Asymptotic Stability of Solitons.

D. Bambusi ${ }^{1}$
${ }^{1}$ Dipartimento di Matematica "F.Enriques" - Università degli studi di Milano

Tinée, February 8, 2011

Outline

(1) The Problem

(2) A model problem
(3) Recall of BCO9

4 Connection with NLS
(5) Marsden-Weinstein reduction
(6) Darboux theorem
(7) Perturbation theory

NLS

- Model problem

$$
\begin{array}{r}
\mathrm{i} \psi_{t}=-\Delta \psi-\beta^{\prime}\left(|\psi|^{2}\right) \psi, \quad x \in \mathbb{R}^{3} \\
|\beta(u)(k)| \leq C_{k}\langle x\rangle^{\tilde{p}-k}, \quad \tilde{p} \leq 1+\frac{2}{d-2}, \quad d=3
\end{array}
$$

- Symmetries:
- translations $\left(\psi, q_{i}\right) \mapsto \psi\left(.-q_{i} \mathbf{e}^{i}\right)$, generated by $-\mathrm{i} \partial_{x_{j}}$
- Gauge $\left(\psi, q_{4}\right) \mapsto e^{\mathrm{i} q_{4}} \psi, \quad$ generated by i .
- Conservation laws:

$$
\begin{aligned}
\mathcal{P}^{j}(\psi) & :=\int \frac{\psi \partial_{j} \bar{\psi}-\bar{\psi} \partial_{j} \psi}{2} \\
\mathcal{P}^{4}(\psi) & :=\int|\psi|^{2}
\end{aligned}
$$

Ground States

- Look for special solutions

$$
\psi(x, t)=e^{-\mathrm{i}\left(\omega_{4} t+q_{4}\right)} \eta_{p}\left(x-\left(\omega_{j} t+q_{j}\right) \mathbf{e}^{j}\right)
$$

- η_{p} is a critical point of

$$
H:=\int|\nabla \psi|^{2}-\beta\left(|\psi|^{2}\right)
$$

restricted to

$$
\mathcal{S}_{p}:=\left\{\psi: \mathcal{P}^{j}(\psi)=p^{j}, j=1, \ldots, 4\right\}
$$

- Ground state. A ground state is the minimum.

Theorem

Assume

- Assumptions on the linearized operator.
- Fermi golden rule (probably generic generic: work in progress)
$-\inf _{p, q}\left\|\psi_{0}-e^{-\mathrm{i} q_{4}} \eta_{p}\left(.-q_{i} \mathbf{e}^{j}\right)\right\|_{H^{1}} \ll 1$

Theorem

There exist functions $\omega(t), p(t) q(t)$ having a limit as $t \rightarrow+\infty$ and a state ψ_{∞} such that, writing

$$
\begin{gathered}
\psi(x, t)=e^{\left.-\mathrm{i} y_{4}(t)\right)} \eta_{p(t)}(x-y(t))+\chi(x, t), \\
y_{j}(t)=\omega_{j}(t) t+q_{j}(t), \quad\left|q_{j}(t)\right| \ll 1, \quad j=1, \ldots, 4
\end{gathered}
$$

one has

$$
\lim _{t \rightarrow+\infty}\left\|\chi(t)-e^{\mathrm{i} t \Delta} \psi_{\infty}\right\|_{L^{6}}=0
$$

Comments

- What's new? Old results when the Floquet spectrum has at most 1 eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman, Cuccagna, Perelman.
potential), Perelman (no eigenvalues, energy space).
the generators of the symmetries are unbounded.
- Development of reduction theory, Darboux theory and Normal form theory with only continuous transformations.
- Validity of Strichartz estimates for the relevant operators.

Comments

- What's new? Old results when the Floquet spectrum has at most 1 eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman, Cuccagna, Perelman.
- Ideas from D.B.-Cuccagna (on Klein Gordon), Cuccagna (case with potential), Perelman (no eigenvalues, energy space).
- Development of reduction theory, Darboux theory and Normal form theory with only continuous transformations.
- Validity of Strichartz estimates for the relevant operators.

Comments

- What's new? Old results when the Floquet spectrum has at most 1 eigenvalue: Weinstein, Soffer-Weinstein, Buslaev-Perelman, Cuccagna, Perelman.
- Ideas from D.B.-Cuccagna (on Klein Gordon), Cuccagna (case with potential), Perelman (no eigenvalues, energy space).
- Key difficulty: the generators of the symmetries are unbounded.
- Development of reduction theory, Darboux theory and Normal form theory with only continuous transformations.
- Validity of Strichartz estimates for the relevant operators.

