
need to know how the Schubert cycles intersect among each other and the solution is given
by Corollary 1.2.8. Recall that the corollary tells us that if we do not exceed the dimension
of the Grassmannian in the Chow ring, the intersection of special Schubert cycles is always
non empty and we prove the theorem.



Chapter 3

Jumping locus of a Steiner bundle

In this chapter we will recall the definition of a Schwarzenberger bundle for the case of the
projective space, the one proposed in [Arr10a], noticing that its natural generalization is
straightforward for the Grassmannian case, but paying attention to the fact that with the
new definition it will be very hard to find examples.
We will notice immediately, from the definition itself, that a Schwarzenberger bundle is a
particular case of a Steiner bundle and we will wonder if we can say something about the
other way around.
Question A When is a Steiner bundle F also a Schwarzenberger bundle?

In order to answer to such question we will introduce the concept of jumping pair for a
Steiner bundle, which will represent the link between the two considered families.

3.1 Schwarzenberger bundles on Grassmannians

Let X be a projective variety and L,M be globally generated vector bundles on X. Let
us take M such that h0(M) = n+ 1, so that we can identify Pn ≃ P(H0(M)∗). Consider
the natural composition

H0(L)⊗OPn(−1) −→ H0(L)⊗H0(M)⊗OPn −→ H0(L⊗M)⊗OPn

constructed in the following way. For each σ ∈ H0(M) we associate the point [σ] ∈ Pn,
given by the above identification, and the fiber map over such point is

H0(L)⊗ < σ >−→ H0(L)⊗H0(M) −→ H0(L⊗M).

51
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Identifying H0(L)⊗ < σ > with H0(L) (we have just fixed one global section), we have
that the composition is injective because it is simply

H0(L)
·σ
−→ H0(L⊗M)

given by the moltiplication with the global section.
We manage to construct a Steiner bundle of the form

0 −→ H0(L)⊗OPn(−1) −→ H0(L⊗M)⊗OPn −→ F −→ 0.

The generalization seems very natural, because fixing a point in the Grassmannian should
correspond to fixing k + 1 independent global sections and apply the multiplication with
their linear span. The difficulty of finding examples is given by the fact that taking k + 1

sections breaks very easily the injectivity of the map, given by the multiplication through
elements in its span, which is necessary to have a Steiner bundle.
To generalize a Schwarzenberger bundle in the case of Grassmannians we must construct
the following setting.
Let us consider two globally generated vector bundles L,M over a projective variety X,
with h0(M) = n + 1 and with the identification Pn = P(H0(M)∗). The Schwarzenberger
bundle on G(k, n) associated to the triple (X,L,M) will be the bundle defined as the
cokernel of the composition

H0(L)⊗ U −→ H0(L)⊗H0(M)⊗OG −→ H0(L⊗M)⊗OG

for which we need to require the injectivity in each fiber, in order to have a resolution.
This is equivalent to fix k + 1 independent global sections {σ1, . . . , σk+1} in H0(M) in
correspondence to the point Γ = [< σ1, . . . , σk+1 >] ∈ G(k, n) and require the injectivity
of the following composition, given by the multiplication with the global section subspace
we fixed

H0(L)⊗ < σ1, . . . , σk+1 >−→ H0(L)⊗H0(M)⊗OG −→ H0(L⊗M)⊗OG.

Definition 3.1.1. Let X be a projective variety and let L and M be globally generated

vector bundle over X, with h0(M) = n+ 1.

The bundle F = F (X,L,M) defined by the resolution

0 −→ H0(L)⊗ U −→ H0(L⊗M)⊗OG −→ F −→ 0
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is called a Schwarzenberger bundle over G(k, n).

The map ϕ of Lemma 2.2.3 will be the dual of the multiplication map

H0(L)⊗H0(M) −→ H0(L⊗M).

In particular F is reduced if and only if the multiplication map is surjective.
We give an example to show that a big family of Schwarzenberger bundle on the projective
space, one of the most important in Arrondo’s classification (see [Arr10a]), is not valid
anymore in the Grassmannian case.

Example 3.1.2. Consider X = Pn, with n ≥ 2, L =
⊕t

i=1OPn(ai), with ai ≥ 0 and
M = OPn(1). The triple (X,L,M) gives a Schwarzenberger bundle on Pn but we will not
be able to get one on the Grassmannians, because if we restrict H0(M) to a subspace of
dimension k + 1, the multiplication fails to be injective.

Nevertheless we manage to find an example which ensures that the definition is correct.

Lemma 3.1.3. Consider a triple (X,L,M) such that L and M are globally generated

vector bundles of rank respectively 1 and k + 1 over a projective variety X, with dimX ≥

k+1, h0(M) = k+2 and ck+1(M) 6= 0. Then, the triple defines a Schwarzenberger bundle

on G(k, k + 1).

Proof. Notice that for each ∆ ⊂ H0(M) of dimension k + 1, the map ∆ ⊗ OX −→ M

is injective seen as a morphism of sheaves. Suppose that it is not and take s1 . . . , sk+1

generators of the subspace, then we will have that for each x ∈ X the vectors given by
s1(x), . . . , sk+1(x) are linearly dependent. Consider a further section sk+2 ∈ H0(M) which
completes a basis for the space of the global sections, we know that its zero locus is non
empty by the assumptions on the dimension of X and on ck+1(M). Taking a point of this
locus, we obtain that the evaluation map H0(M)⊗OX −→M cannot be surjective, which
leads to contradiction because we have supposed that M is globally generated.
So, tensorizing the morphism with L, we obtain an injective morphism of sheaves L⊗∆⊗

OX −→ L⊗M and, taking global sections, we get an injective linear map

H0(L)⊗∆ −→ H0(L⊗M),

which ensures we have a Schwarzenberger bundle.

Remark 3.1.4. Notice that the hypothesis dimX ≥ k+1 and ck+1(M) 6= 0 are necessary.
Indeed, if we consider X = P1 and M = OP1(1)

⊕k
i=1 OP1 , and taking ∆ generated by
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the two independent global sections of OP1(1) and k − 1 independent sections given by
the other summands, then the morphism of sheaves ∆ ⊗OP1 −→ OP1(1)

⊕k
i=1OP1 is not

injective.

A particular case of the considered family is given by taking the triple (X,L,M) =

(Pk,OPk(1), TPk (−1)). This example will be of extreme importance in the classification, as
we will see in Section 4.1.

Geometrical interpretation of Schwarzenberger bundles

Consider the Schwarzenberger bundle F = F (X,L,M). Moreover, let us consider a point
Γ ∈ G(k, n) which is associated to a (k+1)-dimensional subspace ∆ of independent global
sections of M , and hence to a subspace A ⊂ P(H0(M)) of codimension k + 1. Let us
suppose that A is defined by the equations y1 = . . . = yk+1 = 0, with an appropriate
choice of the coordinates (y1 : . . . : yn+1) for the projective space P(H0(M)). Moreover,
to each f ∈ H0(L) we can obtain an hyperplane Hf ⊂ P(H0(L)) and we can suppose it
is defined by the equation x1 = 0, after choosing proper coordinates (x1 : . . . : xs) for
P(H0(L)). These two subspaces define a further linear subspace of codimension k + 1 in
P(H0(L)⊗H0(M)) and hence a subspace Ãf of codimension k+1 in P(H0(L⊗M)). Indeed,
Ãf is defined by the vanishing of the equations {x1yj}

k+1
j=1 . Recall that by hypothesis we

have that f · ∆ −→ H0(L ⊗ M) is injective, which ensures that all products x1yj are
independent seen as linear forms of P(H0(L⊗M)).
We are able to define Ãf considering the Segre map

ν : P(H0(L))× P(H0(M)) −→ P(H0(L)⊗H0(M)),

indeed we have that

Ãf =
〈
ν
(
Hf × P(H0(M))

)
∪ ν

(
P(H0(L))×A

)〉
∩ P(H0(L⊗M)),

where we look at P(H0(L⊗M)) as a linear subspace of P(H0(L)⊗H0(M)).
Recalling the geometric interpretation of a Steiner bundle, we get that the projectivization
of the fiber of F over the point Γ is given as the intersection of all Ãf for each f ∈ H0(L).
We thus obtain that

P(FΓ) =
〈
ν
(
P(H0(L))×A

)〉
∩ P(H0(L⊗M)).
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Example 3.1.5. Consider the Schwarzenberger bundle F over G(k, k + 1) given by the
triple (X,L,M) = (Pk+1,OPk+1(1), TPk+1(−1)).
Let us first observe that H0(TPk+1(−1)) ≃ H0(OPk+1(1))∗ and therefore the hyperplane
section of the Segre variety with

P(H0(TPk+1)) ⊂ P(H0(OPk+1(1))⊗H0(OPk+1(1))∗)

is given considering all the pairs

{
(x,H) ∈ P(H0(OPk+1(1))) × P(H0(OPk+1(1))∗) | x ∈ H

}
.

Therefore the projectivization of the fiber FΓ, for a point Γ ∈ G(k, k + 1), is given by

ν(Hx × x) ⊂ P(H0(TPk+1)),

where x is the subspace of codimension k + 1 in P(H0(M)) (in this case we have a point)
and Hx represents the set of all hyperplanes containing x. The dimension of such projec-
tivization is k, which confirms our interpretation.

3.2 Jumping pairs of a Steiner bundle

Let us notice that if we have a Schwarzenberger bundle given by the triple (X,L,M), with
rkL = 1 and rkM = k+1, then at every point x ∈ X we can associate a k+1 dimensional
subspace considering the short exact sequence

0 −→ H0(M ⊗ Ix) −→ H0(M) −→ H0(Mx) −→ 0

and taking H0(Mx)
∗. Remember now that in this case the map ϕ was given by the dual

of the multiplication map and we can restrict the arrival space with the fixed subspace

H0(L⊗M)∗ −→ H0(L)∗ ⊗H0(M)∗ ⊃ H0(L)∗ ⊗H0(Mx)
∗.

We observe that under such hypothesis we are always able to find a line a in H0(L)∗ = S∗

such that a⊗H0(Mx)
∗ belongs to the image of ϕ. The natural choice will be a = H0(Lx)

∗,
having H0(Lx)

∗⊗H0(Mx)
∗ = H0(Lx⊗Mx)

∗. These considerations lead us to the following
definition.

Definition 3.2.1. Let F be a Steiner bundle over G(k, n). A pair (a,Γ), with dim a = 1
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and dimΓ = k+1, such that a⊗ Γ ⊂ S∗ ⊗H0(U∨), is called a jumping pair if, considering

the map T ∗ ϕ
−→ S∗ ⊗H0(U∨), the tensor product a⊗ Γ belongs to Imϕ.

Let us fix some notation.

Definition 3.2.2. We will denote by J̃(F ) the set of jumping pairs of F . We have two

natural projections

J̃(F )

π1

zz✉✉✉
✉✉
✉✉
✉✉
✉

π2

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

G(1, S∗) G(k + 1,H0(U∨))

and we define Σ(F ) := π1(J̃(F )) and J(F ) := π2(J̃(F )) the set of jumping spaces.

Let us now show some useful properties.

Lemma 3.2.3. Let F be a Steiner bundle over G(k, n) and let F0 be its reduced summand,

then J̃(F ) = J̃(F0).

Proof. Let us consider the following commutative diagram, where T ∗
0 = Imϕ.

0

��
0 // T ∗

0

ϕ0//

��

S∗ ⊗H0(U∨)

0 // T ∗/T ∗
0

//

$$■
■■

■■
■■

■■
T ∗

��

ϕ // S∗ ⊗H0(U∨)

T ∗/T ∗
0

��
0

Recall that we have a splitting of the bundle as F = F0 ⊕ ((T/T0) ⊗ OG) that gives
F ∗ = F ∗

0 ⊕ ((T ∗/T ∗
0 )⊗OG) and hence

H0(F ∗) = H0(F ∗
0 )

︸ ︷︷ ︸

=0

⊕(T ∗/T ∗
0 ).
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Obviously if (a,Γ) is a jumping pair for F0, then it is also a jumping pair for F . Using
the definition we prove the viceversa. Indeed, we know that a jumping pair is defined as
0 6= (a⊗Γ) ⊂ S∗⊗H0(U∨) such that it exists Λ ⊂ T ∗ with ϕ(Λ) = a⊗Γ. If Λ∩(T ∗/T ∗

0 ) 6= ∅

then dima⊗Γ < k+1 because of the exact sequence defining ϕ. We thus have that Λ ⊂ T ∗
0

and a⊗ Γ is a jumping pair also for F0.

