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1 INTRODUCTION 
 

 

 

 

1. 1 Natural Products in Crop Protection 

 

 

The success of modern agricultural practices is due in part to discovery and adoption of 

chemicals for pest control. Indeed, the tremendous increase in crop yields associated with 

the “green” revolution would not be achieved without the contribution of these syntheyic 

compounds. The abundance of high quality food in developed nations has all but 

eliminated concerns about access to food in these countries. However, concerns over the 

potential impact of pesticides on the environment has now become more pressing and 

more stringest pesticide registration procedures such as the Food Quality Protection Act in 

the United States have been introduced (House Resolution -1627, 1996).  

These new regulations have reduced the number of synthetic pesticides available in 

agriculture. Therefore, the current paradigm of relying almost exclusively on chemicals for 

pest control may need to be reconsidered (Dayan et al., 2009). 

New pesticides, including natural product-based pesticides are being discovered and 

developed to replace the compounds lost due to the new registration requirements. New 

pesticides are also needed to combat the evolution of resistance to pesticides (Copping et 

al., 2007).  

Dyan et al., (2009) considered the historical use of natural products in agricultural 

practices, the impact of natural products on the development of new pesticides, and the 

future prospects for natural products-based pest management. However, they stated that 

many natural compounds have been descovered and patented, but are not commercially 

available for numerous reasons. 

Following, are reported some worldwide estimated values on agents damaging agricultural 

crops, losses occurring in field and during fruit and vegetable transport and storage and 

use of pesticides in the world (Peshin et al., 2009). 

 Number of pest species damaging agricultural crops: 9.000 insects and mites, 

50.000 pathogens, 8.000 weeds. In total ~ 70.000 different species. 

 Range of crop production destroyed by pests in field:  
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35-42% (14% by insects, 13% by pathogens, 13% by weeds). These losses have 

been calculated, despite the early investment of about $ 40 billion for the 

application of 3 million metric tons of pesticides, worldwide (Table 1.1). Anyway, 

the value of this crop loss is estimated to be $ 2.000 billion per year, yet there is 

still about a 4 dollar return per dollar invested in pesticide control. 

 Losses that occur during transport and storage of plant crops.  

Woldwide, an estimate of 25% food losses occur during transport and storage due 

to bacteria, fungi, insects, rodents and birds.  In the US, post harvest food losses to 

pests are estimated to be about 10%. Thus, despite all pesticide use and other non-

chemical pest controls, we are losing from 50% to 60% of all potential food 

production to pests worldwide. 

 

 

Table 1.1 Annual estimated pesticide use in the world (Peshin et al., 2009). 

 

 

 

 

 

 

 

 

 

 

1.1.1 Crop protection, a historical overview 

 

The history of the development of farming is strictly related to the parallel evolution of the 

pest control strategies. Insects and other herbivores reduced yield by eating the crops; 

pathogens attacked the crops, and weeds competed with primary crops and range forage, 

often giving rise to periods of famine or causing serious food poisoning in vast part of the 

world population. Various chemical pest control strategies have been tried over the 

centuries and here it‟s shortly reported the changes in crop protection during the last 

centuries. The period before the eighteenth century, growers of crops had to fight insects, 

diseases and weeds with inadequate tools. The growers lost a considerable proportion of   

Country/region 
Pesticide use 10

6
 

metric tons 

United states 0.5 

Canada 0.2 

Europe 1.0 
Other developed 0.5 

China 0.2 

Asia, developing 0.3 
Latin America 0.2 

Africa 0.1 

Total 3.0 
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crops to pests during productions, storage and distribution. Prior to the 1950‟s crop 

protection tools included mechanical removal of weeds, a few number of synthetic organic 

chemicals and inorganic materials. They were non-selective, persistent and toxic to many 

forms of life. Herbicides included ashes and salts. Insecticides included arsenic and 

fluoride. Fungicides included copper, ash and sulphur. 

During the eighteenth century insecticides included botanical compounds as nicotine, 

rotenone and pyrethrums. These products were more specific in terms of control, but not 

very stable for use in agriculture given rapid breakdown in the environment.  

Sulfur is the oldest effective fungicide and is still in use today. Sulfur and the copper 

containing Bordeaux mixture (1885) were the major pesticides in use in vines to control 

powdery and downy mildew and specific weeds until the advent of synthetic organic 

compounds in the 1940‟s. 

The period between the early 1900‟s and post Second World War saw the increased 

reliance on chemical means to control pests and diseases. Many pesticides were the by-

products of coal gas production or other industrial processes. Early organics as 

nitrophenols, chlorophenols, naphthalene and petroleum oils were used for insect and pest 

control. Most of the products used were non-selective and toxic to both users and non-

target organisms. Herbicides for the era included ammonium sulphate and sodium 

arsenate, used extensively on fruits and vegetables, with the result of accumulation of 

harmful residues.  

The modern era of synthetic organic pesticides began in the 1930‟s. Medical and military 

researches produced the discovery of many pesticide families that are still in use today. A 

real breakthrough in weed control occurred with the introduction of phenoxy herbicides, in 

particular 2,4-dichlorophenoxyaceti acid (2,4-D), in the 1940‟s, for broad-spectrum 

broadleaf weed control in corn and cereal crops.  

The early twentieth century brought the introduction of organomercurials for disease 

control and organochlorines such as DDT for insect control. These products were very 

persistent and efficient with a wide spectrum of action: good properties for agriculture and 

for public health, but, as was understood in the following years, not desirable after control 

was achieved. The introduction of organophosphates brought a new class of insecticides 

with reduced persistence and lower risks to the environment. Originally discovered as 

nerve poisons, these chemicals were highly toxic, had a broad spectrum of activity against 

insects and showed only moderate stability in soil, on crops and the environment. The 

latter was a positive characteristic from an environmental and human safety view, but it 
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also resulted in the need to make several applications over a growing season, increasing 

the potential for exposure to human and wildlife and the development of insect resistance. 

Another negative characteristic was their high acute toxicity, which caused hazards to 

applicators, and field workers. A number of organophosphates have been restricted or 

eliminated.  

Carbamates also came into use in the 1950‟s and are still used today. These chemicals 

have relatively low mammalian toxicity and are selective in that they are toxic to target 

insect pest but not most helpful insects. 

Another key innovation during this period was the manufacture and refinement of 

equipments for effectively applying these materials to crops and plants. 

The post-war period, from 1950‟s to 1970‟s, saw the rapid introduction of a range of new 

pest control tools including many insecticides and fungicides still in use. The evolution of 

materials continued with new chemical families discovered that offered reduced 

persistence and environmental concerns along with attractive and valued benefits to 

producers and end-users. 

This period saw the introduction of soil residual herbicides such as the triazine herbicide 

atrazine, evolving to the introduction of non-residual products like glyphosate in the 

1970‟s. Several broad-spectrum fungicide families with active ingredients, like 

chlorothalonil, were introduced followed by the introduction of highly selective systemic 

fungicides, that worked on specific metabolic processes in specific pathogens. It was also 

the period of introduction for synthetic pyrethroid insecticides. The discovery and use of 

systemic and single mode of activity pesticides also created resistance concerns and the 

introduction of resistance management strategies to keep in use these products in a long 

time.  

The evolution of scientific procedures for evaluating the impact of pesticides on users and 

the environment along with the introduction of newer classes of reduced risk products led 

to the removal of many older classes of chemistries that were persistent with negative 

impacts on the environment in front of which peoples became more sensitive. A classical 

example is the path of DDT: over the years, it became clear that this organic material had 

adverse impacts on the environment, leading to reduced populations of birds and some 

aquatic organism. One of its benefits, that of long residual life, was also a negative aspect. 

This insecticide had very long half-lives and became widely distributed in nature by 

accumulation through the food chain and the atmospheric distribution, so most of the 

organchlorine insecticide were banned in the 1970‟s.  
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At the end of the twentieth century there was the evolution to newer classes of highly 

specific, low toxicity and low use rate, insecticides and fungicides. These products were 

used at the rates of millilitres or grams per hectare. Insecticides that controlled only certain 

stages of the lifecycle without harming beneficial species in crops were registered. 

Likewise fungicides were introduced that featured both forward and backward systemic 

activity to control diseases. Today, we see the registration of low use rate herbicides that 

interact with specific biochemical sites to produce selective and environmentally safer 

weed control. 

This period also saw the refinement of products in terms of use patterns with the 

introduction of newer and more user-friendly and environmentally safe formulations. 

As well, we entered into an era of genetically engineered pesticides and crops designed to 

reduce or eliminate the use of pesticides in controlling specific pests. The use of 

pheromones to disrupt insect mating habits and the use of microorganisms to combat 

diseases were also introduced and used on a broader scale in specific crops like 

greenhouse vegetables or fruit crops. 

The latter half of the 1990‟s saw the introduction of herbicide tolerant crops including 

soybean, corn and cotton using both traditional and transgenic breeding techniques, and 

the introduction of varieties of corn and cotton resistant to corn borer and boll weevil 

respectively with the reduction of the volumes of pesticides used on crops.  

In this period not only the tools but also the approach to fight the pests was changing: it 

became holistic and more rational, more careful for the environment and human health and 

also economic savings for the farmer. It‟s the Integrated Pest Management (IPM) era 

(Ehler, 2006). 

IPM increases the sustainability of farming systems and it‟s recognized that the farmer 

should manage pathosystems rather than control pathogens and crop protection became a 

matter of searching for the optimal combination of different control measures.  

The aim is not the eradication of pest but keeping their populations at acceptable levels. 

Non-chemical means of crop protection such as biological control and rotation schemes 

are developed and improved. Regular monitoring of pests and their natural enemies and 

antagonists are important to detect economic or treatment thresholds for the rational 

application of pesticides. How we can see from the summary of the pest control history  

there was, along the years, two shifts of focus. In the second half of 20
th

 century, attention 

shifted from the pathogen to the pathosystem, and at present we are witnessing a further 

shift to a focus on the whole production system. So, crop protection is now seen as just 
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one activity among many in agricultural production systems and improvement of crop 

protection is no longer seen as separate from goals such as maximizing yield and 

minimizing inputs. 

Herbicides, insecticides and fungicides followed a parallel development over the same 50 

year period, namely, introduction of new, effective synthetic organic beginning in the 

1940‟s, banning or restricted in the 1970‟s to the present and development of less risky 

alternative that continue in widespread use (Wheeler, 2002). 

Intelligent use and a basic understanding of pesticides are key factors to their safe use and 

continued availability. The public perception of risk, which has a strong influence on 

pesticide availability and the research that undergoes it, can be improved through better 

communications between the scientific community and the public.  

 

 

1.1.2 Problems and limitations of agrochemicals 

 

Initially, the benefits these new chemicals brought to agricultural production were thought 

to be without major disadvantages; however, ecological and human health risks and the 

economic costs of heavy, widespread use of broad-spectrum chemical pesticides are 

becoming more apparent. In addition to the potential for adverse effects on human and 

environmental health, there are growing concerns about the durability of current 

approaches to pest management. The disruption of inherent natural and biological 

processes of pest management, the resistance to pesticides developed by many major pests, 

and the frequency of pesticide-induced or-exacerbated pest problems suggest that 

dependence on pesticides as the dominant means of controlling pests is not a durable 

solution. The failure to develop economically viable pesticides for some of the most 

damaging pests and the economic costs of continual pesticide application has also led to an 

interest in alternative approaches to crop protection. 

Some new approaches to pest control have been adopted and good potentialities have been 

found in: increase of plant resistance with traditional breeding or through innovative 

biotecnology or chemical compounds; biological control with use of microbiological 

products; find of new active principles using innovative chemical methods or natural 

compounds as leads (Müller, 2002; Stetter et al., 2000; Ragsdale, 1999).  

Biological control methods are interesting tools to control the diffusion and the growth of 

parasites and pathogens. The control of harmful organisms could happen in several ways: 
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with the emission in the environmental of antibiotic secondary metabolites, with 

phenomena of parasitism or predation or with competitive organisms that fast colonize the 

media and make it inhospitable. Microbial pesticides have been used in agriculture for 

many years and the most widely used are subspecies strains of Bacillus thuringensis or Bt 

- a classical example by now-. They exhibit several advantages over synthetic chemicals 

that include safety for nontarget organisms, tendency to biodegrade, low cost to develop, 

and good compatibility with IPM programs. Drawbacks that might suggest further areas of 

research include limited product shelf life and effective life in the field, moreover they 

require much more knowledge for growers to use them with the same efficacy as with 

conventional pesticides.  

The development of resistant plants to adverse conditions (biotic or abiotic) has been the 

result of natural selection, breeding programs and, more recently, of seed engineered that 

contain a gene for insect control or herbicide resistance. 

Natural products are one of the most fertile sources of novel chemistries. Metabolites 

extracted from different organisms (plants, animals, fungi or prokaryotic) are an important 

sources of pesticide compounds per se or as leads for chemical synthesis. The history of 

plant protection shows some important examples of this kind of compounds in classes of 

fungicides, herbicides and insecticides.  

 

 

1.1.3 Agrochemicals from natural compounds 

 

The concept of „natural pesticides‟ arose early in the development of agriculture. Indeed, 

the Lithica poem (c. 400 B.C.) states „All the pests that out of earth arise, the earth itself 

the antidote supplies‟. Greek and Roman scholars such as Theophrastus (371–287 B.C.), 

Cato the Censor (234–149 B.C.), Varro (116–27 B.C.), Vergil (70–19 B.C.), Columella 

(4–70 A.D.) and Pliny the elder (23–79 A.D.) published treaties on agricultural practices 

to minimize the negative effects of pests on crops. Methods such as mulching and burning, 

as well as the use of oils for pest control were mentioned. Chinese literature (ca. 300 A.D.) 

describes an elaborate system of biological control of caterpillar infestations in citrus 

orchards. Colonies of the predatory ants (Oecophylla smaragdina) were introduced in 

citrus groves, and bridges made of bamboo allowed the ants to move between trees. A 

survey of the Shengnong Ben Tsao Jing era (25–220 A.D.) shows that 267 plant species 

were known to have pesticidal activity. Finally, the use of beneficial insects to control 

other insect pests was mentioned by Linnaeus as early as 1752, and he won a prize in 1763 
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for an essay describing the biological control of caterpillars. 

The European agricultural revolution that followed in the 19
th

 century was accompanied 

by more extensive and international trade that resulted in the discovery of botanical 

insecticidal powders from Chrysanthemum flower heads and Derris root which contain 

pyrethrum and rotenone, respectively.  

The utilization of natural products in pest control may be considered from a number of 

standpoints. First, the variety of structural types provides a rich source of compounds 

models for conventional screening programs. Second, consideration of the known 

biological activity of a natural product may lead to its application in pest management, 

either directly or after structural modification (Hedin et al., 1985). Furthermore, since 

these products are almost exclusively derived from pathways associated with secondary 

metabolism, these compounds have a high likelihood to possess some biological activity 

against other organisms, often via novel mechanisms of action, which is particularly 

important since new modes of action are so deeply needed as pests continue to evolve 

resistance to the compounds currently available. An important benefit of natural product-

based pesticides is their relatively short environmental half-lives, which is due to the fact 

that they do not possess „unnatural‟ ring structures and contain relatively few halogen 

substituents (Dayan et al., 2009). 

 

 

1.1.3.1 Natural products for plant pathogen management 

 

Many natural compounds and preparations have been described with activity against 

bacterial or fungal plant pathogens. Indeed, plants protect themselves from microbial 

attacks with both constitutive antimicrobials and compounds induced by the attacking 

pathogen (phytoalexins). Phytoalexins have not been directly exploited as fungicides, but 

natural products have been used to indirectly protect plants from pathogens by induction 

of systemic acquired resistance (SAR), including phytoalexins. These SAR-inducing 

compounds and preparations are termed elicitors. Since such activity is indirect, the 

pathogen cannot evolve resistance directly to the elicitor, making such products excellent 

candidates for integrated disease management. Elicitors are generally not as effective as 

good chemical fungicides, partly because the timing of elicitor application and threat to the 

crop by a pathogen is crucial, but difficult to maximize. A range of microbially-derived 

products are also available for management of plant diseases. 
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Plant essential oils 

 

Essential oils are volatile, natural, complex compounds characterized by a strong odour 

and are formed by aromatic plants as secondary metabolites. They are usually obtained by 

steam or hydro-distillation first developed in the Middle Ages by Arabs. In nature, 

essential oils play an important role in the protection of the plants as antibacterials, 

antivirals, antifungals, insecticides and also against herbivores by reducing their appetite 

for such plants. They also may attract some insects to favour the dispersion of pollens and 

seeds, or repel undesirable others. Essential oils are liquid, volatile, limpid and rarely 

coloured, lipid soluble and soluble in organic solvents with a generally lower density than 

that of water. They can be synthesized by all plant organs, i.e. buds, flowers, leaves, stems, 

twigs, seeds, fruits, roots, wood or bark, and are stored in secretory cells, cavities, canals, 

epidermic cells or glandular trichomes. Essential oils are very complex natural mixtures 

which can contain about 20–60 components at quite different concentrations. They are 

characterized by two or three major components at fairly high concentrations (20–70%) 

compared to others components present in trace amounts. Generally, these major 

components determine the biological properties of the essential oils. The components 

include two groups of distinct biosynthetical origin. The main group is composed of 

terpenes and terpenoids and the other of aromatic and aliphatic constituents, all 

characterized by low molecular weight. Due to their bactericidal and fungicidal properties, 

pharmaceutical and food uses are more and more widespread as alternatives to synthetic 

chemical products to protect the ecological equilibrium (Bakkali et al., 2008). Several 

plant essential oils are marketed as fungicides to farmers. These include jojoba 

(Simmondsia californica) oil, rosemary (Rosmarinus officinalis) oil, thyme ( Thymus 

vulgaris) oil, clarified hydrophobic extract of neem (Azadirachta indica) oil, and 

cottonseed (Gossypium hirsutum) oil with garlic (Allium sativum) extract (Dayan et al., 

2009). 

 

Extract of giant knotweed 

 

An extract of the giant knotweed (Reynourtria sachalinensis) is used in Europe for the 

control of a wide spectrum of both fungal and bacterial plant diseases. It is especially 

effective against powdery mildews and is used primarily on glasshouse and ornamental 

plants. It apparently acts indirectly by induction of plant defenses (Daayaf et al., 1997; 

Carlin et al., 2004). Down-regulating chalcone synthase, a key enzyme of the flavonoid  
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pathway, resulted in the nearly complete suppression of induced resistance by this product 

(Fofana et al., 2005). The main active elicitor compound(s) of this preparation are 

physcion and emodin, a known antimicrobial compound. While most of the activity seems 

to be associated with physcion, the photodynamic compound emodin can also generate 

reactive oxygen species in the presence of sunlight. Therefore, emodin-dependent 

oxidative stress may also induce SAR to plant pathogens. 

 

 

 

Antibiotics from actinomycetes 

 

A relatively large number of fermentation secondary products from actinomycetes, mostly 

Streptomyces spp., are fungicidal. Some of them have been commercialized and used 

extensively as agricultural fungicides in Japan, and to a lesser extent in other parts of the 

world. Since these compounds are considered antibiotics, they are not accepted for organic 

farming in the U.S., except for streptomycin for fire blight control in apples and pears. 

This is paradoxical since streptomycin is an important pharmaceutical and none of the 

others mentioned below are used as human pharmaceuticals. Blasticidin-S (Figure 1.1) 

from the soil actinomycete, Streptomyces griseochromogenes is used as a curative 

treatment against rice blast disease in eastern Asia (Kimura et al., 1996). It inhibits protein 

synthesis in target pathogens. Some blasticidin-S-resistant microbes detoxify the fungicide 

by deamination. It is active on a wide range of pathogens, but can cause damage to some 

crops. Kasugamycin (Figure 1.1) from Streptomyces kasugaensis has been used for rice 

blast and other crop diseases in Japan. It interferes with tRNA/ribosome interactions and 

inhibits protein synthesis. Mildiomycin (Figure 1.1) from the soil actinomycete 

Streptoverticillium rimofaciens is used primarily in Japan for control of powdery mildews. 

Its mode of action is thought to be inhibition of protein synthesis by targeting peptidyl- 

transferase (Om et al., 1979). Natamycin (Figure 1.1) from Streptomyces chattanoogensis 

is used primarily on ornamentals. It has a novel mode of action by binding ergosterol, an  

integral component of fungal cell membranes, thereby causing membrane dysfunction. 

Streptomyces rimosus produces oxytetracycline (Figure 1.1) that is used for control of 

bacterial diseases. Again, it inhibits protein synthesis by disrupting t-RNA/ribosome  

interactions and has pharmaceutical uses. The polyoxins (polyoxin B and polyoxorim, 

Figure 1.1) from Streptomyces cacoai are also used as agricultural fungicides (Isono et al., 

1979). These compounds may act through inhibition of fungal cell wall biosynthesis. In 
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addition to being used as a pharmaceutical, streptomycin (Figure 1.1) (from Streptomyces 

griseus) is used for bacterial plant diseases. It acts by interference with prokaryotic protein 

synthesis by binding the 30S ribosomal subunit. Finally, validamycin (Figure 1.1) from S. 

hygroscopicus is used for Rhizoctonia spp. control on a variety of crops. It inhibits 

trehalase (Kameda et al., 1987), an enzyme necessary to fungi for generation of glucose to 

growing hyphal tips. Knocking out this enzyme stops growth, so the compound is 

essentially fungistatic. In Europe the use of antibiotics in agriculture is forbidden; in Italy 

it was banned in 1972. 

 

 

Chitin components 

 

Chitin (N-acetylchitosan) and chitosan (poly-D-glucosamine) are found in fungal cell 

walls and arthropod exoskeletons. Chitosan is an effective elicitor of SAR to pathogens, 

including phytoalexin synthesis, in plants (Hahn, 1996).  

Presumably, plants have evolved a receptor/signally system to sense fungal pathogens in 

order to initiate chemical warfare with them. Preparations of chitin/chitosan from both 

crustacean exoskeletons and dried yeast (Saccharomyces cerevisisae) hyrdrolysate are sold 

as fungicides. How much of the fungicidal effect of chitosan is due to induction of 

resistance mechanisms of the crop is difficult to separate from possible direct fungicidal 

effects as chitosan possess some direct fungicidal activity (Hirano et al., 1989). 

 

 

Cinnamaldehyde 

 

Cinnamaldehyde (Figure 1.1) is found in several plants, but seeds of the weed Cassia 

obtusifolia are especially rich in it. It is usually synthesized chemically for use as an 

agricultural fungicide on a variety of crops. Its mode of action is apparently through 

inhibition of synthesis of the fungal cell wall component chitin (Bang et al., 2000; Kang et  

al., 2007). The substance has low mammalian toxicity, although it can cause moderate eye 

and skin irritation. Cinnamaldehyde is not soluble in water and is degraded rapidly in the 

soil, and it is not expected to pose any hazard to non-target organisms or to the  

environment (Copping et al., 2007). 
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Harpin proteins 

 

The plant pathogen Erwinia amylovora that causes fire blight in apples and pears, 

produces a 40 kD protein termed „harpin protein‟ that induces SAR in plants (Wei et al., 

1992; Dong et al., 1999). It is produced by heterologous expression of the gene for this 

protein from E. amylovora in Escherichia coli. Since it induces SAR, it decreases 

susceptibility to a broad range of fungal, bacterial, and viral diseases, as well as to 

nematodes.  

 

Laminarine 

 

This product is a preparation of the storage polysaccharide (a β-1,3-glucan with some β-

1,6-linked branches) of the brown alga Laminaria digitata. (Klarzynski et al., 2002). 

Laminarine has no antifungal activity in its own right, but it stimulates the plant‟s natural 

defence mechanism, rendering it much less susceptible to attack; it acts as a systemic 

acquired resistance (SAR) inducer. It is recommended for use in cereals, particularly 

wheat (Copping et al., 2007). 

 

Extract of Macleaya cordata 

 
 

An extract of the plant M. cordata is sold as a fungicide. Its greenhouse activity is 

comparable to synthetic fungicides (Newman et al., 1999). The preparation contains 

numerous alkaloids, but it may be acting through induction of SAR. 

 

Strobilurins 

 

Strobilurin and the related antifungal oudemansin (Figure 1.1) are produced by 

basidiomycetes that colonize dead wood. These compounds, which provide an advantage 

over competing fungi, have served as lead structures for commercialized synthetic analogs 

such as azoxystrobin and kresoxym-methyl (Figure 1.1). These compounds inhibit 

mitochondrial respiration by blocking the ubiquinone receptor (Kraiczy et al., 1996). 