Outline

(2) A model problem
(3) Recall of BCO9
4. Connection with NLS
(5) Marsden-Weinstein reduction
(6) Darboux theorem
(7) Perturbation theory

Model probelm

- The equation: $i \psi_{t}=-\Delta \psi+V \psi+\frac{\delta H_{p}}{\delta \bar{\psi}(x)}$. $\mathcal{H}_{0}:=-\Delta+V$ with one eigenvalue $\mathcal{H}_{0} \mathbf{e}=\omega \mathbf{e}$
- Spectral coordinates $\psi=\xi \mathbf{e}+f$:

$$
H_{0}=\langle\bar{f} ; B f\rangle+\omega|\xi|^{2}
$$

- Model nonlinearity

$$
H_{P}:=\bar{\xi}^{\nu}\langle\bar{\Phi} ; f\rangle+\xi^{\nu}\langle\Phi ; \bar{f}\rangle
$$

- Equations

$$
\begin{array}{r}
\dot{\xi}=-\mathrm{i} \omega \xi-\mathrm{i} \nu \bar{\xi}^{\nu}\langle\bar{\Phi} ; f\rangle \\
\dot{f}=-\mathrm{i}\left(B f+\xi^{\nu} \Phi\right)
\end{array}
$$

- Further decoupling $g=f+\xi^{\nu} \Psi$: if Ψ is such that

$$
(B-\nu \omega) \Psi=\Phi
$$

then $\dot{g}=\mathrm{i} B g+O\left(|\xi|^{\nu}|f|+|\xi|^{2 \nu-1}\right)$

Dissipation

- Define

$$
R_{\nu}^{\mp}:=\lim _{\epsilon \rightarrow 0^{+}}(B-\omega \nu \pm i \epsilon)^{-1}, \quad \Psi=R_{\nu}^{-} \Phi
$$

- then $\Psi(x) \sim\langle x\rangle^{-1}$. Plug in the equation for ξ :

$$
\dot{\xi}=-\mathrm{i} \omega \xi-\mathrm{i}|\xi|^{2 \nu-1}\left\langle\bar{\Phi} ; R_{\nu}^{+} \Phi\right\rangle \xi+O\left(\xi^{\nu-1}|\langle\Phi ; g\rangle|\right)
$$

- Plemelji formula:

Dissipation

- Define

$$
R_{\nu}^{\mp}:=\lim _{\epsilon \rightarrow 0^{+}}(B-\omega \nu \pm i \epsilon)^{-1}, \quad \Psi=R_{\nu}^{-} \Phi
$$

- then $\Psi(x) \sim\langle x\rangle^{-1}$. Plug in the equation for ξ :

$$
\dot{\xi}=-\mathrm{i} \omega \xi-\mathrm{i}|\xi|^{2 \nu-1}\left\langle\bar{\Phi} ; R_{\nu}^{+} \Phi\right\rangle \xi+O\left(\xi^{\nu-1}|\langle\Phi ; g\rangle|\right)
$$

- Plemelji formula:

$$
R_{\nu}^{-} \equiv(B-\nu \omega-i 0)^{-1}=P V(B-\nu \omega)-i \pi \delta(B-\nu \omega) .
$$

implies $\left\langle\bar{\Phi} ; R_{\nu}^{-} \Phi\right\rangle=a-\mathrm{i} b, b \geq 0$

Dissipation

- Define

$$
R_{\nu}^{\mp}:=\lim _{\epsilon \rightarrow 0^{+}}(B-\omega \nu \pm i \epsilon)^{-1}, \quad \Psi=R_{\nu}^{-} \Phi
$$

- then $\Psi(x) \sim\langle x\rangle^{-1}$. Plug in the equation for ξ :

$$
\dot{\xi}=-\mathrm{i} \omega \xi-\mathrm{i}|\xi|^{2 \nu-1}\left\langle\bar{\Phi} ; R_{\nu}^{+} \Phi\right\rangle \xi+O\left(\xi^{\nu-1}|\langle\Phi ; g\rangle|\right)
$$

- Plemelji formula:

$$
R_{\nu}^{-} \equiv(B-\nu \omega-i 0)^{-1}=P V(B-\nu \omega)-i \pi \delta(B-\nu \omega) .
$$

implies $\left\langle\bar{\Phi} ; R_{\nu}^{-} \Phi\right\rangle=a-\mathrm{i} b, b \geq 0$

- $\dot{\xi}=-\mathrm{i} \omega \xi-\mathrm{i} a|\xi|^{2 \nu-1} \xi-b|\xi|^{2 \nu-1} \xi+$ h.o.t.
- $\frac{d}{d t}|\xi|^{2}=-2 b|\xi|^{2 \nu} \quad \Longrightarrow|\xi|^{\nu} \in L_{t}^{2}$
- Use normal form to reduce to the model problem.