The previous lemma tells us that from now on we can concentrate only on reduced
Steiner bundles.
Having noticed how important the jumping pairs are in order to check if a Steiner bundle
is also Schwarzenberger, we would like to give an appropriate description of the locus of
the jumping pairs, seeing it as a variety.

Lemma 3.2.4. Let F be a Steiner bundle on G(k, n) and T ∗
0 ⊂ S∗⊗H0(U∨) be the image

of ϕ (or equivalently the vector space associated with the reduced summand F0 of F ).

Consider the Segre generalized embedding

ν : G(1, S∗) × G(k + 1,H0(U∨)) −→ G(k + 1, S∗ ⊗H0(U∨))

a , Γ 7→ a⊗ Γ

Then

(i) we have that

J̃(F ) = Im ν ∩G(k + 1, T ∗
0 ),

(ii) Let A,B,H be the universal bundles of ranks respectively 1, k + 1 and k + 1 over

G(1, S∗), G(k + 1,H0(U∨)) and G(k + 1, T ∗
0 ).

Consider the projections

J̃(F )

π1

zz✉✉✉
✉✉
✉✉
✉✉
✉

π2

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

G(1, S∗) G(k + 1,H0(U∨))

and that J̃(F ) ⊂ G(k + 1, T ∗
0 ). Assume that the natural maps

α : H0(G(1, S∗),A) −→ H0(J̃(F ), π∗1A)

β : H0(G(k + 1,H0(U∨)),B) −→ H0(J̃(F ), π∗2B)

γ : H0(G(k + 1, T ∗
0 ),H) −→ H0(J̃(F ),H|J̃(F ))
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are all isomorphisms. Then the Steiner bundle F0, reduced summand of F , is a

Schwarzenberger bundle given by the triple

(J̃(F ), π∗1A, π
∗
2B).

Proof. Notice that part (i) is just the geometrical interpretation of the definition of jumping
pair we have given.
To prove part (ii), consider the commutative diagram

S ⊗H0(U∨)∗ //

��

T0

��

H0(J̃(F ), π∗1A)⊗H0(J̃(F ), π∗2B)
// H0(J̃(F ), π∗1A⊗ π∗2B)

The top map is the dual of the inclusion T ∗
0 →֒ S∗ ⊗ H0(U∨) that defines the reduced

summand of a Steiner bundle; such map can be identified with the following

H0(G(1, S∗),A)⊗H0(G(k + 1,H0(U∨)),B) −→ H0(G(k + 1, T ∗
0 ),H)

defined by the composition of the multiplication map and the restriction of the global
sections, due to the fact that T ∗

0 ⊂ S∗ ⊗H0(U∨),

H0(G(k + 1, S∗ ⊗H0(U∨)), H̃) −→ H0(G(k + 1, T ∗
0 ),H),

where of course H̃ denotes the universal bundle over G(k + 1, S∗ ⊗H0(U∨)). The vertical
maps, due to the last identification, are α⊗β and γ, which are isomorphisms by hypothesis.
The bottom map is the multiplication map whose dual defines a Schwarzenberger bundle.
Because of the isomorphisms in the diagram, we can state that F0 is Schwarzenberger
defined by the triple (J̃(F ), π∗1A, π

∗
2B) and this concludes the proof.

3.3 The tangent space TΛJ̃(F )

Our next goal is to compute the dimension of J̃(F ). In order to do so, we will consider
the projective Segre generalized map and we will look at J̃(F ) as a projective variety;
with an abuse of notation we will denote the vector space and the projective variety in the
same way. The technique we will use to answer this question will be to consider a jumping
pair Λ ∈ J̃(F ) and study the tangent space TΛJ̃(F ) at the point Λ. This will give us an
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upper bound for the dimension; moreover, if we manage to prove that the dimension of
the variety and the one of the tangent space coincide, we will have that J̃(F ) is smooth.
Let us consider the projectivization of the generalized Segre map

ν : P(S) × G(k,P(H0(U∨))∗) −→ G(k,P(S ⊗H0(U∨)∗)) := Ḡ

P(a) , P(Γ) 7→ P(a⊗ Γ)

and we get J̃(F ) = Im ν ∩G(k,P(T0)).
Let us notice that codimḠ(Im ν) = (k+1)(sn+s−n−1)−s+1 and of course dimG(k,P(T0)) =

(k+1)(t0−k−1) where t0 = dimT0. This allows us to give a lower bound for the dimension
of J̃(F ), obtained in the case we get a complete intersection, which is

dim J̃(F ) ≥ (k + 1)(t− k − sn− s+ n) + s− 1. (3.1)

Remark 3.3.1. The previous inequality, which is an equality for the general Steiner bun-
dle, tells us that if we consider s, n and k such that its right term is negative, then we will
have that the general Steiner bundle with the chosen parameters cannot be Schwarzen-
berger, because it has no jumping pairs.

To limit the dimension from above we want to study the tangent space TΛJ̃(F ) at a
jumping pair Λ.
First of all, we need to find a proper description for the tangent space we are looking for;
the result obtained is the following, to whom we will devote the rest of the section and it
will be a direct consequence of Theorem 3.3.4.

Theorem 3.3.2. Let F be a Steiner bundle over G(k, n) and let Λ ∈ J̃(F ) be one of its

jumping pairs; then

TΛJ̃(F ) =

{

ψ ∈ Hom

(

Λ,
T ∗
0

Λ

)

|
(ψ(ϕi))(kerϕi) ⊂< v1 >

(ψ(ϕi))(ui) ≡ (ψ(ϕj))(uj) mod v1

}

, (3.2)

where v1 ∈ S∗ and the sets {ϕi}
k+1
i=1 and {uj}

n+1
j=1 are basis respectively of Λ and H0(U∨)∗,

properly chosen as we will see in the proof of the next theorem.

Let us recall, see Lemma 3.2.4, that we can also define the jumping locus as
J̃(F ) = Im ν ∩ G(k,P(T0)) where T ∗

0 = Imϕ is the vector subspace associated to the
reduced summand of the bundle. Denoting Seg := Im ν, what we actually need to find
now is the description of the tangent space of Seg in a point Λ representing a jumping pair.
Let us start considering the following example.
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Example 3.3.3. Take s = 2, k = 1, n = 3, i.e. we are dealing with the map

P1 ×G(1, 3) −→ G(1, 7).

We will work with the equations that define the Segre variety locally and we will induce
the equations defining the tangent space at a fixed jumping point Λ.
We can suppose, without loss of generality, that Λ, seen as a subset of maps belonging to
Hom(H0(U∨)∗, S∗), is represented by the (s× (n+ 1)) = (3, 4)-matrices of type












λ1 λ2 0 0

0 0 0 0

0 0 0 0




 with λ1, λ2 ∈ K







,

simply by the definition of Λ.
Seen as a point of the G(1, 7) we can represent it as

[

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

]

,

point belonging to the open set defined by p0,1 6= 0. All the points in this open neighbour-
hood will be of the form

[

1 0 x002 x003 x010 x011 x012 x013
0 1 x102 x103 x110 x111 x112 x113

]

.

Notice that all the variables xijp can already be considered as Plücker coordinates, taking
proper order 2 minors.
Now we consider the two independent matrices related to the general point of the open
neighbourhood. We notice that the image of both matrices has rank 1 and moreover both
matrices map into the same vector. Therefore, we can translate this condition as

rk

[

1 0 x002 x003 0 1 x102 x103
x010 x011 x012 x013 x110 x111 x112 x113

]

< 2.

The conditions that we get (for which we underline their linear part) are

x011 = 0, x110 = 0, x010 − x111 = 0,
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x002x010 − x012 = 0, x003x010 − x013 = 0,

x102x111 − x112 = 0, x103x111 − x113 = 0,

x002x013 − x012x003 = 0, x102x113 − x112x103 = 0,

x002x112 − x012x102 = 0, x002x113 − x012x103 = 0,

x003x112 − x013x102 = 0, x003x113 − x013x103 = 0.

To define the tangent space we need to take the linear components of the equations we
previously obtained. In this case we get 7 independent conditions in A12, which is the tan-
gent space at a point of G(1, 7), getting dimension 5 and that ensures us we are proceeding
correctly.

The technique used in the example above can be generalized and this allows us to state
the following theorem.

Theorem 3.3.4. Let Seg be the image of the generalized projective Segre embedding and

let J̃(F ) ⊂ Seg be the set of the jumping pairs of a Steiner vector bundle F over G(k, n).

Fixing a point Λ = s0 ⊗ Γ ∈ J̃(F ), we have that

TΛ Seg :=
{

ψ ∈ Hom
(

Λ, Hom(H0(U∨)∗,S∗)
Λ

)

| ∀ ϕ ∈ Λ, (ψ(ϕ))(ker ϕ) ⊂< s0 >

and ∃ A ⊃< s0 > withA ⊂ S∗,dimA = 2 such that Imψ(ϕ) ⊂ A}

where TΛ Seg denotes the tangent of the Segre image at the point Λ.

Proof. In order to prove the lemma, we will divide it in two different steps. In the first
one we will consider the local definition of the Segre generalized variety and from those
equations we will induce the ones defining its tangent space in a jumping point Λ, that
belongs to the open subset we are considering. In the second part we will prove that the
equations obtained generate the ideal associated to the tangent space. In order to do so
we will prove that the dimension of the ideal generated by the equations found is equal to
the dimension of the ideal of the tangent space.

Step 1 In this part we will assume that the point Λ we have fixed is the origin, looking
at it belonging to its affine open set of the cover, and we will look for the linear forms of
the equations that define locally the Segre variety in order to induce the equations that
define its tangent space.
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The point Λ can be represented by matrices














λ1 λ2 · · · λk+1 0 · · · 0

0 0 · · · · · · 0
...

...
0 · · · · · · 0









with λ1, . . . , λk+1 ∈ K







so it can be seen in the Grassmannian as the point









1 0 · · · 0 0 · · · 0

0 1
. . .

...
...

...
...

. . . 0
...

...
0 · · · 0 1 0 · · · 0









and the points in the corresponding neighbourhood will be of the form









1 0 · · · 0 x0,0,k+1 · · · x0,s−1,n

0 1
. . .

... x1,0,k+1 · · · x1,s−1,n
...

. . . 0
...

...
0 · · · 0 1 xk,0,k+1 · · · xk,s−1,n









belonging, as before, to the open subset p01...k 6= 0 and all xi,j,p can be seen as Plücker
coordinates defined by proper minors. As we did in the example we consider the k + 1

independent matrices related to the general point of the neighbourhood. The image of
every morphism is of rank 1 and moreover the image for all of them will be the same
vector by hypothesis. The condition is translated as

rk









1 0 · · · 0 x0,0,k+1 · · · x0,0,n
x0,1,0 x0,1,1 · · · x0,1,k x0,1,k+1 · · · x0,1,n

...
... · · ·

x0,s−1,0 x0,s−1,1 · · · x0,s−1,k x0,s−1,k+1 · · · x0,s−1,n

0 · · · 0 1 xk,0,k+1 · · · xk,0,n
xk,1,0 xk,1,n

· · ·
...

...
xk,s−1,0 · · · · · · xk,s−1,n









< 2.
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We can notice that we get, from the minors of order 2, three types of linear conditions:

• the ones obtained fixing one column that starts with 1 and one column that starts
with 0, of the type

xi,j,p = 0 with j = 1, . . . , s− 1 for all p ≤ k with p 6= i;

we have k(s− 1)(k + 1) independent conditions in this case

• the ones obtained fixing one column that starts with a 1 and for each block take the
columns from k+1 to n and the row starting with 1 fixed and the others with index
from 1 to s− 1, which are of type

xi,j,p = xi,0,pxi,j,0

and we have (k + 1)(n − k)(s − 1) independent conditions in this case

• the ones obtained fixing two columns starting with a 1, which are of the type

xi,j,i = xp,j,p with p 6= i

and we have k(s− 1) independent conditions in this case.

All the conditions taken are independent among each other because the linear part is given
every time by different coordinates (they come from different blocks). Summing all the
conditions we have (s− 1)(nk + n+ k) of them.
We can observe that the number of conditions we found is exactly the one needed to define
the tangent space. Indeed, we got independent conditions in the tangent space of the
variety G(k,P(S ⊗H0(U∨)∗)) and the difference

(k + 1)(s(n + 1)− 1− k)− (s− 1)(nk + n+ k) = s− 1 + (k + 1)(n − k),

which is exactly the dimension of the generalized Segre variety. We are ready to give a good
candidate for the tangent space of the Segre at one point, which will be a set satisfying all
the conditions we have listed. We are going now to prove that the equations obtained are
sufficient to define the required tangent space.