Resistance to this class of fungicides has already evolved (Ishii et al., 2001). 
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Figure 1.1 Structures of the natural fungicides and bactericides mentioned in the text (Dayan et 

al., 2009). 
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1.1.3.2 Natural products for insect management 

 

Recent reports indicate that the use of natural product and natural product-derived 

insecticides continue to increase, whereas sales of organophosphates are declining. Indeed, 

three out of the five most commonly used insecticides classes (neonicotinoids, pyrethroids, 

and other natural products) are natural product or natural product-derived. 

 

 

Neem-based products 

 

The seeds from the Indian neem tree, Azadirachta indica, are the source of two types of 

neem-derived botanical insecticides; neem oil and medium polarity extracts. Neem seeds 

contain numerous azadirachtin analogs (Figure 1.2), but the major form is the 

tetranortriterpenoid, azadirachtin or azadirachtin A, and the remaining minor analogs 

likely contribute little to the overall efficacy of the extracts (Isman, 2006). Azadirachtin is 

well known as a potent antifeedant to many insects. At the physiological level, 

azadirachtin blocks the synthesis and release of molting hormones (ecdysteroids) from the 

prothoracic gland, leading to incomplete ecdysis in immature insects. In adult female 

insects, a similar mechanism of action leads to sterility (Isman, 2006). 

 

 

Figure 1.2 Structure of the major bioactive constituent in Neem (Dayan et al., 2009). 

 

 

Spinosads 

 

Spinosad (Figure 1.3) is a mixture of spinosyn A and spinosyn D, originally isolated from 

the soil actinomycete, Saccharopolyspora spinosa. Spinosad is recommended for the 

control of a very wide range of caterpillars, leaf miners, thrips and foliage-feeding beetles. 

Spinosyns have a novel mode of action, primarily targeting binding sites on nicotinic 
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acetylcholine receptors that are distinct from those at which other insecticides exert their 

activity, leading to disruption of acetylcholine neurotransmission. Spinosad also has 

secondary effects on c-amino-butyric acid neurotransmission. The result of this mode of 

action is hyperexcitation and disruption of an insect‟s nervous system (Sparks et al., 

2001). Spinosad may also be used on row crops (including cotton), vegetables, fruit trees, 

turf, vines and ornamentals (Porteus et al., 1996; Salgado et al., 1997). 

 

 

 

Figure 1.3 Structure of the major bioactive constituents isolated from the soil actinomycete, 

Saccharopolyspora spinosa (Dayan et al., 2009). 

 

 

Pyrethrum 

 
 

Pyrethrum refers to the oleoresin extracted from the dried flowers of Tanacetum 

cinerariaefolium (Asteraceae) and is the source of the pyrethrins, chrysanthemates and 

pyrethrates (Copping et al., 2007; Isman 2006). Among the natural pyrethrins, those 

incorporating the alcohol pyrethrolone, namely pyrethrins I and II (Figure 1.4), are the 

most abundant and account for most of the insecticidal activity. The symptoms of 

pyrethrin poisoning are characterized by hyperexcitation, convulsions, seizures, and finally 

followed by death. These symptoms are a result of the neurotoxic action, which block 

voltage-gated sodium channels in nerve axons. Unfortunately, the pyrethrins are extremely 

unstable when exposed to air and ultraviolet light; however, they are recommended for 

control of a wide range of insects and mites on fruit, vegetables, field crops, ornamentals,  

glasshouse crops and house plants, as well as in public health, stored products, animal 

houses and on domestic and farm animals. Pyrethrum is approved for use as a broad-

spectrum organic insecticide under many trade names. 
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Figure 1.4 Structure of the major constituents of pyrethrum (Dayan et al., 2009). 

 

 

Rotenone insecticides 

 

Rotenone has been used as an insecticide for over a century and its use as a fish poison 

dates back even further (Isman, 2006). Typically, products containing rotenone are 

preparations from plant of the genus Derris or Lonchocarpus (Leguminosae). The 

principal commercial form of the botanical insecticide rotenone comes from Cubè resin, a 

root extract of Lonchocarpus utilis and Lonchocarpus urucu. Although rotenone is the 

primary major constituent in products containing these preparations, a second isoflavone, 

deguelin, also contributes significantly to the activity (Caboni et al., 2004; Fang et al., 

1999) (Figure 1.5). Rotenone blocks respiration by inhibition of electron transport at the 

complex I (Hollingworth et al., 1999; Chauvin et al., 2001).  

 

 

Figure 1.5 Structures of rotenone and deguelin; major constituents in rotenone insecticides (Dayan 
et al., 2009). 
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Avermectins and milbemycins 

 

The structurally similar avermectins and milbemycins, both discovered from Streptomyces 

spp. culture broths, have had huge impacts in the field of animal health as agents against 

worms, ticks and flies (Campbell, 1989; Kornis, 1995). The impact as crop protection 

insecticides has been less dramatic but nevertheless significant. Abamectin, a natural 

fermentation product of Streptomyces avermitilis contains > 80% avermectin B1a and 

<20% avermectin B1b (Hayes et al., 1990). The avermectins are both insecticides and 

acaricides which are effective by either contact or ingestion. The target for avermectins is 

the GABA receptor in the peripheral nervous system. Avermectins stimulate the release of 

GABA from nerve endings and enhance the binding of GABA on the post-junction 

membrane of muscle cells of insects and other arthropods. This eventually results in an 

increased flow of chloride ions into the cell, with consequent hyperpolarisation and 

elimination of signal transduction, resulting in an inhibition of neurotransmission (Jansson 

et al., 1996). Avermectins are not registered as organic insecticides. Milbemectin is 

derived from the soil bacterium Streptomyces hygroscopicus subsp. aureolacrimosus, and 

used for mites and some insects control (Mishima, 1983). Milbemycin has the same mode 

of action as that of avermectins in that they potentiate glutamate and GABA gated 

chloride-channel opening (Arena et al., 1995). No organic insecticides containing 

milbemycins have been commercialized. 

 

 

Ryania speciosa preparations 

 

Having been in use for more than half a century, Ryania is an insecticide obtained from 

the roots and stems of a South American shrub (R. speciosa). Ryania consists of powdered 

parts of R. speciosa that contains up 0.16–0.2% of the bioactive ryanodine, a complex 

polycyclic, polyhydroxylic diterpene. Ryanodine is effective by either contact or ingestion. 

Ryanodine and related alkaloids affect muscles by binding to the calcium channels in the 

sarcoplasmic reticulum. This causes calcium ion flow into the cells, and death follows 

very rapidly (Casida et al., 1995). Ryania has relatively low toxicity to mammals.  

 

 

Sabadilla 

 

Sabadilla is derived from the seeds of plants from the genus Schoenocaulon and is 

predominantly from the sabadilla lily (Schoenocaulon officinale). Sabadilla has been used  
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as an insecticide for many years by native people of South and Central America. The 

activity of sabadilla preparations has been attributed to the alkaloids cevadine and 

veratridine which typically exist in a 2:1 ratio and are collectively referred to as veratrine 

(Barton et al., 1954). Veratrine alkaloids from sabadilla have a mode of action that is 

similar to that of the pyrethrins. They are non-systemic insecticides with contact action. 

Initial effects include paralysis, with death occurring later (Copping et al., 2007; Crosby, 

1971; Catterall, 1980). Sabadilla is considered among the least toxic of botanical 

insecticides, with an oral LD50 of 4000–5000 mg/kg. Sabadilla is effective by either 

contact or ingestion and has been effective against caterpillars, leaf hoppers, thrips, stink 

bugs and squash bugs. 

 

 

Nicotine 

 

Aqueous tobacco (Nicotiana tabacum, N. glauca or N. rustica) extracts containing the 

alkaloid nicotine have long been used to control crop insect pests (Schmelz, 1971). 

Nicotine exerts its insecticidal effect by mimicking acetylcholine and interacting with 

nicotinic acetylcholine receptors (nAChRs), a major excitatory neurotransmitter in the 

insect CNS (Yamamoto, 1998).  

After acetylcholine is released by the presynaptic cell, it binds to the postsynaptic nicotinic 

acetylcholine receptor and activates an intrinsic cation channel (Ujaύry, 1999; Brossi et 

al., 1998). Unfortunately, nicotine is highly toxic to mammals and extreme care must be 

used since it is readily absorbed through the skin. 

 

 

 

1.1.3.3 Natural products for weed management 

 

The management of weeds has been a major problem since the inception of agriculture. 

Manual labor in ancestral farming practice is expended mostly on hand weeding of fields. 

Today, herbicides account for more than half of the volume of all agricultural pesticides 

applied in the developed world and the public has expressed concern about the potential 

health and environmental impact of these compounds. Partly due to this, organic 

agriculture has received a recent surge in popularity. Organic agriculture does not allow 

synthetic pesticides, including herbicides. Weed management under organic agriculture 

practices is very problematic. While most methods rely on soil cultivation, hand hoeing,  
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biocontrol, organic mulches, and ironically plastic (synthetic) ground cover, and the use of 

some natural products is permitted.  

 

 

Corn gluten meal 

 

Corn (Zea mays, L.) gluten meal is a byproduct of corn milling. It is commercialized as 

both a fertilizer and a pre-emergence herbicide on lawns and high-value crops (Quarles, 

1999; Christians, 1990). Corn gluten has no effect on existing weeds, but it has a broad-

spectrum of activity on the germination and development of young emerging plants 

(Gough et al., 1999; Liu et al., 1997). Hydrolysis of corn gluten by soil microbes releases 

several phytotoxic dipeptides and a phytotoxic pentapeptide (Figure 1.6). The exact mode 

of action of these oligopeptides is not known but they affect cell wall formation, 

membrane integrity, and nuclear development. Corn gluten may be considered a slow-

release proherbicide since it must be hydrolyzed to release the active ingredients. 

 

 

Acetic acid 

 

Acetic acid has been used as a weed control agent for several centuries. Diluted aqueous 

solutions of up to 20% acetic acid are now sold as horticultural vinegar, or in mixtures 

with other natural products, for non-selective weed management. Acetic acid is a burn 

down, non-selective herbicide. Therefore, it is used for non-cropland areas, such as 

railway rights-of-way, golf courses, open space, driveways and industrial sites. Acid acetic 

solution (10-20%) provide greater than 80% control of the most small weeds. As is 

common with burn down herbicides, acetic acid kills the aerial portions of plants, but does 

not control the underground parts, and plants typically reemerge from the root system after 

a few days or weeks. Although acetic acid is applied at relatively high concentrations, it 

does not have a long term negative influence on soil microorganisms. Acetic acid can also 

be used to control invasive aquatic weeds.  
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Figure 1.6 Structures of the phytotoxic oligopeptides in the hydrolisate of corn gluten meal used 

for weed management in organic agriculture (Dayan et al., 2009). 

 

 

Fatty acids 

 

The herbicidal activity of fatty acids has been known for many years (Malkomes, 2006). 

and some fatty acid salts are now marketed as non-selective herbicidal soaps. These are 

composed of fatty acids of various aliphatic length mixed with vinegar or acetic acid and 

emulsifiers such as organosilicone, saponified, methylated, and ethylated seed oil activator 

adjuvants. Herbicidal soaps act relatively rapidly and have no selectivity (broad-spectrum 

weed control). However, most weeds tend to recover because there is no residual activity 

after the initial burndown effect which takes place soon after application (Anonymous, 

2002). As such, these mixtures can be used as desiccants. Fatty acids with midrange 

aliphatic tails such as caprylic (C8, octanoic acid) and pelargonic acid (C9) are the most 

effective (Coleman, 2006). Pelargonic acid is a contact, broadspectrum commercial 

herbicide. It disrupts plant cell membranes, causing rapid loss of cellular function. When 

saturated fatty acids from C6 to C14 were compared, the C9–C11 fatty acids were 

especially active, whereas the others were significantly less active (Fukuda et al., 2004). 

C6 and C14 fatty acids had essentially no herbicidal activity. Pelargonic acid itself is 

considered a low toxicity and environmental impact herbicide (Senseman, 2007; 

Malkomes, 2006). It has no residual activity. Adding organic acids such as succinic, lactic 

or glycolic acid enhance the efficacy of pelargonic acid formulations (Coleman et al., 

2008).  
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Bialaphos 

 

Bialaphos (Figure 1.7), a tripeptide obtained from the fermentation culture of the 

actinomycete Streptomyces hygroscopicus, is the only true commercialized natural product 

herbicide. It is a proherbicide that is metabolized into the active ingredient L-

phosphinothricin (Figure 1.7) in the treated plant (Lydon et al., 1999). Bialaphos and 

phosphinothricin inhibit glutamine synthetase. Inhibition of glutamine synthetase, which is 

necessary for the production of glutamine and for ammonia detoxification, is lethal to 

plants. Plants exposed to glufosinate have reduced glutamine and increased ammonia 

levels in their tissues, which stops photosynthesis and results in plant death (Senseman, 

2007; Duke, 2005). Phosphinothricin is translocated symplastically and apoplastically 

throughout treated plants and it is not susceptible to metabolic degradation.  

While these are the only products available to have this mode of action, other natural 

products such as tabtoxine-b-lactam, oxetin, phosalacin and methionine sulfoximine 

(Figure 1.7) also target this enzyme (Lydon et al., 1999). Both bialaphos and 

phosphinothricin are broad-spectrum postemergence herbicides that can be used for total 

vegetation control in many agricultural settings, or in non-cultivated areas and to 

dessiccate crops before harvest. 

 

 

 

 
 

 

 

 
Figure 1.7 Structures of natural herbicides used in conventional agriculture and related compounds 

(Dayan et al., 2009). 
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1.2 TRP Active Natural Compounds 

 
 

Nowadays naturally occurring substances, especially those derived from higher plants 

constitute an interesting resource in ecofriendly management of plant pests because they 

are „generally recognized as safe‟ (GRAS). Plants have evolved ingenious defensive 

strategies to ward off herbivorous predators, worms and pathogenes. In many cases this is 

achieved through the production of secondary metabolites that determine irritation and 

inflammation (i.e. capsaicin, allicin, piperine, menthol). Cinnamon, clove, oregano and 

thyme essential oils reveled antibacterial activity towards several Gram-negative and 

Gram-positive pathogenic bacteria (Burt 2004; Azuma et al., 2003; Inouye 2003; 

Tajkarimi et al., 2010) and inhibited the growth of different phytopathogenic fungi 

(Soliman et al., 2002; Ranasinghe et al., 2002; Pawar et al., 2006; Feng et al., 2007; 

Christian et al., 2008; Kordali et al., 2008; Karbin et al., 2009; Siripornvisal et al., 2009). 

Extracts from garlic and mustard demonstrated also a wide range of antimicrobial property 

(Nielsen et al., 2000; Tedeschi et al., 2007; Khusniati et al., 2008; Sitara et al., 2008; 

Dimić et al., 2009; Shrestha et al., 2009; Škrinjar et al., 2009) and antielmintic activity 

(Gupta et al., 1993; Gupta et al., 2005; Flemming et al., 2006; Lazzeri et al., 2004). 

Pungent and irritant compounds produce their psychophysical effects by targeting 

excitatory transient receptor potential (TRP) channels. This fact is responsible of the 

chemosensation properties of the mentioned food plants, such as hotness, cooling, tingling, 

stinging, etc.  

TRP channels are attracting much attention from various research areas including 

physiology, pharmacology and toxicology because of their variety of biological functions 

as well as their existence from yeast to mammals. From IPM point of view, TRP channel 

could be a possible new target site of pest control agents like natural toxin 

allylisothiocyanate, known also as insecticide (Nagata, 2007).  

 

 

1.2.1 TRP family overview 
 

TRP channels constitute a large and functionally versatile family of cation-conducting 

channel proteins, which have been mainly considered as polymodal unique cell sensors. 

The origin of the discovery of the TRP channels can be traced back to the 1960s, when a 
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Drosophila melanogaster mutant was found to show a transient response to prolonged 

bright light (Huang et al., 2006).  

The evolutionary first TRP channels in protists, chlorophyte algae, choanoflagellates, 

yeast, and fungi are primary chemo-, thermo-, or mechanosensors.  

Many of these functions are remarkably conserved from protists, worms, and flies to 

humans. For instance, yeast use a TRP channel to perceive and respond to hypertonicity, 

nematodes use TRP channels at the tips of neuronal dendrites in their „noses‟ to detect and 

avoid noxious chemicals. Male mice use a pheromone-sensing TRP channel to tell males 

from females. Humans use TRP channels in the perception of chemestetic sensations and 

to discriminate warmth and cold. In each of these cases, TRPs mediate sensory 

transduction, not only in a classical sense, for the entire multicellular organism, but also at 

the level of single cells (Clapham, 2003).  

So far, some 70 TRP channels have been identified in both invertebrates and vertebrates. 

In sea squirts, nematodes and fruit flies, 30, 24 or 16 different TRP channels have been 

identified, respectively. In mammals, 33 different TRP channels have thus far been 

identified (Figure 1.8).  

Based on amino acid sequence homology, the mammalian members of this family have 

been classified into 7 subfamilies. The TRPC (canonical) and TRPM (melastatin) 

subfamilies consist of seven and eight different channels, respectively (i.e., TRPC1–7 and 

TRPM1–8). The TRPV (vanilloid) subfamily presently comprises six members (TRPV1–

6). The most recently identified subfamily, TRPA (ankyrin), has only one mammalian 

member (TRPA1). The TRPP (polycystin) and TRPML (mucolipin) families, each 

containing three mammalian members, are relatively poorly characterized, but are 

attracting increasing interest because of their involvement in several human diseases. The 

TRPN subfamily (NOMP, No mechanopotential) in hearing-assisting sensory neurons in 

Drosophila and zebrafish (Danio rerio) has to date only been detected in worm, 

Drosophila, and zebrafish and is proposed to be a mechanostimuli sensing channel. 

Currently available genome information indicates that mammals have no TRPN orthologs 

(Nilius et al., 2007). 
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Figure 1.8 Unrooted phylogenetic tree generated by aligning the transmembrane domains of the 

TRP channels. The seven main branches are denoted with underline, the letters and numbers 
following TRP indicate TRP subfamily and member, respectively (Yin et al., 2010). 

 

 

 

1.2.2 Mammalian TRP channel structure 

 

Typically, each TRP channel subunit consists of six putative transmembrane spanning 

segments (S1–6), implanted with a pore-forming loop between S5 and S6, and 

intracellularly located cytoplasmic NH2 and COOH termini. Assembly of channel subunits 

as homo- or heterotetramers results in the formation of cation-selective channels (Figure 

1.9). Cations are selected for permeation by the extracellular-facing pore loop, held in 

place by the S5 and S6 a-helices. All TRP channels are nonselective, with the exception of 

the monovalent-selective TRPM4 and TRPM5, and the Ca
2+

-selective TRPV5 and 

TRPV6. The cytoplasmic ends of the S6 helices form the lower gate, which opens and 

closes to regulate cation entry into the channel. The selectivity filter itself may also gate. 

The S1–S4 domain may flex relative to S5–S6 in response to stimuli, but the paucity of 

positively charged arginines in TRP S4 helices indicates weak voltage sensitivity. All 

elements outside the S5–S6 region provide means of either subunit association or act as 

linkers to elements that control gating (Clapham, 2003) .  
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The selectivity filter (light blue and inset) is formed by amino acids that dip into the 

bilayer (pore loops), one contributed from each of the four subunits. Depending on the 

TRP family, the N-terminus contains between zero and eight ankyrin repeats, a predicted 

coiled coil region, and a putative caveolin-binding domain. The C-terminus comprises a 

TRP signature motif (EWKFAR), a proline-rich motif, the calmodulin/inositol 1,4,5-

trisphosphate (IP3) receptor-binding (CIRB) domain, and a predicted coiled coil region 

(Yin et al., 2010), (Figure 1.10). 

 

       

Figure 1.9 TRP channel architecture (Moran et al., 2011). 

 

 

 

Figure 1.10 Simplified schematic structure sketches of the seven subfamilies of TRP channels. 
The following domains are indicated as TM transmembrane segments, PL pore loop. Other 

domains as ankyrin repeats, coiled-coil domain, and TRP box are depicted as shown (Yin et al., 

2010). 
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The activation and regulation mechanisms of TRP channels are largely unknown and 

highly diverse. Channel activity is affected by several physical parameters such as 

osmolarity, pH, mechanical force, as well as biochemical interactions with external ligands 

or cellular proteins. Nonetheless, the established modes of activation for expressed TRP 

channels may be divided into three general categories: 

1. Receptor activation. G protein–coupled receptors (GPCRs) and receptor tyrosine 

kinases that activate phospholipases C (PLCs) can modulate TRP channel activity in at 

least three ways: (a) hydrolysis of phosphatidylinositol bisphosphate (PIP2), (b) 

production of diacylglycerol (DAG), or (c) production of inositol trisphosphate (IP3) and 

subsequent liberation of Ca
2+ 

from intracellular stores.  

2. Ligand activation. Ligands that activate TRP channels may be broadly classified as (a) 

exogenous small organic molecules, including synthetic compounds and natural products 

(capsaicin, icilin,); (b) endogenous lipids or products of lipid metabolism (diacylglycerols, 

phosphoinositides, eicosanoids, anandamide); (c) purine nucleotides and their metabolites 

[adenosine diphosphoribose (ADP-ribose), βNAD+]; or (d) inorganic ions, with Ca
2+

 and 

Mg
2+

 being the most likely to have physiological relevance. Although some TRP channels 

clearly function as chemosensors for exogenous ligands (i.e., capsaicin activation of 

TRPV1), relatively few endogenous chemical ligands with the capacity to activate TRP 

channels from the aqueous extracellular milieu are known (2-AG, anandamide).  

3.Direct activation. Changes in ambient temperature are strongly coupled to the opening 

of TRPV1–TRPV3 and TRPM8 by poorly understood mechanisms. Other putative direct 

activators include mechanical stimuli, conformational coupling to IP3 receptors, and 

channel phosphorylation. Heating and cell swelling may also act indirectly to activate TRP 

channels through second messengers or other unidentified mechanisms (Ramsey et al., 

2006). 

 

 

1.2.3 TRP receptors and chemosensation 

 

A large variety of plant-derived natural products and other chemical agents evoke sensory 

responses with an infinite shade of perceptual qualities. The perception of chemical stimuli 

by sensory means is referred to as chemosensation or chemoreception. In humans, the 

olfactory and the gustatory systems are the principal chemosensory systems and the 

substrates for the senses of smell and taste, respectively. Although less well recognized, 

the trigeminal somatosensory system also plays a fundamental role in chemosensation.  
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Sensory endings of the trigeminal (V cranial) nerve innervate the skin covering the face, 

the mucous membranes of the nasal and oral cavities, and the cornea and conjunctiva of 

the eye. These endings can be activated by physical stimuli (mechanical forces and 

temperature) and by a huge array of chemical agents, and evoke sensations of touch, 

temperature, and pain. The capacity of cutaneous, including trigeminal endings, to detect 

chemicals is known as chemesthesis or cutaneous chemosensation (Viana, 2010). Oral 

chemesthesis explains the pungent or sharp feel of many different foods and spices such as 

chili peppers, horseradish, wasabi roots, and Szechuan pepper, the coolness of peppermint, 

the tingle of carbonated drinks, and the irritation produced by substances such as nicotine 

or raw garlic extracts.  

In the trigeminal system, the sensations evoked by many chemical agents show clear cross 

interactions with temperature. Many chemical agents (e.g., capsaicin) sensitize the 

perception of temperature. Menthol sensitizes responses of trigeminal endings to cold 

temperature. These interactions are easily explained by the allosteric gating of TRP 

channels by chemical and thermal stimuli. TRP channels with a marked sensitivity to 

temperature are referred to as thermoTRPs (Viana, 2010), (Figure 1.11).  

 

 

 

 

 

Figure 1.11 Schematic of natural plant products and their related receptors (Gerhold et al., 2009). 