Outline

(2) A model problem
(3) Recall of BC09
4. Connection with NLS
(5) Marsden-Weinstein reduction
(6) Darboux theorem
(7) Perturbation theory

On the wave equation

- The equation.

$$
u_{t t}-\Delta u+V u+m^{2} u=-\beta^{\prime}(u), \quad(t, x) \in \mathbb{R} \times \mathbb{R}^{3}
$$

with $-\Delta+V(x)+m^{2}$ a positive Schrödinger operator $(V$ smooth and fast decaying),
β^{\prime} a smooth function function fulfilling $|\beta(u)| \leq C u^{4}$

- Consequence. $-\Delta+V$ has finitely many eigenvalues

$$
-\lambda_{1}^{2} \leq \cdots \leq-\lambda_{n}^{2} \leq 0
$$

and $\sigma_{c}(-\Delta+V)=[0,+\infty)$

The theorem of BC09

- Denote $K_{0}(t):=\frac{\sin \left(t \sqrt{-\Delta+m^{2}}\right)}{\sqrt{-\Delta+m^{2}}}$
- Remark $u(t):=K_{0}^{\prime}(t) u_{0}+K_{0}(t) v_{0}$ solves

$$
\begin{aligned}
& u_{t t}-\Delta u+m^{2} u=0 \\
& u(x, 0)=u_{0}(x) \quad \dot{u}(x, 0)=v_{0}(x)
\end{aligned}
$$

Theorem

There exists $\epsilon_{0}>0$ such that, if

$$
\left\|\left(u_{0}, v_{0}\right)\right\|_{H^{1} \times L^{2}}<\epsilon_{0}
$$

then there exist $\left(u_{ \pm}, v_{ \pm}\right) \in H^{1} \times L^{2}$ such that

$$
\lim _{t \rightarrow \pm \infty}\left\|u(t)-K_{0}^{\prime}(t) u_{ \pm}+K_{0}(t) v_{ \pm}\right\|_{H^{1}}=0
$$

Outline

(2) A model problem
(3) Recall of BCO9

4 Connection with NLS
(5) Marsden-Weinstein reduction
(6) Darboux theorem
(7) Perturbation theory

Marsden-Weinstein reduction - generel facts

Connection between the two problems: Marsden-Weinstein reduction.

- Symplectic manifold: (\mathcal{M}, ω), J Poisson tensor
- Symmetry group: $(q, u) \mapsto e^{q J A} u$, generated by

$$
\mathcal{P}(u):=\frac{1}{2}\langle u ; A u\rangle
$$

- Invariant Hamiltonian: H, s.t. $H(u)=H\left(e^{q J A} u\right)$,
- Reduced system: $\mathcal{S}_{p}:=\{u \in \mathcal{M}: \mathcal{P}(u)=p\}$ and

$$
\mathcal{M}_{p}:=\mathcal{S}_{p} / \simeq, \quad\left(u \sim u^{\prime} \quad \Longleftrightarrow \quad u^{\prime}=e^{q J A} u\right)
$$

Marsden-Weinstein reduction - generel facts

Connection between the two problems: Marsden-Weinstein reduction.

- Symplectic manifold: (\mathcal{M}, ω), J Poisson tensor
- Symmetry group: $(q, u) \mapsto e^{q J A} u$, generated by

$$
\mathcal{P}(u):=\frac{1}{2}\langle u ; A u\rangle
$$

- Invariant Hamiltonian: H, s.t. $H(u)=H\left(e^{q J A} u\right)$,
- Reduced system: $\mathcal{S}_{p}:=\{u \in \mathcal{M}: \mathcal{P}(u)=p\}$ and

$$
\mathcal{M}_{p}:=\mathcal{S}_{p} / \simeq, \quad\left(u \sim u^{\prime} \quad \Longleftrightarrow \quad u^{\prime}=e^{q J A} u\right)
$$

- Explicit construction: see the blackboard!
- $\Omega:=i^{*} \omega$, and $H_{r}:=i^{*} H=H \circ i$

Marsden-Weinstein reduction - generel facts

Connection between the two problems: Marsden-Weinstein reduction.