The notation used is the following: a jumping pair Λ is equal to a tensor product
s0 ⊗ Γ ⊂ S∗ ⊗H0(U∨) = Hom(H0(U∨)∗, S∗). We can suppose that, once we fixed Λ, for
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every choice of a basis v1, . . . , vs of S∗ we can take v1 = s0. Such vector represents the
image of all the rank 1 elements in Λ, seen as morphism from H0(U∨)∗ to S∗.

Step 2 To prove that our candidate, given by all the linear forms extracted, is actually
the tangent space we need to compute its dimension. In order to do so we will compute
instead the dimension of

T̃ :=
{
ψ ∈ Hom

(
Λ,Hom(H0(U∨)∗, S∗)

)
| ∀ ϕ ∈ Λ, (ψ(ϕ))(ker ϕ) ⊂< v1 >

and ∃ A ⊃< v1 > with dimA = 2 such that Imψ(ϕ) ⊂ A}

Observe that the vector space A is the same for each ϕ ∈ Λ, which guarantees that the set
T̃ is itself a vector space seen as a vector subspace of Hom

(
Λ,Hom(H0(U∨)∗, S∗)

)
.

The technique we will use to calculate the dimension it is to consider proper subsets of
T̃ , whose dimension is known, and then study the cokernel given by the exact sequence
induced by the inclusion.
Let us consider the proper subspace of T̃ given by

K =
{
ψ ∈ Hom(Λ,Hom(H0(U∨)∗, < v1 >))

}

with of course dimK = (k + 1)(n + 1). We obtain the following commutative diagram

0 // K � � // T̃

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘

// P //
� _

��

0

Hom
(

Λ,Hom
(

H0(U∨)∗, S∗

<v1>

))

where P ⊂ Hom
(

Λ,Hom
(

H0(U∨)∗, S∗

<v1>

))

represents the subset of morphisms whose
images are all rank 1 elements of the set of morphisms
Hom

(

H0(U∨)∗, S∗

<v1>

)

.
Observe that P is also a vector space, being the quotient of two vector spaces. Our next
goal is to compute the dimension of P .
Consider a family of morphisms gi : S∗ −→ S∗ such that gi(v1) = vi, for i = 2, . . . , s and
define s − 1 morphisms ψi(ϕ) := gi ◦ ϕ. We get then the commutative diagrams, one for
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each i,

H0(U∨)∗
ϕ //

≃
��

< v1 >⊂ S∗

gi

��
H0(U∨)∗

ψi(ϕ) //

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

< vi >⊂ S∗

π

��
< v̄i >⊂

S∗

<v1>

where π simply represents the quotient of S∗ by the subspace < v1 >. Observe that all
the images of the elements gi(v1) through the projection π are independent by definition.
In this way we have constructed the maps ψ2, . . . , ψs and we want to prove they form a
basis for P .
Let us fix a basis u1, . . . , un+1 for H0(U∨)∗ and let us build a basis ϕ1, . . . , ϕk+1 of Λ with
the property that ϕi(ui) = v1 and ϕi(uj) = 0, for every i from 1 to k+1 and every j from
1 to n+ 1, with j 6= i.
Let us take the generic element ψ ∈ P and check how it behaves when applied to the
elements of the chosen basis of Λ. Consider two such elements ϕi and ϕj , with
i 6= j. By hypothesis we know that (ψ(ϕi))(H

0(U∨)∗) ⊂< ṽi > with ṽi ∈
V

<v1>
and also

(ψ(ϕj))(H
0(U∨)∗) ⊂< ṽj > with ṽj ∈

V
<v1>

. Furthermore we know that, considering the
element given by the sum ϕi+ϕj , we have (ψ(ϕi+ϕj))(H

0(U∨)∗) ⊂< ṽ > with ṽ ∈ V
<v1>

,
because the morphism ψ(ϕi + ϕj) must have rank one and therefore exists a ṽ that gives
us the last inclusion. We repeat this process for every pair of independent elements in
the basis of Λ, so that we can state that we must get the same vector ṽ ∈ V

<v1>
for every

ϕ ∈ Λ, i.e. ((ψ(ϕ))(H0(U∨)∗) ⊂< ṽ >.
We have that ṽ = λ2ṽ2 + λ3ṽ3 + . . . λsṽs where λi ∈ K and ṽi, for i = 2, . . . , s, are the
vectors found defining the maps ψi and moreover the previous equivalence is true for every
u ∈ H0(U∨)∗ and for every φ ∈ Λ, which guarantees us that ψ = λ2ψ2 + . . . + λsψs for
every ψ ∈ P .
We have thus proved that we have a basis for P , whose morphisms ψp have the following
behavior: we know that (ψp(ϕi))(kerϕi) ⊂< v1 > for every i = 1, . . . , k + 1 and to every
morphism we can associate a vector vp with π(vp) = ṽp ∈ S∗

<v1>
which is not zero, such

that (ψp(ϕi))(ui) ⊂< vp >. Considering the sum of two morphisms and its kernel

ker(ϕi + ϕj) =< ui − uj , {uk̄}k̄ 6=i,j >
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we also get (ψp(ϕi+ϕj))(ker(ϕi+ϕj)) ⊂< v1 >; so we can extend such properties to every
element of Λ.
To conclude we have proved that dimP = s− 1, hence

dim T̃ = (k + 1)(n + 1) + s− 1.

The remaining part to prove is compute the dimension of the tangent, but we can easily
get that from the following commutative diagram

0 0

TΛ Seg

OO

� � // Hom
(

Λ, Hom(H0(U∨)∗,S∗)
Λ

)

OO

T̃

OO

� � // Hom(Λ,Hom(H0(U∨)∗, S∗))

OO

End(Λ)

OO

= // End(Λ)

OO

0

OO

0

OO

where, rewriting the conditions in an equivalent way, we can describe

TΛ Seg =

{

ψ ∈ Hom

(

Λ,
Hom(H0(U∨)∗, S∗)

Λ

)

|
(ψ(ϕi))(kerϕi) ⊂< v1 >

(ψ(ϕi))(ui) ≡ (ψ(ϕj))(uj) mod v1

}

and of course

T̃ =

{

ψ ∈ Hom
(
Λ,Hom(H0(U∨)∗, S∗)

)
|

(ψ(ϕi))(kerϕi) ⊂< v1 >

(ψ(ϕi))(ui) ≡ (ψ(ϕj))(uj) mod v1

}

We get that dimTΛ Seg = dim T̃−dimEnd(Λ) = (k+1)(n−k)+s−1 = dim(P(S)×G(k, n));
so it is actually the tangent space we were looking for and this completes the proof.
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3.4 The technical lemmas and the bound

As we mentioned before our goal is to find now an upper bound for the dimension of the
tangent space of J̃(F ) in a point representing a jumping pair. In order to do so we will
use the description of the tangent we have given, seeing its elements as morphisms. The
bound we are looking for will be the consequence of a more general result of linear algebra
that we will be able to apply to our particular case.
Let us recall the notation fixed in Subsection 2.2.1, which we will use also in this section.
Moreover, we will try to recover the same one we fixed in the proof of the description of
the tangent space, in order to underline the correspondences between the general result
and our setting.
Notation. Let U be a vector space of dimension r > k and V be a vector space of
dimension s. Let v1, . . . , vs be a basis for V . Consider the vector space

Λ :=






ϕ ∈ Hom(U, V )| Imϕ ⊂< v1 > and dim




⋂

ϕ∈Λ

kerϕ



 = n− k






.

We are able to construct a basis u1, . . . , ur of U and a basis ϕ1, . . . , ϕk+1 of Λ in order to
have

kerϕi =< u1, . . . , ui−1, ui+1, . . . , ur >=: U ′
i ,

i.e. its kernel is the span of all vectors except ui.
Recall that we denoted by W ⊂ Hom(U, V ) the vector subspace characterized by the
following property, that we called the property Pk: for every k + 1 independent vectors
ũ1, . . . , ũk+1 ∈ U and for every ṽ1, . . . , ṽk+1 ∈ V there exists an element f ∈ W such that
f(ũj) = ṽj, for every j = 1, . . . , k + 1.
The main result we need to prove will be accomplished by two steps, each one stated as a
technical lemma. Let us start with the first one.

Lemma 3.4.1. Let U, V,Λ and W be defined as before with the basis previously constructed.

Let us consider

Γ̃ := {ψ ∈ Hom(Λ,W ) | (ψ(ϕi))(kerϕi) ⊂< v1 >, i = 1, . . . , k + 1} ,

then dim Γ̃ ≤ (k + 1)(t− (k + 1)(s + r − k − 3)) where we denote by t = dimW .

Proof. Let us fix an element ϕi of the basis of Λ and check out how many independent
morphisms, to choose as its image, we can find. We will associate such possible morphisms
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as the image of ϕi and choosing the identically zero morphism as the image of the other
morphisms of the basis, we can construct independent elements of Hom(Λ,W ) which are
not in Γ̃ and independent modulo Γ̃. Then we will fix, one at a time, each element of the
basis of Λ and we will repeat such procedure. This technique allows us to give an upper
bound for the dimension of Γ̃.
Remember that at the moment we have fixed one element ϕi and we are looking for all its
possible images. Let us take ũ1, . . . , ũk+1 independent elements of kerϕi and let us build

ϕ̃ij

{

ũi 7→ vj
ũl 7→ 0

for i, l = 1, . . . , k + 1; j = 2, . . . , s and l 6= i.

By counting them, we observe we have constructed (k+1)(s− 1) independent morphisms
modulo Γ̃. Let us denote the family of morphisms we have found as

Ψij :=

{

ϕi 7→ ϕ̃ij
ϕl 7→ 0

for i, l = 1, . . . , k + 1, j = 2, . . . , s, l 6= i.

We would now like to construct new independent morphisms by using the rest of the
elements in the kernel of ϕi other that the k + 1 independent chosen vectors as we have
done until now. This is why we now want to add a further vector ũk+2, belonging to kerϕi
and independent from the ones we have fixed before. By the condition that defines the set
W we are allowed to fix the image of k + 1 independent vectors at a time; notice that we
are dealing with k + 2 independent vectors and this means we are actually considering as
ambient space the vectorial Grassmannian G(k + 1, k + 2).
Suppose we have (k+1)(s−1)+p independent morphisms modulo Γ̃ and notice that such
morphisms must belong to Hom(U, V

<v1>
). Working with (k + 1)-dimensional subspaces

means that for every Λ ∈ G(k+1, k+2) we choose, we want to restrict the given morphisms
to the vector space spanned by Λ. Such restriction of morphism can be represented by
considering the fibers of the vector bundle over the Grassmannian

Hom

(

U ,
V

< v1 >
⊗OG

)

≃
V

< v1 >
⊗ U∨,

where U and OG respectively denote, as usual, the universal and the trivial bundle on the
Grassmannian. Asking for more independent morphisms in W , to take as image of ϕi, is
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equivalent to asking that the following bundle morphism does not have maximal rank

O
(k+1)(s−1)+p
G

//

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

V
<v1>

⊗ U∨

ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥

G(k + 1, k + 2)

Using Porteous formula we get that the expected codimension of the points which give us
non maximal rank, is p + 1, so as long as p + 1 ≤ k + 1 we can always find at least one
independent morphism.
In the general step, suppose that we have already found (k+1)(s−1)+(k+1)q independent
morphisms modulo Γ̃, with q ≤ r−k−2; this means that we have already fixed independent
vectors ũ1, . . . , ũk+1, ũk+2, . . . , ũq+k+1 in kerϕi; subsequently, we add a new independent
vector ũq+k+2 and consider the generalization of the diagram we have seen before. The
ambient space will now be G(k + 1, q + k + 2) because, as we explained before, we can
control k + 1 independent vectors among the q + k + 2 we are considering.