 

 

T > 45°C T < 25°C T < 17°C 
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1.2.4 TRPV1 

 

TRPV1, originally named vanilloid receptor 1 (VR1) and commonly referred as the 

capsaicin receptor, was first described as a polymodal receptor activated by three pain-

producing stimuli; vanilloid compounds (capsaicin, resiniferatoxin), moderate heat (≥43 

°C) and low pH (<5.9). Since then, TRPV1 has been reported to be also activated by 

camphor, allicin, nitric oxide, spider toxins, potentiated by ethanol and modulated by 

extracellular cations. TRPV1 was initially described in a subpopulation of small-to 

medium-diameter neurons in dorsal root, trigeminal and nodose ganglia. While TRPV1 

has since been described in many other neuronal and non neuronal cells, its highest 

expression level is in sensory neurons (Levine et al., 2007). An important functional 

characteristic of TRPV1 channels is their high permeability to Ca
2+

 ions. In addition, 

prolonged exposure of TRPV1 to vanilloid agonists results in a modification of the ionic 

pore properties (i.e., “pore dilation”) with a threefold increase in the relative permeability 

to Ca
2+

 (as compared to sodium). This results in a Ca
2+

 overload of capsaicin-sensitive 

nerve terminals, the retraction of epidermal nerve fibers, and the long-lasting functional 

desensitization of nociceptive sensory endings. 

 

 

 

1.2.4.1 Natural products ligands of TRPV1 

 

Capsaicinoids 

 

The fruits of Capsicum plants are commonly known as chili peppers and their use in 

culinary preparations and in traditional medicine is known since many centuries. TRPV1 

is activated by capsaicin (compound 1 in Figure 1.12), the pungent component of “hot” 

chilli peppers. Capsiate is a nonpungent capsaicin analog, obtained from a non-pungent 

cultivar of red peppers (as Capsicum annuum). Several studies have reported on the 

pungency and bioactivity of various capsaicinoids. The non-pungency of capsiate has been 

related with its poor accessibility to sensory neurons when administered to skin or mucosa 

by its degradation and trapping in the lipid phase of epithelium or cornea due to its high 

lipophilicity. 

 

 

 



TRP active natural compounds                                                                            Introduction 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.       31 

Piperine 

 

Piperine is an alkaloid found naturally in plants belonging to the Piperaceae family, such 

as Piper nigrum, commonly known as black pepper, and Piper longum, also known as 

long pepper. Black pepper has been used in traditional Chinese medicine to treat seizure 

disorders. It has putative anti-inflammatory activity and may have activity in promoting 

digestive processes. Piperine (compound 2 in Figure 1.12) binds to and activates TRPV1. 

Although approximatively 200fold less potent than capsaicin for the activation of 

hTRPV1, piperine shows nevertheless a remarkable efficacy, higher than that of capsaicin. 

Furthermore, and just like camphor, piperine shows very potent desensitizing activity, 

suggesting that, for TRPV1, potency and desensitization can be dissociated (Appendino et 

al., 2008). 

 

 

Eugenol 

 

Eugenol (compound 3 in Figure 1.12) is an allyl chain-substituted guaiacol, i.e. 2- 

methoxy-4-(2-propenyl)phenol and is a member of the allylbenzene class of chemical 

compounds. Eugenol is the chief constituent of clove or clocimum oil obtained from 

Eugenia carophyllata and Ocimum gratissimum. After isolation of eugenol from clove oil, 

it was demonstrated in electrophysiological studies, that eugenol is able to activate inward 

currents in hTRPV1-HEK293 cells and TG neurons. However, other TRP channels could 

also be activated by eugenol. 

 

 

Resiniferanoids 

 

The extremely irritant diterpene present in the dried latex of the plant Euphorbia 

resinifera, resiniferatoxin (RTX, compound 4 in Figure 1.12) is a very specific agonist for 

the TRPV1 channel. E. resinifera is a cactus-like plant native to the Anti-Atlas Mountains 

of Morocco. Early reports of the medical use of dried latex of E. resinifera describe its 

direct application to dental cavities to mitigate toothache or to suppress chronic pain. 

Because capsaicin and RTX analogues share a homovanillyl group as a structural feature 

motif essential for bioactivity, these naturally occurring substances were collectively 

called vanilloids. 

Importantly, RTX is about 3 to 4 magnitude more potent than capsaicin as well in dose- 

response curve as for the effect on thermoregulation and neurogenic inflammation. 
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Ginger-Derived Products 

 

These classes of compounds were isolated from ginger plants (Zingiber officinale), a reed-

like plant. Ginger though called a root, is actually the rhizome of the monocotyledonous 

perennial plant Zingiber officinale. Ginger contains up to 3% of an essential oil that causes 

the fragrance of the spice. The main constituents are gingerols, such as [8]- and [6]- 

gingerol, other pungent substances, are shogaol, zingerone, and paradol. Gingerols 

([6,8,10]-gingerols) and shogaols ([6,8,10]-shogaols) have differences in the length of the 

alkyl carbon chain. Gingerols and shogaols are both activators of the TRPV1 channel. 

Zingerone is similar in chemical structure to other flavor chemicals such as vanillin and 

eugenol. Fresh ginger does not contain zingerone; cooking the ginger transforms gingerol, 

which is present, into zingerone (compound 5 and 6 in Figure 1.12, respectively). Out of 

experimental data, it has been suggested that capsaicin and zingerone could activate the 

same receptor. Cultured rat TG neurons and TRPV1-Xenopus oocytes were desensitized 

by repeated applications of zingerone. Moreover, analysis in rTRPV1-HEK 293 cells 

showed that gingerols increased intracellular Ca
2+

. In this way, zingerone and gingerols 

represents a class of naturally occurring TRPV1 receptor. Paradol can be obtained from 

gingerol by successive dehydration and hydrogenation and is also found in the seeds of 

Aframomum melegueta as a major pungent principle. [6]-Paradol has been cited as 

pungent, but little is known about its possible direct activation of TRPV1. 

 

 

Camphor 

 

Despite a long history of medicinal use as a topical analgesic, the mechanism of activity of 

the monoterpenoid camphor (compound 7 in Figure 1.12) has remained unknown until 

recently. Camphor activates TRPV3, but repeated applications sensitize rather than 

desensitize TRPV3, showing that other mechanisms must be involved in its analgesic 

properties. Although camphor was much less potent than capsaicin for the activation of 

TRPV1, it could nevertheless desensitize TRPV1 more rapidly and completely than 

capsaicin, an observation that provides a rationale for the use of this monoterpenoid in 

plasters and other topical preparation against pain and inflammation.  

Camphor could also inhibit TRPA1, an activity that synergizes with the desensitization of 

TRPV1 to induce analgesia. 
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Cannabinoids 

 

Cannabinoids are a group of chemicals that referred to an unique group of secondary 

metabolites found in the cannabis plant, Cannabis sativa, which are responsible for the 

peculiar pharmacological effects of the plant. Cannabis species contain a complex mixture 

of substances that include 60 different cannabinoids, of whom tetrahydrocannabinol 

(THC), cannabidiol (CBD) and cannabinol (CBN) are the most prevalent. Cannabinol 

(compound 8 in Figure 1.12) is the primary product of tetrahydrocannabinol degradation, 

and there is usually little of it in a fresh plant. CBN content increases as THC degrades in 

storage, and with exposure to light and air. It is only mildly psychoactive, and is perceived 

to be sedative or stupefying. The biological actions of cannabidiol cannot be exclusively 

related to its cannabinoid receptor interaction, considering its low affinity (micromolar 

range) for cannabinoid receptors. Interestingly, some actions of cannabidiol are similar to 

those of capsaicin, including anti-inflammatory and analgesic effect. Interaction with 

TRPV1 seems to be related to some in vivo effects of cannabidiol, since it was shown that 

the TRPV1 receptor mediates the analgesic action of cannabidiol. 

 

 

Evodia Compounds 

 

Evodiamine (compound 9 in Figure 1.12) is a chemical which is extracted from fruits of 

Evodia rutaecarpa. In traditional Chinese, and Japanese medicine Evodia fruits have been 

prescribed for the treatment of headache, thoraco-abdominal pain, and vomiting that are 

caused by cold temperatures. Its mode of action is believed to be similar to that of 

capsaicin, since evodiamine is indeed a genuine agonist of TRPV1. It produces 

extracellular Ca
2+

 uptake as well as intracellular Ca
2+

 increase in rat TRPV1 expressing 

cells, and both effects are competitively antagonized by capsazepine, a capsaicin 

antagonist and a blocker of TRPV1. Evodiamine shows the analgesic action by 

desensitizing sensory nerves. It should be mentioned however that evodiamine doesn‟t 

taste hot, indicating that it‟s above mentioned effects might be mediated through its 

interaction with another factor other than the TRPV1 channel. 
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Figure 1.12 Structures of some TRPV1 agonists (Vriens et al., 2008). 

 

 

1.2.5 TRPV2 

 

TRPV2 is an ion channel with an amino acid sequence ~50% identical to TRPV1. It is 

expressed in sensory neurons of medium and large diameter. The channel is insensitive to 

capsaicin and low external pH. TRPV2 is activated by noxious heat, with an activation 

threshold (~52°C) higher than that of TRPV1 and to changes in osmolarity. Very few 

natural chemical agonists of TRPV2 are known, and none are considered selective. Δ9-

tetrahydrocannabinol and cannabidiol of the marijuana plant activate the channel. 

 

 

1.2.6 TRPV3 

 

TRPV3 is an ion channel structurally analogous to TRPV1 that is strongly expressed in 

skin keratinocytes. Expression of TRPV3 in peripheral sensory neurons is a controversial 

subject. When transfected into mammalian cells, this channel responds to temperature with 

a threshold around 33°C but not to capsaicin or pH changes. TRPV3 null mice have strong 

deficits in responses to innocuous and noxious heat, indicating that it participates in 

thermosensation.TRPV3 is activated by a number of natural chemical compounds,  
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including camphor and carvacrol, a monoterpenoid phenol present at high concentrations 

in the essential oil of oregano. Other monoterpenes such as eugenol (derived from cloves), 

dihydrocarveol, thymol (from thyme), carveol, and (+)-borneol also activate TRPV3. 

Incensole acetate, a compound in the resin obtained from Boswellia trees, also activates 

TRPV3. Farnesyl pyrophosphate (FPP), an intermediate metabolite in the mevalonate 

pathway, is a specific activator of TRPV3. The cutaneous sensations produced by heating 

and cooling can be enhanced by camphor coapplication.  

 

1.2.7 TRPM8 

 

The transient receptor potential melastatin 8 channel (TRPM8) is a nonselective cation 

channel activated by mild cold temperatures (threshold around 25°C in heterologous 

systems) and cooling compounds such as menthol. The TRPM8 protein is 1104 amino 

acids long and is found in a subpopulation (10-15%) of small-diameter, cold-sensitive 

peripheral sensory neurons. The same neurons are activated by cooling compounds (Figure 

1.11). Thermosensitive nerve endings of these sensory neurons innervate the skin and 

mucosae (cornea, oral cavity) where TRPM8 plays a clear physiological role in the 

detection of low temperature ambient signal. In addition to cold, TRPM8 can be activated 

by natural and synthetic cooling mimetic agents such as icilin, eucalyptol, menthol, and an 

abundance of menthol analogues. Other natural weak agonists of TRM8 include hydroxy-

citronellal, geraniol, and linalool. 

 

 

1.2.8 TRPA1 

 

TRPA1 (before ANKTM1) is a nonselective cationic TRP channel (1119 amino acids in 

humans), phylogenetically distant to other mammalian TRP proteins. Its C-terminus 

contains as many as 14 ankyrin binding domains. TRPA1 is expressed in small-diameter 

neurons of the trigeminal and dorsal root ganglia, but apart from that also in hair cell 

epithelium. TRPA1 is activated by cold temperatures (<17°C) and by an intriguing set of 

natural products (Table 1.2), including pungent chemicals as isothiocyanates occurring 

naturally in fruits and plants such as mustard greens and capers. Most notably, the 

chemical sensitivity of this receptor has been preserved during evolution, being similar in 

humans and flies. The list of TRPA1 agonists keeps growing daily and includes many 

natural and synthetic irritants such as allyl isothiocyanate, cinnamaldehyde, allicin and 
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diallyl disulfide, methyl salicylate, ginger, carvacrol, formalin, natural fungal deterrents 

like isovelleral, unsaturated aldehydes like acrolein, isocyanates, and oxidizing agents like 

hypochlorite (OCl
-
) and hydrogen peroxide (H2O2). Several odorants (R-terpineol, amyl 

acetate, benzaldehyde, toluene) known to activate trigeminal fibers also activate TRPA1 

channels. The unique chemical sensitivity of this ion channel for some of these irritants 

was clarified in TRPA1 knockout mice. These animals were completely insensitive to 

mustard oil and allicin.  

 

 

1.2.8.1 Natural products ligands of TRPA1 

 

Isothiocyanate compounds and Cinnamaldehyde 

 
Isothiocyante derivatives constitute the main pungent ingredients in wasabi (allyl 

isothiocyanate), yellow mustard (benzyl isothiocyanate), Brussels sprouts (phenylethyl 

isothiocyanate), nasturtium seeds (isopropyl isothiocyanate) and capers (methyl 

isothiocyanate). Allyl isothiocyanate is the major active ingredient in mustard oil. Topical 

application of mustard oil to the skin activates underlying sensory nerve endings, thereby 

producing burning pain, inflammation and robust hypersensitivity to both thermal and 

mechanical stimuli, but the mechanism through which these compounds elicit their effects 

was unknown until recently. Calcium imaging and electrophysiological analysis showed 

that each of the above mentioned compounds was capable of activating human TRPA1, 

expressed in oocytes. Concomitantly, allyl thioisocyanate elicits a Ca
2+

 response in subset 

of cultured neurons trigeminal and dorsal root ganglia, which is dependent on extracellular 

Ca
2+

, indicating that a Ca
2+

 influx channel is involved.  

Importantly, this response is completely lacking in Trpa1 knockout mice, indicating that 

TRPA1 is the sole target through which mustard oil activates primary afferent nociceptors.  

Cinnamaldehyde is the main constituent isolated from cinnamon oil which is the essential 

oil obtained from Cinnamomum cassia or Cinnamomum zeylanicum.  

It is routinely used for flavouring purposes, and in human subjects, cinnamaldehyde is 

reported to elicit a burning and tingling sensation in the mouth. Notably, no response was 

obvious when cinnamaldehyde was applied to TRPV1, TRPM8 and TRPV4 expressing 

cells. When injected, cinnamaldehyde elicits pain-related behavior in mice. As expected 

this response is similar in Trpv1 knockout mice. Further testing in Trpa1
 
knockout mice 

has not yet been reported.  
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Other Natural Products 

 

TRPA1 overexpressing cells show a sharp increase in intracellular free Ca
2+

 levels when 

stimulated with plant derived compounds such as eugenol (from clove oil), gingerol (from 

ginger) and methyl salicilate (from wintergreen oil). All these compounds cause a pungent 

burning sensation in humans. Allicin, an unstable compound of fresh garlic, is the 

chemical responsible for TRPA1 and TRPV1 activation. It is commonly known that raw 

garlic elicits burning pain and prickling sensations on the lips and the tongue. Trigeminal 

and dorsal root ganglion neurons from
 
TRPA1 knockout mice were completely insensitive 

to allicin, indicating that TRPA1 is the sole site of action of these compounds. Another 

plant derived compound activating TRPA1 is carvacrol, the major ingredient of oregano. 

TRPA1 is rapidly activated and desensitized by this compound, as is however also 

TRPV3.  

 

 

1.2.8.2 Mechanisms of TRPA1 activation 

 

The mechanism of ligand activation of TRPA1 may involve either covalent modification 

of cysteine residues or conventional reversible ligand-receptor interactions (Hongzhen, 

2010).  

In the covalent binding the reactive carbons of ligands form Michael adducts by binding 

with specific N-terminal cysteine residues on TRPA1, in particular the α, β-unsaturated 

carbonyl groups of the ligands react with the -SH groups of cysteines on the channel. 

TRPA1 is activated by structurally different molecules with high chemical reactivity 

(Bang et al., 2009). These covalent modifications produce long lasting channel openings 

that can be reversed by reducing agents such as dithiothreitol. Mutational studies have 

identified several cysteine and lysine residues involved in channel activation. In 

humanTRPA1, crucial residues for channel activation by allyl isothiocyanate include a 

cluster of cysteines (Cys619, Cys639, and Cys663) and Lys708. Actually, activation of 

TRPA1 by electrophilic compounds is very complex. For example, certain Cys-reacting 

compounds show species-specific responses in TRPA1 channels. Other agonists of 

TRPA1 appear to act by conventional reversible ligand-receptor interactions such as 

eugenol and carvacrol. Mutating the critical cysteines to nonreactive serines does not 

prevent the agonist action of these compounds (Viana, 2010). 
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Table 1.2 Natural products ligands of TRPA1 (Vriens et al., 2008). 
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1.3 Perilla frutescens 

 

Perilla [Perilla frutescens (L.) Britton] is a short-day annual herb belongs to family 

Labiateae (Lamiaceae). It is a traditional crop of some Asian countries such as China, 

Korea and Japan. Although the wild ancestor of Perilla crop has not yet been identified, 

the original birth place of Perilla crop is considered to be mountainous areas of China, 

because of long history of cultivation.“Ch'i-min-yao-shu”, written in the fifth or sixth 

century in China, is the oldest literature in which the perilla crop is described. Seed 

remains of perilla have been also found from several archaeological sites in Japan dated 

ca. 5000 B.P. Perilla seeds were found in carbonized starch cakes found in Nagano, Gifu 

and Fukushima prefectures of Japan. These seeds were probably used for flavoring foods, 

as were nuts and sesame seeds in the past. (Nitta et al., 2003). Since ancient times, perilla 

has been known as an herbal medicine, vegetable, garnish, flavoring, and natural colorant 

in Asian countries. It was gradually recognized worldwide as a new economic plant with 

multiple uses. Recently the species has also been cultivated in many European and North 

American countries for medicinal and culinary uses (Lee et al., 2006). Perilla easily adapt 

to open sunny fields with humid climate. The prefer environment for cultivation is a well-

drained rich soil with light to medium moist and full sun. Generally the cold hardened 

seeds are sown in pots filled with sifted compost consisting of loam, leaf mold and sand 

and covered lightly with soil. In warm and humid weather, plants grow quickly and the 

mature plants may grow about one meter high and are bushy and self-branching. Weedy 

plants grow on roadsides and abandoned fields. 

 

1.3.1 Botanical characterization 

 

Perilla frutescens has opposite leaves and branches, square stems, and flowers are 

irregular in shape and purple or white in color. The indeterminate inflorescences produce  

from all active meristems along the stem and branches with terminal raceme 6-20 cm long.  

The flower is small with pubescent campanulate calyx and lipped corolla. The corolla has 

five lobes, two upper and three lower (Figure 1.13). With the simple vascular architecture, 

leaves and branches emerge on the same side of the square stem share vascular bundles, 

leaves and branches on adjacent sides share half of their bundles, while leaves and 

branches on the opposite sides have no bundles in common. The leaves are fuzzy, dark  
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purple or green and flowers are self-pollinated without insect visits. To maintain a neat 

appearance, their tops are usually pinched off when the fourteenth primary leaf appears on 

the main stem. As a short-day summer annual, the flowering of perilla is sensitive to 

change in day length. It blooms in October and is killed by frost in winter locally (Lee et 

al., 2009). Fruiting time is July to October and the ripe fruit is a collection of grayish-

brown nutlets containing 1-4 granules of seed. The seeds are ovoid or subspherical, about 

0.6-2 mm in diameter, greyish-brown to blackish-brown, and with a net-patterned testa.  

 

Figure 1.13 Perilla frutescens: a) habit, b) calyx, c: corolla, d) nutlet (Dönmez, 2002). 

 

The genus Perilla contains two distinct varieties classified on the basis of their typical 

fragrance, morphologic characteristics and utilization. P. frutescens var. frutescens is used 

as an oil crop and as a common traditional vegetable particularly in Korea. It is known as 

Kkaennip in Korea, Egoma in Japanese, and Ren in Chinese (Figure 1.14). P. frutescens 

var. crispa, is utilized for medicinal or nutritional purposes above all in Japan.  

The common names are Cha-jo-ki in Korean, Shiso in Japanese, and Zisu in Chinese (Jung  

et al., 2008). P. frutescens var. frutescens is taller (above 2 mm), larger in seed size, has 

either soft or hard seeds, is green in the leaves and stem, and has generally large, round, 

flat leaves, with a less serrate edge and often, a violet coloring on the reverse side. 

P. frutescens var. crispa is smaller in plant height and seed size (below 2 mm), has only  
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hard seeds, is red or green in the leaves and stem, has wrinkly or non-wrinkly leaves (Lee 

et al., 2003). The green leaf type of perilla, called ao-shiso in Japan, is a popular herb in 

the Orient. The red (or purple) type of perilla, called aka-shiso in Japan, is wealthy in 

anthocyanin and a number of chemical compounds and often used as garnish, flavoring 

and colorant (Figure 1.14). 

 

 

 

   

Figure 1.14 Different varieties of Perilla frutescens: a) Kkaennip, b) ao-Shiso, c) aka-Shiso. 

 

 

 

1.3.2 Chemotypes: variations in chemical components 
 

Perilla plants have a characteristic odor derived from their variety of essential oil 

components. Essential oil, consisting of monoterpenoids or phenyl propenes, is 

accumulated in the glandular trichomes on the surface of stems and leaves (Ito et al., 

2008). The composition of perilla essential oil has been extensively investigated.  

The essential oil of Perilla frutescens from different countries, Thailand, Turkey, northern 

Laos, Korean and Lithuania, were investigated. Species, chemotypes, geographical 

location, and growing environment are the main factors that affect the essential oil 

composition (Huang et al., 2011). According to the type and content of the principal 

volatile compounds, perilla can be classified into eight chemotypes: PK (perillaketone), 

DLP (D-limonene and piperitone), PT (piperitenone), MS (myristicin), AL (apiol), EM 

(elemicin), DEK (dehydroelsholtzia ketone) and PA (perillaldehyde) (Zhang et al. 2009). 

Figure 1.15 shows a theoretically scheme proposed by Ito et al. (2008) for the biosynthesis 

of components of Perilla frutescens essential oil. Perillaldehyde is the major component  

 found in the essential oil of P. frutescens var. crispa. This cyclic monoterpenoid, soluble  

a b c 
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in alcohol and insoluble in water, is an intermediate for synthesis of the intensive 

sweetener perillartine and it is used as food additives for flavourings and in perfumery to 

add spiciness (Huang et al., 2011). Perillaketone, a terpenoid component present in the 

leaves and seeds of Korean perilla, consists of a furan ring with a six-carbon side chain. It 

is a toxic compound found in the plant, which has been demonstrated to cause acute 

restrictive lung diseases in some animals as horses, cattle and sheep (Huang et al., 2011; 

Seo et al., 2009). Although perilla is ordinarily avoided by livestock, it is a popular leafy 

vegetable considered safe for humans, which is generally consumed as a pickle or 

wrapping with roasted. 

 
Figure 1.15 Proposed biosynthetic pathways for some essential oil components of Perilla 

frutescens (Ito et al., 2008). 
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1.3.3 Activation of TRPA1 receptor by PA and PK 
 

The essential oil is mostly responsible for the aroma and taste of Perilla frutescens. 

Laureati et al., (2010) investigated the sensory properties of three different cultivars of 

perilla by means a panel of trained assessors and instrumental sensory devices such as 

electronic nose and electronic tongue. Results showed a remarkable difference of the three 

cultivars. The Korean variety of perilla was perceived as significantly less bitter and most 

refreshing (high intensity of cooling sensation). The crisp green-leaved perilla was the 

most aromatic sample being characterized by high intensity of grassy odour and flavour 

and by floral odour, while the red-leaved perilla was perceived as significantly less 

astringent and pungent as compared to the other two varieties of perilla. The fact that all 

the varieties were characterized by trigeminal sensations seems to confirm the outcome on 

in vitro assays obtained by Bassoli et al., (2009) who evidenced that two of its major 

secondary metabolites, PA and PK (Figure 1.16), isolated from fresh and freeze-dried 

perilla leaves are able to activate the cloned TRPA1 receptor.  

Using a fluorometric test, they showed that rat TRPA1-HEK293 cells exhibit a sharp 

increase in intracellular [Ca
2+

]i upon application of PK. The activity of the compounds was 

normalised to the maximum intracellular Ca
2+

 elevation generated by application of 

allylisothiocyanate (mustard oil, MO) 100 lM. In the same assay, PA were tested and 

resulted more than twofold more efficacious than PK in activating TRPA1 (Figure 1.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.16 The structure of perillaketone (PK) and perillaldehyde (PA). 
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Figure 1.17. Dose-related effects of PA and PK on [Ca

2+
]i in HEK-293 cells stably transfected 

with the rat recombinant TRPA1 channel. Data are expressed as percentage of the maximal effect 
observed with MO 100 lM (Bassoli et al., 2009). 