- Symplectic manifold: (\mathcal{M}, ω), J Poisson tensor
- Symmetry group: $(q, u) \mapsto e^{q J A} u$, generated by

$$
\mathcal{P}(u):=\frac{1}{2}\langle u ; A u\rangle
$$

- Invariant Hamiltonian: H, s.t. $H(u)=H\left(e^{q J A} u\right)$,
- Reduced system: $\mathcal{S}_{p}:=\{u \in \mathcal{M}: \mathcal{P}(u)=p\}$ and

$$
\mathcal{M}_{p}:=\mathcal{S}_{p} / \simeq, \quad\left(u \sim u^{\prime} \quad \Longleftrightarrow \quad u^{\prime}=e^{q J A} u\right)
$$

- Explicit construction: see the blackboard!
- $\Omega:=i^{*} \omega$, and $H_{r}:=i^{*} H=H \circ i$.
- Ground state, η_{p} : minimum of H_{r} !

Difficulty

Only continuous group actions:
$u(.) \mapsto u(.-q)$, generated by $\partial_{t} u=-\partial_{x} u$.
(1) Does reduction theory holds, and in particular

- Is the reduced manifold a manifold?
- Can one define the reduced system?
(2) Canonical coordinates are needed: is it possible to prove Darboux theorem?
(3) develop transformation theory with unbounded generators
(4) Dispersive estimates: do Strichartz estimates persist under unbounded perturbation?

Outline

(2) A model problem
(3) Recall of BCO9

4 Connection with NLS
(5) Marsden-Weinstein reduction
(6) Darboux theorem
(7) Perturbation theory

Framework

- Phase space:
- $H^{k}, k \in \mathbb{Z}$ Scale of Hilbert spaces, $\langle. ;$. \rangle scalar prod of H^{0}
- J: $H^{k} \mapsto H^{k-d}$ Poisson tensor
- $E:=J^{-1}, \omega\left(U_{1}, U_{2}\right):=\left\langle E U_{1} ; U_{2}\right\rangle$
- $X_{H}:=J \nabla H$ Hamiltonian vector field
- The system: $H:=\frac{1}{2}\left\langle A^{0} u ; u\right\rangle+H_{P}(u) ; A^{0}: H^{k} \rightarrow H^{k-d_{0}}$
- Symmetries: $\mathcal{P}^{j}(u):=\frac{1}{2}\left\langle A^{j} u ; u\right\rangle ;$
$A^{j}: H^{k} \rightarrow H^{k-d_{j}}, J A^{j}$ generate a flow: $e^{q J A^{j}}: H^{k} \mapsto H^{k}, \forall k$.

Ground state and decomposition of the space

$$
A^{0} \eta_{p}+\nabla H_{P}\left(\eta_{p}\right)-\sum_{j} \lambda_{j} A^{j} \eta_{p}=0
$$

(1) $\mathbb{R}^{n} \supset I \ni p \mapsto \eta_{p} \in H^{\infty}$ is smooth.

Normalization condition $\mathcal{P}^{j}\left(\eta_{p}\right)=p^{j}$. (2) $\bigcup_{p \in I}\left\{\eta_{p}\right\}$ is isotropic

$$
q \mapsto e^{q J A^{i}} \eta_{p} \text { is smooth! }
$$

$$
\text { Consequence: } \mathcal{T}:=\bigcup e^{\sum q_{j} J A^{j}} \eta_{p} \simeq I \times\left(\mathbb{T}^{\prime} \times \mathbb{R}^{n-l}\right) \text {, }
$$

- Natural decomposition: $H^{0} \equiv T_{\eta_{p}} H^{0} \simeq T_{\eta_{p}} \mathcal{T} \oplus T_{\eta_{p}}^{\omega} \mathcal{T}$ with $T_{\eta_{p}}^{\omega} \mathcal{T}:=\left\{U: \omega(U ; X)=0, \forall X \in T_{\eta_{p}} \mathcal{T}\right\}$

Ground state and decomposition of the space

$$
A^{0} \eta_{p}+\nabla H_{P}\left(\eta_{p}\right)-\sum_{j} \lambda_{j} A^{j} \eta_{p}=0
$$

- Assumptions:
(1) $\mathbb{R}^{n} \supset / \ni p \mapsto \eta_{p} \in H^{\infty}$ is smooth.