O
(k+1)(s−1)+(k+1)q+p
G

//

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

V
<v1>

⊗ U∨

vv♠♠♠
♠♠♠

♠♠
♠♠♠

♠♠

G(k + 1, q + k + 2)

By Porteous formula, if we consider the points for which the restriction of the morphism
between vector bundles has no maximal rank, then their expected codimension will be
(k+1)q+ p+1 in an ambient space of dimension dimG(k+1, q+ k+2) = (k+1)(q+1).
Like in the first case, as long as p+ 1 ≤ k + 1, we can add a new independent morphism;
moreover we can repeat this process until we find enough independent vectors that span
kerϕi. Let us denote by ϕ̂i,q,p the independent morphism we obtain when we have already
fixed q elements in kerϕi and we have already found p − 1 new morphisms for this step.
Notice that by construction, at each step there exists a vector ūiqp, not belonging to the
span 〈ũ1, . . . , ũk+1, ũk+2, . . . , ũq−1〉, such that ϕ̂iqp(ūiqp) is linearly independent, modulo
v1, with respect to the set

{ϕ̂ihk(ūiqp), ϕ̃ij(ūiqp) | i = 1, . . . , k + 1;h ≤ q; k = 1, . . . , k + 1 and k < p if h = q} .
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Using the morphisms obtained we are able to construct a family

∆iqs :=

{

ϕi 7→ ϕ̂iqp
ϕl 7→ 0

for every
i, l = 1, . . . , k + 1 with l 6= i,

q = k + 2, . . . , r − 1 and p = 1, . . . , k + 1.

Observe that we have found (k+1)(s−1)+(k+1)(r−k−2) independent images for each
fixed ϕi element of the basis of Λ and then we have decided to send the other elements of
the basis to the zero morphism. Repeating such procedure for each fixed element ϕi, with
i from 1 to k + 1, we have obtained

(k + 1)2(r + s− k − 3)

independent morphisms modulo Γ̃. Indeed, consider their linear combination

k+1∑

i=1

s∑

j=2

λijΨij +
k+1∑

i=1

r−1∑

q=k+2

k+1∑

p=1

µiqp∆iqp = f,

with f ∈ Γ̃, and apply it to a fixed element ϕi of the basis of Λ, in order to get

s∑

j=2

λijϕ̃ij +
r−1∑

q=k+2

k+1∑

p=1

µiqpϕ̂iqp = f(ϕi).

Notice that, by construction, applying such combination to the vectors ūiqp, starting from
the top values of the subindex p and q, makes all coefficients of type µiqp vanish. That
is because the image of the corresponding morphism was independent modulo v1 to the
images of the previous ones and (f(ϕ))(ūiqp) ∈< v1 >. We are left with the combination

s∑

j=2

λijϕ̃ij = f(ϕi)

which, applied to element ũi, gives us

s∑

j=2

λijvj = (f(ϕi))(ũi) ⊂< v1 >,

hence λij = 0. Fixing each element ϕi, we manage to vanish all the coefficients in the
linear combination, hence we have independency modulo Γ̃.
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We can thus state that

dim Γ̃ ≤ (k + 1)(t− (k + 1)(r + s− k − 3)),

which concludes the proof.

Observe that the bound we just proved only involves one of the two conditions listed
in 3.2 that we found in the definition the tangent space given in Theorem 3.3.2. That is
why we will now demonstrate a second result that will also involve the second condition.

Lemma 3.4.2. Let U, V,Λ and W defined as before and let Γ̃ be the vector subspace defined

in Lemma 3.4.1. Let us consider

Γ =
{

ψ ∈ Γ̃|(ψ(ϕi))(ui) ≡ (ψ(ϕj))(uj) mod v1, with i 6= j from 1 to k + 1
}

,

then dimΓ ≤ dim Γ̃− k(k + 1).

Proof. We will prove this lemma with the same idea we used to prove the previous one, i.e.
we will look for morphisms in Γ̃ that are independent modulo Γ. Consider a fixed element
ϕi of the basis of Λ and the following commutative diagram

0 // kerα //W

��

α // Hom
(

kerϕi,
V

<v1>

)

��

0 // ker β
?�

OO

//W
β // Hom

(

U, V
<v1>

)

Notice that the number of the morphisms we are looking for is equal to the number of
independent morphisms of kerα

ker β , so we must compute

dim(kerα)− dim(ker β) = dim(Imβ)− dim(Imα).

For our vector space V of dimension s, let us consider a quotient

Q =
V

< v1, v̄2, . . . , v̄s−k−1 >

in order to have dimQ = k + 1 and construct elements {ṽs−k, . . . , ṽs} which are linearly
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independent modulo < v1, v̄2, . . . , v̄s−k−1 >; then take a look at the composition

W
β //

f

;;
Hom(U, V

<v1>
)

π // Hom(U,Q).

By Lemma 2.2.4 we know that f is surjective, so if we consider the k + 1 independent
morphisms

{δj}
k+1
j=1 ⊂ Hom

(

U,
V

< v1 >

)

with δj

(
U

kerϕi

)

= ṽs−k−1+j,

we have that the set {π(δj)}
k+1
j=1 is also independent considered in Hom(U,Q) and each

morphism of the set must have at least one preimage in W , independent among them
modulo Imα by construction. Observe that we found at least k+1 independent morphisms
for the fixed element ϕi. If we use the explained technique for each ϕi fixed, with
i = 2, . . . , k + 1, while we always send the element ϕ1 to the zero morphism, in order to
guarantee the independency modulo Γ, we get k(k + 1) morphisms that belong to Γ̃ and
that are independent modulo Γ. We can thus say that

dimΓ ≤ dim Γ̃− k(k + 1)

which concludes the proof.

Having proved this technical results we are finally ready to give the requested upper
bound for the dimension of the tangent space.

Theorem 3.4.3. Let F be a Steiner bundle on G(k, n) defined by the injective map

S ⊗ U −→ T ⊗OG and let Λ be a jumping pair for F , i.e. Λ ∈ J̃(F ), then the dimension

of the tangent space of the jumping locus variety at the point Λ is bounded by

dimTΛJ̃(F ) ≤ (k + 1)(t− (k + 1)(s + n− k − 1)− k),

where as usual s = dimS and t = dimT .

Proof. Notice that the geometrical description of the tangent space given in the expression
3.2 is a set whose conditions satisfy exactly the ones requested in the hypothesis of Lemma
3.4.2. Applying the lemma, with the values set by the bundle, gives us the result.



Chapter 4

The classification of Steiner bundles

with jumping locus of maximal

dimension

In this chapter we will give a complete classification of Steiner bundles whose jumping
locus has maximal dimension. In fact, we will manage to describe them as Schwarzenberger
bundles associated to a triple (X,L,M), generalizing the result given in [Arr10a]. Such
classification will give a positive answer to Question A in this particular case.

4.1 The case s = k + 2

In Theorem 2.3.1 we have seen that every (s, t)-Steiner bundle with s ≤ k+1 is essentially
trivial. In this section we classify the first non trivial case, when s = k + 2.

Remark 4.1.1. Recall that Lemma 2.2.3 and Lemma 2.2.5 implied that every Steiner
bundle F on G(k, n) is equivalent to a Steiner bundle F̃ on G(k,P(S)).

Let us consider the case s = k + 2, which, thanks to the previous observation, we are
able to classify completely.

Theorem 4.1.2. Let F be a reduced Steiner bundle over G(k, n), with dimS = k+2, then

F can be seen as the Schwarzenberger bundle given by the triple (Pk+1,OPk+1(1), E∨(−1)),

where we identify P(S) = Pk+1 and E is the vector bundle defined as the kernel of the

73
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surjective morphism

H0(U∨)⊗OP(S)(−1) −→
S∗ ⊗H0(U∨)

T ∗
⊗OP(S).

Observe that the difference between the two bounds given in the inequality (3.1) and
Theorem 3.4.3 is equal to (s−k−2)(nk−k2+n−k−1); so, in this case, J̃(F ) is a smooth
complete intersection of dimension

dim J̃(F ) = (k + 1)(t− (k + 1)(n + 1)− k).

Proof. Consider the following commutative diagram, observing that
OG(k,P(S∗) ≃ OP(S),

0

��

0

��
0 // E //

��

T ∗ ⊗OP(S)
//

��

TP(S)(−1)⊗H0(U∨) // 0

0 // H0(U∨)⊗OP(S)(−1) //

��

S∗ ⊗H0(U∨)⊗OP(S)
//

��

TP(S)(−1)⊗H0(U∨) // 0

S∗⊗H0(U∨)
T ∗ ⊗OP(S)

��

S∗⊗H0(U∨)
T ∗ ⊗OP(S)

��
0 0

that gives us the requested triple and thus the requested description. The classification is
complete due to Remark 4.1.1.

Some remarks: the interpretation of the fiber of E, for a point s0 ∈ P(S), is the vector
space

Es0 =
{(
< s0 > ⊗H0(U∨)

)
∩ T ∗

}
,

that is the set we need to study in order to find jumping pairs. In fact we have that

J̃(F ) = G(k + 1, E)

seen as a Grassmann bundle (see Subsection 1.1.1).
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Let us observe also that E∨(−1) is a Steiner bundle on P(S) given by the resolution

0 −→
S∗ ⊗H0(U∨)

T ∗
⊗OP(S)(−1) −→ H0(U∨)⊗OP(S) −→ E∨(−1) −→ 0,

so basically, Lemma 2.2.3 and Lemma 2.2.5 tell us that a Steiner bundle over G(k, n)

is equivalent to a Steiner bundle on P(S), with the equivalence expressed above. In the
particular case k = 0 we have E∨(−1) =

⊕t−s+n−1
i=1 OP1(ai) with degrees ai ≥ 1.

We would like to show a geometrical interpretation of this classification and we will do so
in the particular case n = k + 1.
We know that it is possible to take J̃(F ) ⊂ Pk+1 × G(k, k + 1)

ν
→֒ G(k, (k + 2)2 − 1).

Considering the Segre embedding Pk+1×Pk+1 →֒ P(k+2)2−1 we are able to see the image of
the generalized Segre embedding ν as the k+1 family (given by the first projective space) of
(k+1)-linear spaces (subvarieties of the second projective space). In order to get the variety
J̃(F ) we have to cut such family with the hyperplane P(T0) and we observe that, according
to the definition of Steiner bundle, the only non trivial case gives us dimT0 = (k+2)2− 1.
We obtain that every linear space of the family is always cut by P(T0) to a unique linear
space of dimension at least k. This gives us an isomorphism J̃(F ) ≃ P(S) ≃ Pk+1. Observe
that the construction taken can be described as

J̃(F ) ⊂ Pk+1 × (Pk+1)∗

π1

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

π2

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚

O
Pk+1(1)⊠T(Pk+1)∗

(−1)
// G(k, (k + 2)2 − 1)

Pk+1

≃

��

(Pk+1)∗

≃
��

P(S) G(k,P(H0(U∨)))

moreover, we can prove that also π2 is an isomorphism.
Indeed, the morphism OPk+1(1)⊠T(Pk+1)∗(−1) restricted to the fiber of a pointH ∈ (Pk+1)∗

is given by Ok+1
Pk+1(1), with ck+1(O

k+1
Pk+1(1)) = 1, hence Proposition 1.1.21 ensures us that

the fiber is made by just one point and we have an isomorphism.
Since the linear space cut has dimension exactly k, we have that J̃(F ) is isomorphic to
Pk+1 and F is a Schwarzenberger bundle given by the triple (Pk+1,OPk+1(1), TPk+1(−1)).
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4.2 The induction tecnique

Now that we have studied and understood the particular case s = k + 2, we are ready to
explain the induction process that will allow us to classify Steiner bundles with maximal
jumping locus.
The idea is that, fixed a jumping pair s0 ⊗ Γ ∈ J̃(F ), where F is a reduced (s, t)-Steiner
bundle over G(k, n), we can induce a further Steiner bundle F ′: a vector bundle, still over
G(k, n), which may not be reduced, that is of (s − 1, t − k − 1)-type. Observing that
this type of induction lowers the parameter s, we may think that the right technique of
classification will be to apply induction till arriving at the case s = k + 2, which we fully
know, in order to get information about the original bundle through the induction steps
we have processed.
Let us consider the morphism ϕ : T ∗ −→ S∗ ⊗H0(U∨) which defines the Steiner bundle
F and let us fix a jumping pair so ⊗ Γ ∈ J̃(F ), with s0 ⊗ Γ = ϕ(Λ). We can induce the
commutative diagram

T ∗ � � ϕ //

p̃r
����

S∗ ⊗H0(U∨)

pr⊗id
����

T ∗

Λ

ϕ′
// S∗

<s0>
⊗H0(U∨)

(4.1)

First of all ϕ′ defines a Steiner bundle F ′ of type (s − 1, t − k − 1), because by the com-
mutativity of the above diagram, the map ϕ′ satisfies the Steiner properties. Nevertheless,
we must be careful because the bundle F ′ may not be reduced.
Remember that we had two canonical projections: the map π1 : J̃(F ) → P(S), with
π1(J̃(F )) = Σ(F ), and the map π2 : J̃(F ) → G(k,P(H0(U∨)∗)), with π2(J̃(F )) = J(F ).