  

 

Remarkably, both compounds have an unsaturated carbonyl group in their structure and 

this could support the hypothesis that this functional group is an important pharmacophore 

in generating this bioactivity. In fact, TRPA1 can be activated through an 1,4-addition of 

nucleophilic cystein groups of the receptor protein to appropriate acceptors such as 

isothiocyanates and unsaturated carbonyls, as we have seen in the previous chapter.  

It is interesting to note that, although the efficacy and potency of PK and, particularly, PA 

at eliciting elevation of intracellular Ca
2+

 via TRPA1 in HEK293 cells was similar, or even 

superior, to that of pungent TRPA1 agonists, such as the mustard oil isothiocyanates, or 

carvacrol, or isovelleral, the pungent product of the fungus Lactarius vellereus, and 

polygodial, isolated from the leaves of water pepper, this does not seem to be sufficient to 

confer to P. frutescens a strong pungent or otherwise „aggressive‟ taste similar to that 

experienced instead with mustard, garlic or oregano. This might be due to several reasons, 

including: (1) the capability of some of these compounds (e.g. isovelleral, polygodial, 

carvacrol) to activate other TRP channels involved in heat sensitivity (i.e., TRPV1 and 

TRPV3), (2) the capability, shown here, of PK and PA to immediately desensitise TRPA1, 

and also to antagonize the TRPM8 channel; (3) the presence in P. frutescens of lower 

amounts of PK and PA as opposed to the possible higher abundance of other TRPA1 

agonists in other plants.  

 

 



Perilla frutescens                                                                                                 Introduction 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.       45 

1.3.4 Non volatile compounds 

 

The non volatile compounds comprise tritepenoids, phenolics, flavonoids and glycosides, 

that can be commonly found in some varieties of perilla, in contrast with the volatile 

comnponents in essential oil (Yu et al., 1997).  

The structures of some non-volatile terpenoids and sterols isolated from P. frutescens are 

shown in Figure 1.18. As a non volatile monoterpene, perillic acid (10) is well-known as a 

autooxidation product of the perillaldehyde. Besides the widespread sterols, β-sitosterol 

(11), stigmasterol (12) and campesterol (13) from both the leaves and seeds, Perilla leaves 

also contain triterpenoids, ursolic acid (14), oleanolic acid (15) and tormentic acid (16).  

In common with other members of the Labiate family, Perilla leaves contain a rich 

mixture of phenolics and cinnamates (Figure 1.19).  

Typical of these are cinnamic acid derivatives, rosmarinic acid (17), caffeic acid (18), and 

ferulic acid (19). As a phenolic, protocatechuic aldehyde (20) is also present. 

 

 

 

 

 

Figure 1.18 Non-volatile terpenoids and sterols isolated from P. frutescens (Yu et al., 1997). 
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Figure 1.19 Phenolics and cinnamates from P. frutescens (Yu et al., 1997). 

 

The flavonoids and anthocyanins present in purple perilla are reported in Figure 1.20. 

Typical flavonoids are apigenin (21), luteolin (22), scutellarein (23), and their glycosides, 

while typical anthocyanins are acylated glucosides of cyaniding, malonylshisonin (24) and 

shisonin. About twenty glycosides have been found from green and purple perilla leaves. 

Four monoterpene glucosides perillosides A-D (25-28) (Figure 1.21) have been isolated 

from the methanolic extract of green perilla leaves including perillaldehyde as a major 

component in the essential oil. Among these, perillosides A and C were found to be 

inhibitors of aldose reductase, involved in diabetic complications (Yu et al., 1997). 

 
 
Figure 1.20 Typical flavonoids and anthocyanin from P. frutescens (Yu et al., 1997). 
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Figure 1.21 Monoterpenoids glucosides from P. frutescens (Yu et al., 1997). 

 

 

1.3.5 Uses of Perilla 

 

Perilla frutescens (L.) Britton is used in several different ways: seeds are used as food for 

birds, animals or human consumption; the seed oil is used as a fuel, a drying oil, or 

cooking oil; the leaves are used as pot-herb, for medicine or for food colouring; and the 

foliage is distilled to produce an essential oil for flavoring (Pandey et al., 2008). 

In Japan, the seeds are roasted and then powdered for use in traditional foods as flavoring 

(Figure 1.22). In China, these seeds are used for oil pressing or they are also crushed and 

added to cooking for flavoring. 

The perilla seeds contain about 45 % oil and most of which (up to 92 %) is composed of 

unsaturated fatty acids, especially α-linolenic acid (about 68 %) and linoleic acid (about 14 

%). Perilla oil also contains 17 amino acids and does not include unhealthy components 

such as sinapic acid that is rich in rape oil. It is therefore a high quality edible oil and also 

has wide applications in industry (Hou et al., 2005). In the past, the seed oil was also used 

in the manufacture of lacquer and paper umbrellas. 

In Korea, fresh leaves of var. frutescens are used for wrapping meats and boiled rice and 

for pickles (Figure 1.23). Var. frutescens is also used for tea, in fact perilla tea is listed on 

the menu of Korean coffee shops. 

In Japan, leaves of var. crispa are widely sold in markets and used for tempura and as a 

garnish with raw fish or noodles. The red leaf type is more valuable and is used for 

coloring pickles. The red color of pickled plum (umeboshi in Japanese) results from the 

reaction of the citric acid of the plum with the anthocyanine of var. crispa (Figure 1.24) 

(Nitta et al., 2003). 
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Figure 1.24 Pickled plum colored by red leaves of Perilla frutescens var. crispa in Japan (Nitta et 
al., 2003). 

 

 

1.3.6 Medicinal properties  

 

Perilla frutescens has traditionally been credited with a long list of medicinal uses because 

of its biologically active compounds. 

In the recently published Chinese Pharmacopoeia, perilla leaf, stem and seed were 

separately listed as traditional Chinese medicine for different purposes and a number of 

prescriptions containing perilla leaf, steam or seed as one the ingredients were collected. 

The stalks of the plant are traditionally used as an analgesic and anti-abortive agent.  

Figure 1.22 Sticky rice ball with seed powder 

of P. frutescens var frutescens in Japan (Nitta 

et al., 2003). 

Figure 1.23 Pickled leaves of P. frutescens var 

frutescens in Korea (Nitta et al., 2003). 
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The leaves are said to be helpful for asthma, colds and flus, and to regulate stomach 

function, while the seeds are employed for dyspnea and cough relief, phlegm elimination, 

and the bowel relaxation. Recently, animal studies hint that P. frutescens might also be 

useful for a different type of allergy: the severe, rapid reaction known as anaphylaxis, 

commonly associated with shellfish, peanut, and bee-sting allergies (Lin et al., 2010).  

Increasingly considerable attention has been given to the anti-allergic, antiinflammatory, 

antioxidant and anti-tumor promoting substances contained in perilla plants (Makino et al., 

2003; Banno et al., 2004; Peng et al., 2005; Gu et al., 2009; Meng 2009; Yuri et al., 

2004).  

The main polyphenolic compounds, such as anthocyanidin, luteolin, apigenin, catechin 

and rosmarinic acid, had been isolated and identified from red perilla and green perilla. It 

had been reported that the aqueous extract of P. frutescens leaves possess a 

hepatoprotective capacity against t-BHP-induced hepatic and oxidative damage in the rat 

liver through scavenging reactive oxygen species (ROS) and attenuating the loss of 

glutathione (GSH). Rosmarinic acid, as one of major polyphenolic compounds in the 

perilla extract, could reduce lipopolysaccahride-induced and D-galactosamine-induced 

liver injury. It was reported that luteolin and apigenin function as monoamine transporter 

activators, which would improve several hypermonoaminergic neuropsychological 

disorders, especially cocaine dependence, through up-regulating monoamine transporter 

activity. In particular, luteolin isolated from P. frutescens was relatively specific inhibitors 

of beta-secretase and also could inhibit the nitric oxide (NO) production in 

lipopolysaccharide-activated microglia in a dose-dependent manner (Feng et al., 2011). 
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2 THE AIM OF THE RESEARCH 

 
 
Plant diseases due to fungal and bacterial pathogens, and various pests, including insects, 

nematodes and also weeds, cause severe losses of agricultural and horticultural crops 

every year. These losses can result in reduced food supplies, poorer-quality agricultural 

products, economic hardship for growers and processors, and, ultimately, higher prices. 

Current practices for controlling plant diseases are based largely on synthetic chemicals, 

but abuse in their employment has favored the development of pathogens resistant to 

agrochemicals. For many diseases, traditional chemical control methods are not always 

economical nor are they effective, and fumigation as well as other chemical control 

methods may have unwanted health, safety and environmental risks (Monte, 2001). 

Natural products are an excellent alternative to synthetic pesticides as a means to reduce 

negative impacts to human health and the environment. The move toward green chemistry 

processes and the continuing need for developing new crop protection tools with novel 

modes of action, makes discovery and commercialization of natural products as green 

pesticides, an attractive and profitable pursuit that is commanding attention (Koul et al., 

2008). Natural plant protectants have many advantages over synthetic pesticides which 

include: 

 i. low mammalian toxicity, less hazards to non-target organisms and environmental 

pollution; 

ii. no risk of developing pest resistance to these products, when used in natural forms; 

iii. no adverse effect on plant growth, seed viability and cooking quality of the grains 

(Prakash et al., 2008). 

It is known that plants produce a great number of secondary metabolites with 

antimicrobial and biocidal properties. Among the natural compounds with the ability to 

inhibit the growth of many pathogens, there are: allylisothiocyanate from mustard 

(Brassica nigra), allicin from garlic (Allium sativum), eugenol from cloves (Syzygium 

aromaticum), carvacrol from oregano (Origanum vulgare), thymol from thyme (Thymus 

vulgaris) and cinnamaldehyde from cinnamon (Cinnamomum zeylanicum). Moreover, 

allylisothiocyanate (typical also of wasabi and horse radish) and allicin have shown 

insecticidal and antihelmintic activities. A feature of these phytochemicals is that they act 
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at molecular level by activating the TRPA1 ion channel. TRPA1 is resposible of the 

chemoesthetic properties of these food plants, which are perceived as a mild pungent or 

irritating stimulus at gustatory level. The in vitro activation of TRPA1 receptor by two of 

major secondary metabolites contained in the food plant Perilla frutescens, perillaldehyde 

(PA) and perillaketone (PK), is an interesting finding that can have potential agronomical 

applications. 

The antibacterial activity of perilla leaves containing perillaldehyde is documented. Kang 

et al., (1992) demonstrated that PA exhibited a synergistic effect with polygodial against 

many Gram-positive and Gram-negative bacteria and fungi like Mucor mucedo, 

Penicillium chrysogenum, at the minimum inhibition concentrations (MIC) ranging from 

31.2 to 1000 µg mL
-1

. Perillaldehyde showed antibacterial activities on some foodborne 

pathogens such as Escherichia coli, Listeria monocytogenes, Salmonella typhymurium, 

Vibrio vulnificus (Kim et al., 1995) and Micrococcus luteus (Friedman et al., 2006). The 

antibacterial ability of leaves extracts from Perilla frutescens var. acuta was reported by 

Choi et al., (2010) against Pseudomonas aeruginosa and by Kim et al., (2011) towards 

Staphylococcus aureus. McGeady et al., (2002) reported that PA interfered with the 

morphological change of Candida albicans from the relatively benign, cellular yeast form 

to the pathogenic, filamentous form in vitro. Smid et al., (1995) described a strong 

antifungal activity of pure perillaldehyde on Penicillium hirsutum, the principal agent of 

penicillium rot on flower bulbs. Pure PA was also evaluated against three postharvest 

pathogenic fungi: Penicillium digitatum, P. italicum, and P. ulaiense (Scora et al., 1998). 

While Sekine et al., (2007) reported a weak mycelial growth inhibition for Shiso green and 

Shiso red against Fusarium oxysporum.  

Furthermore, the activity of perilla seed and/or seed oils as nematicidal and insect repellent 

was also reported (Taylor, 2003). In this patent the efficacy of the plant was ascribed to the 

high amount of linoleic acid, α- linoleic acid, oleic acid and other unsaturated fatty acids 

that should act as dehydrating agents which stop the feeding and reproductive processes of 

the nematodes.The nematicidal activity of P. frutescens essential oil was demonstrated 

against the pinewood nematode Bursaphelenchus xylophilus (Choi, 2007); in this paper a 

commercial sample of perilla from the Korean market was used and a chemical 

characterisation of the components was not done. The essential oil from P. frutescens (L) 

Britton var. orientalis was also reported as weakly active against the rice weevil, Sitophus 

oryzae (Lee, 2001) 
 
and

 
the

 
authors attributed the activity to the perillaldehyde contained in 

the mixture. Perillaldehyde and other monoterpenoids biosynthesised by perilla plants 
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showed a control activity against the saprophytic nematode Caenorhabditis elegans and 

the root lesioning nematodes Pratylenchus penetrans (Tsao, 2000). PA showed a good 

activity also against the fish parasitic nematode Anisakis spp. and the dog roundworm 

Toxocara canis (Goto, 1995).  

Although the antimicrobial activity of the perilla extracts containing PA as main 

compound is described, no earlier studies are reported in the literature with regard to the 

antibacterial and antifungal activity of perillaketone. Moreover, the nematicidal activity of 

pure perillaketone has never been evaluated. 

The aim of this work is to determine the antimicrobial activity of the crude extracts and of 

essential oils obtained from the leaves of two varieties of Perilla frutescens grown in 

Northern Italy (named PA-type and PK-type respectively). Commercial perillaldehyde and 

synthetic perillaketone were also assayed against some important phytopathogenic bacteria 

and fungi. In addition, the nematicidal efficacy of the pure perillaketone isolated from the 

leaves of cultivar PK-type, was also evaluated. 

 

The study focuses mainly on the following objectives:  

 Steam distillation, organic solvent extraction, purification and synthesis of active 

compounds from two cultivars of Perilla frutescens, optimizing the procedure to obtain 

the needed material for the biological assays.  

 Realization of different in vitro tests on several plant pathogenic bacteria and fungi 

belonging to different phyla, to identify the most sensitive target. 

 Realization of in vivo tests in greenhouse to evaluate the potential preventive activity of 

assayed compounds against Sphaerotheca fuliginea on Cucumis sativus. 

  Evaluation of nematicidal activity of perillaketone against 2
nd

 instar larvae juveniles of 

cyst nematode Heterodera daverti Wouts et Sturhan. 
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3 MATERIALS AND METHODS 

 

 

 

 

3.1 Chemical procedures  

 

Reagents were of commercial grade purity and the solvents were dried with standard 

procedures. 

Chromatography was carried out on 220-240 mesh silica gel using the flash methodology 

(Still, 1978). 

Thin-layer chromatography was obtained on Merk precoated silica gel 60 F254 plates and 

the spots were visualised by UV at 254 nm.  

HPLC analyses were recorded on a Varian SD 200 liquid chromatograph. 

NMR spectra were recorded on Bruker AMX-300, using tetramethylsilane (TMS) as 

internal standard; coupling constant (J) are given in Hertz.   

 

 

Abbreviation: AcOEt ethyl acetate, DCM dichloromethane, DMSO dimethylsulfoxide, 

MeOH methanol, THF tetrahydrofuran.  

  

 

 

3.1.1 Crude extracts 

 

Frozen leaves (240 g) of adult plants were cut into small pieces and were extracted with 

DCM for 24 h at room temperature. The extraction with mechanical stirring was repeated 

for two times. The resultant extracts were combined and concentrated under reduced 

pressure to give green PA-Ex and PK-Ex weighing 3.2 g and 3.6 g, respectively. 

The two samples were analyzed by HPLC and NMR to confirm the chemotype 

classification.  
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3.1.2 Essential oils 

 

Separate aliquots of 20.0 g of both cultivars were steam distilled for 1 hour and 30 

minutes to obtain 200 mL of aromatic water. This solution was extracted three times with 

100 mL of DCM, then was dried over anhydrous sodium sulfate, filtered and the solvent 

evaporated. PA-EO (34.7 mg) and PK-EO (65.5 mg) were preserved in a sealed vial at 4 

±2°C until further analysis. 

 

 

3.1.3 Chemotype classification 

 

Principal secondary metabolites of Perilla frutescens samples were identified and 

analyzed by TLC, HPLC and NMR. Thin-layer chromatography was performed on 

Merck precoated silica gel 60 F254 plates and the spots were visualised by UV at 254 

nm. HPLC analyses were carried out using a Varian SD 200 liquid chromatograph with 

RP column Alltima C18 (250 mm lenghth, 4-6 mm ID, 5µ, Alltech) equipped with a UV 

detector at 254 nm.  

20 µL of the test solutions at concentration of 1mg mL
-1

 were injected, and the column 

was eluted with a linear gradient with a mobile phase containing solvent A (water) and 

solvent B (methanol). The solvent gradient was programmed from 70% to 100% B in 45 

min with a flow rate of 1.0 mL/min. The crude extracts were filtered on RP 18 and 

through a cellulose acetate membrane filter of 0.45 mm, prior to HPLC analysis. Data 

acquisition was done with the Galaxy software of Varian. The identification of 

predominant compounds in the test samples was based on comparison of their relative 

retention times with those of pure perillaldehyde, as commercial preparation with at a 

nominal purity of least 92% and perillaketone, obtained previously by synthesis. In 

mentioned conditions the two standards have retention times of 10.28 min (PK) and 

13.16 min (PA). The samples from Perilla frutescens var. crispa contained perillaldehyde 

as the main secondary metabolite and thus were classified as PA-chemotype. The 

samples from Korean cultivar included, instead, almost exclusively perillaketone and 

were classified as PK-chemotype. PA was present at 65.1% in the extract and at 95.8 % 

in the essential oil. Whereas PK was contained at 79.8% in the extract and at 99.0% in the 

oil. The HPLC profiles of the essential oils fom the two cultivars are shown in Figure 3.1 

and 3.2. The figure 3.3 and 3.4 reported the 
1
H-NMR spectra of these oils. 
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Figure 3.1 Chromatogram of essential oil PA-type. 

 

 

 

 

 

 

Figure 3.2 Chromatogram of essential oil PK-type. 

 

 

 

CHO

O
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Figure 3.3 
1
H-NMR (CDCl3) spectrum of of essential oil PA-type. 

 

 

 

Figure 3.4 
1
H-NMR (CDCl3) spectrum of of essential oil PK-type. 
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3.1.4 Synthesis of Perillaketone (1-furan-3yl-4-methyl-pentan-1-one), PK 

(34) 

 

 

 

 

 

 

The Grignard addition on fresh distilled 3-furaldehyde gives a mixture of alcohol 33 

(19%) and perillaketone 34 (12%). 

 

Under a nitrogen atmosphere, 264 mg (11 mmol) of Mg in dry THF (5.5 ml) were added 

a catalytic amount of I2 and a solution of fresh distillate 3-methyl-butyl-bromide (1.66 g, 

11 mmol) in 5.5 ml of dry THF. The Grignard reagent was added to a solution of 3-

furaldeyde (1.00 g, 11 mmol) in10 ml of dry THF and the solution stirred at room 

temperature for 24 h. The reaction mixture was acidified with satured aqueous 

ammonium chloride solution, concentrate in vacuum and extracted with DCM. After 

drying of the combined organic layer with Na2SO4 and evaporation of solvent under 

vacuum, the product was isolated by flash chromatography (petroleum ether/diethyl ether 

85/15) Was obtain as first fraction 205 mg (12%) of pure PK 34 as colourless oil and as a 

second fraction the alchol 33 314 mg (19%). 

 

 
1
H NMR (CDCl3) δ: 0.93 (6H, d, J=6.43 Hz, 2 CH3), 1.61 (3H, m, CH2CH), 2.74 (2H, t, 

J=7.12 Hz, CH2CO), 6.76 (1H, dd, J=1.84 e 0.92 Hz, H-4), 7.42 (1H, dd, J=1.84 e 1.47 

Hz, H-5), 8.01 (1H, dd , J=1.47 e 0.92 H-2).  
13

C NMR (CDCl3) δ: 22.2, 27.6, 33,0, 38.2, 108.5, 127.5, 144.0, 146.9, 195.2. 

GC-MS, Rt 14.05 min, m/z, (%): 166 ( M
+
, 5), 110 (90), 95 (100).  

HPLC: Rt 10.28 min. 

 

 

 

 

O

O
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1-furan-3yl-4-methyl-pentan-1-ol 33 
 
1
H NMR (CDCl3) δ: 0.85 (6H, d, J=7.02 Hz, 2 CH3), 1.05-1.85 (5H, m CH2CH2CH), 4.62 

(1H, t, 6.88, CHOH), 6.38 (1H, bs, H-4), 7.37 (2H, bs, H-2 e H-5). 

13
C NMR (CDCl3) δ: 22.47, 27.86, 33.62, 35.56, 67.19, 108.34, 129.11, 138.94, 143.23. 

HPLC: Rt 12.14 min (99.0% area). 

 

The same product was obtained by reduction with NaBH4 (11.4 mg, 0.3 mmol) in 0.5 ml 

of ethanol of a solution of PK 34 (50 mg, 0.3 mmol). After stirring at room temperature 

for 2 h, the mixture was concentrate in vacuum, quenched by addition of satured aqueous 

ammonium chloride solution and extracted with DCM for several times. The product was 

purified by flash column chromatography to give 30 mg of colourless oil. (60%).  

 

 

 

 

 

3.1.5 Extraction of Perillaketone 

 

Perillaketone, for the nematicidal assay, was extracted from grinded freeze-dried leaves 

(30 g) of the Korean Perilla with hexane four times for 2 hours each at room temperature. 

The solution was filtered, dried with Na2SO4 and the solvent evaporated. The crude 

product obtained (263 mg) was purified by flash chromatography (hexane/ether 8.5/1.5) 

to give perillaketone as a pure colorless oil (16 mg).  

The purity (93%) was checked by HPLC, with the same analytical protocol reported 

before.  

GC–MS analyses were performed on a Shimadzu GC–MS spectrophotometer QP5000 

with helium carrier at a flow of 0.8 mL/min, and with polymethyl siloxane at low polarity 

AT-1ms (30 m of length, 0.25 mm id, Alltech) as capillary column-bonded phase; 

temperature program: 50°C for 5 min, rate 5°/min to 240°C in 40 min, 240°C for 15 min; 

injection in splitless mode, injector temperature 220°C, interface temperature 300°C; 

acquisition range: 50–450 m/z; detector condition 70 eV; current 60 μA; 

electromultiplicator: 1300V. The Class 5K software of Shimadzu was used for data 

processing. 
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3.2 Antimicrobial assays 

 

The crude extracts and the essential oils of both varieties (PA and PK types), commercial 

PA and PK obtained by synthesis, were tested against a panel of selected microorganisms 

by in vitro and in vivo assays. 

 

 

 

3.2.1 Microorganisms  
 

The antimicrobial activity of tested compounds was valued on phytopathogenic bacteria 

and fungi, listed below: 

Arthrobacter ilicis IPV 2504, Bacillus subtilis IPV 2430, Clavibacter michiganense pv 

insidiosum IPV 2487, Clavibacter michiganense pv nebraskense IPV 2510, Clavibacter 

tritici IPV 2507, Curtobacterium flaccumfaciens IPV 2485, Curtobacterium 

flaccumfaciens subsp betae IPV 2483, Curtobacterium flaccumfaciens subsp oortii IPV 

2513, Curtobacterium flccumfaciens subsp poinsettiae IPV 2502 (Gram +); Pseudomonas 

syringae pv mors-prunorum IPV 2605, Xanthomonas anoxopodis pv dieffembachiae IPV 

2620, Xanthomonas anoxopodis pv poinsetticola IPV 2626, Xanthomonas anoxopodis pv 

vignicola IPV 2625, Xanthomonas  vesicatoria IPV 2615 (Gram -); Alternaria alternata 

RF8, Aspergillus niger IPV-F303, Armillaria mellea (strains: 3A, 7A, 4B, 5B, 12B, 4C, 

6C, 12C, 5D, 12D), Bipolaris oryzae, Botrytis cinerea F4-11, Cercospora beticola, 

Cladosporium cladosporioides IPV-F167, C. cladosporioides CBS 574.78 A, C. 

cucumerinum, Colletotrichum dematium f sp circinans X, Fusarium oxysporum f sp 

lactucae L55, Fusarium roseum, Penicillium corylophilum L2, Pyrenophora graminea, 

Pyricularia oryzae BA43, Rhizoctonia solani, Sclerotinia sclerotiorum. 