Normalization condition $\mathcal{P}^{j}\left(\eta_{p}\right)=p^{j}$.
(2) $\bigcup_{p \in I}\left\{\eta_{p}\right\}$ is isotropic

Ground state and decomposition of the space

$$
A^{0} \eta_{p}+\nabla H_{P}\left(\eta_{p}\right)-\sum_{j} \lambda_{j} A^{j} \eta_{p}=0
$$

- Assumptions:
(1) $\mathbb{R}^{n} \supset / \ni p \mapsto \eta_{p} \in H^{\infty}$ is smooth.

Normalization condition $\mathcal{P}^{j}\left(\eta_{p}\right)=p^{j}$.
(2) $\bigcup_{p \in I}\left\{\eta_{p}\right\}$ is isotropic

- Key remark: $q \mapsto e^{q J A^{j}} \eta_{p}$ is smooth!
- Consequence: $\mathcal{T}:=\bigcup_{q, p} e^{\sum q_{j} J A^{j}} \eta_{p} \simeq I \times\left(\mathbb{T}^{\prime} \times \mathbb{R}^{n-l}\right)$, with $T_{\eta_{p}}^{\omega} \mathcal{T}:=\left\{U: \omega(U ; X)=0, \forall X \in T_{\eta_{p}} \mathcal{T}\right\}$

Ground state and decomposition of the space

$$
A^{0} \eta_{p}+\nabla H_{P}\left(\eta_{p}\right)-\sum_{j} \lambda_{j} A^{j} \eta_{p}=0
$$

- Assumptions:
(1) $\mathbb{R}^{n} \supset I \ni p \mapsto \eta_{p} \in H^{\infty}$ is smooth.

Normalization condition $\mathcal{P}^{j}\left(\eta_{p}\right)=p^{j}$.
(2) $\bigcup_{p \in I}\left\{\eta_{p}\right\}$ is isotropic

- Key remark: $q \mapsto e^{q J A^{j}} \eta_{p}$ is smooth!
- Consequence: $\mathcal{T}:=\bigcup_{q, p} e^{\sum q_{j} J A^{j}} \eta_{p} \simeq I \times\left(\mathbb{T}^{\prime} \times \mathbb{R}^{n-l}\right)$,
- Natural decomposition: $H^{0} \equiv T_{\eta_{p}} H^{0} \simeq T_{\eta_{p}} \mathcal{T} \oplus T_{\eta_{p}}^{\omega} \mathcal{T}$ with $T_{\eta_{p}}^{\omega} \mathcal{T}:=\left\{U: \omega(U ; X)=0, \forall X \in T_{\eta_{p}} \mathcal{T}\right\}$.

A nonlinear construction

- Level surface of $\mathcal{P}: \mathcal{S}_{p}:=\left\{u: \mathcal{P}^{j}(u)=p^{j}, \forall j\right\} \ni \eta_{p}$
- Invariance: $e^{\sum q_{j} J A^{j}} \eta_{p} \subset \mathcal{S}_{p}$.
- Transversality: if $\mathcal{M}_{p} \subset \mathcal{S}_{p}$ is such that $T_{\eta_{p}} \mathcal{M}_{p}=T_{\eta_{p}}^{\omega} \mathcal{T}$ then it should be a eqivalent (locally) to the reduced system.
- Explicit construction of the reduced system

Fix $p_{0} \in I$.

- Local model: $\mathcal{V}:=T_{\eta_{p}}^{\omega} \mathcal{T}, \mathcal{V}^{k}:=H^{k} \cap \mathcal{V},(k \geq 0), \mathcal{V}^{-k}$ dual of \mathcal{V}^{k}
- Look for $\mathcal{V}^{k} \ni \phi \mapsto p(\phi) \in I$ s.t.