Proposition 4.2.1. Let F be a Steiner bundle over G(k, n) and F ′ the one induced as

above by fixing s0 ⊗ Γ jumping pair, then

(i) J(F ) ⊂ J(F ′) ∪ π2(π
−1
1 (s0));

(ii) considering the set of all jumping pairs corresponding to the fixed s0, we denote by

Ls0 = P
(
(s0 ⊗H0(U∨) ∩ T ∗)∗

)
, we obtain a projection

pr(s0,Γ) : G(k,P(T )) −→ G(k,P(T ′
0))

where (T ′
0)

∗ denotes the image of the map ϕ′ and whose center of projection is
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G(k,Ls0). Moreover we have a natural projection

prs0 : P(S) −→ P

((
S∗

< s0 >

)∗)

.

and for every jumping pair (s, Γ̄) with s 6= s0 we have that

pr(s0,Γ)(s, Γ̄) =
(
prs0(s), Γ̄

)
;

(iii) pr(s0,Γ)(J̃) ⊂ J̃(F ′
0) where J̃ is an irreducible component of J̃(F ) not in π−1

1 (s0);

(iv) prs0(Σ(F )) ⊂ Σ(F ′
0) if Σ(F ) 6= {s0} or if the generic component is different from

{s0}.

Proof. Consider an element s ⊗ Γ̄ ∈ J̃(F ), if s 6= s0 then prs0(s) ⊗ Γ̃ ∈ J̃(F ′), hence
Γ̄ ∈ J(F ′); if s = s0 then obviously Γ̄ ∈ π2(π

−1
1 (s0)), so (i) is proved. To prove (ii) notice

that the kernel of the map

(pr ⊗ id) ◦ ϕ : T ∗ −→
S∗

< s0 >
⊗H0(U∨),

described in diagram 4.1, is exactly π−1
1 (s0), so its projectivization will be L0, that repre-

sents the center of the given projection. Parts (iii) and (iv) come automatically from the
commutativity of diagram 4.1.

The next proposition shows us how the property of having a jumping locus of maximal
dimension is maintained during the induction and explains the relations between the sets
Σ(F ) and J(F ) and their respective sets Σ(F ′) and J(F ′) in the induced bundle.

Proposition 4.2.2. Let F be a reduced Steiner bundle over G(k, n) defined by the mor-

phism ϕ and let J̃(F ) have maximal dimension. Let F ′ be the bundle induced by F , once

fixed the jumping pair s0 ⊗ Γ ∈ J̃(F ), and let F ′
0 be its reduced summand. Let J̃0 be an

irreducible component of J̃(F ) of maximal dimension such that s0 ⊗ Γ ∈ J̃0, then

(i) the image of both J̃0 and J̃(F ) under pr(s0,Γ) has dimension

(k + 1)(t− (k + 1)(s + n− k − 1)− k)− (k + 1)(l0 − k),

where l0 = dimL0.

(ii) dim J̃(F ′
0) = (k + 1)(t− (k + 1)(s + n− k − 1)− k)− (k + 1)(l0 − k);
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(iii) If J̃(F ′
0) is irreducible then

a) J̃(F ′
0) = pr(s0,Γ)(J̃(F )),

b) J̃(F ) is irreducible,

c) J(F ) = J(F ′),

d) Σ(F ′) = prs0(Σ(F )), so it is a projection from an inner point.

Proof. From Theorem 3.4.3 we know that

dim pr(s0,Γ)(J̃0) ≤ (k + 1)(t′0 − (k + 1)(s + n− k − 2)− k);

if we substitute t′0 = t − l0 − 1, which we know to be true by Proposition 4.2.1 (ii), we
obtain that

dim pr(s0,Γ)(J̃0) ≤ (k + 1)(t− (k + 1)(s + n− k − 1)− k)− (k + 1)(l0 − k).

We need to check that the dimension always reaches the top value. Let us suppose that
this never occurs, i.e.

dim pr(s0,Γ)(J̃0) ≤ (k + 1)(t− (k + 1)(s + n− k − 1)− k)− (k + 1)(l0 − k)− 1.

If this happens, then it means that J̃(F ) must be a cone, because the dimension of the
image of the projection is smaller than the dimension of J̃(F ) minus the dimension of the
center of projection. We know that it is smooth, so it must be a projective space and hence
it is contained in one of the fibers of the general Segre variety. This leads to contradiction
because we cannot be either in π−1

1 (s0) or in π−1
2 (Γ); this proves part (i).

Part (ii) is proved considering the combination of the fact that J̃0 ⊂ J̃(F ′
0) and Theorem

3.4.3.
Part (iii-a) comes directly by computing dimensions. To prove part b) suppose there exists
another component J̃1 different from J̃0 and fix an element s1 ⊗ Γ1 ∈ J̃1\J̃0. There must
exist an element s̄⊗ Γ1 ∈ J̃0 that has the same projection as the element fixed, so there is
a line L connecting the two points that meets in π−1

1 (s0); such line must be contained in
J̃(F ). By hypothesis we know that L 6⊂ J̃0 so it must belong to another component, this
would tell us that the point s̄ ⊗ Γ1 is singular, which is a contradiction. Part (iii-c) and
(iii-d) come automatically by irreducibility and the commutativity of diagram 4.1.

Two consequences of what we just proved are
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• Σ(F ) is a variety with minimal degree, i.e. it can be a rational normal scroll, the
Veronese surface, a projective space or a cone over the previous three varieties;

• J(F ) = J(F̄ ′
0) where by F̄ ′

0 we denote the reduced summand of the induced bundle
at the step s = k + 2.

4.3 The classification of bundles with maximal dimensional

locus

This final section contains the statement and the proof of our main result, i.e. the theorem
that classifies the Steiner bundles whose jumping locus is maximal. Notice that such
result includes the classification given by Arrondo in [Arr10a] (see Theorem 2.1.8), even if
proved with a different technique. Observe also that all the bundles in the classification
are Schwarzenberger, thus providing in this case a positive answer to Question A.

Theorem 4.3.1. Let F be a reduced Steiner bundle on G(k, n) for which dim J̃(F ) is

maximal; then we are in one of the following cases:

(i) F is the Schwarzenberger bundle given by the triple (P1,OP1(s − 1),OP1(n)). In this

case k = 0 and t = n+ s.

(ii) F is the Schwarzenberger bundle given by the triple (P1, E(−1),OP1(1)), where

E = ⊕t−s
i=1OP1(ai) with ai ≥ 1. In this case k = 0 and n = 1.

(iii) F is the Schwarzenberger bundle given by the triple (Pk+1,OPk+1(1), E∨(−1)), where

E is a Steiner bundle defined by the following exact sequence

0 −→ E −→ H0(U∨)⊗OP(S)(−1) −→
S∗ ⊗H0(U∨)

T ∗
⊗OP(S) −→ 0.

In this case s = k + 2.

(iv) F is the Schwarzenberger bundle given by the triple (P2,OP2(1),OP2(1)). In this case

k = 0, n = 2, s = 3 and t = 6.

Recall the induction construction we showed in the previous section, that gives us the
following commutative diagram, essential for the classification. During this section we will
consider all of our sets as projective varieties. Let F be a Steiner bundle over G(k, n), then
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we have
J̃(F )

π2

##●
●●

●●
●●

●●
π1

{{✇✇
✇✇
✇✇
✇✇
✇

��✤
✤

✤

Σ(F )

prl

��✤
✤

✤
J̃(F ′

0)
π′
2

##❍
❍❍

❍❍
❍❍

❍❍
π′
1

{{✈✈
✈✈
✈✈
✈✈
✈

J(F )

prr

Σ(F ′
0) J(F ′

0)

(4.2)

where as usual F ′
0 denotes the reduced summand of the induced bundle obtained fixing a

jumping pair Λ = s0 ⊗ Γ.
Notice that dimΣ(F ) = dim J̃(F ′

0); indeed by Proposition 4.2.2 we know that

dim J̃(F ′
0) = dim J̃(F )− (k + 1)(l0 − k),

where l0 = dimP(((< s0 > ⊗H0(U∨))∩T ∗)∗) for s0 generic point for Σ(F ), moreover also

dimΣ(F ) = dim J̃(F )− (k + 1)(l0 − k)

because we know π1 to be surjective and (k + 1)(l0 − k) is the dimension of the generic
fiber.
We also have that dimΣ(F ′

0) ≤ dimΣ(F ) ≤ dimΣ(F ′
0) + 1 because we proved that prl is

a projection from an inner point.
Combining these two relations, we get that the fiber of the projection
π′1 : J̃(F ′

0) −→ Σ(F ′
0) has dimension at most one, but we know that the dimension of the

fiber of such projection for a Steiner bundle has dimension either zero or is greater equal
than k + 1. This means that we need to divide the two cases k = 0 and k ≥ 1.
A further division is given focusing on J̃(F ) and Σ(F ) and observe that we have two
possibilities: dimΣ(F ) = dim J̃(F ) or dimΣ(F ) < dim J̃(F ). Let us study the several
cases we have pointed out. Each case will give us a Schwarzenberger bundle, because of
Theorem 3.2.4.

The case of the projective space k = 0

Case dimΣ(F ) < dim J̃(F )

Supposing this inequality means that for every s0 in Σ(F ) we have dim(π−1
1 (s0)) ≥ 1. Let

us suppose that dimΣ(F ) = dimΣ(F ′
0), which implies that J̃(F ′

0) is birational to Σ(F ′
0).

In this setting fix an element s̄ ∈ Σ(F ) such that 0 6= prl(s̄) ∈ Σ(F ′
0).
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By hypothesis there exist at least two points s̄⊗v1 and s̄⊗v2 which represent independent
jumping pairs, so v1, v2 ∈ J(F ). By Proposition 4.2.1 (ii) we get the commutativity of the
projections, so by one side we know that prl(s̄)⊗ v1 and prl(s̄) ⊗ v2 belong to J̃(F ′

0) and
they are independent; this leads to contradiction because from the other side we know that
the generic point prl(s0) ∈ Σ(F ′

0) has only one preimage.
Hence we get that it must be dimΣ(F ) = dimΣ(F ′

0) + 1, which means that we are still in
the case dim J̃(F ′

0) > dimΣ(F ′
0) and we can iterate the induction until the step s = 1 that

gives us Σ = P1. We discovered that if the fiber of π1 has positive dimension, then it is
also true for the induced bundle; this allows us to state that if dim J̃(F ) > dimΣ(F ) then
Σ(F ) = P(S). Indeed, we have seen that the left projections, from an inner point, drop at
each step the dimension by one and leave unchanged the degree.
We would like to exclude the case when the dimension of the fiber is greater or equal than
two; in order to do so, we have the following theorem.

Theorem 4.3.2. If dim(π−1
1 (s0)) ≥ 2 for every s0 ∈ ΣF , then J̃(F ) ≃ P(S)⊗ Pn.

Proof. Notice that, looking at the diagram (4.2), the induced bundle F ′
0 will give us generic

fiber, of the morphism π′1, of dimension one, so the only possible case not to get a contra-
diction, because of the commutativity of the diagram, is the trivial one.

Case dimΣ(F ) = dim J̃(F )

In this case we have that J̃(F ) is birational to J̃(F ′
0). We now need to distinguish the case

where the birationality is conserved throughout the induction or else if we have one step
where dimΣ(F ) = dimΣ(F ′

0) + 1, when we can recover the case we studied before.
If the birationality is conserved, then we can arrive at the step s = 1, where we know that
Σ = P1, so all the left projections are isomorphisms, because they are birational maps
between rational normal curves, and we get that Σ(F ) ⊂ P(S) is nothing more that the
rational normal curve. This allows us to state that in this situation is enough to study the
step s = 1 and we obtain the triple (P1,OP1(s− 1),OP1(n)).
For what we have just proved, we can, without loss of generality, consider the situation
where we start with J̃(F ) birational to Σ(F ) and the birationality is broken in the first
step of the induction; we already know that the fiber will be of positive dimension in every
further step. Let us take a look at the following diagram that explains better in what
setting we are (close to the varieties we will see their dimension, close to the arrows we
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will denote the birationality or the positivity of the dimension of the fiber).