The yeast Saccharomyces cerevisiae CBS 1171was also used. 

The strains were obtained from the culture collection of Department of Agri-Food and 

Urban System Protection and Biodiversity Enhancement (DiPSA), Faculty of Agriculture 

in Milan.  

The freeze-dried bacterial strains were reconstituted by adding nutrient broth.  

The samples were then incubated for 5 days at 24 ±2°C. Fungal cultures were maintained 

on different substrates and stored at +4±2°C.  
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3.2.2 Culture media 

 

In the present study different growth media were used, their composition is reported 

below: 

 

 Potato Dextrose Agar (PDA, Oxoid) 

39 g of powdered medium to dissolve in 1 L deionized water, containing: 

Potato Extract    4.0 g 

Glucose 20.0 g 

Agar       15.0 g 

Final pH 6.5 ± 0.2 

 

 

 Malt Agar (MA, Difco) 

45 g of the medium to dissolve in 1 L of purified water, containing: 

Malt Extract      30.0 g 

Agar       15.0 g 

Final pH 6.5 ± 0.2 

 

 

 Nutrient Agar (NA, Difco) 

23 g of powdered medium to dissolve in 1 L deionized water, containing: 

Beef Extract        3.0 g 

Peptomeat        5.0 g 

Agar       15.0 g 

Final pH 7.0 ± 0.2 

 

 

 Nutrient Broth (NB, Difco) 

8 g of powdered medium to dissolve in 1 L deionized water, containing: 

Bacto Beef extract        3.0 g 

Bacto Peptomeat       5.0 g 

Final pH 7.0 ± 0.2 
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 Czapek Dox Broth (CDB, Difco) 

35 g of powdered medium to dissolve in 1 L deionized water, containing: 

Saccharose      30.0 g 

Sodium Nitrate      3.0 g 

Dipotassium Phoshate     1.0 g 

Magnesium Sulfate      0.5 g 

Potassium Chloride      0.5 g 

Ferrous Sulfate               0.01 g 

Final pH 6.5 ± 0.2 

 

 

 Medium to inhibit rhizomorph formation (ARM) (Anselmi and Govi, 1996) 

Glucose       10.0 g 

L-asparagine        2.0 g 

KH2PO4      1.75 g 

MgSO4      0.75 g 

Agar       10.0 g 

Vitamin B1      1.0 g 

Deionized water        1 L 

Final pH 6.5 ± 0.2 

 

 

The culture media were heated to boiling to dissolve completely. The media were 

adjusted to the desired pH by adding NaOH or HCl (1 N), autoclaved at 121°C, 1 atm, for 

20 minutes and then cooled to 50°C. 
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3.2.3 In vitro assays 

 

Following assays were employed for the determination of antimicrobial potential of 

tested compounds. 

 

 

Disk diffusion method 

 

The antimicrobial activity was determined by paper disk diffusion assays on 

microorganisms including strains of phytopathogenic fungi (A. mellea, A. niger F303, B. 

cinerea F411, C. cladosporioides IPV- F167, F. roseum, P. corylophilum L2) and 

mentioned bacteria. S. cerevisiae 1171 was also tested. Microorganisms were grown in 

Petri dishes (6 cm diameter) containing 10 mL PDA for fungi, NA for bacteria and ARM 

for A. mellea. 200 µL of spore suspension (10
6 

spores/mL) of F. roseum, B. cinerea F4-

11 and C. cladosporioides  IPV- F167 was spread over the surface of each agar plate with 

a sterile, bent glass rod. For the other microorganisms 1 mL of the spore suspension (10
7 

spores/mL) was inoculated in 150 mL of the appropriate medium. In the case of A. 

mellea, a mycelium disc of 6 mm diameter, cut out from the edge of a growing colony, 

was placed upside down about 1cm from the edge of a Petri dish of ARM. PA-EO, PK-

Ex and PK obtained by chemical synthesis, were dissolved in MeOH to give 

concentrations of 250, 500, 1000, 2000 µg mL
-1

 and 20 µL of these solutions were used 

to wet sterile paper disks (Schleicher & Schuell, 6 mm diameter) put in the centre of 

inoculated plates or opposite the inoculum in the case of A. mellea. Disks containing only 

solvent were used as negative control. Inoculated Petri dishes were incubated at 20°C (A. 

mellea) or 24°C (other microorganisms) for 3-7 days. Incubation was extended to 1 

month in the case of A. mellea. Antimicrobial activity was assessed by measuring the 

diameter of the inhibition zone around the disks. 

 

 

Poisoned food technique 

  

Fungitoxicity was also studied following a poisoned food technique which produces 

hyphal growth inhibition. Samples were dissolved in dimethyl sulfoxide (DMSO) and 

required amounts of the solutions were added to sterile cool MA to give concentrations of 

100, 1000, 2000 µg mL
-1 

in the case of the crude extracts and of 100 µg mL
-1

 for pure  
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PA. For the evaluation of the essential oils, the tested concentrations were 100, 200, 300, 

400 and 500 µg mL
-1

 in the case of Cladosporium spp, and of 200 and 500 µg mL
-1

 for 

the other fungi. Amended media were inoculated with mycelia plug (7 mm) cut from the 

edge of actively growing colonies and placed upside down in the center of dishes. Then, 

the plates were scaled with parafilm and incubated at 24°C±2°C. The radial growth of the 

colony was measured 3, 5 and 7 days after incubation. MA plates containing DMSO, 

without samples, and the compound solutions were used as negative control. The effect 

of the natural compounds were compared with that of standard fungicides: azoxystrobin 

(1 µg mL
-1

) against P. teres and P. oryzae; cyprodinil (1 µg mL
-1

) towards B. cinerea and 

A. alternata; and prochloraz (0.1 µg mL
-1

) for the other fungi. 

Antifungal activity, expressed in terms of percentage of mycelial growth inhibition, was 

calculated using the following equation: 

 

% Mycelia inhibition  
     

 
     

 

where, C is the mycelia diameter of the control and T is the mycelia diameter of treated 

samples.  

All tests were carried out in triplicate and inhibition percentages were reported as means 

±SE of triplicates. 

To determine the nature of toxicity (fungistatic/fungicidal) of each sample, the mycelial 

discs totally inhibited by the compound, were transferred on fresh medium. The treatment 

was considered fungistatic if the growth of the fungus restarted and fungicidal if not. 

 

 

Bioautography on thin-layer plates  

 

10 µL of test compounds (PA-Ex, PK-Ex, PA-EO, PK-EO, PK obtained by chemical 

synthesis and commercial PA) dissolved in EtOAc were applied as small spots on 

6,5x16,8 cm thin-layer Plates TLC (Si 60; 0.25 mm; Merck) to give a final concentration 

of 1, 10, 20, 50, 100 µg/application zone. Prochloraz was used as positive control at 10
-3

, 

10
-2

, 10
-1

, 1,
 
10 µg/application zone. 

The organic solvent was evaporated by a stream of air. The TLC plates were 

homogeneously sprayed with spores of C. cladosporioides IPV-F167 suspended in  
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Czapek Dox Broth (10
6 
spores/mL). Plates were incubated for 5 days in a moist chamber  

at 24±2°C in the dark. Fungal growth inhibition appeared as clear zones against a dark 

background, indicating the minimum amount of compounds required for it. 

 

 

 

Spore germination assay 

 

Both essential oils and commercial PA were checked for the suppression on the 

germination of C. cladosporioides IPV-F167 spores. For this purpose, spore suspensions 

in deionised water added by 0.01% Tween 20  adjusted to approximately 10
6
 spores/mL 

by using KOVA haemocytometer (Hycor Biomedical Inc. USA). Petri dishes containing 

MA amended with PA and PK-oils at 100, 250 and 500 µg mL
-1

, and commercial PA at 

100 µg mL
-1

 were inoculated by 20 µL of spore suspension. The plates in duplicate were 

incubated at 20±2°C for 24 hrs and then examined under a light microscope for spore 

germination. DMSO as a negative control at 500 µg mL
-1

 did not inhibit the spore 

germination of tested pathogen. Percentage spore germination was calculated by 

observing 100 spores for each recurrence, according to the following formula: 

 

% Spore germination = 
Germinated spores  No. 

Total spores  No. 
 

 

 

 

3.2.4 In vivo assays 

 

Preventive activity of the tested compounds were evaluated by in vivo assay on 

Sphaerotheca fuliginea/Cucumis sativus L. (cucumber powdery mildew). Cucumis 

sativus L. cv “Lungo della Cina” used in this study was grown in plastic pots (diameter 

11 cm) with artificial light (14 h per days) at 22 ± 2° C and 70 ± 20% RH. Cucumber 

plants were employed when the first true leaf was fully developed. Plants inoculation was 

performed spraying on both the leaf surfaces the S. fuliginea spore suspension (1·10
5
 

spore mL
-1

) in deionised water plus 0.01% Tween 20, obtained from previously infected 

host plants. Assayed compounds were dissolved in a mixture of deionised water (80 mL), 

and acetone (20 mL) with Tween 20 (40 mg) as a surfactant. Crude extracts (100 and  
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1000 µg mL
-1

), essential oils (100, 500 and 1000 µg mL
-1

) and commercial PA (0.1, 1, 10  

and 100 µg mL
-1

) were applied 5 hours before the inoculation on leaf surfaces of five C. 

sativus plants, respectively. A commercial fungicide, metrafenone (0.01 µg mL
-1

) was 

also used as positive control. 

Disease severity was rated visually on the basis of the percentage of infected area on each 

leaf, using a 0–5 index recorded according to a six-point linear scale, from 0 to 5 with a 

20% interval (0 = no symptoms; 1=0-20%; 2= 20-40%; 3= 40-60%; 4= 60-80%; 5= 80-

100% ). The compounds activity was calculated as percentage of disease suppression in 

comparison with the inoculated untreated plants. Observations were made 8 and 10 days 

after the treatment. 

 

 

 

3.2.5 Statistical analysis 

 

Poisoned food experiments were subjected to variance analyses carried out using 

DSAASTAT for Excel, version 1.101 (available at http://www.unipg.it/~onofri/ 

DSAASTAT/DSAASTAT.htm; Onofri, 2011). Differences between means were tested 

through Duncan‟s test and values with p< 0.05 were considered significantly different. 
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3.3 Nematicidal assay 

 

The assays were realized in collaboration with Department of Agrarian Entomology and 

Zoology, Federico II University of Naples, on 2
nd

 instar larvae juveniles of cyst nematode 

H. daverti. These active individuals were extracted from roots of carnation plants grown 

in a ornamentals greenhouse in Torre del Greco (Naples), utilizing cottonwool filter 

method of Oostenbrink for 24 hours (Oostenbrink, 1960). 

The solution for the direct contact test was prepared dissolving 15 mg of perillaketone in 

150 μl of alcohol (5% v/v) (A) and then 50 μl of this solution in distilled water (W) up to 

1 ml (5 mg/ml) (solvent A+W). The controls were: a positive control treated only with 2 

ml of solvent (A+W) (5 ml/ml) and another one with 2 ml of nematicide ethoprophos 

with contact action (4 ml/l). Moreover a control with 2 ml of pure distilled water (W) was 

performed to evaluate the possible activity of alcohol (known for its dehydrating action). 

100 of 2
nd

 instar larvae juveniles (total 400) were dipped into the sample solutions placed 

in drop-bottom glass capsules and observed, by stereoscope, after 1 day in the 4 tested 

solutions and then transferred in distilled water. The specimens considered unmotile or 

dead were transferred in different glass capsules with distilled water and if, at next 

observation, they restarted the motility they were placed back with the motile individuals. 

The unmotile larvae juveniles include a high number of dead distinguishable only in the 

next observation. They were examined, at irregular time intervals (from 1 to 6 days) for 

26 days and their mortality and unmotility were detected. The assays were carried out at a 

constant temperature of 24°C and in the darkness. The capsules were closed with 

laboratory film to avoid evaporation.  

 

 

 

 



                                                                                                          Results and discussions 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.     67 

 

4 RESULTS AND DISCUSSION 

 

 

 

 

4.1 Plant material 

 

Two different cultivars of Perilla frutescens were investigated in this study: crisp green-

leaved perilla (Tokita green) and a smooth green-leaved Korean variety (from Kitazawa 

seed). The plants were seeded and grown in open field at the botanical garden of 

Fondazione Minoprio, Vertemate con Minoprio (CO) (Martinetti et al., 2010). The leaves 

were harvested at the end of flowering season and immediately frozen. The leaves of 

each variety were used to prepare the crude extracts and the essential oils for the 

biological tests.  

Chemical analysis of the samples allowed identification of perillaldehyde and 

perillaketone as the main secondary metabolites of the crisp and the smooth green-leaved 

perilla respectively, and thus the classifcation in PA and PK- chemotypes. Therefore the 

activity of organic extract PA and PK-type (PA-Ex and PK-Ex) and the essential oils PA 

and PK type (PA-EO and PK-EO) were evaluated by in vitro and in vivo assays. 

 

 

4.2 Perillaketone: synthesis and extraction 

 

Perillaketone (PK) is no commercially avaible and was obtained by chemical synthesis 

and isolated from freeze-dried leaves of the Korean perilla. 

 

4.2.1 Synthesis of Perillaketone 

 

For the synthesis of perillaketone several approaches have been described: photochemical 

isomerisation (Zamojsk et al. 1977) of a precursor oxethane with PTSA as catalyst in a 

protic solvent and the oxidation of furyl alcohol, organometallic reaction with litiofuran 

as reagent (Brown et al. 1987, Bailey et al. 1991) or acylation reaction with 

organomanganese reagents (Cahiez et al.1992) are some examples. We improved the 

synthesis of perillaketone using the classical Grignard reaction starting from 

commercially available 3-furaldehyde (32) and 3-methyl-buthylmagnesiumbromide (31) 
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generated in situ from the corresponding alkyl halide 1 in dry THF (figure 4.1).  

The reaction on fresh distilled 3-furaldehyde gives a mixture of alcohol 33 (19%) and 

perillaketone 34 (12%) after chromatography purification (silica gel and a mixture of  

petroleum ether/diethyl ether 85/15 as eluent).  

  

 

 

 

 

 

Figure 4.1 Synthesis of Perillaketone. 

 

 

4.3 Antimicrobial activity of Perilla frutescens compounds 

 

The antimicrobial activity of the leaves crude extracts and essential oils from the two 

varieties of perilla, synthetic perillaldehyde and perillaketone, were determined against a 

set of common phytopathogenic microorganisms. The antifungal activity of tested 

compounds was assessed on fungi and bacteria belonging to different phyla, causing 

widespread diseases on a variety of crops.  

In the in vivo experiments, the efficacy of the natural compounds and commercial PA 

was evaluated on cucumber powdery mildew (Sphaerotheca fuliginea/Cucumis sativus). 

Finally, against some Cladosporium spp the antifungal efficacy was examined in vitro by 

disk diffusion method, bioautography on thin-layer plates, spore germination assay and 

poisoned food technique.  
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4.3.1 In vitro activity  

 

Preliminary assays were carried out by disk diffusion method against selected fungal and 

bacterial strains, and then by poisoned food technique for the fungi, only.  

 

 

Disk diffusion assay  

 

The activity of tested compounds was determined on various fungi including ten strains 

of Armillaria mellea, A. niger F303, B. cinerea F411, F. roseum and P. corylophilum L2.  

Antibacterial efficacy was also evaluated against nine species of Gram-positive bacteria 

and five species of Gram-negative bacteria. S. cerevisiae 1171 was also tested. 

PA-EO, PK-Ex and PK obtained by chemical synthesis were assayed at four 

concentrations: 250, 500, 1000 and 2000 µg mL
-1

. The antifungal and antibacterial activity 

of the tested substances resulted generally low. Small inhibition zone was observed for the 

crude extract PK-type at 2000 µg mL-1 against Xanthomonas vesicatoria 2615 and 

Xanthomonas anoxopodis pv vignicola 2625 (Figure 4.2), only. 

 

 

 

 
 

 

Figure 4.2 Inhibition zone induced by PK-Ex at 2000 µg mL
-1

.  
On the top: Xanthomonas vesicatoria 2615 (a: control, b: tested compound). 

On the bottom: Xanthomonas anoxopodis pv vignicola 2625 (c: control, d: tested compound).  

 

b a 

c d 
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Poisoned food technique 

 

The fungal species selected for these in vitro assays were: A. alternata RF8, B. oryzae, B. 

cinerea F411, C. beticola, C. dematium fsp circinans X, F. oxysporum fsp lactucae L55, 

F. roseum, P. graminea, P. oryzae BA43, R. solani and S. sclerotiorum. 

The sensitivity of the tested fungi to Perilla frutescens compounds was evaluated as 

growth inhibition using concentrations of 100, 1000 and 2000 µg mL
-1

 for the PA and PK 

type extracts; of 200 and 500 µg mL
-1

 for the PA and PK type essential oils and 100 µg 

mL
-1

 for commercial PA. Unfortunately, synthetic PK was not tested because of the 

difficulties to obtain a sufficient amount to perform this kind of assys. 

The effect of the natural compounds were compared with that of three fungicides: 

azoxystrobin (1 µg mL
-1

) against P. teres and P. oryzae; cyprodinil (1 µg mL
-1

) towards 

B. cinerea F411 and A. alternata RF8; and prochloraz (0.1 µg mL
-1

) for the other fungi. 

As reported in Tables 4.1-4.4 all samples exhibited a broad spectrum of activity against 

the analyzed fungi.  

The activity data for the crude extracts obtained from the two perilla varieties are given in 

Tables 4.1-4.2. Both extracts at the lower concentration (100 µg mL
-1

) did not show any 

relevant activity against the tested fungi.  

The best results were observed after the 3
th
 day of incubation towards C. beticola with 

inhibition of 30.1% and 35.2% respectively, and for A. alternata RF8 with inhibition 

values of 21.4% and 20.2%.  

In the case of the last pathogen, PA-Ex at 1000 µg mL
-1

 exhibited 100% inhibition at 3 

days after incubation, the same effectiveness was also shown on S. sclerotiorum.  

PK-Ex at the same concentration, completely inhibited the growth of C. beticola after 3 

days of incubation, and of B. oryzae, P. graminea and S. sclerotiorum also after 5 days. It 

was found that PA-Ex and PK-Ex at 2000 µg mL
-1

 exhibited potent inhibitory activity 

(100%) on A. alternata RF8 5 and 3 days after incubation, respectively. A complete 

inhibition of C. beticola until the 7
th

 day was also observed in presence of both the 

extracts at this concentration.  

PA-Ex at 2000 µg mL
-1

 exhibited 100% antifungal effect against P. graminea and P. 

oryzae BA43 (3
th

 day), these fungi were also completely stopped by PK-Ex 2000 µg mL
-1

 

until 5 and 7 days of observation, respectively. B. cinerea F411 was totally inhibited at 3 

days by PA-Ex at 2000 µg mL
-1

 while B. oryzae BA43 by PK-Ex at the same 

concentration until the 5
th
 day. 
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The less sensitive fungi were found to be C. dematium fsp circinans X, R. solani and F. 

oxysporum fsp lactucae L55, in fact the most active compound (PA-EX at 2000 µg. mL
-

1
), induced a moderate inhibition by 47.6%, 50% and 63.6% at 3 days of observation.  

S. sclerotiorum was found to be sensible to DMSO at the highest concentration. 

In the following figure 4.3a and 4.3b the sensitivity of some pathogens towards the tested 

crude extracts is graphically reported. 

Mycelial discs totally inhibited by the compounds were transferred on not amended 

medium to evaluate the actual effect of the treatment. That was considered fungicidal if 

the fungi were unable to growth and fungistatic if the growth rastarted. 

It was found that both the extracts at 2000 µg mL
-1

 exhibited fungistatic activity on C. 

beticola, moreover PK-Ex was also fungistatic against P. graminea and P. oryzae BA43. 

Commercial PA showed complete mycelial inhibition was observed in the presence of 

against A. alternata RF8, S. sclerotiorum and C. beticola at 3, 5 and 7days after 

incubation, respectively. It showed also high antifungal activity at 3 days on P. graminea 

(100%), B. oryzae (95.8%), R. solani (88.9%) and F. oxysporum fsp lactucae L55 

(74.7%). At the same period of observation, moderate effectiveness was exhibited against 

B. cinerea F411, C. dematium fsp circinans X and P. oryzae BA43, with percentage of 

mycelial growth inhibition of 65.7%, 53.7% and 47.1%, respectively. 

 



                                                                                                          Results and discussions 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.     72 

 

Table 4.1 Percent growth inhibition on phytopathogenic fungi induced by PA and PK type 

extracts at different concentrations after 3, 5 and 7 days of incubation at 24±2°C. 

 

Fungal species  Treatment 
Concentration 

(µg mL
-1

) 
Days 

3 5 7 

Alternaria  
alternata RF8 

PA-Ex 100 21.4±2.1
c
 12.9±4.5

d
 8.5±2.0

c
 

 1000 100.0±0.0
a
 59.5±1.9

c
 45.6±2.1

b
 

 2000 100.0±0.0
a
 100.0±0.0

a
 84.1±3.4

a
 

PK-Ex 100 20.2±3.1
c
 6.4±3.4

d
 4.0±2.1

c
 

 1000 63.9±3.4
b
 43.3±4.1

c
 29.8±0.5

b
 

 2000 100.0±0.0
a
 85.5±3.2

ab
 71.5±2.4

a
 

PA 100 100.0±0.0
a
 66.6±1.5

c
 49.1±0.4

b
 

Cercospora  
beticola 

 

PA-Ex 100 30.1±3.8
b
 18.0±2.5

b
 18.5±6.0

d
 

 1000 83.3±16.7
a
 87.5±12.5

a
 67.0±11.3

c
 

 2000 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

a
 

PK-Ex 100 35.2±10.2
b
 26.5±4.2

b
 19.7±1.6

d
 

 1000 100.0±0.0
a
 94.4±5.6

a
 74.9±1.4

ac
 

 2000 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

a
 

PA 100 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

ab
 

 
Colletotrichum 

dematium fsp 
circinans X 

 

PA-Ex 100 11.1±11.1
cd

 8.9±8.9
c
 6.5±6.5

bc
 

 1000 19.0±3.2
c
 0.0±0.0

c
 0.0±0.0

d
 

 2000 47.6±2.4
ab

 3.2±4.8
a
 12.5±4.9

a
 

PK-Ex 100 0.0±0.0
d
 0.0±0.0

c
 0.0±0.0

d
 

 1000 18.5±18.5
c
 9.2±9.2

c
 0.0±0.0

d
 

 2000 35.7±11.7
b
 20.4±15.2

b
 7.5±7.5

ab
 

PA 100 53.7±2.1
a
 0,0±0,0

c
 1.3±1.3

cd
 

Pyricularia  
oryzae BA43 

PA-Ex 100 8.8±4.6
d
 5.2±2.3

c
 5.1±2.6

c
 

 1000 22.5±1.3
cd

 20.7±0.7
c
 19.8±1.0

c
 

 2000 100.0±0.0
a
 67.0±0.4

b
 52.5±0.9

b
 

PK-Ex 100 7.5±4.3
d
 10.6±2.4

c
 3.1±3.1

c
 

 1000 71.0±0.5
b
 63.6±1.8

b
 53.1±0.0

b
 

 2000 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

a
 

PA 100 47.1±0.8
bc

 30.3±3.0
c
 25.2±0.9

C 

 
Rhizoctonia 

solani 

 

PA-Ex 100 0.9±0.9
c
 1.8±0.9

d
 0.0±0.0

c
 

 1000 37.5±2.2
b
 38.0±2.4

b
 26.2±3.3

b
 

 2000 50.0±0.0
b
 26.8±1.8

bc
 24.4±4.7

b
 

PK-Ex 100 0.0±0.0
c
 3.7±0.9

d
 0.0±0.0

c
 

 1000 7.5±4.3
c
 13.6±2.3

cd
 0.0±0.0

c
 

 2000 5.6±5.6
c
 5.6±5.6

d
 2.6±2.6

c
 

PA 100 88.9±0.0
a
 71.7±0.7

a
 60.1±1.4

a
 

 

Results are mean ± SE values for three replicates. Means in the same column by same letter are 
not significantly different according to Duncan‟s multiple range tests (p<0.05). 
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Table 4.2 Percent growth inhibition on phytopathogenic fungi induced by PA and PK type 

extracts and commercial PA, at different concentrations, after 3 and 5 days of incubation at 
24±2°C.   