$$
u:=\eta_{p(\phi)}+\Pi_{p(\phi)} \phi \in \mathcal{S}_{p_{0}}
$$

A nonlinear construction

- Level surface of $\mathcal{P}: \mathcal{S}_{p}:=\left\{u: \mathcal{P}^{j}(u)=p^{j}, \forall j\right\} \ni \eta_{p}$
- Invariance: $e^{\sum q_{j} J A^{j}} \eta_{p} \subset \mathcal{S}_{p}$.
- Transversality: if $\mathcal{M}_{p} \subset \mathcal{S}_{p}$ is such that $T_{\eta_{p}} \mathcal{M}_{p}=T_{\eta_{p}}^{\omega} \mathcal{T}$ then it should be a eqivalent (locally) to the reduced system.
- Explicit construction of the reduced system Fix $p_{0} \in I$.
- Local model: $\mathcal{V}:=T_{\eta_{p}}^{\omega} \mathcal{T}, \mathcal{V}^{k}:=H^{k} \cap \mathcal{V},(k \geq 0), \mathcal{V}^{-k}$ dual of \mathcal{V}^{k}.
- Look for $\mathcal{V}^{k} \ni \phi \mapsto p(\phi) \in I$ s.t.

$$
u:=\eta_{p(\phi)}+\Pi_{p(\phi)} \phi \in \mathcal{S}_{p_{0}} .
$$

Reduction

- Define: $i(\phi)$ by

$$
\begin{gathered}
\mathcal{V}^{k} \ni \phi \mapsto \eta_{p(\mathcal{P}(\phi), \phi)}+\Pi_{p(\mathcal{P}(\phi), \phi)} \phi=: i(\phi) \in \mathcal{S}_{p_{0}} \\
H_{r}:=i^{*} H, \quad \Omega:=i^{*} \omega .
\end{gathered}
$$

- Vector field: H_{r} defines a Hamiltonian vector field in \mathcal{V}.
- X_{H} defines a local flow on $H^{k_{0}}$ which leaves invariant $H^{k} \forall k \geq k_{0}$.
- The same for $X_{H_{r}}$

Theorem

then $\exists q(t)$ s.t. $u(t)=e^{q_{j}(t) J A^{j}} i(\phi(t))$.
The converse is also true.

Reduction

- Define: $i(\phi)$ by

$$
\begin{gathered}
\mathcal{V}^{k} \ni \phi \mapsto \eta_{p(\mathcal{P}(\phi), \phi)}+\Pi_{p(\mathcal{P}(\phi), \phi)} \phi=: i(\phi) \in \mathcal{S}_{p_{0}} \\
H_{r}:=i^{*} H, \quad \Omega:=i^{*} \omega .
\end{gathered}
$$

- Vector field: H_{r} defines a Hamiltonian vector field in \mathcal{V}.
- Assumptions
- X_{H} defines a local flow on $H^{k_{0}}$ which leaves invariant $H^{k} \forall k \geq k_{0}$.
- The same for $X_{H_{r}}$.

Theorem

$\exists C>0$ s.t., if

$$
d_{k_{0}}\left(u_{0}, \mathcal{T}\right)<C, \quad u_{0} \in \mathcal{S}_{p_{0}} .
$$

then $\exists q(t)$ s.t. $u(t)=e^{q_{j}(t) J A^{j}} i(\phi(t))$.
The converse is also true.

Outline

(2) A model problem
(3) Recall of BCO9

4 Connection with NLS
(5) Marsden-Weinstein reduction

6 Darboux theorem
(7) Perturbation theory

Search for canonical coordinates

$$
\Omega_{\phi}(\Phi ; \Phi)=\langle\mathcal{E}(\phi) \Phi ; \Phi\rangle, \quad \mathcal{E}(\phi)=E+O\left(\phi^{2}\right) .
$$

Darboux theorem

There exists a man of the form

$$
\begin{equation*}
\phi=\mathcal{F}\left(\phi^{\prime}\right)=e^{\sum_{j} q_{j} J A^{j}}\left(\phi^{\prime}+S\left(N, \phi^{\prime}\right)\right), \quad N^{j}:=\mathcal{P}^{j}\left(\phi^{\prime}\right) \tag{1}
\end{equation*}
$$

where the following following properties hold 1. $a_{i}(N, \phi)$ is defined on $\mathbb{R}^{n} \times \mathcal{V}^{-\infty}$ 2. $S: \mathbb{R}^{n} \times \mathcal{V}^{-k} \mapsto S(N, \phi) \in \mathcal{V}^{\prime}$ is smoothing
3. in terms of the variables ϕ^{\prime} the symplectic form is given by

$$
\begin{equation*}
\Omega\left(\Phi_{1}^{\prime} ; \phi_{2}^{\prime}\right)=\left\langle E \phi_{1}^{\prime} ; \phi_{2}^{\prime}\right\rangle \tag{2}
\end{equation*}
$$