J̃(F )s−1

bir

zz✈✈
✈✈
✈✈
✈✈
✈

bir
��✤
✤

✤

step s Ps−1

��✤
✤

✤ J̃(F ′
0)

+1

zz✉✉
✉✉
✉✉
✉✉
✉

��✤
✤

✤

✤

✤

✤

✤

step s− 1 Ps−2

��✤
✤

✤

✤

✤

✤

✤

J̃(F̄ )

+1

zz✉✉
✉✉
✉✉
✉✉
✉✉

step 2 P1

Observe that dim J̃(F0) lowers by one at each step of the induction, so we have that
dim J̃(F̄ ) = 2 and this means that we can relate it, as the projectivization, to a rank 2
vector bundle OP1(a)⊕OP1(b) with a+ b = n+ 1, the degree of the variety.
If one between a or b is greater or equal than 2, then we could relate J̃(F ′

0) to a vector
bundle of type OP1(a) ⊕ OP1(b)

⊕

iOP1(ci), with ci ≥ 1. This would have allowed us to
find another projection of J̃(F ′

0) whose image is birational to J̃(F ′
0) itself, which, however,

it is not possible by our hyphotesis. Hence we get a = b = 1 which means that the only
possible case is given by n = 1, so J̃(F̄ ) is associated to OP1(1)⊕OP1(1) and J̃(F ′

0) must
be in correspondence with the bundle

⊕sOP1(1). The last birational step (and every other
eventual birational step) only increases by one the degree of one of the bundle summands.
At the end we always get a relation with a

⊕s
i=1OP1(ai), with ai ≥ 1 and we obtain the

triple defined in (ii). Notice that in order to have the situation we just described we need
to ask for a starting point s ≥ 4.
Let us deal now with the case s = 3. Such case is the one represented by the following
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diagram

J̃(F )

π2

##●
●●

●●
●●

●●

bir

}}④④
④④
④④
④④
④

bir
��✤
✤

✤

P2

prl

��✤
✤

✤ J̃(F ′
0)

π′
2

##●
●●

●●
●●

●●
π′
1

}}④④
④④
④④
④④
④

J(F )

prr

P1 J(F ′
0)

Recalling the classification of the case s = 2, we must have that J̃(F ′
0) is associated to the

bundle OP1(a)⊕OP1(b), with a+ b = n+1. Being J̃(F ′
0) a projection from an inner point

of J̃(F ), we get that J̃(F ) can either be a rational normal scroll or the Veronese surface,
in the special case a = 2 and b = 1 or viceversa, or the Hirzebruch surface. We exclude
this last case because its projection would give us the trivial case P1 × P1, which we have
already studied. We can also exclude a rational normal scroll, because being a minimal
surface, we would have that the projection on P2 given in the diagram is an isomorphism,
which of course leads to a contradiction. The only case left is the Veronese surface and we
can conclude that F is the Schwarzenberger bundle given by the triple (P2,OP2(1),OP2(1)).
Notice that, in this particular case, J̃(F ′

0) is a cubic surface in P4

The Grassmannian case k ≥ 1

Notice that in this case it is impossible to have dimΣ(F ) = dimΣ(F ′
0)+1, or else we would

obtain a morphism π′1 : J̃(F ′
0) −→ Σ(F ′

0) with 1-dimensional fiber. We already observed
that the fiber can have dimension 0 or else dimension greater or equal than k + 1 and we
would get a contradiction. So if we have dim J̃(F ) > dimΣ(F ) then the only possible case
is the trivial one, i.e. when J̃(F ) = P(S)×G(k, n).
On the other hand, if dim J̃(F ) = dimΣ(F ), this birational relation also remains in the
subsequent steps of the induction.
Let us focus now on the last step of the induction, i.e. considering the case s = k + 3

and s − 1 = k + 2 and let us suppose that both J̃(F ) is birational to Σ(F ) and J̃(F ′
0) is

birational to Σ(F ′
0). In order to do the induction we can manage to take a jumping pair
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s0 ⊗ Γ ∈ J̃(F ) that is the unique point in the fiber π−1
1 (s0). Recall the induction diagram

J̃(F )

π2

##●
●●

●●
●●

●●
π1

{{✇✇
✇✇
✇✇
✇✇
✇

prc
��✤
✤

✤

Σ(F )

prl

��✤
✤

✤
J̃(F ′

0)
π′
2

##❍
❍❍

❍❍
❍❍

❍❍
π′
1

{{✈✈
✈✈
✈✈
✈✈
✈

J(F )

prr

Σ(F ′
0) J(F ′

0)

(4.3)

In this case we have that J̃(F ′
0) ≃ Σ(F ′

0) ≃ Pk+1, because of the fact that, by the given
classification J̃(F ′

0) is the related to G(k + 1, E), where rkE = k + 1. We are in perfect
situation in order to state the following result.

Lemma 4.3.3. Let F be a Steiner bundle on G(k, n) and J̃(F ) its jumping locus. Suppose

that J̃(F ) is birational to Σ(F ), and, fixed a jumping pair s0⊗Γ0, consider the first step of

the induction (as described in diagram 4.3). If the morphism π′1 is an isomorphism, then

also π1 will be an isomorphism.

Proof. Notice that for the generic s0 ∈ Σ(F ), we have a unique associated jumping pair
s0⊗Γ0. Suppose that π1 is not an isomorphism, so we can find an element s1 ∈ Σ(F ), with
s1 6= s0, associated with two independent jumping pairs s1⊗Γ1 and s1⊗Γ2. A consequence
of this fact is that prc(s1⊗Γ1) = prl(s1)⊗Γ1 and prc(s1⊗Γ2) = prl(s1)⊗Γ2 are independent
jumping pairs belonging to J̃(F ′

0), associated with the non zero point prl(s1) ∈ Σ(F ′
0). This

leads to contradiction because we supposed π′1 to be an isomorphism.

Due to the lemma we get that J̃(F ) ≃ Σ(F ) and, by Proposition 4.2.2 and its conse-
quences, we know that Σ(F ) ≃ Q ⊂ Pk+2, where Q is the (k + 1)-dimensional quadric in
the projective space. Moreover we know that J(F ) = J(F ′

0) ≃ Pk+1, which tells us that
the morphism π′2 is generically finite and the generic fiber consists of one point. Notice
that π′2 is an isomorphism. Indeed, a morphism between two projective spaces of the same
dimension, in this case k + 1, is given by k + 1 homogeneous independent forms in the
coordinates of Pk+1. Moreover, being generically finite and generically of degree 1 implies
that the forms must be linear, hence we have an isomorphism.
Recalling diagram 4.3, which commutes, we are in the situation where π2 is a morphism,
π′2 is an isomorphism, while prc is not a morphism, because it is a projection from an inner
point. This leads to a contradiction and we obtain that the only possible case is the one
where s = k + 2, which we have already classified.
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I would like to observe that the contradiction could have also been obtained proving that
a birational morphism between the (k + 1)-dimensional quadric Q ⊂ Pk+2 and Pk+1 does
not exists, which implies that π2 cannot be defined. Indeed, if Q is a surface, we would
have an isomorphism because of the minimality of the surface, which is impossible. If
dimQ ≥ 3, then its Picard group is PicQ = Z[L], with L an ample divisor of the quadric.
Notice that each fiber of π2 is connected by Zariski’s Main Theorem (see [Har77], Corol-
lary 11.4), so if there exists a fiber of positive dimension, we must have a curve C ⊂ Q

which is contracted by π2. Taking an hyperplane section h ∈ |OPk+1(1)|, we consider its
pullback π∗2h = H = aL for some a ≥ 0. Observing that the intersection C.aL 6= 0, it is
a finite number of points, but (π2∗C).H = 0, we get a contradiction; so π2 must be an
isomorphism, which is impossible.

We have thus completed the classification, having considered all the possible cases.
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Resumen en castellano

Espacios de salto en fibrados de

Steiner

El problema de clasificación de fibrados vectoriales sobre variedades algebraicas ha sido
siempre de gran interés en la geometría algebraica. Dada su amplitud, este tema ha
sido siempre estudiado centrándose en familias de fibrados definidas por características
específicas. En este trabajo nos centraremos en el estudio de fibrados de Steiner y de
Schwarzenberger sobre la Grassmanniana.
En 1961 (véase [Sch61]), Schwarzenberger introdujo una familia de fibrados F de rango n
relacionada con los espacios secantes de las curvas racionales normales y definida por una
resolución del tipo

0 −→ Os
Pn(−1) −→ Ot

Pn −→ F −→ 0.

Desde entonces, muchos matemáticos han estudiado esta familia de fibrados, la mayoría
intentando construir una configuración geométrica en el espacio proyectivo para definir
el fibrado, y también intentando demostrar teoremas de tipo Torelli, i.e. recuperando la
configuración desde un fibrado dado. Por ejemplo, en 1993 (véase [DK93]), Dolgachev
and Kapranov, que fueron los primeros en denominar dichos fibrados Steiner, investigan
fibrados logarítmicos sobre el espacio proyectivo definidos por 1-formas diferenciales sobre
la unión de una colección de hiperplanos con normal crossing. En su artículo, definen las
familias de fibrados de Steiner y Schwarzenberger como subfamilias de la logarítmica, y
demuestran además resultados que relacionan las tres familias consideradas. En particular,
demuestran que un fibrado logarítmico puede ser descrito como Steiner o Schwarzenberger
bajo hipótesis especificas para la colección de hiperplanos.
En 2000 (véase [Val00b]), Vallès demuestra un resultado más general que caracteriza
cuándo un fibrado de Steiner F puede ser descrito como un fibrado de Schwarzenberger.
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Él se centra en una familia particular de hiperplanos {Hi}, que satisfacen la condición
h0(F∨

Hi
) 6= 0 y que llama hiperplanos inestables, y demuestra que dichos hiperplanos, vis-

tos como puntos en el espacio proyectivo dual, pertenecen siempre a una curva racional
normal y esto permite ver el fibrado F como Schwarzenberger en el sentido dado en [DK93].
En 2001 (véase [AO01]), Ancona y Ottaviani renuevan la importancia del conjunto de hiper-
planos inestables para un fibrado de Steiner F , demostrando que si tenemos un número
suficiente de ellos, independientes dentro del conjunto, el fibrado F es también logarít-
mico.
La propiedad de estabilidad para fibrados de Steiner de rango n sobre Pn ha sido de-
mostrada por Bohnhorst y Spindler, véase [BS92], y Brambilla, véase [Bra08], demuestra
la estabilidad para fibrados vectoriales de Steiner excepcionales. Además, en su tesis de
doctorado (véase [Bra04]), caracteriza los fibrados de Steiner generales, simples y excep-
cionales sobre el espacio proyectivo.
En [Val00a], Vallès propone una primera generalización de fibrados logarítmicos y de
Schwarzenberger de rango mayor que la dimensión del espacio proyectivo base. Sin em-
bargo, la primera generalización completa de fibrado de Schwarzenberger para rango arbi-
trario aparece en [Arr10a]. En su artículo, Arrondo generaliza principalmente dos nociones:
la de fibrado de Schwarzenberger, que él asocia a una terna (X,L,M), donde X es una
variedad proyectiva y L,M son dos fibrados vectoriales globalmente generados sobre X, y
la noción de hiperplano inestable para un fibrado de Steiner F , al que él llama hiperplano

de salto. Estudiando el lugar de los pares de salto, Arrondo consigue clasificar los fibrados
de Steiner cuyo lugar tiene dimensión máxima y describirlos como Schwarzenberger.
El estudio de fibrados de Steiner sobre variedades distintas del espacio proyectivo lo han
llevado a cabo Miró-Roig y Soares. Primero, en [Soa07] Soares define fibrados vectoriales
de Steiner sobre hipercuádricas lisas Qn ⊂ Pn+1, con n ≥ 3. Además, en su artículo carac-
teriza fibrados de Steiner excepcionales y simples sobre la hipercuádrica lisa y demuestra
que en este caso excepcionalidad implica estabilidad. En [MRS09] y [Soa08], Miró-Roig y
Soares dan una definición de fibrado de Steiner sobre una variedad algebraica cualquiera
y demuestran una caracterización cohomológica de ellos. La definición propuesta depende
de la elección de un par fuertemente excepcional de fibrados vectoriales sobre una variedad
proyectiva.
En esta tesis obtendremos los resultados de Arrondo, eligiendo la definición de fibrado de
Steiner sobre las Grassmannianas que tenga el mayor significado geométrico. Podemos
resumir los problemas que queremos resolver en la siguiente lista.

Problema 1 Encontrar la definición mas natural y geométrica de fibrado de Schwarzen-

berger para Grassmannianas.
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Problema 2 Generalizar la definición de par de salto y dar una descripción del lugar de

dichos pares para un fibrado de Steiner sobre la Grassmanniana.