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

Results are mean ± SE values for three replicates. Means in the same column by same letter ar not 

significantly different according to Duncan‟s multiple range tests (p<0.05). 

 

Fungal species Treatment 
Concentration 

(µg mL
-1

) 
Days 

3 5 

Bipolaris oryzae 

 

PA-Ex 100 6.4±1.8
d
 6.8±3.4

c
 

 1000 41.4±0.7
bc

 26.2±1.3
bc

 

 2000 59.7±5.0
b
 41.5±1.6

b
 

PK-Ex 100 19.1±3.0
cd

 10.2±0.0
c
 

 1000 100.0±0.0
a
 100.0±0.0

a
 

 2000 100.0±0.0
a
 100.0±0.0

a
 

PA 100 95.8±4.2
a
 81.6±6.2

a
 

Botrytis cinerea 

F411 

PA-Ex 100 0.0±0.0
d
 0.0±0.0

c
 

 1000 35.6±2.2
c
 8.4±4.2

bc
 

 2000 100.0±0.0
a
 41.4±8.1

a
 

PK-Ex 100 1.5±1.5
d
 7.7±7.7

c
 

 1000 24.0±4.5
cd

 7.7±7.7
bc

 

 2000 60.4±5.5
b
 22.3±9.6

b
 

PA 100 65.7±0.5
b
 53.0±0.8

a
 

Fusarium 
oxysporum fsp 

lactucae L55 

 

PA-Ex 100 5.8±0.0
d
 0.0±0.0

d
 

 1000 30.7±3.7
bc

 17.8±2.5
bc

 

 2000 63.6±0.0
a
 48.7±0.7

a
 

PK-Ex 100 10.4±1.9
d
 0.0±0.0

d
 

 1000 13.9±0.2
cd

 5.1±0.6
cd

 

 2000 33.3±3.0
b
 26.8±3.2

b
 

PA 100 74.7±0.3
a
 58.5±0.7

a
 

Pyrenophora 

graminea 

PA-Ex 100 1.2±1.2
c
 0.0±0.0

b
 

 1000 51.4±1.4
b
 33.3±2.1

b
 

 2000 100.0±0.0
a
 76.0±0.5

a
 

PK-Ex 100 0.0±0.0
c
 0.0±0.0

b
 

 1000 100.0±0.0
a
 100.0±0.0

a
 

 2000 100.0±0.0
a
 100.0±0.0

a
 

PA 100 100.0±0.0
a
 81.6±5.1

a
 

Sclerotinia 

sclerotiorum  

 

PA-Ex 100 13.9±5.2
b
 0.0±0.0

c
 

 1000 100.0±0.0
a
 55.9±2.9

b
 

 2000 0.0±0.0
b
 0.0±0.0

c
 

PK-Ex 100 0.0±0.0
b
 0.0±0.0

c
 

 1000 100.0±0.0
a
 100.0±0.0

a
 

 2000 0.0±0.0
b
 0.0±0.0

c
 

PA 100 100.0±0.0
a
 100.0±0.0

a
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Figure 4.3a Growth inhibition induced by crude extracts PA and PK type on A. alternata RF8, C. 

beticola and C. dematium fsp circinans X. Concentration expressed as µg mL
-1
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Figure 4.3b Growth inhibition induced by crude extracts PA and PK type on P. oryzae BA43 and 
R. solani. 

Concentration expressed as µg mL
-1
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The antifungal activity of the essential oils obtained from the two perilla chemotypes are 

reported in Tables 4.3-4.4. 

PA and PK type essential oils induced a mild to high antifungal efficacy against the 

tested plant pathogens.  

After 3 days of incubation, both oils at lower concentration inhibited completely A. 

alternata RF8, while C. beticola was inhibited by PA-EO, only. 5 days after incubation, 

both oils exhibited 100% antifungal effect against S.sclerotiorum. At the same 

observation time and concentration, P. teres was inhibited by PA-EO while P. graminea 

and P. oryzae BA43 by PK-EO. At the 7
th
 day of incubation P. teres was totally stopped 

by PK-EO, only.  

The most resistent species to PK-EO at 200 µg mL
-1

 at 3 days after incubation were: F. 

roseum (23%), C. dematium fsp circinans X (46.1%), C. beticola (50%), F. oxysporum 

fsp lactucae L55 (66.1%) and R. solani (68.4%). 

5 days after incubation, B. cinerea F411, B. oryzae, P. graminea and S. sclerotiorum were 

found to be the most inhibited pathogens by both essential oils at 500 µg mL
-1

. A 

completely inhibition of F. oxysporum fsp lactucae L55 and F. roseum was observed in 

the presence of PA-EO, only. 

The tested essential oils at highest concentration demonstrated complete inhibition at the 

7
th

 day of incubation on A. alternata RF8, C. beticola, P. oryzae BA43 and P. teres. 

A 100% inhibition of R. solani until the 7
th

 day was also observed for PA-EO.  

In the Figure 4.4-4.7, inhibition growth of some phytopathogen fungi induced by PA and 

PK type essential oils is reported. 

The less sensitive species to PK-EO at 500 µg mL
-1 

were found to be C. dematium fsp 

circinans X (70%) and F. roseum (80.3%), at 5 days after incubation.  

In addition, it was found that PA-EO at the highest concentration exerted a fungicidal 

effect on A. alternata RF8, B. oryzae, C. beticola, P. graminea, P. oryzae BA43 and P. 

teres. On the contrary at the same concentration, PK-EO exhibited a fungistatic activity 

against the six last mentioned fungi and S. sclerotiorum. 
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Table 4.3 Percent growth inhibition on phytopathogenic fungi induced by PA and PK type 
essential oils at different concentrations after 3, 5 and 7 days of incubation at 24±2°C. 
 

 

 
 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Results are mean ± SE values for three replicates. Means in the same column by same 

superscript letter are not significantly different according to Duncan‟s multiple range tests 

(p<0.05). 

 

 

 

 

 

Fungal species Treatment 
Concentration 

(µg mL
-1

) 
Days 

3 5 7 

Alternaria  
alternata RF8 

PA-EO 200 100.0±0.0
a
 84.8±2.3

b
 70.4±2.5

b
 

 500 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

a
 

PK-EO 200 100.0±0.0
a
 78.4±2.7

b
 70.4±2.5

b
 

 500 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

a
 

Cyprodinil 1 100.0±0.0
a
 100.0±0.0

a
 94.8±0.0

a
 

Cercospora  
beticola 

 

PA-EO 200 100.0±0.0
a
 76.0±2.6

ab
 68.1±0.8

b
 

 500 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

a
 

PK-EO 200 50.0±0.0
b
 47.8±1.1

c
 46.9±0.7

b
 

 500 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

a
 

Prochloraz 0.1 57.9±4.0
b
 54.4±3.1

bc
 43.8±2.0

b
 

 
Colletotrichum 

dematium fsp 
circinans X 

 

PA-EO 200 64.6±1.0
b
 31.8±1.8

c
 20.9±3.3

bc
 

 500 100.0±0.0
a
 100.0±0.0

a
 95.9±0.0

a
 

PK-EO 200 46.1±2.1
b
 19.4±2.1

c
 10.0±1.7

c
 

 500 100.0±0.0
a
 70.0±0.7

ab
 46.8±2.5

b
 

Prochloraz 0.1 55.6±5.6
b
 46.7±1.1

bc
 40.5±4.8

bc
 

Pyrenophora 

teres 

PA-EO 200 100.0±0.0
a
 100.0±0.0

a
 91.8±1.2

a
 

 500 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

a
 

PK-EO 200 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

a
 

 500 100.0±0.0
a 

100.0±0.0
a
 100.0±0.0

a
 

Azoxystrobin 1 68.9±0.5
b
 65.0±0.9

b
 53.7±0.7

b
 

Pyricularia 
oryzae BA43 

PA-EO 200 81.8±0.0
b
 52.6±0.3

b
 40.0±0.5

b
 

 500 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

a
 

PK-EO 200 100.0±0.0
a
 100.0±0.0

a
 94.8±3.0

a
 

 500 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

a
 

Azoxystrobin 1 100.0±0.0
a
 85.3±3.0

a
 79.1±1.5

a
 

 
Rhizoctonia 

solani 

 

PA-EO 200 83.4±1.6
ab

 71.5±1.8
b
 51.0±3.1

b
 

 500 100.0±0.0
a
 100.0±0.0

a
 100.0±0.0

a
 

PK-EO 200 68.4±2.8b
c
 62.7±0.9

b
 45.6±1.8

b
 

 500 100.0±0.0
a
 100.0±0.0

a
 98.2±1.8

a
 

Prochloraz 0.1 55.8±3.2
c
 57.1±0.4

b
 47.6±0.7

b
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Table 4.4 Percent growth inhibition on phyto-pathogenic fungi induced by PA and PK type 
essential oils at different concentrations after 3 and 5 days of incubation at 24±2°C. 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

Results are mean ± SE values for three replicates. Means in the same column by same letter are 

not significantly different according to Duncan‟s multiple range tests (p<0.05). 

 

 

 

 

Fungal species Treatment 
Concentration 

(µg mL
-1

) 
Days 

3 5 

Bipolaris oryzae  

PA-EO 200 93.9±0.1
a
 71.1±0.3

abc
 

 500 100.0±0.0
a
 100.0±0.0

a
 

PK-EO 200 83.6±1.2
a
 67.7±0.9

ac
 

 500 100.0±0.0
a
 100.0±0.0

ab
 

Prochloraz 0.1 37.9±1.7
b
 23.8±1.4

d
 

Botrytis cinerea 
F411 

PA-EO 200 96.7±3.3
b
 66.3±1.8

b
 

 500 100.0±0.0
a
 100.0±0.0

a
 

PK-EO 200 98.4±1.6
ab

 74.5±2.1
b
 

 500 100.0±0.0
a
 100.0±0.0

a
 

Cyprodinil 1 97.0±1.6
b
 94.2±0.9

a
 

Fusarium 
oxysporum fsp 

lactucae L55 

 

PA-EO 200 80.7±1.5
bc

 63.9±1.8
b
 

 500 100.0±0.0
a
 100.0±0.0

a
 

PK-EO 200 66.1±1.8
c
 57.8±1.8

b
 

 500 100.0±0,0
a
 92.2±1.2

a
 

Prochloraz 0.1 87.8±0.3
ab

 84.4±0.7
a
 

Fusarium 
roseum 

PA-EO 200 81.6±3.0
a
 55.8±4.6

b
 

 500 100.0±0.0
a
 100.0±0.0

a
 

PK-EO 200 23.0±3.8
b
 7.5±2.7

c
 

 500 85.1±1.6
a
 80.3±1.4

ab
 

Prochloraz 0.1 85.0±0.2
a
 82.3±0.7

ab
 

Pyrenophora 
graminea 

PA-EO 200 100.0±0.0
a
 80.8±4.3

a
 

 500 100.0±0.0
a
 100.0±0.0

a
 

PK-EO 200 100,0±0,0
a
 100,0±0.0

a
 

 500 100.0±0.0
a
 100.0±0.0

a
 

Prochloraz 0.1 35.6±1.1
b
 20.3±0.9

b
 

Sclerotinia 
sclerotiorum  

 

PA-EO 200 100.0±0.0
a
 100.0±0.0

a
 

 500 100.0±0.0
a
 100.0±0.0

a
 

PK-EO 200 100.0±0.0
a
 100.0±0.0

a
 

 500 100.0±0.0
a
 100.0±0.0

a
 

Prochloraz 0.1 100.0±0.0
a
 100.0±0.0

a
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Figure 4.4 Inhibition of P graminea growth induced by PA and PK type essential oils, 
after 7 days of incubation. Standard compound: prochloraz (0.1 µg mL

-1
). 

Concentration expressed as µg mL
-1

. 

 

 

 

 

Figure 4.5 Inhibition of P oryzae BA43 growth induced by PA and PK type essential oils, 
after 7 days af incubation.Standard compound: azoxystrobin (1 µg mL

-1
). 

Concentration expressed as µg mL
-1

. 
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Figure 4.6 Inhibition of P teres growth induced by PA and PK type essential oils, after 7 
days of incubation. Standard compound: azoxystrobin (1 µg mL

-1
). 

Concentration expressed as µg mL
-1

. 

 

 

 

 
Figure 4.7 Inhibition growth of R. solani induced by PA and PK type essential oils, after 

7 days of incubation. Standard compound: prochloraz (0.1 µg mL
-1

).  

Concentration expressed as µg mL
-1

. 
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4.3.2 In vivo preventive activity  

 

To examine in vivo the potential preventive activity of the crude extracts and essential 

oils PA and PK-type and pure PA, Sphaerotheca fuliginea/Cucumis sativus (powdery 

mildew) was chosen among some of the most economically relevant and widespread 

pathogen-host plant combination. Powdery mildew makes a white powdery growth on the 

upper surfaces of leaves and on the stems of the plants. Infected areas are often stunted 

and distorted, and may drop prematurely from the plant. Antifungal efficacy was assessed 

by the presence or absence of disease area on the tested plants (Figure 4.8), and compared 

with untreated control. No phytotoxic effects were observed on the cucumber plants by 

any of the treatments applied. 

 

 

 

 

Figure 4.8 In vivo preventive activity of PA and PK type essential oils (KC144 and KC149, 

respectively) at different concentrations against Sphaerotheca fuliginea on cucumber plants, at 8 
days after the treatment. 

 

 

The activities of the compounds and the commercial fungicide metrafenone, were 

expressed as percent inhibition of infection and are reporteted in Figure 4.9. Few disease 

symptoms were observed on the plants when the reference standard was administered at 

the concentration of 0.01 µg mL
-1

. Instead, the Perilla derived compounds revaled a wide 
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range of antifungal activity at 8 and 10 days after the treatment.  

The best control was determined for all samples 8 days post-treatment. Disease severity 

was significantly reduced by pure PA at concentration of 100 µg mL
-1

 to 25%, compared 

with 84% on non-treated plants. The efficacy of commercial PA markedly increased in a 

concentration-dependent manner. PA and PK type extracts at 1000 µg mL
-1

 showed good 

activity in controlling the powdery mildew, both the compounds reduced disease 

symptoms respectively by 61.9% and 57.8%. On the contrary, the extracts were only 

moderate active at lowest tested concentration (36.8% and 32.7%).  

In the plants treated with a highest concentration (1000 µg mL
-1

), the essential oils PA 

and PK type reduced the pathogen development of 42% and 56%. Their activity resulted 

scanty at lowest concentrations 10 days after the treatment, in fact the disease was 

inhibited of 28% and 22%, only.  

 

 

 

 

 

Figure 4.9 Preventive activity of crude extracts (PA-Ex and PK-Ex), essential oils (PA-EO and 

PK-EO) and commercial PA at different concentrations against Sphaerotheca fuliginea on 
Cucumis sativus, 8 and 10 days after the treatment. Concentration expressed as µg mL

-1
. 
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4.3.3 Antifungal activity against Cladosporium spp 

 

Among the analyzed fungi particular attention was given to some strains belonging to the 

genus Cladosporium.  

Cladosporium spp, which comprises more than 772 names, has been studied extensively 

in recent years. C. cladosporioides is a very common, cosmopolitan, saprobic species, 

which causes pod rot and blight of pea. It often occurs as a secondary invader on necrotic 

parts of many different host plants, has been isolated from air, soil, textiles and several 

other substrates, and is a common endophytic or quiescent fungus. In the past C. 

cladosporioides has been reported to be involved in several pulmonary and cutaneous 

infections and other human health problems (Bensch et al., 2010).  

C. cucumerinum has been described to be the causal agent of scab, important disease of 

cucumber (Cucumis sativus L.) worldwide. Scab can cause serious losses for cucumber 

production, especially in protected culture such as high tunnel production (Zhang et al., 

2010). 

Following the sensitivity tested strains to the single treatments is reported. 

 

 

 

 

Disk diffusion method 

 

At first the antifungal property of PA-EO, PK-Ex and pure PK was evaluated in vitro by 

paper disk diffusion assays, against C. cladosporioides IPV-F167, at concentrations of 

250, 500, 1000, 2000 µg mL
-1

. Antifungal activity was assessed by measuring the 

diameter of the inhibition zone around the disks (in millimeters) for the test organism 

comparing to the control (Figure 4.10). 

In these experiments, assayed compounds at lower concentrations did not show any 

relevant activity against the tested fungus. The highest activity was observed for all 

samples at 2000 µg mL
-1

. At 7 days after incubation, the values of inhibition zones were 

found to be: 9.0, 10.0 and 11.0 mm for PA-EO, PK-Ex and PK, respectively. 
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Figure 4.10 Inhibition zones caused by tested compounds (2000 µg mL
-
1) on C. cladosporioides 

IPV-F167. 
 

 

Bioautography on thin-layer plates  

 

In the direct bioautography on TLC plates, C. cladosporioides IPV-F167, due to good 

sporulation was chosen to determine the antifungal activity of crude extracts (PA-Ex and 

PK-Ex), essential oils (PA-EO and PK-EO), synthetic PK and perillaldehyde.  

The efficacy was expressed as minimum amount required for the inhibition of fungal 

growth and are reported in Table 4.5. Prochloraz, a commercial antifungal agent, was 

also tested as positive control. 

 

Table 4.5 Antifungal activity of Perilla compounds against C. cladosporioides IPV-F167 on TLC 
plates after 5 days of incubation at 24±2°C. 
 

 

 

 

 

 

 

 

      

 

a
Minimum amount required for the inhibition of fungal growth on thin-layer 

chromatography plates. 
b
 Inactive at 100 µg 

Compound 
Antifungal activity (µg/spot)

a 

C. cladosporioides IPV-F167 

PA-Ex 10 

PK-Ex b 

PA-EO 10 

PK-EO 1 

PA 50 

PK 50 

Prochloraz (positive control)   10
-1 
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As can be seen in Figure 4.11 the inhibition of fungal growth appeared as clear zones 

against a dark background. In these experiments both oils exhibited antifungal activity at 

1µg (PK-EO) and 10 µg (PA-EO).  Among the extracts, PA-Ex was active at 10 µg while 

PK-Ex displayed no detectable activity. The minimum amount required to show an 

inhibition zone for commercial PA and pure PK were 50 µg, while the synthetic 

fungicide prochloraz was active at 0.1 µg. 

 

 

 

 

Figure 4.11 Bioautography assays on C. cladosporioides IPV-F167 with tested compounds. 

 

 

Spore germination assay 

 

Both essential oils and commercial PA were also investigated for their ability to inhibite 

germination of C. cladosporioides IPV-F167 conidia. The results expressed in terms of 

percent inhibition of spore germination, are shown in Table 4.6.  

The observation by light microscope of fungal spores on agar media amended with 

DMSO at the highest concentration, showed that the solvent did not inhibit the conidia 

germination. On the contrary, It was found a significant inhibition of spore germination 

by different concentrations of the oils. A 94.9% inhibition was observed at the highest 

concentration (500 µg mL
-1

) of PA-EO. PK-EO also exhibited a potent inhibitory effect 

(75.1 and 86.7 % at 250 and 500 µg mL
-1

, respectively).  
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On the other hand the essential oil PK type was not so efficient in inhibiting spore 

germination at lowest concentration, in fact the inhibition value was 48.6%.  

Commercial PA at the tested concentration, instead, provided high effective inhibition by 

79.6%. 

 
 

 

 

 
Table 4.6 Inhibitory effect of different concentrations of PA and PK type essential oils and pure 

PA on C. cladosporioides IPV-F167 spores germination, after 24 hrs of incubation at 20±2°C . 
 

 

 

 

 

 

 

 

 

-, not tested. 

 

 

 

 

 

Poisoned food technique 

 

To evaluate the concentration-activity relationship of Perilla frutescens derived 

compounds and commercial PA, C. cladosporioides IPV-F167, C. cladosporioides CBS 

574.78 A and C. cucumerinum were assayed by the poisoned food technique:  

The antifungal activity of samples, expressed in terms of percentage of mycelial growth 

inhibition, was compared with that of prochloraz. Activity recorded after 3, 5 and 7 days 

of incubation at 24±2°C, is reported in Tables 4.7 and 4.8.  

All compounds showed a broad spectrum of activity during the whole observation period. 

 

Compound                                                   

(µg mL
-1

) 

Inhibition of spores germination (%) 

100 250 500 

Control 0 0 0 

DMSO - - 0 

PK-EO 48.6 75.1 86.7 

PA-EO 74.5 86.5 94.9 

PA 79.6 - - 



                                                                                                                                                                                       Results and discussions 

 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.   87 

 

 

 

 

 

Table 4.7 Percent inhibition of Cladosporium spp growth induced by PA and PK type extracts at different concentrations after 3, 5 and 7 days of incubation at 24±2°C. 

 

 
 

Results are mean ± SE values for three replicates. Means in the same column by same letter are not significantly different according to Duncan‟s multiple range tests 

(p<0.05). 

 

Treatment 
Concentration 

(µg mL
-1

) 

C. cladosporioides IPV-F167 C. cladosporioides CBS 574,78 A C. cucumerinum 

3 5 7 3 5 7 3 5 7 

PA- Ex 100 14.9±2.5
de

  
11.1±11.1

e 
2.4±2.4

f 
0.0±0.0

d 
0.0±0.0

c 
0.0±0.0

d 
13.7±0.6

c 
10.9±5.5

d 
8.2±4.2

d 

 1000 50.7±3.6
b 

42.2±2.2
cd 

37.8±0.8
de 

40.7±3.7
c 

18.8±1.2
c 

29.0±7.0
bc 

66.0±3.3
b 

76.8±11.6
b 

61.8±5.4
c 

 2000 49.7±7.1
b 

59.9±5.1
b 

65.2±2.6
ab 

100.0±0.0
a 

76.6±0.3
a 

69.49±4.2
a 

100.0±0.0
a 

79.6±4.6
b 

71.7±8.8
abc 

PK- Ex 100 0.0±0.0
e 

3.3±3.3
e 

0.0±0.0
f 

0.0±0.0
d 

1.5±7.6
c 

0.5±0.0
d 

0.0±0.0
c 

3.3±3.3
d 

1.4±1.4
d 

 1000 37.3±2.3
bc 

33.3±3.8
d 

29.7±1.8
e 

33.3±0.0
c 

17.6±13.8
c 

25.0±1.0
c 

56.0±7.8
b 

57.7±2.8
c 

61.0±9.4
c 

 2000 24.8±10.8
cd 

50.8±8.9
bc 

57.0±4.1
bc 

71.43±0.0
b 

69.8±0.4
a 

67.9±3.9
a 

68.0±8.4
b 

57.5±3.8
c 

64.6±1.0
bc 

PA 100 100.0±0.0
a 

88.4±1.0
a 

74.6±1.9
a 

100.0±0.0
a 

81.7±9.4
a 

62.4±2.4
a 

100.0±0.0
a 

100.0±0.0
a 

86.1±2.4
a 

Prochloraz 0.1 37.8±2.2
bc 

43.5±4.1
cd 

46.6±1.6
cd 

47.0±1.5
b 

46.4±2.1
b 

43.5±1.6
b 

100.0±0.0
a 

83.6±2.1
ab 

80.8±1.6
ab 
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Table 4.8 Percent inhibition of Cladosporium spp growth induced by PA and PK type essential oils (EO) at different concentrations after 3, 5 and 7 days of incubation 

at 24±2°C. 

 

 

Results are mean ± SE values for three replicates. Means in the same column by same letter are not significantly different according to Duncan‟s multiple range tests 
(p<0.05). 