Search for canonical coordinates

$$
\Omega_{\phi}(\Phi ; \Phi)=\langle\mathcal{E}(\phi) \Phi ; \Phi\rangle, \quad \mathcal{E}(\phi)=E+O\left(\phi^{2}\right) .
$$

Darboux theorem

There exists a map of the form

$$
\begin{equation*}
\phi=\mathcal{F}\left(\phi^{\prime}\right)=e^{\sum_{j} q_{j} J A^{j}}\left(\phi^{\prime}+S\left(N, \phi^{\prime}\right)\right), \quad N^{j}:=\mathcal{P}^{j}\left(\phi^{\prime}\right), \tag{1}
\end{equation*}
$$

where the following following properties hold

1. $q_{i}(N, \phi)$ is defined on $\mathbb{R}^{n} \times \mathcal{V}^{-\infty}$
2. $S: \mathbb{R}^{n} \times \mathcal{V}^{-k} \mapsto S(N, \phi) \in \mathcal{V}^{\prime}$ is smoothing.
3. in terms of the variables ϕ^{\prime} the symplectic form is given by

$$
\begin{equation*}
\Omega\left(\Phi_{1}^{\prime} ; \Phi_{2}^{\prime}\right)=\left\langle E \Phi_{1}^{\prime} ; \Phi_{2}^{\prime}\right\rangle . \tag{2}
\end{equation*}
$$

Recovering smoothness

- The differential of $e^{q_{j}(\phi)} J A^{j} \phi$ involves

$$
e^{q_{j}(\phi) J A^{j}} J A^{j} \phi d q_{j}
$$

- Smoothness: If H is invariant: $H\left(e^{q_{j}(\phi) J A^{j}} u\right)=H(u)$ then:

$$
H(\mathcal{F}(\phi))=H(\phi+\text { smoothing terms })
$$

- Explicitely

$$
\begin{gathered}
H \circ \mathcal{F}=H_{L}+H_{P}+\text { small corrections } \\
H_{L}(\phi)=H\left(\eta_{p_{0}}+\phi\right)-H\left(\eta_{p_{0}}\right)
\end{gathered}
$$

Restriction of the linearization at the soliton to the symplectic orthogonal!

Outline

(2) A model problem
(3) Recall of BCO9

4 Connection with NLS
(5) Marsden-Weinstein reduction
(6) Darboux theorem
(7) Perturbation theory

Spectrum

- Write $H_{L}(\phi)=\frac{1}{2}\langle\phi ; L \phi\rangle$

One can prove that L is selfadjoint and

- Spectrum $\sigma(L)=\left\{\omega_{1}^{2}, \ldots, \omega_{N}^{2}\right\} \cup\left[\Omega^{2},+\infty\right)$
- Coordinates There exist coordinates such that $H_{L}=\sum_{l} \omega_{l}\left|\xi_{l}\right|^{2}+\langle\bar{f} ; B f\rangle$
- One can start with perturbation theory.

Normal form.

- Definition: Normal form A function $Z(M, \phi)$ is in normal form up to order N, if the following holds

$$
\begin{array}{r}
\{\omega \cdot(\mu-\nu) \neq 0 \&|\mu|+|\nu| \leq N+2\} \Longrightarrow \frac{\partial^{|\mu|+|\nu|} Z}{\partial \xi^{\mu} \partial^{\nu} \bar{\xi}}(M, 0)=0 \\
\{\omega \cdot(\mu-\nu)<\Omega \&|\mu|+|\nu| \leq N+1\} \Longrightarrow d_{f} \frac{\partial^{|\mu|+|\nu|} Z}{\partial \xi^{\mu} \partial^{\nu} \bar{\xi}}(M, 0)=0 \\
\{-\omega \cdot(\mu-\nu)>\Omega \&|\mu|+|\nu| \leq N+1\} \Longrightarrow d_{\bar{f}} \frac{\partial^{|\mu|+|\nu|} Z}{\partial \xi^{\mu} \partial^{\nu} \bar{\xi}}(M, 0)=0
\end{array}
$$

Theorem

For any $N \geq 0$ there exists a canonical transformation T_{N} of the form (1) such that $H_{r} \circ T_{N}$ is in normal form up to order N.

THE END

THANK YOU