Problema 3 Describir fibrados vectoriales de Steiner sobre G(k, n) con lugar de salto de

dimensión máxima como fibrados de Schwarzenberger y dar una clasificación de este caso.

En el capítulo 1 daremos los preliminares necesarios, recordando la definición y las propiedades
de las Grassmannianas. Daremos también una introducción sobre el cálculo de Schubert.
En el capítulo 2 daremos la definición general de fibrado de Steiner para Grassmannianas,
acorde con la dada por Miró-Roig y Soares y que es la generalización natural de la dada
por Arrondo.

Definición 1. Sean S, T dos espacios vectoriales sobre K, respectivamente de dimensión

s y t.

Llamaremos un (s, t)-fibrado de Steiner, sobre G(k, n), el fibrado vectorial definido por la

resolución

0 −→ S ⊗ U −→ T ⊗OG −→ F −→ 0,

donde OG = OG(k,n) es el fibrado trivial y U → G(k, n) es el fibrado universal de rango

k + 1.

Esto es equivalente a fijar una aplicación lineal

T ∗ ϕ
−→ S∗ ⊗H0(U∨) = Hom(H0(U∨)∗, S∗)

tal que, para cada u1, . . . , uk+1 ∈ H0(U∨) linealmente independientes y para cada

v1, . . . , vs ∈ S
∗, existe una f ∈ Hom(H0(U∨), S∗) tal que f ∈ Imϕ y f(uj) = vj para cada

j = 1, . . . , k + 1.

Si ϕ es inyectiva, se dice que F es reducido y en general llamaremos F0 al sumando reducido

de F asociado a la aplicación lineal inyectiva

ϕ(T ∗) = T ∗
0 →֒S∗ ⊗H0(U∨).

Después de mostrar una interpretación geométrica de la definición, daremos una cota
inferior para los posibles rangos de los fibrados que acabamos de definir, de hecho, de-
mostraremos el siguiente resultado.

Teorema 2. Sea F un fibrado de Steiner sobre G(k, n); entonces tendrá rango

rkF ≥ min((k + 1)(n − k), (n − k) dimS).
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Para resolver el Problema 1, en el capítulo 3 daremos la definición de fibrado de
Schwarzenberger, que generaliza la de [Arr10a].

Definición 3. Consideramos dos fibrados vectoriales globalmente generados L,M sobre

una variedad proyectiva X, con h0(M) = n + 1 y con la identificación Pn = P(H0(M)∗).

El fibrado de Schwarzenberger sobre G(k, n) asociado a la terna (X,L,M) será el fibrado

definido por la resolución

0 −→ H0(L)⊗ U −→ H0(L⊗M)⊗OG −→ F −→ 0.

Como en el caso proyectivo, obtendremos los ejemplos mas importantes de fibrados de
Schwarzenberger cuando L tiene rango uno y M tiene rango k + 1.
Daremos después la definición de par de salto para un fibrado de Steiner y asociaremos
una estructura algebraica al conjunto de todos las pares. Acotaremos la dimensión de
dicho lugar a través de la descripción de su espacio tangente en un par fijado, que nos dará
informaciones sobre el lugar de salto, visto como una variedad algebraica.
Considerando el fibrado dado por la terna (X,L,M), observamos que para cada punto
x ∈ X, la imagen de H0(L ⊗ M)∗ a través del dual de la aplicación de multiplicación
(la aplicación ϕ en este caso) restringida a la fibra sobre x tiene la forma particular
H0(Lx)

∗ ⊗ H0(Mx)
∗, i.e. es el producto tensorial de dos subespacios vectoriales. Esta

observación nos sugerirá la definición de un objeto similar para fibrados de Steiner y el
lugar de dichos objetos nos dará información que nos permitirá construir una terna de
Schwarzenberger, dado un fibrado de Steiner.

Definición 4. Sea F un fibrado de Steiner sobre G(k, n). Un par (a,Γ), con dim a = 1

y dimΓ = k + 1, tal que a ⊗ Γ ⊂ S∗ ⊗H0(U∨), se llama par de salto si, considerando la

aplicación T ∗ ϕ
−→ S∗ ⊗H0(U∨), el producto tensorial a⊗ Γ partenece a Imϕ.

Para resolver el Problema 3, nuestro objetivo es describir y estudiar el lugar de los pares
de salto asociado a un fibrado F de Steiner, denotaremos dicho lugar por J̃(F ) (con un
abuso de notación utilizaremos J̃(F ) para el lugar visto como espacio vectorial y también
visto como variedad proyectiva). Esto nos permitirá utilizar el siguiente resultado para
clasificar fibrados de Steiner.

Teorema 5. Sean A,B,Q los fibrados universales de rango respectivamente 1, k+1 y k+1

sobre G(1, S∗), G(k + 1,H0(U∨)) y G(k + 1, T ∗
0 ).

Observamos que tenemos dos proyecciones naturales

J̃(F )
π1−→ G(1, S∗)
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J̃(F )
π2−→ G(k + 1,H0(U∨))

y que J̃(F ) ⊂ G(k + 1, T ∗
0 ). Supongamos que las aplicaciones naturales

α : H0(G(1, S∗),A) −→ H0(J̃(F ), π∗1A)

β : H0(G(k + 1,H0(U∨)),B) −→ H0(J̃(F ), π∗2B)

γ : H0(G(k + 1, T ∗
0 ),Q) −→ H0(J̃(F ),Q|J̃(F ))

sean todas isomorfismos. Entonces el fibrado de Steiner F0, sumando reducido de F , es un

fibrado de Schwarzenberger dado por la terna

(J̃(F ), π∗1A, π
∗
2B).

Conseguiremos dar una descripción geométrica del lugar de salto, visto como una va-
riedad proyectiva. De hecho, si consideramos la aplicación de Segre generalizada

ν : P(S) × G(k,P(H0(U∨))∗) −→ G(k,P(S ⊗H0(U∨)∗))

P(l) , P(Λ) 7→ P(l ⊗ Λ)

entonces es posible definir
J̃(F ) = Im ν ∩G(k,P(T0))

donde, como siempre, T ∗
0 = ϕ(T ∗) es el espacio vectorial asociado al sumando reducido

de F . Nuestro objetivo es investigar la dimensión de esta variedad. Observamos que
obtenemos una cota inferior calculando la dimensión esperada de la intersección, que es

dim J̃(F ) ≥ (k + 1)(t− k − sn− s+ n) + s− 1.

Para conseguir una cota superior, estudiaremos el espacio tangente de J̃(F ) en un punto
Λ que representa un par de salto.
Después de dar una descripción del tangente de una variedad de Segre generalizada en un
punto Λ a través del álgebra lineal, demostraremos un resultado técnico de álgebra lineal
que nos dará la cota buscada.

Teorema 6. Sea F un fibrado de Steiner sobre G(k, n) y sea J̃(F ) su lugar de los pares

de salto; entonces, considerando Λ ∈ J̃(F ), obtenemos

dim J̃(F ) ≤ dimTΛJ̃(F ) ≤ (k + 1)(t− (k + 1)(s + n− k − 1)− k).

En el capítulo 4, clasificaremos los fibrados de Steiner cuyo lugar de salto tiene dimen-
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sión máxima.
Observamos que dado un (s, t)-fibrado de Steiner F sobre G(k, n), que supongamos sea
reducido, con lugar de salto de dimensión máxima, si fijamos un par de salto s0⊗Γ = ϕ(Λ)

entonces podemos inducir un (s − 1, t − k − 1)-fibrado de Steiner F ′ sobre G(k, n), que
puede no ser reducido, pero tendrá también lugar de salto de dimensión máxima. Dicha
inducción es consecuencia del siguiente diagrama conmutativo

T ∗ � � ϕ//

����

S∗ ⊗H0(U∨)

����
T ∗

Λ

ϕ′
// S∗

<s0>
⊗H0(U∨)

Dado un fibrado de Steiner sobre la Grassmanniana, induciremos fibrados de Steiner para
tantos pasos como necesitemos para llegar al caso mas básico s = k+1, que está clasificado
por el siguiente resultado.

Teorema 7. Sea F un fibrado de Steiner reducido sobre G(k, n), con dimS = k + 2,

entonces F puede ser descrito como un fibrado de Schwarzenberger dado por la terna

(Pk+1,OPk+1(1), E∨(−1)), donde E es el fibrado vectorial definido como el núcleo del mor-

fismo sobreyectivo

H0(U∨)⊗OP(S)(−1) −→
S∗ ⊗H0(U∨)

T ∗
⊗OP(S).

Después, estudiando el diagrama construido, clasificaremos todos los posibles casos
y gracias al Teorema 5 conseguiremos encontrar una terna que describa el fibrado como
Schwarzenberger. Obtendremos la siguiente clasificación.

Teorema 8. Sea F un fibrado de Steiner reducido sobre G(k, n) con dim J̃(F ) maximal;

entonces estamos en uno de los siguientes casos:

(i) F es el fibrado de Schwarzenberger dado por la terna (P1,OP1(s− 1),OP1(n)). En este

caso k = 0 y t = n+ s.

(ii) F es el fibrado de Schwarzenberger dado por la terna (P1, E(−1),OP1(1)), donde

E = ⊕t−s
i=1OP1(ai) con ai ≥ 1. En este caso k = 0 y n = 1.

(iii) F es el fibrado de Schwarzenberger dado por la terna (Pk+1,OPk+1(1), E∨(−1)) definido

en el Teorema 7. En este caso s = k + 2.
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(iv) F es el fibrado de Schwarzenberger dado por la terna (P2,OP2(1),OP2(1)). En este

caso k = 0, n = 2, s = 3 y t = 6.
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Riassunto in italiano

Spazi di salto in fibrati di Steiner

Il problema di classificazione dei fibrati vettoriali su varietà algebriche è sempre stato
di grande interesse nella geometria algebrica. Vista la grandezza dell’argomento, è stato
sempre studiato concentrandosi su famiglie di fibrati definite da caratterizzazioni specifiche.
In questo lavoro ci concentreremo sullo studio dei fibrati di Steiner e di Schwarzenberger
sulle Grassmanniane.
Nel 1961 (vedi [Sch61]), Schwarzenberger introduce una famiglia di fibrati F di rango n
che sono in relazione con lo spazio delle secanti di una curva razionale normale e definiti
da una risoluzione del tipo

0 −→ Os
Pn(−1) −→ Ot

Pn −→ F −→ 0.

Da allora, molte persone hanno studiato queste due famiglie di fibrati, cercando di costru-
ire, nella maggior parte dei casi, delle configurazioni geometriche nello spazio proiettivo
che definiscano il fibrato, e dimostrando anche dei teoremi di tipo Torelli, i.e. recuperando
la configurazione da un dato fibrato. Per esempio, nel 1993 (vedi [DK93]), Dolgachev e
Kapranov, che furono i primi a denotare tali fibrati come Steiner, studiano fibrati loga-
ritmici sullo spazio proiettivo definiti da 1-forme differenziali sull’unione di una collezione
di iperpiani aventi normal crossing. Nel loro lavoro, definiscono le famiglie dei fibrati
di Steiner e di Schwarzenberger come sottofamiglie di quella dei logaritmici, e inoltre di-
mostrano dei risultati che mettono in relazione tra di loro i tre insiemi di fibrati considerati.
In particolare dimostrano che un fibrato logaritmico può essere descritto come Steiner o
Schwarzenberger sotto particolari ipotesi sulla collezione degli iperpiani.
Nel 2000 (vedi [Val00b]), Vallès dimostra un risultato più generale che caratterizza quando
un fibrato di Steiner F può essere descritto anche come uno Schwarzenberger. La sua
ricerca si concentra su una particolare famiglia di iperpiani {Hi}, che soddisfano la con-
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dizione h0(F∨
Hi
) 6= 0 e che chiama iperpiani instabili, provando che tali iperpiani, visti come