 

Treatment 
Concentration 

(µg mL
-1

) 

C. cladosporioides IPV-F167 C. cladosporioides CBS 574,78 A C. cucumerinum 

3 5 7 3 5 7 3 5 7 

PA-EO 100 79.6±1.9
b 

53.1±1.6
c 

47.0±1.5
c 

40.3±2.1
b 

30.7±1.3
c 

23.9±1.8
c 

65.6±2.9
b 

72.7±0.0
b 

57.0±4.3
c 

 200 100.0±0.0
a 

85.0±4.4
b 

78.2±1.1
b 

100.0±0.0
a 

71.9±3.5
b 

60.1±3.3
b 

100.0±0.0
a 

100.0±0.0
a 

91.7±5.5
b 

 300 100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

 400 100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

 500 100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

PK-EO 100 62.2±2.3
c 

50.0±0.9
c 

48.5±6.6
c 

49.5±6.0
b 

36.6±2.4
c 

26.6±3.4
c 

67.3±3.7
b 

72.7±2.6
b 

63.1±6.6
c 

 200 100.0±0.0
a 

80.8±0.4
b 

72.4±0.8
b 

100.0±0.0
a 

82.5±3.5
b 

72.6±7.7
b 

100.0±0.0
a 

100.0±0.0
a 

93.9±0.1
ab 

 300 100.0±0.0
a 

98.0±2.0
a 

92.1±1.4
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

 400 100.0±0.0
a 

97.9±2.1
a 

95.5±4.5
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

 500 100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 

100.0±0.0
a 



                                                                                                          Results and discussions 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.   89 

 

As can be seen from presented data, PA and PK type extracts at lowest concentration did 

not show any relevant activity against the tested fungi, in fact PA-Ex, the most active 

compound, induced only 14.9% inhibition of C. cladosporioides IPV-F167 growth at 3 

days after incubation. Crude extracts resulted completely inactive versus C. 

cladosporioides CBS 574.78 A, during the whole period of observation. At the 

concentration of 1000 µg mL
-1

 both extracts showed moderate inhibitory effect and C. 

cucumerinum was found to be the most sensitive species. Crude extract PA type at 2000 

µg mL
-1

 exhibited potent inhibitory activity (100%) on the radial growth of C. 

cladosporioides CBS 574.78 A and C. cucumerinum at 3 days after incubation. At the 

same concentration PK-Ex induced approximately 70% inhibition of the two fungi, 

whereas C. cladosporioides IPV-F167 was found to be the least sensitive organism, in 

fact at 3 days after incubation PA-Ex induced 49.7% inhibition and PK-Ex 24.8%. 

Commercial PA, demonstrated strong efficacy on all these phytopathogenic fungi. In 

Figure 4.12 the sensitivity of the three strains to pure PA is graphically reported. The 

inhibitory activity was particularly expressed against C. cucumerinum, totally inhibited 

after 3 and 5 days of incubation, while after the 7
th

 day, the growth was reduced by 

86,1%. 

Reduction of 62.4% was observed against C. cladosporioides CBS 574.78 A at 7
th
 day of 

incubation, which results the most resistant fungus. 

 

 

 
Figure 4.12 Growth inhibition induced by PA at 100 µg mL

-1
 on Cladosporium spp at 3, 5 and 7 

days after incubation. 
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The inhibitory activity of PA-EO and PK-EO on mycelial growth of Cladosporium spp is 

given in Table 4.8. Both oils at lower concentration appeared to be effective against 

tested pathogens; however moderate inhibition values were found for C. cladosporioides 

CBS 574.78 A during the whole incubation period.  

At 200 µg mL
-1

 the oils inhibited completely the growth of both strains of C. 

cladosporioides after 3 days of incubation and of C. cucumerinum after 5 days.  

Figure 4.13 shows the dose-related activities of the oil PA-type on the three tested strains 

after 7 days of incubation. Inhibitory effect of PA-EO increased significantly from the 

concentrations of 100 µg mL
-1

 to 300 µg mL
-1

. In the case of C. cladosporioides CBS 

574.78, inhibition values incremented from 23.9% to 100 %, after 7 days of incubation. 

At the highest concentrations employed (300, 400 and 500 µg mL
-1

) PA-EO revealed 

complete inhibition on colony development for the three organisms, during the whole 

observation period. 

At the same concentrations (7
th
 day) PK-EO inhibited totally C. cladosporioides CBS 

574.78 A and C. cucumerinum while C. cladosporioides IPV-F167 was completely 

stopped at 500 µg mL, only (Figure 4.14).  

It was found that essential oils of the two perilla varieties had fungistatic properties 

towards C. cucumerinum at 300 µg mL
-1

.  

PA-EO resulted also fungistatic for C. cladosporioides CBS 574.78 A and for C. 

cladosporioides IPV-F167 at 400 and 500 µg mL
-1

, respectively.  

PK-EO was featured by fungistatic activity towards both strains of C. cladosporioides, at 

500 µg mL
-1

. 

The fungicidal effect was shown only versus C. cucumerinum by PA-EO and PK-EO at 

400 and 500 µg mL
-1

, respectively. 
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Figure 4.13 Dose-related activity of PA-EO on Cladosporium spp (7 days, 24°C). 

 

 

 

 

 

Figure 4.14 Dose-related activity of PK-EO on Cladosporium spp (7 days, 24°C). 
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4.4 In vitro nematicidal activity of Perillaketone 

 

The nematodes, soil-borne plant parasites, can seriously damage the roots and therefore 

plants develop a deficient assimilation of water and nutrients from the soil resulting in 

stunted growth with reduction of crop production and severe economic losses.  

In this study, the in vitro nematicidal activity of perillaketone (extracted from freeze-

dried leaves of Korean perilla) against 2
nd

 instar larvae juveniles of cyst nematode H. 

daverti was evaluated. The results of the trial have been reported in Figure 4.15 and 

Table 4.9. 

At the1
st
 observation the nematicide ethoprophos caused 100% unmotility against 

juveniles, PK showed a high stop of the motility (76%) and A+W a low unmotility 

(26%). In the observations to follow the restarting of the motility of the individuals was 

negligible for the chemical standard and at 13
th 

day
 
all the juveniles were dead. For the 

PK, the restarting of the motility was higher than for ethoprophos (24% at 2
 th

 day) and at 

5
th

 day there were the first dead (22%) which gradually increased to reach the 90% at 26
th

 

day. For the A+W the first dead individuals (3%) occurred at 6
th 

day
  
and only at the end 

of the test they were the 67%. In addition, for the W the first dead juveniles (2%) were 

observed at 12
th
 day to have the 20% mortality at 26

th
 day. 

 

 

 

 

 

Figure 4.15 Percentage trend of mortality and unmotility of 2
nd

 instar larvae juveniles of 
Heterodera daverti. (A+W): positive control with distilled water plus alcohol; (W): control with 

distilled water; (PK): perillaketone, ethoprophos.  
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Table 4.9 Effect of PK, at several days from contact test, on 2
nd

 larvae juveniles of Heterodera daverti comparated to a positive control with distilled 

water plus alcohol (W+A), to a control with distilled water (W) and to ethoprophos.  
 

 

In brackets is reported the number of the specimens passing from a state to the other. 

* 1
st
 examination, after 1 day, was directly carried out in the 4 tested samples. 

 

Days from 
contact test 

(n.) 

PK A+W W Ethoprophos 

Motile Unmot. Dead Motile Unmot. Dead Motile Unmot. Dead Motile Unmot. Dead 

1* 24 76 0 74 26 0 0 0 0 0 100 0 

2 48 (24) 52 0 74 26 0 0 0 0 2 98 0 

5 47 31 (1) 22 (22) 65 35 0 0 0 0 2 67 31 

6 46 29 (1) 25 (3) 65 33 3 0 0 0 1 56 (1) 43 (12) 

7 40 34 (6) 26 (1) 60 35 5 0 0 0 1 33 66 (23) 

8 37 36 (3) 27 (1) 60 35 5 98 2 0 1 17 82 (16) 

9 30 42 (7) 28 (1) 58 33 9 98 2 0 1 9 90 (8) 

12 17 26 (13) 57 (29) 49 35 16 95 3 (3) 2(2) 0 1 99 (9) 

13 16 26 (1) 58 (1) 48 35 17 94 3 (1) 3 (1) 0 0 100 

15 16 24 60 (2) 40 33 27 90 5 (4) 5 (2) 0 0 100 

20 8 19 (8) 73 (13) 18 30 42 81 10 (9) 9 (4) 0 0 100 

26 3 7 (5) 90 (17) 10 18 67 58 22 (23) 20 (11) 0 0 100 
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4.5 Conclusion 
 

With the growing demand for environmentally sound strategies in the control of plant 

pathogenic organisms and pests, the development of alternative pesticides with minimal 

ecological hazards has now become an imperative need. This demand is also supported 

by the increasing concerns over the level of pesticide residues in food and over the level 

of resistance of pathogens to pesticides resulting from the use of chemical pesticides 

(Damalas, 2011). Particularly desiderable is the discovery of novel pesticidal agents from 

new chemical classes, able to operate using different modes of action and, consequently, 

against plant pathogens with resistance to currently used agrochemicals. In this regard, 

natural products and plant extracts constitute an interesting resource for ecofriendly 

management of plant pests.  

Plants produce a large and diverse array of organic compounds that appear to have no 

direct functions in growth and development i.e. they have no generally recognised roles 

in the process of photosynthesis, respiration, solute transport, translocation, nutrient 

assimilation and differentiation (Mazid et al., 2011). These secondary metabolites, once 

considered unimportant products, are now thought to have an important part in the plants 

defense system against pests and diseases, including root parasitic nematodes. Many 

phytochemicals have long been known to posses a broad spectrum of activity against 

several plant pathogenic ororganisms. For instance, cinnamon, clove, oregano and thyme 

essential oils showed antibacterial activity towards several phytopathogenic Gram-

negative and Gram-positive bacteria and fungi. Extracts from garlic and mustard also 

demonstrated a wide range of antimicrobial and antielmintic property.  

Number of toxic chemicals produced by plants elicits pungent sensation in mammals 

mediated by transient receptor potential (TRP) channels. Sensing reactive compounds are 

important for an organism to avoid potentially harmful environments. TRP receptors 

form a recently identified superfamily of cation channels that display great diversity of 

activation mechanisms and selectivities. Found in organisms ranging from yeast to 

human, transient receptor potential (TRP) channels typically contain six transmembrane 

domains that form a central pore, as well as differing amino and carboxyl domains that 

impart differential sensitivity to various sensory stimuli, including temperature, touch, 

pain, osmolarity, taste, pH, pheromones, and other environmental signals. Recent studies 

have shown that many plant chemicals interact with specific ion channels. Capsaicin (the 

pungent ingredient in chili peppers) produces the psychophysical sensation of “hot” or 
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“burning” by acting on TRPV1, whereas menthol activates TRPM8 to produce a 

“cooling” sensation. TRPA1 is the target of the irritant compounds in food. These include 

ingredients present in wasabi, horseradish, and mustard oils (isothiocyanates); garlic 

(allicin); cinnamon oil (cinnamaldehyde). Carvacrol, the major ingredient of oregano, and 

eugenol important constituent of clove oil, are both active on TRPA1.  

The in vitro activation of TRPA1 by two secondary metabolites contained in Perilla 

frutescens, perillaldehyde (PA) and perillaketone (PK), was an interesting finding that 

could have potential agronomical applications.  

Perilla frutescens is an annual herb commonly used in Asia as food plant, particularly 

appreciated for its pleasant pungent and tingling sensations. Since ancient times, perilla 

has been also known as an herbal medicine and used in Chinese medicine to treat a 

variety of diseases. Considerable attention has been given to the anti-inflammatory, anti-

allergic and anti-tumor promoting substances contained in the plant. 

In this study, the antimicrobial activity of crude extracts and essential oils from leaves of 

two P. frutescens varieties grown experimentally in Northern Italy, was determined 

against a set of common phytopathogenic microorganisms, causing widespread diseases 

on a variety of crops. Commercial perillaldehyde and synthetic perillaketone were also 

assayed in vitro and in vivo (PA, only). Pure PK was obtained both by chemical synthesis 

and by perilla leaves extraction. In addition, the nematicidal efficacy of pure 

perillaketone was evaluated against 2
nd

 instar larvae juveniles of cyst nematode 

Heterodera daverti.  

Chemical analysis by TLC, HPLC and NMR of the samples allowed the identification of 

PA and PK as the main secondary metabolites in the two investigated cultivars: the crisp 

green-leaved perilla and the smooth green-leaved Korean variety respectively, and the 

consequent classification in PA and PK chemotypes. The organic extracts PA and PK-

type (PA-Ex and PK-Ex) and the essential oils PA and PK type (PA-EO and PK-EO) 

exhibited a broad spectrum of activity against tested plant patogenic organisms.  

The antibacterial activity of the tested substances resulted generally scanty. Small 

inhibition zone was observed for PK-Ex at 2000 µg mL
-1

 against Xanthomonas 

vesicatoria 2615 and Xanthomonas anoxopodis pv vignicola 2625, only.  

In vitro antifungal activity varied according to compound and target species. The 

sensitivity of most tested fungi to perilla compounds was evaluated as growth inhibition 

using the poisoned food technique. A substance may inhibit the growth of fungi either  
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temporarily (fungistatic) or permanently (fungicidal). 

It was found that both the extracts at 2000 µg mL
-1

 exhibited fungistatic activity on C. 

beticola, moreover PK-Ex was also fungistatic against Pyrenophora graminea and 

Pyricularia oryzae BA43.  

Results showed that among the tested samples, the essential oils appeared to be 

significantly more active compared with the crude extracts. It was found that for 

Cladosporium cucumerinum, both essential oils demonstrated a fungistatic activity at 300 

µg mL
-1

 and a fungicidal one at 400 (PA-EO) and 500 µg mL
-1

 (PK-EO). PA-EO at the 

concentration of 500 µg mL
-1

 showed fungicidal activity against several pathogenic fungi 

such as: Alternaria alternata RF8, Bipolaris oryzae, Cercospora beticola, P. graminea, 

P. oryzae BA43 and Pyrenophora teres. PA-EO resulted also fungistatic for 

Cladosporium cladosporioides CBS 574.78 A and C. cladosporioides IPV-F167 at 400 

and 500 µg mL
-1

, respectively. On the contrary, PK-EO at the highest concentration, 

exhibited fungistatic activity against: A. alternata, C. beticola, C. cladosporioides CBS 

574.78 A, C. cladosporioides IPV-F167, P. graminea, P. oryzae, P. teres and Sclerotinia 

sclerotiorum.  

Essential oils efficacy could be attributed to important characteristics of their 

components: lipophilic and hydrophobic tendencies (Burt, 2004). Generally, these 

properties enables them to partition in the lipid of the fungal cell membrane and 

mitochondria, disturbing their structure and rendering them more permeable. Leakage of 

ions and other cell contents can then occur. Secondly some of the oils may affect the 

metabolic pathways of the microorganisms (Kumar et al., 2008).  

Moreover PA-EO resulted more effective than PK-EO and commercial PA revealed a 

high antifungal activity on mycelia growth of many tested fungi.  

Among the analyzed fungi particular attention was given to Cladosporium 

cladosporioides IPV-F167. The in vitro antifungal activity of perilla compounds against 

this fungus was assessed by different methods. Semi-quantitative responses obtained by 

direct bioautographic TLC method, were not directly comparable with those of poisoned 

food technique, that was found to be more effective. In the spore germination assays both 

essential oils resulted active in a dose response manner, PA-EO exhibited the highest 

inhibitory effect. Suppression on spore germination by oil treatment could make a 

significant contribution to limiting the growth of the pathogen.  

The in vivo studies showed that commercial PA had the most significant preventive   

 



                                                                                                           Results and discussions 

 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.   97 

activity reducing powdery mildew disease on cucumber plants. This evidence suggests 

that the antifungal activity of tested essential oils is probably due to the presence of their 

major bioactive compounds.  

Besides, P. frutescens demonstrated to possess good in vitro nematicidal activity due to 

perillaketone against 2
nd

 instar larvae juveniles of cyst nematode H. daverti, whose 

mortality was 90% at the end of the test, emphasizing a significant shortening of their 

life. 

In conclusion, this research work reported that the edible plant Perilla frutescens, easily 

cultivable, constitute a rich source of TRP bioactive compounds useful as potential 

alternative to agrochemicals against many phytopathogenic organisms like fungi and 

nematodes. 

 

 

 

 

 

 

 

 



References 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.   98 

References 
 

Anonymous (2002). Vinegar wipes out thistles organically. Stockman Grass Farmer. 

 July, 1. 

Appendino G., Minassi A., Pagani A., Ech-Chahad A., (2008). The role of natural 

 products in the ligand deorphanization of TRP channels. Current Pharmaceutical 

 Design 14, 2-17. 

Arena J.P., Liu K.K., Paress P.S., Frazier E.G., Cully D.F., Mrozik H., Schaeffer J., 

 (1995). The mechanism of action of avermectins in Caenorhabditis elegans: 

 correlation between activation of glutamate-sensitive chloride current, membrane 

 binding, and biological activity. J. Parasitol.81, 286–294. 

Azuma K., Ito H., Ippoushi K., Higashio H., (2003). In vitro antibacterial activity of 

 extracts from four Labiatae herbs against Helicobacter pylori and Streptococcus 

 mutans. Bull. Natl. Inst. Veg., & Tea Science, Japan 2, 83-91.  

Bailey T.R., (1991). A mild, efficient approach to 3-acylfurans: a short synthesis of 

 perilla ketone. Synthesis, 242-243. 

Bakkali F., Averbeck S., Averbeck D., Idaomar M., (2008). Biological effects of essential 

 oils – A review. Food and Chemical Toxicology 46, 446–475. 

Bang K.H., Lee D.W., Park H.M., Rhee Y.H., (2000). Inhibition of fungal cell wall 

 synthesizing enzymes by trans-cinnamaldehyde. Biosci Biotechnol Biochem. 64(5), 

 1061-1063. 

Banno N., Akihisa T., Yasukawa K., Higashihara H., Ukiya M., Watanabe K., Kimura 

 Y., Hasegawa J.I., Nishino H., (2004). Triterpene acids from the leaves of Perilla 

 frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci. 

 Biotechnol. Biochem. 68 (1), 85-90.  

Barton D.H., Jeger O., Prelog V., Woodward R.B., (1954). The constitutions of cevine 

 and some related alkaloids. Experientia 10(3), 81-90. 

Bassoli A., Borgonovo G., Caimi S., Scaglioni L., Morini G., Schiano Moriello A., Di 

 Marzo V., De Petrocellis L., (2009). Taste-guided identification of high potency 

 TRPA1 agonists from Perilla frutescens. Bioorganic & Medicinal Chemistry 17, 

 1636–1639. 

Brossi A., Pei X.-F., (1998). Biological activity of unnatural alkaloid enantiomers. The 

 Alkaloids: Chemistry and Pharmacology. Cordell G. A., Ed. Academic Press: San 

 Diego, CA 50, 109–139. 

Brown H.C., Srebnik M., Bakshi R.K., Cole T.E., (1987). Chiral synthesis via 

 organoboranes. Preparation of α-chiral acyclic ketones of exceptionally high 

 enantiomeric excess from optically pure borinic esters. J. Am. Chem Soc. 109,5420-

 5426.  

Burt S., (2004). Essential oils: their antibacterial properties and potential applications in 

 foods-a review. International Journal of Food Microbiology 94, 223– 253. 

Caboni P., Sherer T.B., Zhang N., Taylor G., Na H.M., Greenamyre J.T., Casida J.E., 

 (2004). Rotenone, deguelin, their metabolites, and the rat model of Parkinson‟s 

 disease. Chem. Res. Toxicol.17, 1540-1548. 

Cahiez G., Chavant P.Y., Metais E., (1992). A new simple route to furanic ketones; 

 preparation of elsholtzione, Naginata ketone and perilla ketone. Tetrahedron Lett., 

 33(36), 5245-5248.  

Carlin C., Faby R., Karjalainen R., Pommier J.J., Steffek R., (2004). Control of airborne 

 diseases in strawberries with natural and synthetic elicitors. Acta Horticulturae 649, 

 237–240. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bang%20KH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lee%20DW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Park%20HM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rhee%20YH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=bang%20lee%20park%20rhee%20biosci%20biotechnol%20biochem%202000%2064%201061


References 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.   99 

Campbell W.C., (1989). Ivermectin and Abamectin; Springer-Verlag: New York, NY, 

 USA, 361. 

Casida J.E., Quistad G.B., (1995). Pyrethrums, a benefit to human welfare. Pyrethrum 

 Flowers:Production, Chemistry, Toxicology and Uses. Eds., Oxford University: 

 New York, NY, USA, 345–350. 

Catterall W.A., (1980) Neurotoxins that act on voltage sensitive sodium channels in 

 excitable membranes. Annu. Rev. Pharmacol. Toxicol. 20, 15-43. 

Chauvin C., De Oliveira F., Ronot X., Mousseau M., Le, Verve X., Fontaine E., (2001). 

 Rotenone inhibits the mitochondrial permeability transition-induced cell death in 

 U937 and KB cells. Journal of Biological Chemistry, 276, 41394–41398. 

Choi U.K., Lee O.H., Lim S.I., Kim Y.C., (2010). Optimization of antibacterial activity 

 of Perilla frutescens var. acuta leaf against Pseudomonas aeruginosa using the 

 evolutionary operation-factorial design technique. Int. J. Mol. Sci. 11, 3922-3932.  

Choi I., Park J., Shin S., Kim J., Park I., (2007). Nematicidal activity of medicinal plant 

 essential oils against the pinewood nematode (Bursaphelenchus xylophilus). App. 

 Entomol Zool. 42, 397-401. 

Christian E.J., Goggi A.S., (2008). Aromatic plant oils as fungicide for organic corn 

 production. Crop Science, 48. 

Christians N.E., (1990). Preemergence weed control using corn gluten meal. U.S. Patent 

 No. 5,030,268. 

Clapham D.E., (2003). TRP channels as cellular sensors. Nature 426, 517-524. 

Coleman, R., Penner D., (2006). Desiccant activity of short chain fatty acids. Weed 

 Technol. 20, 410-415. 

Coleman R., Penner D., (2008). Organic acid enhancement of pelargonic acid. Weed 

 Technology 22 (1), 38-41.  

Copping L. G., O Duke S., (2007). Natural products that have been used commercially as 

 crop protection agents. Pest Manag Sci 63, 524–554.  

Crosby D. G., (1971). Minor insecticides of plant origin. Naturally Occurring 

 Insecticides. Jacobsen M., Crosby D.G. Eds. Marcel Dekker: New York, NY, 177–

 239. 

Daayf F., Schmitt A., BeÂlanger R.R., (1997). Evidence of phytoalexins in cucumber 

 leaves infected with powdery mildew following treatment with leaf extracts of 

 Reynoutria sachalinensis. Plant Physiology 113, 719-27. 

Damalas C. A., (2011). Potential uses of turmeric (Curcuma longa) products as 

 alternative means of pest management in crop production. Plant Omics Journal 

 4(3), 136-141. 

Dayan F.E., Cantrell C.L., Duke S.O., (2009). Natural products in crop protection. 

 Bioorganic & Medicinal Chemestry 17, 4022-4034. 

Dimić G.R., Kocić-Tanackov S.D., Pejin D.J., Tanackov I.J., Tuco D., (2009). 

 Antimicrobial activity of caraway, garlic and oregano extracts against filamentous 

 moulds. Acta Periodica Technologica 40, 1-220. 

Dong H., Delaney T.P., Bauer D.W., Beer S.V., (1999). Harpin induces disease resistance 

 in Arabidopsis through the systemic acquired resistance pathway mediated by 

 salicylic acid and the NIM1 gene. The Plant Journal 20, 207-215. 

Dönmez A.A., (2002). Perilla: a new genus for Turkey. Turk J Bot. 26, 281-283. 

Duke S.O., (2005). Taking stock of herbicide-resistant crops ten years after introduction. 

 Pest Manag Sci 61, 211–218. 

Ehler L.E., (2006). Integrated pest management (IPM): definition, historical 

 development and implementation, and the other IPM. Pest Manag Sci. 62(9):787-

 789. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ehler%20LE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%EF%82%A7%09Ehler%20L.%20E.%20Pest.%20Manag.%20Sci.%202006%2C%2062%2C787%E2%80%93789.


References 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.   100 

Fang N., Casida J.E., (1999). Cube´ resin insecticide: identification and biological 

 activity of 29 rotenoid constituents. J. Agric. Food Chem. 47, 2130-2136. 

Feng L.J., Yu C.H., Ying K.J., Hua J., Dai X.Y., (2011). Hypolipidemic and antioxidant 

 effects of total flavonoids of Perilla Frutescens leaves in hyperlipidemia rats 

 induced by high-fat diet. Food Research International 44, 404–409. 

Feng W., Zheng X., (2007). Essential oils to control Alternaria alternata in vitro and in  

 vivo. Food Control 18, 1126–1130. 