punti nello spazio proiettivo duale, appartengono sempre ad una curva razionale normale
e ciò permette di vedere il fibrato F come uno Schwarzenberger secondo la definizione
considerata in [DK93].
Nel 2001 (vedi [AO01]), Ancona ed Ottaviani rafforzano l’importanza dell’insieme degli
iperpiani instabili di un fibrato di Steiner F , dimostrando che se abbiamo un numero suffi-
ciente di essi indipendenti, allora il fibrato F può essere anche descritto come logaritmico.
La proprietà di stabilità per fibrati di Steiner di rango n su Pn è stata dimostrata da
Bohnhorst e Spindler, vedi [BS92], mentre Brambilla, vedi [Bra08], la dimostra per fibrati
vettoriali di Steiner eccezionali. Inoltre, nella sua tesi di dottorato (vedi [Bra04]), fornisce
una caratterizzazione per fibrati di Steiner generali, semplici ed eccezionali sullo spazio
proiettivo.
In [Val00b], Vallès propone una prima generalizzazione dei concetti di fibrato logaritmico e
di Schwarzenberger di rango maggiore della dimensione dello spazio proiettivo di base. Tut-
tavia, la prima generalizzazione completa di fibrati di Schwarzenberger di rango arbitrario
su spazi proiettivi compare in [Arr10a]. Nel suo lavoro, Arrondo generalizza principal-
mente due nozioni: quella di fibrato di Schwarzenberger, che viene associato ad una terna
(X,L,M), dove X è una varietà proiettiva ed L ed M sono due fibrati vettoriali global-
mente generati su X, e quella di iperpiano instabile per un fibrato di Steiner F , che viene
chiamato iperpiano di salto. Studiando il luogo delle coppie di salto, Arrondo riesce a
classificare i fibrati di Steiner il cui luogo di salto ha dimensione massima e a descriverli
come fibrati di Schwarzenberger.
Lo studio dei fibrati di Steiner su varietà distinte dallo spazio proiettivo è stato dato
da Miró-Roig e Soares. Come primo caso, in [Soa07] Soares definisce i fibrati vettoriali
di Steiner su una iperquadrica liscia Qn ∈ Pn+1, con n ≥ 3. Inoltre, caratterizza i fi-
brati di Steiner eccezionali e semplici sull’iperquadrica liscia e dimostra che in questo caso
l’eccezionalità implica la stabilità. In [MRS09] e [Soa08], Miró-Roig e Soares presentano
una definizione di fibrato di Steiner per una qualsiasi varietà algebrica e dimostrano una
caratterizzazione coomologica per tali fibrati. La definizione proposta dipende dalla scelta
di una coppia fortemente eccezionale di fibrati vettoriali su una varietà proiettiva.
In questa tesi otterremo i risultati di Arrondo scegliendo però la definizione di fibrato di
Steiner sulla Grassmanniana che abbia il maggior significato geometrico.
Possiamo elencare i problemi che vogliamo risolvere nella seguente lista.

Problema 1 Trovare la definizione più naturale e più geometrica di fibrato di Schwarzen-

berger per Grassmanniane.
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Problema 2 Generalizzare la definizione di coppia di salto e dare una descrizione del luogo

di tali coppie per un fibrato di Steiner sulla Grassmanniana.

Problema 3 Descrivere i fibrati di Steiner su G(k, n) con luogo di salto di dimensione

massima come fibrati di Schwarzenberger e fornire una classificazione di questo caso.

Nel capitolo 1 daremo i preliminari necessari, richiamando la definizione e le proprietà della
Grassmanniana. Daremo inoltre un’introduzione sul calcolo di Schubert.
Nel capitolo 2 stabiliremo la definizione generale di fibrato di Steiner per Grassmanniane,
in accordo con quella data da Miró-Roig e Soares e che rappresenta la generalizzazione
naturale di quella data da Arrondo.

Definizione 1. Siano S, T due spazi vettoriali su K, di dimensione rispettivamente s e t.

Chiameremo un (s, t)-fibrato di Steiner, su G(k, n), il fibrato vettoriale definito dalla

risoluzione

0 −→ S ⊗ U −→ T ⊗OG −→ F −→ 0,

dove OG = OG(k,n) denota il fibrato di linea banale e U −→ G(k, n) denota il fibrato

universale di rango k + 1.

Ciò è equivalente a fissare un’applicazione lineare

T ∗ ϕ
−→ S∗ ⊗H0(U∨) = Hom(H0(U∨)∗, S∗)

tale che, per ogni u1, . . . , uk+1 ∈ H0(U∨)∗ linearmente indipendenti e per ogni

v1, . . . , vk+1 ∈ S∗, esista una f ∈ Hom(H0(U∨), S∗) tale che f ∈ Imϕ e f(uj) = vj per

ogni j = 1, . . . , k + 1.

Se ϕ è iniettiva chiameremo F ridotto o in caso contrario denoteremo con F0 l’addendo

ridotto di F , associato all’applicazione lineare iniettiva

ϕ(T ∗) = T ∗
0 →֒S∗ ⊗H0(U∨).

Dopo aver fornito un’interpretazione geometrica della definizione, daremo un limite dal
basso per il rango dei fibrati appena definiti, dimostreremo infatti il seguente risultato.

Teorema 2. Sia F un fibrato di Steiner su G(k, n). Allora F sarà di rango

rkF ≥ min((k + 1)(n − k), (n − k) dimS).

Per risolvere il Problema 1, nel capitolo 3 proporremo la definizione di fibrato di
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Schwarzenberger, che generalizza quella data in [Arr10a].

Definizione 3. Consideriamo due fibrati vettoriali L,M globalmente generati su una va-

rietà proiettiva X, con h0(M) = n+ 1 e con l’identificazione Pn = P(H0(M)∗). Il fibrato

di Schwarzenberger su G(k, n) associato alla terna (X,L,M) sarà il fibrato definito dalla

risoluzione

0 −→ H0(L)⊗ U −→ H0(L⊗M)⊗OG −→ F −→ 0.

Come nel caso proiettivo, gli esempi più significativi di fibrato di Schwarzenberger si
otterranno considerando L di rango uno ed M di rango k + 1.
Daremo poi la definizione di coppia di salto per un fibrato di Steiner e daremo inoltre
una struttura algebrica all’insieme di tali coppie. Dimostreremo un limite dall’alto della
dimensione del luogo delle coppie di salto attraverso la descrizione dello spazio tangente in
una di esse, che ci darà informazioni sul luogo di salto, visto come una varietà algebrica.
Considerando il fibrato definito dalla terna (X,L,M), osserviamo che per ogni punto
x ∈ X, l’immagine di H0(L ⊗ M)∗ attraverso la duale della mappa di moltiplicazione
(che un questo caso è l’applicazione ϕ), ristretta alla fibra su x, ha la forma partico-
lare H0(Lx)

∗ ⊗H0(Mx)
∗, i.e. è data dal prodotto tensoriale di due sottospazi vettoriali.

Questa osservazione ci porta a definire un oggetto simile per fibrati di Steiner e il luogo
di tali oggetti ci darà informazioni che ci permetteranno costruire la terna di un fibrato di
Schwarzenberger, partendo dal fibrato di Steiner.

Definizione 4. Sia F un fibrato di Steiner su G(k, n). Una coppia (a,Γ), con dima = 1

e dimΓ = k + 1, tale che a ⊗ Γ ⊂ S∗ ⊗H0(U∨), è detta coppia di salto se, considerando

l’applicazione T ∗ ϕ
−→ S∗ ⊗H0(U∨), il prodotto tensoriale a⊗ Γ appartiene a Imϕ.

Per risolvere il Problema 3, il nostro obiettivo è descrivere e studiare il luogo delle coppie
di salto associato ad un fibrato di Steiner F , che denoteremo con J̃(F ) (con un abuso di
notazione, useremo J̃(F ) per il luogo visto sia come spazio vettoriale sia come varietà
proiettiva). Questo ci permetterà utilizzare il seguente risultato, utile per la classificazione
dei fibrati di Steiner.

Teorema 5. Siano A,B,Q i fibrati universali di rango rispettivamente 1 , k + 1 e k + 1

su G(1, S∗), G(k + 1,H0(U∨)) e G(k + 1, T ∗
0 ).

Osserviamo che abbiamo due proiezioni naturali

J̃(F )
π1−→ G(1, S∗)

J̃(F )
π2−→ G(k + 1,H0(U∨))
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e che J̃(F ) ⊂ G(k + 1, T ∗
0 ). Supponiamo che le applicazioni naturali

α : H0(G(1, S∗),A) −→ H0(J̃(F ), π∗1A)

β : H0(G(k + 1,H0(U∨)),B) −→ H0(J̃(F ), π∗2B)

γ : H0(G(k + 1, T ∗
0 ),Q) −→ H0(J̃(F ),Q|J̃(F ))

siano tutti isomorfismi. Allora il fibrato di Steiner F0, addendo ridotto di F , è un fibrato

di Schwarzenberger dato dalla terna

(J̃(F ), π∗1A, π
∗
2B).

Riusciremo inoltre a dare una descrizione geometrica del luogo di salto, visto come una
varietà proiettiva. Infatti, se consideriamo l’applicazione di Segre generalizzata

ν : P(S) × G(k,P(H0(U∨))∗) −→ G(k,P(S ⊗H0(U∨)∗))

P(l) , P(Λ) 7→ P(l ⊗ Λ)

allora è possibile definire
J̃(F ) = Im ν ∩G(k,P(T0))

dove, como al solito, T ∗
0 = ϕ(T ∗) denota lo spazio vettoriale associato all’addendo ridotto

di F . Il nostro obiettivo è quello di studiare la dimensione di tale varietà. Osserviamo che
un limite dal basso è dato calcolando la dimensione attesa dell’intersezione, ottenendo

dim J̃(F ) ≥ (k + 1)(t− k − sn− s+ n) + s− 1.

Per avere un limite dall’alto, studieremo lo spazio tangente a J̃(F ) in un punto Λ rappre-
sentante una coppia di salto.
Dopo aver fornito una descrizione dello spazio tangente della varietà di Segre generaliz-
zata nel punto Λ attraverso l’algebra lineare, dimostreremo un risultato tecnico, sempre di
algebra lineare, che ci darà il limite richiesto.

Teorema 6. Sia F un fibrato di Steiner su G(k, n) e sia J̃(F ) il suo luogo di salto; allora,

considerando Λ ∈ J̃(F ), abbiamo che

dim J̃(F ) ≤ dimTΛJ̃(F ) ≤ (k + 1)(t− (k + 1)(s + n− k − 1)− k).

Nel capitolo 4, classificheremo i fibrati di Steiner il cui luogo di salto ha dimensione
massima.
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Osserviamo che, dato un (s, t)-fibrato di Steiner F su G(k, n) che supponiamo sia ridotto,
con luogo di salto di dimensione massima, se fissiamo una coppia di salto s0 ⊗ Γ = ϕ(Λ)

allora possiamo indurre un (s− 1, t− k− 1)-fibrato di Steiner F ′ su G(k, n), che potrebbe
non essere ridotto, ma il cui luogo di salto sarà di dimensione massima. Tale induzione è
una conseguenza del diagramma commutativo seguente

T ∗ � � ϕ//

����

S∗ ⊗H0(U∨)

����
T ∗

Λ

ϕ′
// S∗

<s0>
⊗H0(U∨)

Dato un fibrato di Steiner sulla Grassmanniana, indurremo ulteriori fibrati di Steiner per
tanti passi quanti necessari ad arrivare al caso base s = k+2, che è classificato dal seguente
risultato.

Teorema 7. Sia F un fibrato di Steiner ridotto su G(k, n), con dimS = k+2, allora F può

essere descritto come il fibrato di Schwarzenberger dato dalla terna (Pk+1,OPk+1(1), E∨(−1)),

dove E è il fibrato vettoriale definito come il nucleo del morfismo suriettivo

H0(U∨)⊗OP(S)(−1) −→
S∗ ⊗H0(U∨)

T ∗
⊗OP(S).

A questo punto, osservando il diagramma costruito, possiamo classificare tutti i possibili
casi attraverso il Teorema 5 e riusciamo inoltre a costruire una terna che descriva tali fibrati
come Schwarzenberger. Otterremo la seguente classificazione

Teorema 8. Sia F un fibrato di Steiner ridotto su G(k, n) con dim J̃(F ) massima; allora

siamo in uno dei seguenti casi:

(i) F è il fibrato di Schwarzenberger dato dalla terna (P1,OP1(s − 1),OP1(n)). In questo

caso k = 0 e t = n+ s.

(ii) F è il fibrato di Schwarzenberger dato dalla terna (P1, E(−1),OP1(1)),

dove E = ⊕t−s
i=1OP1(ai) con ai ≥ 1. In questo caso k = 0 e n = 1.

(iii) F è il fibrato di Schwarzenberger dato dalla terna (Pk+1,OPk+1(1), E∨(−1)) definito

nel Teorema 7. In questo caso s = k + 2.

(iv) F è il fibrato di Schwarzenberger dato dalla terna (P2,OP2(1),OP2(1)). In questo caso

k = 0, n = 2, s = 3 e t = 6.
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