Friedman M., Buick R., Elliott C.T., (2006). Antimicrobial activities of plant compounds 

 against antibiotic-resistant Micrococcus luteus. Letters to the Editor/ International 

 Journal of Antimicrobial Agents 28, 151–158. 

Fofana B., Benhamou N., McNally D.J., Labbe´C., Se´guin A., Be´langer R.R., (2005). 

 Suppression of induced resistance in cucumber through disruption of the flavonoid 

 pathway. Phytopathology 95, 114–123. 

Fukuda M.Y., Tsujino Y., Fujimori T., Wakabayashi K., Böger P., (2004). Phytotoxic 

 activity of middle-chain fatty acids I: effects on cell constituents. Pesticide 

 Biochemistry and Physiology 80,143–150. 

Gerhold K.A., Bautista D.M., (2009). Molecular and cellular mechanisms of trigeminal 

 chemosensation. International Symposium on Olfaction and Taste 1170, 184–189. 

Goto C., Kasuya S., Takahashi Y., (1995). Lethal efficacy of components from Perilla 

 frutescens or Zingiber officinale on larval nematode. Gifu Daigaku Igakubu Kiyo 

 43, 498-508. 

Gough R.E., Carlstrom R., (1999). Wheat gluten meal inhibits germination and growth of 

 broadleaf and grassy weeds. Hort Science 34, 269-270. 

Gu L., Wua T., Wang Z.,(2009). TLC bioautography-guided isolation of antioxidants 

 from fruit of Perilla frutescens var. acuta. Food Science and Technology 42, 131–

 136.  

Hahn M.G, (1996). Microbial elicitors and their receptors in plants. Annu Rev 

 Phytopathol.34, 387-412. 

Hayes W.J., Laws E.R., (1990). Handbook of Pesticide Toxicology, Classes of Pesticides. 

 Academic: New York, NY, USA, 3. 

Hedin P.A., Culter H.G., Hammock B.D., Menn J.J., Moreland D.E., Plimmer J.R., 

 (1985). Bioregulators for pest control. Acs Symposium series 276.  

Hirano, S., Nagao N., (1989). Effect of chitosan, pectic acid, lysozyme and chitinase on 

 the growth of several phytopathogens. Agr. Biol. Chem. 53, 3065-3066. 

Hollingworth R., Ahmmadsahib K., Gedelhak G., McLaughlin, (1999). New inhibitors of 

 complex I of the mitocondrial electron transport chain with activity as pesticides. J. 

 Biochem. Soc. Trans. 22, 330-333. 

Hou S.W., Jia J.F., (2005). In vitro regeneration of Perilla frutescens from hypocotyl and 

 cotyledon explants. Biologia Plantarum 49 (1), 129-132.  

House Resolution-1627 Food Quality Protection Act (FQPA) of 1996. http:// 

 www.epa.gov/pesticides/regulating/laws/fqpa/. 

Hu H., Tian J., Zhu Y., Wang C., Xiao R., Herz J.M., Wood J.D., Zhu M.X. (2010). 

 Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. 

 Pfluegers Archiv 459(4), 579-592. 

Huang B., Lei Y., Tang Y., Zhang J., Qin L., Liu J., (2011). Comparison of HS-SPME 

 with hydrodistillation and SFE for the analysis of the volatile compounds of Zisu 

 and Baisu, two varietal species of Perilla frutescens of Chinese origin. Food 

 Chemistry 125, 268–275. 

Huang J., Zhang X., McNaughton P.A., (2006). Modulation of temperature-sensitive TRP 

 channels. Seminars in Cell & Developmental Biology 17, 638–645. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hahn%20MG%22%5BAuthor%5D


References 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.   101 

Inouye S., (2003). Laboratory evaluation of gaseous essential oils (Part 1). The 

 International Journal of Aromatherapy 13, 2-3. 

Ishii H., Fraaije B.A, Sugiyama T., Noguchi K., Nishimura K., Takeda T., Amano T.,  

 Hollomon D.W., (2001). Occurrence and molecular characterization of strobilurin 

 resistance in cucumber powdery mildew and downy mildew. Phytopathology 

 91(12), 1166-71. 

Isman M.B., (2006). Botanical insecticides, Deterrents, and repellents in modern 

 agriculture and an increasingly regulated world. Annu. Rev. Entomol. 51, 45–66. 

Isono K., Suzuki S., (1979). The polyoxins: pyrimidine nucleoside peptide antibiotics 

 inhibiting cell wall biosynthesis. Heterocycles 13, 333. 

Ito M., Honda G., Sydara K., (2008). Perilla frutescens var. frutescens in northern Laos. 

 J. Nat Med. 62, 251–258. 

Jansson R.K., Dybas R. A., (1996). Avermectins: biochemical mode of action biological 

 activity and agricultural importance. Insecticides with Novel Modes of Action: 

 Mechanisms and Application. Ishaaya, I., Ed.; Springer-Verlag: New York, NY. 

Jung J.N., Heo K., Kim M.J., Lee J.K., (2008). Morphological variations between 

 cultivated types of Perilla crop and their weedy types in Korea and Japan. Korean J. 

 Breed. Sci. 40(4), 361-370. 

Kang R., Helms R., Stout M.J., Jaber H., Chen Z., Nakatsu T., (1992). Antimicrobial 

 activity of the volatile constituents of Perilla frutescens and its synergistic effects 

 with polygodial. J. Agric . Food Chem. 40, 2328-2330.  

Kameda Y., Asano N., Yamaguchi T., Matsui K., (1987) Validoxylamines as trehalase 

 inhibitors. J. Antibiot. 40, 563-565. 

Kang T.H, Hwang E.I, Yun B.S, Park K.D, Kwon B.M, Shin C.S, Kim S.U., (2007). 

 Inhibition of chitin synthases and antifungal activities by 2'-

 benzoyloxycinnamaldehyde from Pleuropterus ciliinervis and its derivatives. Biol 

 Pharm Bull. 30(3), 598-602. 

Karbin S., Rad A.B., Arouiee H., Jafarnia S., (2009). Antifungal activities of the essential 

 oils on post-harvest disease agent Aspergilus flavus. Advances in Environmental 

 Biology 3(3), 219-225. 

Khusniati T., Kim W.S., Yanagisawa S., Kumura H., Shimazaki K., (2008). Utilization of 

 Japanese aromatic substances for milk preservation as estimated by vapor contact 

 method. Journal of Food Safety 28,  601–608. 

Kim D.H., Kim Y.C., Choi U.K., (2011). Optimization of antibacterial activity of Perilla 

 frutescens var. acuta leaf against Staphylococcus aureus using evolutionary 

 operation factorial design technique. Int. J. Mol. Sci. 12, 2395-2407.  

Kim J., Marshall M.R., Wei C., (1995). Antibacterial activity of some essential oil 

 components against five foodborne pathogens. J. Agric. Food Chem. 43, 2839-2845.  

Kimura M., Yamguchi I., (1996). Recent development in the use of blasticidin S, a 

 microbial fungicide, as a useful reagent in molecular biology, pesticide 

 biochemistry. Physiology, 56, 243–248. 

Klarzynski O., Mery A, .Joubert J.M., (2002). Laminarin, a stimulator of the natural 

 defence mechanisms of soft wheat. Phytoma. La Défense des Végétaux 555, 59-61. 

Kordali S., Cakir A., Ozer H., Cakmakci R., Kesdek M., Mete E., (2008). Antifungal, 

 phytotoxic and insecticidal properties of essential oil isolated from Turkish 

 Origanum acutidens and its three components, carvacrol, thymol and p-cymene. 

 Bioresource Technology 99, 8788–8795. 

Kornis G.I., (1995). Avermectins and milbemycins. Agrochemicals from Natural 

 Products. Godfrey, C.R.A., Ed.; Marcel Dekker: New York, NY, USA, 215–255. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ishii%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fraaije%20BA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sugiyama%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Noguchi%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nishimura%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Takeda%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Amano%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hollomon%20DW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kang%20TH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hwang%20EI%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Yun%20BS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Park%20KD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kwon%20BM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shin%20CS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kim%20SU%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=kang%20hwang%20yun%20park%20kwon%20shin%20kim%20u%20biol%20pharm%20bull%202007%2030%20598
http://www.ncbi.nlm.nih.gov/pubmed?term=kang%20hwang%20yun%20park%20kwon%20shin%20kim%20u%20biol%20pharm%20bull%202007%2030%20598
http://agris.fao.org/?query=%2Bauthor:%22Klarzynski,%20O.%22
http://agris.fao.org/?query=%2Bauthor:%22Mery,%20A.%22
http://agris.fao.org/?query=%2Bauthor:%22Mery,%20A.%22
http://agris.fao.org/?query=%2BcitationTitle:%22Phytoma.%20La%20D%C3%A9fense%20des%20V%C3%A9g%C3%A9taux%22


References 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.   102 

Koul O., Walia S., Dhaliwal G.S., (2008). Essential oils as green pesticides: potential and 

 constraints. Biopestic. Int. 4(1), 63–84. 

Kraiczy P., Haase U., Gencic S., Flindt S., Anke T., Brandt U., Von Jagow G., (1996). 

 The molecular basis for the natural resistance of the cytochrome bc1 complex from 

 strobilurin-producing basidiomycetes to center Qp inhibitors. Eur J Biochem. 235, 

 54-63. 

Kumar A., Shukla R., Singh P., Prasad C. S., Dubey N. K., (2008). Assessment of 

 Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest 

 fungal infestation of food commodities. Innovative Food Science and Emerging 

 Technologies 9,  575–580. 

Laureati M., Buratti S., Bassoli A., Borgonovo G., Pagliarini E., (2010). Discrimination 

 and characterisation of three cultivars of Perilla frutescens by means of sensory 

 descriptors and electronic nose and tongue analysis. Food Research International 

 43,959–964. 

Lee J.K, Ohnishi O., (2003). Genetic relationships among cultivated types of Perilla 

 frutescens and their weedy types in East Asia revealed by AFLP markers. Genetic 

 Resources and Crop Evolution, 50, 65–74.  

Lee S.E., Lee B.H., Choi W.S., Park B.S., Kim J.G., Campbell B.C., (2001).Fumigant 

 toxicity of volatile natural products from Korean spices and medicinal plants 

 towards the rice weevil, Sitophilus oryzae (L). Pest Manag Sci 57, 548-553  

Lee Y.J., Yang C.M., (2006). Growth behavior and perillaldehyde concentration of 

 primary leaves of Perilla frutescens (L.) Britton grown in different seasons. Crop, 

 Environment & Bioinformatics 3, 135-146.  

Levine J.D., Alessandri-Haber N., (2007). TRP channels: targets for the relief of pain. 

 Biochimica et Biophysica Acta 1772, 989–1003. 

Lin E.S., Chou H.J., Kuo P.L., Huang Y.C., (2010). Antioxidant and antiproliferative 

 activities of methanolic extracts of Perilla frutescens. Journal of Medicinal Plants 

 Research 4(6), 477-483.  

Liu D.L., Christians N.E., (1997). Inhibitory activity of corn gluten hydrolysate on 

 monocotyledonous and dicotyledonous species. Hort Science 32, 243–245. 

Lydon, J., Duke, S.O., (1999). Inhibitors of glutamine biosynthesis. In Plant Amino 

 Acids: Biochemistry and Biotechnology. Singh, B.K. (Ed.), Marcel Dekker, New 

 York, 445-464. 

Malkomes H-P, (2006). Microbiological-ecotoxicological soil investigations of two 

 herbicidal fatty acid preparations used with high dosages in weed control. 

 Umweltwissenschaften Schadstoff-Forschung 18, 13–20. 

Makino T., Furuta Y., Wakushima H., Fujii H., Ken-ichi Saito K.I., Kano Y., (2003). 

 Anti-allergic Effect of Perilla frutescens and Its Active Constituents. Phytother. 

 Res. 17, 240–243. 

Martinetti L., Ferrante A., Bassoli A., Borgonovo G., Tosca A., Spoleto P., (2010). 

 Caracterization of some qualitative traits in diffrerent perilla cultivars. Proceedings 

 of the 28
th
 International Horticultural Congress, Lisbon, Portugal, August 22-27, 

 Acta Mortic. (In press). 

Mazid M., Khan T.A., Mohammad F. (2011). Role of secondary metabolites in defense 

 mechanisms of plants. Biology and Medicine 3 (2), 232-249. 

McGeady P., Wansley D.L., Logan D.A., (2002). Carvone and perillaldehyde interfere 

 with the serum-induced formation of filamentous structures in Candida albicans at 

 substantially lower concentrations than those causing significant inhibition of 

 growth. Journal of Natural Products 65(7), 953-955. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kraiczy%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Haase%20U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gencic%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Flindt%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Anke%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Brandt%20U%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Von%20Jagow%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=kraiczy%20haase%20u%20gencic%20flindt%20anke%20brandt%20von%20jagow%20eur%20j%20biochem%201996


References 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.   103 

Meng L., Lozano Y.F., Gaydou E.M., Li B., (2009). Antioxidant activities of polyphenols 

 extracted from Perilla frutescens varieties. Molecules 14, 133-140. 

Mishima M., (1983). Milbemycin: a family of macrolide antibiotics with insecticidal 

 activity. IUPAC Pesticide Chemistry. Miyamoto J., Kearney P.C., Eds. Pergamon 

 Press: Oxford, UK 2, 129–134. 

Monte E., (2001). Understanding Trichoderma: between biotechnology and microbial 

 ecology. Int. Microbial 4, 1-4. 

Moran M.M., Mc Alexander M.A., Bíró T., Szallasi A., (2011). Transient receptor 

 potential channels as therapeutic targets. Nature Reviews 10, 601-620.  

Müller U., (2002). Chemical crop protection research. Methods and challenges. Pure 

 Appl. Chem., 74(12), 2241–2246.  

Nagata K. (2007). TRP channels as target sites for insecticides: physiology, 

 pharmacology and toxicology. Invert Neurosci 7, 31–37. 

Newman S. E., Roll M.J., Harkrader R.J., (1999). A naturally occurring compound for 

 controlling powdery mildew of greenhouse roses. Hort Science 34, 686-689. 

Nielsen P.V., Rios R., (2000). Inhibition of fungal growth on bread by volatile 

 components from spices and herbs, and the possible application in active 

 packaging,with special emphasis on mustard essential oil. International Journal of 

 Food Microbiology 60, 219–229. 

Nilius B., Owsianik G., Voets T., Peters J.A., (2007). Transient receptor potential cation 

 channels in disease. Physiol Rev 87, 165–217. 

Nitta M., Lee J.K.., Ohnishi O., (2003). Asian Perilla crops and their weedy forms: their 

 cultivation, utilization and genetic relatinships. Economic Botany 57(2), 245-253. 

Om Y., Yamaguchi I., Misado T., (1984). Inhibition of protein biosynthesis by 

 mildiomycin, an anti-mildew substance. J Pestic Sci 9, 317–323. 

Oostenbrink M., (1960). Estimating nematode populations by some selected methods. In: 

 Nematology, ed. by Sasser JN and Jenkins WR, Univ. N. Carolina Press, Chapell 

 Hill, 85-102. 

Pandey A., Bhatt K.C., (2008). Diversity distribution and collection of genetic resources 

 of cultivated and weedy type in Perilla frutescens (L.) Britton var. frutescens and 

 their uses in Indian Himalaya. Genet. Resour. Crop Evol. 55, 883–892. 

Pawar V.C., Thaker V. S., (2006). In vitro efficacy of 75 essential oils against Aspergillus 

 niger. Mycoses 49, 316–323. 

Peng Y., Ye J., Kong J., (2005). Determination of Phenolic Compounds in Perilla 

 frutescens L. by Capillary Electrophoresis with Electrochemical Detection. J. Agric. 

 Food Chem. 53, 8141-8147. 

Peshin R., Dhawan A.K., (2009). Integrated pest management: Innovation-development 

 process. Springer.  

Porteous, D.J., Raines J.R., Gantz R.L., (1996). Results of tracer naturalyte insect control 

 small pest and large experimental use permit trials in Texas during 1995. 

 Proceedings of Beltwide Cotton Conferences, ed. by Dugger P and Richter D., Eds.; 

 National Cotton  Council of America: Memphis, TN, 875–877. 

Prakash A., Rao J., Nandagopal V., (2008). Future of botanical pesticides in rice, wheat, 

 pulses and vegetables pest management. Journal of Biopesticides 1(2), 154–169. 

Quarles W., (1999). Dust mites, cockroaches and asthma. Common Sense Pest Control 

 Quarterly 15(1), 4-17. 

Ragsdale N.N., (1999). The role of pesticides in agricultural crop protection. Annals of 

 the New York Academy of Sciences 894, 199-205. 

Ramsey I.S., Delling M., Clapham D.E., (2006). An introduction to TRP channels. Annu. 

 Rev. Physiol. 68, 619–47. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ragsdale%20NN%22%5BAuthor%5D


References 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.   104 

Ranasinghe L., Jayawardenal B., Abeywickrama K., (2002). Fungicidal activity of 

 essential oils of Cinnamomum zeylanicum (L.) and Syzygium aromaticum (L.) Merr 

 et L. M. Perry against crown rot and anthracnose pathogens isolated from banana. 

 Letters in Applied Microbiology 35, 208–211. 

Salgado, V.L. (1997). The modes of action of spinosad and other insect control products. 

 Down to Earth 52(1), 35-43. 

Schmelz I., (1971). Nicotine and other tobacco alkaloids. Naturally Occurring 

 Insecticides. Jacobson M., Crosby D.G., Eds. Marcel Dekker: New York, NY, USA, 

 99–136. 

Scora K.M., Scora R.W., (1998). Effect of volatiles on mycelium growth of Penicillium 

 digitatum, P. italicum, and P. ulaiense. J. Basic Microbiol. 38, 5 –6, 405–413. 

Sekine T., Sugano M., Majid A., Fujii Y., (2007). Antifungal effects of volatile 

 compounds from black zira (Bunium persicum) and other spices and herbs. J Chem 

 Ecol 33, 2123–2132.  

Senseman S.A., (2007). Herbicide Handbook. 9th ed. Lawrence, KS: Weed Science 

 Society of America, 458. 

Seo W.H., Baek H.H., (2009). Characteristic aroma-active compounds of Korean Perilla 

 (Perilla frutescens Britton) leaf. J. Agric. Food Chem. 57, 11537–11542. 

Shrestha A.K., Tiwari R.D., (2009). Antifungal activity of crude extracts of some 

 medicinal plants against Fusarium solani (mart.) Sacc. Ecoprint 16, 75-78. 

Siripornvisal S., Rungprom W., Sawatdikarn S., (2009). Antifungal activity of essential 

 oils derived from some medicinal plants against grey mould (Botrytis cinerea). As. 

 J. Food Ag-Ind., Special Issue, S229-S233. 

Sitara U., Niaz I., Naseem J., Sultana N. (2008). Antifungal effect of essential oils on in 

 vitro growth of pathogenic fungi. Pak. J. Bot. 40(1), 409-414. 

Škrinjar M.M., Nemet N.T., (2009). Antimicrobial effects of spices and herbs essential 

 oils. Acta Periodica Technologica 40, 1-220. 

Soliman K.M., Badeaa R.I., (2002). Effect of oil extracted from some medicinal plants on 

 different mycotoxigenic fungi. Food and Chemical Toxicology 40, 1669–1675.  

Smid E.J., De Witte Y., Gorris L.G.M., (1995). Secondary plant metabolites as control 

 agent of post harvest Penicillium rot on tulip bulbs. Postharvest Biology and 

 Technology 6, 303-312. 

Sparks TC, Crouse GD, Durst G. (2001). Natural products as insecticides: the biology, 

 biochemistry and quantitative structure-activity relationships of spinosyns and 

 spinosoids. Pest Manag Sci. 57(10), 896-905. 

Stetter J., Lieb F., (2000). Innovation in Crop Protection: Trends in Research. Angew 

 Chem Int Ed Engl 39(10), 1724-1744. 

Still W.C., Khan M., Mitra A., (1978). Rapid chromatographic technique for preparative 

 separations with moderate resolution. The Journal of Organic Chemistry 43(14), 

 2923-2925. 

Tajkarimi M.M., Ibrahim S.A., Cliver D.O., (2010). Antimicrobial herb and spice 

 compounds in food. Food Control 21, 1199–1218. 

Taylor T.D., (2003). Perilla seed pesticide, US Patent 6599539 B1 20030729. 

Tedeschi P., Maietti A., Boggian M., Vecchiati G., Brandolini V., (2007). Fungitoxicity 

 of lyophilized and spray-dried garlic extracts. Journal of Environmental Science and 

 Health Part B 42, 795–799. 

Tsao R., Yu Q., (2000). Nematicidal activity of monoterpenoid compounds against 

 economically important nematodes in agriculture. J Essent Oil Res 12, 350-354. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sparks%20TC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Crouse%20GD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Durst%20G%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=sparks%20t%20c%20crouse%20g%20d%20durst%20g%20pest%20manage%20sci%202001%2057%20896
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stetter%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lieb%20F%22%5BAuthor%5D


References 
 

 

TRP active compounds from food plants and their properties as antimicrobial and biocides.   105 

Ujaύry I., (1999). Nicotine and other insecticidal alkaloids. Nicotinoid Insecticides and 

 the Nicotinic Acetylcholine Receptor. Yamamoto I., Casida J. E., Eds. Springer-

 Verlag: Tokyo, Japan, 29–69. 

Unruh, J.B., Christians N.E., Horner H.T., (1997). Herbicidal effects of the dipeptide 

 alaninyl-alanine on perennial ryegrass. Crop Sci. 37(1), 208-212. 

Viana F., (2011). Chemosensory properties of the trigeminal system. ACS Chem. 

 Neurosci. 2, 38–50. 

Vriens J., Nilius B., Vennekens R., (2008). Herbal compounds and toxins modulating 

 TRP channels. Current Neuropharmacology 6, 79-96. 

Wei Z-M, Laby R.J, Zumoff C.H., Bauer D.W., He S.Y., Collmer A., (1992). Harpin, 

 elicitor of the hypersensitive response produced by the plant pathogen Erwinia  

 amylovora. Science (Washington) 257, 85–88. 

Wheeler W.B., (2002). Role of research and regulation in 50 years of pest management in 

 agriculture. Prepared for the 50th anniversary of the Journal of Agricultural and 

 Food Chemistry. J Agric Food Chem. 50(15), 4151-4155. 

Yamamoto I., (1998). Nicotine: old and new topics. Rev. Toxicol. 2, 61. 

Yin J., Kuebler W.M., (2010). Mechanotransduction by TRP channels: general concepts 

 and specific role in the vasculature. Cell Biochem Biophys 56, 1–18. 

Yu H. C., Kosuma K., Haga M., (1997). Perilla. The Genus Perilla. Taylor & Francis 

 Group. 

Yuri T., Danbara N., Tsujita-Kyutoku M., Kiyozuka Y., Senzaki H., Shikata N., Kanzaki 

 H., Tsubura A., (2004). Perillyl alcohol inhibits human breast cancer cell growth in 

 vitro and in vivo. Breast Cancer Research and Treatment 84, 251–260. 

Zamojsk A. I., Kozluk T., (1977). Synthesis of 3-substitued furans. J. Org. Chem. 42 (6): 

 1089-1090. 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wheeler%20WB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%EF%82%A7%EF%82%A7%09Wheeler%20W.%20B.%20J.%20Agric.%20Food%20Chem.%202002%2C%2050%2C%204151-4155


 

 

 

 

 

 

 

 

 

 

 

Ackowledgements 

 

It is a great pleasure to express my thanks and appreciation towards the people who have 

in many ways assisted me to reach this result. First of all, I would like to express my 

unreserved thanks to Prof. Angela Bassoli for introducing me the inspiring field of 

research, and offering me the opportunity to pursue this research project. I owe my 

gratitude to Prof. Paola Sardi for her dedicated supervision throughout the work. I would 

also like to thank Dr. Gigliola Borgonovo for her constant help and support over the 

years. 

My sincere thanks for the help rendered by Prof. Paolo Cortesi, Prof. Gandolfina Farina 

and Mr Elio Burrone during my research work. 

Special thanks to all my lab-mates for their friendship, company and encouragement.  

I extend my thanks to all the staff of DISMA and DiPSA for their assistance.  

No words can express my gratitude and profound thanks to my beloved parents and 

brothers whose affection, care and moral support helped me not only during this work 

but throughout my life. Finally, I thank Antonio for his unconditional love. 

 


